[image: image5.wmf]

[image: image6.jpg]
 FMS Operations
[image: image7.wmf]

 FMS Operations

Department of Education-FSA

FMS Integration Partner

 FMS Developer Process Guide

Creation Date: 04/24/2007

Last Updated: 04/18/2008

Version: 1.6 Draft
Document Control

Change Record

	Date
	Author
	Version
	Change Reference

	
	
	
	

	04/24/2007
	Jeff Castellow
	1.0 Draft
	Initial Document using the System Development Lifecycle based on Software Engineering Institute (SEI).

	06/08/2007
	Jeff Castellow
	1.1 Draft
	Updated Key Activities, Deliverable Roles tables.

	08/15/2007
	Jeff Castellow
	1.2 Draft
	Added Oracle Forms and Reports, EOCM, U.S. Department of Education (Department) LCM Framework (Framework).

	09/14/2007
	Jeff Castellow
	1.3 Draft
	Created 2.1.5.3.1, updated 2.3.5.3, Appendices E, F, H, J with labeling instructions and Appendices F, J with restrictions to APPLSYSPUB schema.

	11/15/2007
	Jeff Castellow
	1.4 Draft
	Integrated comments from 10/25/07, 11/15/07 reviewers.

	1/17/2008
	Jeff Castellow
	1.5 Draft
	Added sections on Oracle Forms Library (2.3.1, Appendix D), Discoverer (2.3.1, 2.3.1.1), Java code (Appendix B, E) and build script (2.3.1.5.1) and log file conventions (Appendix E).

	4/8/2008
	Jeff Castellow
	1.6 Draft
	Added process steps for:

1) Developers to Create Automated Scripts (section 2.3.1.5.1)

2) Building Release Folders in FMS Environments (section 2.3.1.5.2)

3) Discoverer development (section 2.3.1.1)

4) Discoverer Report Standards (Appendix D, FMS Discoverer Reports)

5) JDeveloper Tool File Control (Appendix G: JDeveloper Tool File Control Process).

Updated:

6) Reviewers' redlined comments.

Note: The controlled master of this document is available in ClearCase. Hard copies of this document are for information only and are not subject to document control.

Reviewers

	Date
	Reviewers
	Version

	
	
	

	05/24/2007
	Praful Patel, Herald Soon, Marcus Daughtry, Steve Feld
	1.1 Draft

	08/14/2007
	Danny Dy Tang, Milton Thomas, Rosa Trejo, David Gonzalez, Praful Patel, Sarala Sripada, Steve Feld
	1.2 Draft

	09/13/2007
	Praful Patel, Herald Soon, Kiran Kesari, Ramesh Akula, Steve Feld
	1.3 Draft

	10/25/07, 11/17/2007
	Danny Dy Tang, Sue Lou, Praful Patel, David Gonzalez, Steve Feld.
	1.4 Draft

	01/25/08
	Praful Patel, David Gonzalez, Sarala Sripada, Steve Feld, Danny Dy Tang.
	1.5 Draft

	04/17/08
	David Gonzalez, Sarala Sripada, Vikram Mehta, Steve Feld.
	1.6 Draft

Table of Contents

41.
Introduction

41.1
Purpose

41.2
Scope

41.3
References

52.
Information Technology Life Cycle Framework

62.1
Vision Stage

62.1.1
FMS System Overview

62.1.2
Concept of Operations

62.1.2.1
Interfaces

62.1.2.2
Extensions

72.1.3
FMS Enhancements Task Orders

72.1.4
FMS Operations Activities

72.1.5
Configuration Management Activities

72.1.5.1
Configuration Management Tools

72.1.5.2
Check In/Out

82.1.5.3
Release Schedule

82.1.5.4
Cloning

82.1.5.5
Release Labels

82.1.5.5.1
Apply Release Labels

102.1.6
Key Activities, Deliverables, Roles

122.2
Definition Stage

122.2.1
System Requirements

122.2.2
Documentation

122.2.2.1
Design

122.2.2.2
Handbooks

132.2.3
Key Activities, Deliverables, Roles

152.3
Construction and Validation Stage

152.3.1
FMS Software Development

152.3.1.1
Discoverer

172.3.1.2
FMS Source Code

172.3.1.3
FMS Global Packages

172.3.1.4
Source Code Reviews

172.3.1.5
Build Package

172.3.1.5.1
Build Script Files

192.3.1.5.2
Release Folders

192.3.1.5.3
Readme

202.3.1.5.4
Setups

202.3.1.5.5
Post-Migration Validation Scripts

212.3.1.5.6
Back Out Plan

212.3.2
FMS Testing

212.3.2.1
FMS Test Scripts

212.3.2.2
System Incident Report

212.3.2.3
Unit Testing

212.3.2.4
Integration Testing

212.3.2.5
User Acceptance Testing

222.3.2.5.1
Regression Testing

222.3.2.6
Inter-System Testing

232.3.3
Transition to FMS Operations

232.3.3.1
Release Implementation Plan

232.3.3.2
Staging a Release

232.3.4
Operational Readiness Review

232.3.5
Key Activities, Deliverables, Roles

282.4
Implementation Stage

282.4.1
Release Build

282.4.2
Key Activities, Deliverables, Roles

292.5
Support and Improvement Stage

292.5.1
Lessons Learned

292.5.2
Production Support

292.5.3
Key Activities, Deliverables, Roles

302.6
Retirement Stage

2-1Appendix A: Acronym List

2-2Appendix B: FMS Templates

2-4Appendix C: FMS Processes

2-5Appendix D: Oracle Forms and Reports

2-11Appendix E: FMS Software Development Standards

2-19Appendix F: FMS Development Tools

2-20Appendix G: JDeveloper Tool File Control Process

2-21Appendix H: Descriptive Header Box Template

2-22Appendix I: FSA FMS Global Packages

2-24Appendix J: FMS Application Tops

2-25Appendix K: Section 508 Compliancy

1. Introduction

This document provides an overview of the software development and release activities conducted throughout the FMS Systems Development Lifecycle (SDLC) and followed by the Department of Education’s (the Department or ED) Federal Student Aid - Financial Management System (FSA FMS) project.

1.1 Purpose

The purpose of this document is to provide a reference by which FMS project team members can apply a consistent approach in producing project artifacts during the FMS SDLC activities of the Department’s Lifecycle Management (LCM) Framework. This document also serves as orientation for developers new to the FMS project.
1.2 Scope

This Developer Guide provides information necessary to describe how to develop and maintain the software of the FSA FMS system. This document identifies work products produced during the LCM and includes instructions to locate, create and modify, review, test and debug, and migrate source code of the FMS system. Guidelines and standards are included for making changes to server software, the database structure, data values and setups necessary to successfully build, integrate and execute the software on the target platforms.
Many of the processes described in this Developer Guide refer to the procedures and guidelines presented in other documentation and are not attached to this document. This document does not attempt to reproduce information that is available on the FMS Shared F-Drive, in the Rational and/or HP Unix System Administration manuals, Oracle system documentation, or information in Oracle PL/SQL Language Reference Manuals. It provides references to such materials where appropriate. In cases where required information is provided in other documentation, references to that document are used. This document will be updated as FMS project activities change, upon review and approval of FSA FMS Management.

1.3 References

These references support the information outlined in this document:

· U.S. Department Of Education, Lifecycle Management (LCM) Framework, Version 1.0

· FSA FMS Business Process Review (April 16, 2004)

· Production Support Handbook, FMS Change Management Procedures, located in ClearCase at \FMS_11i\Documentation\Production\Support\

· Oracle DBMS Naming Standards, Version 4.1, July 26, 2006, EDS Knowledge Center, EDS Intranet Web Site

Information Technology Life Cycle Framework

The ED Office of the Chief Information Officer (OCIO) and other ED principal offices have adopted the U.S. Department of Education’s (Department) Life Cycle Management (LCM) Framework as their approach for delivering Information Technology (IT) solutions. For details see the Department’s LCM Framework document.

The FMS System’s adaptation of the LCM Framework emphasizes tasks associated with the technical aspects of defining FMS system requirements, designing and coding, testing and implementing baseline systems. FMS uses the LCM Framework model in producing its project plans and software baselines. The LCM Framework is divided into stages that define a breakdown and identification of work products, roles and responsibilities that are applied or produced throughout the lifecycle to achieve repeatable processes and ensure continuous process improvement.

	LCM Stages
	CQ FMSCR Phases

	Vision
	Submitted

	
	Review and Assign

	Definition
	Gather Requirements

	Construction and Validation
	Development & Unit Test

	
	End to End / User Testing

	
	Completed End to End / User Testing

	
	Ready for Release

	Implementation
	Approved for Release

	Support and Improvement
	Completed & Closed

	
	Closed

	Retirement
	N/A

LCM Staging to ClearQuest Phase Mapping

The goals of the LCM stages provide a mapping to the CR phases in ClearQuest. The FMS CR Process defined in the FMS Change Management Procedures, located in ClearCase at \FMS_11i\Documentation\Production\Support\, describes how CR phases are tracked and artifacts are maintained in the ClearQuest (CQ) FMSCR Versioned Object Base (VOB). During the LCM Framework stages a CR will be cycled through its phases. The following table shows the correlation between the LCM stages and CR phases that are relevant toward the implementation of FMS Releases in the FMS production environment.
Vision Stage

The purpose of this stage is to develop necessary planning to build new Information Technology solutions or improve existing IT assets for the FSA FMS system.

1.3.1 FMS System Overview

The Department’s FSA FMS system was implemented in October 2001. The Department’s Office of the Chief Financial Officer (OCFO) implemented EDCAPS FMSS 7.0 in January 2002. FSA and OCFO had implemented Oracle Federal Financials applications through Release 11.0.3. In the last quarter of 2005, FSA upgraded the FMS system to Oracle Federal Financials Release 11i (from release 11.5.9) to remain current with Oracle technology and to make use of enhanced functionality and technical architecture.

1.3.2 Concept of Operations

FMS provides IT and support to its customers and users to interface with Federal Student Aid’s financial environment. FMS provides the ability to report information across programs, consolidate redundant processes, and account for FSA grant and loan financial transactions. FMS supports FSA Channels, Enterprise areas, and Partners and provides timely and consistent financial data for strategic decision making. In addition, FMS provides FSA with a fully auditable accounting system with appropriate security, controls and audit trails.

FMS manages the flow of financial information across all of FSA’s information systems. FMS incorporates processes from a number of FSA interfaces and FSA operations into the core of the Oracle Federal Financials system. One of the primary objectives of FMS is to provide the necessary interfaces and extensions in order to be fully operational with other FSA systems. The core of FMS encompasses interfaces (file transfers of data) from support applications to the Oracle Financials application and the consolidation and centralization of all accounting and financial data into one system. For this reason, the following interfaces and extensions to the FMS application constitute a major portion of the system activity.
1.3.2.1 Interfaces

· Direct Loan (Servicing and Consolidation); including DLSS Refunds Processing

· eCampus Based System

· Debt Management Collection Services (DMCS)

· Postsecondary Education Participants System Information Gateway (PEPS)

· Common Origination and Disbursement (COD)

· DoEd Financial Management System (FMSS)

· Financial Partners Data Mart (FP Datamart)

· Student Aid Internet Gateway (SAIG)

· National Student Loan Data System (NSLDS)

· Grants Administrative and Payments System (GAPS) ED CFO

· Automated Budget Entry (ABE)

· Automated Reconciliation System (ARS – Checkfree)

· Accounting Division Processing (Conditional Disability Discharge Tracking System, Lender Payments)

· PayGov.

1.3.2.2 Extensions

· Leveraging Educational Assistance Partnership Program/Special (SLEAPP) and Leveraging Educational Assistance Partnership Program (LEAPP)

· Lender Application Process (LAP)

· Lender Redesign (LaRS)

· Forms 2000 (FFELGA)

· Voluntary Flexible Agreement (VFA)

· FMS Archiving

· FMS Discoverer

· Application Desktop Integrator (ADI).

1.3.3 FMS Enhancements Task Orders

Enhancement task orders consist of FMS CRs and projects required by FMS. The Enhancement task order team will perform required research, design and development and testing to complete CRs to be included in FMS Releases and deliver artifacts and documentation to meet Service Level Agreements (SLA)s.

1.3.4 FMS Operations Activities

FMS Operations activity includes FMS Production Support (see Section 2.5.2 Production Support), management of the FMS Help Desk, development of new CRs and implementation of FMS Releases. The FMS Operations CR Manager distributes a weekly FSA FMS Weekly Change Request Update, which includes the FMS Production Release Schedule for the fiscal year and open FMS CRs. The FMS Change Control Board (CCB) approves selected CRs for implementation by FMS releases.

1.3.5 Configuration Management Activities

The FMS Operations CR Manager performs a variety of Configuration Management (CM) activities. The CR manager monitors CM activities and coordinates release activities and the packaging of FMS artifacts. The Project Support lead supports the activities of the FMS CR Manager’s duties.

The FMS CM team performs Quality Control (QC) checks on all deliverable artifacts as part of each CR assigned in a release and all project work products, to include reviews with FMS (see the “Quality Control” column in the “Key Activities, Deliverables and Roles” sections in this document). FMS maintains a Check‑In Checklist (referred to: Appendix B: FMS Templates) to validate FMS artifacts. Any changes to the checklist will be reviewed and approved by FMS. The CM team (FMS Operations CR Manager and Project Support) reviews all CR artifacts to ensure they meet the following criteria:

1. Utilizes approved formats and/or templates,
2. Follows guidelines as specified in the approved Check-In Checklist,
3. Checks‑in to ClearQuest and ClearCase per FMS release schedule dates.
1.3.5.1 Configuration Management Tools

The FMS project’s artifacts are controlled and maintained in repositories at the Virtual Data Center (VDC). The ClearQuest FMS database houses FMS CRs and the ClearCase VOB houses various FMS artifacts. Rational ClearQuest is used to store and maintain FMS CRs and artifacts attached to the CRs.

The FMS software and documentation is stored in the Rational ClearCase FMS VOB and is accessible through the Rational ClearCase Explorer, which is used to navigate a directory tree‑structure layout under the “\FMS_11i” parent directory. The directory structure for the source code mirrors the file structure maintained in the FMS production system (refer to: Appendix J: FMS Application Tops).

The VDC also maintains the Citrix MetaFrame Presentation Server, which provides access to the Rational ClearCase Explorer and ClearQuest for Windows tools.

Users can log in to Citrix from a web browser with this URL available on EDNet:

· http://fsarational.ed.gov/

Note: This URL can also be used through FMS Firepass or the VDC VPN.

Refer to the Production Support Handbook, FMS Change Management Procedures, Appendix 2‑A,B (located in ClearCase at \FMS_11i\Documentation\Production\Support\) procedures for using ClearQuest and ClearCase.

1.3.5.2 Check In/Out

All required documentation is checked-out in ClearCase during the requirements gathering CR phase and source code is checked-out during the Development & Unit Test CR phase to prevent simultaneous development efforts on the same files. The source code and documentation are checked‑in to ClearCase at the end of the Completed End to End / User Testing CR phase, as part of an FMS release. The FMS CR number must be included in the "Description" of the checked-In artifact for traceability and accountability. FMS artifacts are attached to a CR in ClearQuest and checked-in to ClearCase for delivery to FSA FMS.

1.3.5.3 Release Schedule

The FMS Release Schedule includes milestone dates with associated CR release phases and SLA dates. The FMS release schedule determines when to clone and build the development and test instances. The Code Freeze date is the deadline for attaching all deliverable items to a CR in ClearQuest and check-in source objects and documentation into ClearCase. All of the release dates in the Release Schedule are approved by the CCB and distributed weekly by the FMS Operations CR Manager. Refer to the FMS Change Management Handbook for more details.

1.3.5.4 Cloning

The FMS Operations Technical Manager is responsible for coordinating database cloning and refreshes with all project teams from information provided by the development teams. The code and setups that have been deployed in production must be applied to all instances (DEVCOM, TSTING, etc.). This is necessary to ensure that all project team members are always working from the latest baseline copy of production code. Cloning for DEVCOM and TSTING is scheduled to occur after the implementation of the last FMS Release in the production environment. The FMS Operations DBA team conducts cloning and data refreshes according to the dates in the FMS release schedule. The Technical and Functional teams certify each cloned instance before its use. The clone history for every FMS instance to be used in User Acceptance Testing (UAT) will be logged into the UAT Environment Certification (refer to: Section 2.3.2.5 User Acceptance Testing).

1.3.5.5 Release Labels

A release label is a unique identifier that is applied to every software object in a FMS software baseline release. The FMS Operations CR Manager assigns a release label for each FMS release. The FMS Operations CR Manager provides the release label to the project teams. Release labels establish traceability and accountability for the FMS project.

1.3.5.5.1 Apply Release Labels

The release label is of the component form: “CR_RELEASE_ReleaseID”, where “ReleaseID” is the release identifier of the forms: N.0XX, N.0XX_CY, N.0XX_DY, where “N” is the FMS Release series, “XX” is a unique serial release identifier and “Y” is a unique serial (C)ritical or (D)ynamic release number. Refer to the FMS Change Management Handbook for more details on Critical and Dynamic releases.
Developers must apply the release label to all source code. The typical method to apply a label is to type it into a comment inside of the object’s Header Box (refer to: Appendix H: Descriptive Header Box Template). The following table shows particular methods used to apply the label to specific object types.

	Object Type
	Method to Apply Label

	Unix Shell Script (.sh or .prog),

Control File (.ctl or .cfg),

Oracle SQL and PL/SQL Packages (Specification and Body) (.sql),

Java (.java)
	The release label is typed into a comment inside the Header Box.

	DB Trigger (.sql)
	The release label is typed into a comment in the Header Box, which must be placed just after the ‘Create or Replace Trigger’ statement.

	Oracle Forms (.fmb and .fmx)
	The release label is placed inside the Header Box and the ReleaseID is placed in the Form Id (see 7.020 in example) of the fmb object. Placing the ReleaseID in the Form ID will enable it to appear in the compiled fmx object.

[image: image1.png]

	Oracle Reports (.rdf)
	The release label is placed in the Comment property (see example) of the report file.

[image: image2.png]

	Oracle Workflow (.wft)
	The label is typed into the Description property of the Item Type for the workflow file. Workflow Builder does not support a Header Box at the top of the file.

[image: image3.png]

Note: The release label is not applied to these types of objects: .ldt, .property. These files are produced by a development tool, which has no attribute in which to write the release label. The label can be manually written to the file, however the tool will overwrite the file each time the file is re-created and when it is deployed.

1.3.6 Key Activities, Deliverables, Roles

This Key Activities table depicts a sequence of steps for this LCM stage.

	Key Activity
	Deliverable
	Role
	Quality Control

	Enter a CR in ClearQuest in ‘Submitted’ phase (CQ_FMSCR_Phases)

Attach the CR Form
	FMS CR
	FMS Operations Help Desk
	CR phase is ‘Submitted’.

Original Email request with attached CR Form is attached to the CR.

	Change CR phase to ‘Review and Assign’ (CQ_FMSCR_Phases)
	
	FMS Operations CR Manager or EDS Project Manager
	CR phase is ‘Review and Assign’.

	Assign CR to an available developer
	
	FMS Operations CR Manager
	CR has been assigned.

	Assign CR to an Enhancement developer or functional resource
	
	EDS Project Manager
	CR has been assigned.

	Provide release label to developers
	FMS Release Label
	FMS Operations CR Manager
	Development team applies the release label to source objects. The Unix post-validation script searches on the release label.

	Put the release label and CR numbers in the Check-In Checklist (Appendix B: FMS Templates) for the release ID
	Check-In Checklist (Work Product)
	FMS Operations CR Manager or Project Support lead
	The Checklist accounts for every CR in the release.

	Create a Release Id directory in ClearCase and child CR folders for every CR in the release
	ClearCase Folders
	FMS Operations CR Manager or Project Support
	A child CR folder exists for all CRs in the release, under the Release Id parent directory.

Definition Stage

The purpose of this stage is to develop and refine the functional requirements and system design that address the business and technical issues identified by FMS CRs. The Requirements Matrix and Detailed Design Documents Appendix B: FMS Templateswill be produced from FMS templates in this stage, refer to
.

The following sections describe the FMS artifacts that are produced and processes conducted during this stage.
1.3.7 System Requirements

FMS system requirements are produced for every CR implemented into the system. The Requirements Matrix is the artifact that will be produced and attached to its CR in ClearQuest. Refer to Appendix B: FMS Templates

.
1.3.8 Documentation

FMS documentation consists of functional and technical design, architecture, processes and procedural handbooks, maintained in ClearCase. All FMS documents are assembled from a combination of text, graphics and sample data, reports, report and form formats and output files. The following sections show where FMS system documentation is maintained in various ClearCase subfolders under the highest-level parent folder: \FMS_11i\Documentation\.

1.3.8.1 Design

FMS design documentation includes functional and technical and architecture. New functional and technical design documents are created as Interim documents and will be consolidated into Detailed Design Documents (DDD) s by business area. At this time, Interim documents are to be written only for the DMCS Interface. Changes to the FMS system will require updates to existing documentation.

	Description
	Parent Directory Location in ClearCase

	FMS Detailed Design Documents
	\FMS_11i\Documentation\System Documentation\ Detailed Design Documents\

	FMS Technical Architecture Documents
	\FMS_11i\Documentation\Technical Architecture\

1.3.8.2 Handbooks

The FMS Production Support Handbooks document FMS Interfaces, User Guides and FMS business areas. Each interface has it own production support handbook If an enhancement or modification introduces new program functionality, a new handbook may need to be produced. Otherwise, changes will be made to existing FMS Handbooks.

	Description
	Parent Directory Location in ClearCase

	FMS Production Support Documents
	\FMS_11i\Documentation\Production Support\

	FMS Production User Support Documents
	\FMS_11i\Documentation\Production User Support\

	FMS Discoverer Documents
	\FMS_11i\Documentation\Discoverer\

Key Activities, Deliverables, Roles

This Key Activities table depicts a sequence of steps for this LCM stage.

	Key Activity
	Deliverable
	Role
	Quality Control

	Change the CR phase to ‘Gather Requirements’ (see CQ_FMSCR_Phases)
	N/A
	Developer or EDS Functional Lead
	Verify CR phase is ‘Gather Requirements’

	Conduct joint work sessions with FSA to gather CR requirements and prepare impact analysis on the requirements.

Review Requirements Matrix with FMS Operations SMEs
Submit the Requirements Matrix to the User for approval

User approval is required for each revision, FSA approval is required for the final Requirements Matrix
	Requirements Matrix
	FMS Functional Lead,

EDS Developer Lead,

Developers,

EDS Functional Lead,

FMS Operations,

Users
	Verify Requirements Matrix

	Review and approve the CR requirements
	
	Users
	

	Check- in (Section 2.1.5.2 Check In/Out) the Requirements Matrix after User approval
	
	EDS Functional Lead*

	

	Update/develop functional design and document the specifications
	Detail Design Document,

FMS Technical Architecture Documents,

FMS Production Support Documents,

FMS User Support Documents,

FMS Discoverer Documents
	EDS Functional Lead*
	Verify CR Documentation

	Update/develop technical design and document the specifications
	
	Developer
	

	Check-out (see Section 2.1.5.2 Check In/Out) design and technical/functional specifications
	
	Developer (technical) / EDS Functional Lead (functional)

	

	Conduct Design Review

Review with FMS Operations SMEs

Finalize the design document
	
	EDS Functional Lead,

Developer,

FMS Operations
	

	Submit design documentation for approval
	
	Developer (technical) / EDS Functional Lead* (functional)
	

	Review and approve the design documentation
	
	FSA Functional Lead*
	

	Check-in the design document after the approval
	
	Developer (technical) / EDS Functional Lead (functional)
	

Note: *FMS Operations Developers perform as Developers and Functional Leads for TO02 CRs.

Construction and Validation Stage

The purpose of this stage is to build, test and validate the software that meets or exceeds business and technical expectations identified by FMS CRs. FMS source code, FNDLOAD setups and documentation, build scripts, Test Scripts, System Incident Reports (SIR)s, SIR Test Summary Issue Log, Master Project Issue Log, TAR Summary Log, resulting test output files and reports, Readme and post‑validation scripts will be produced in this stage. Refer to the individual templates in Appendix B: FMS Templates
.

The following describes the FMS artifacts that are produced and processes conducted during this stage.

1.3.9 FMS Software Development

The Development team lead will attend weekly meetings during the FMS SDLC to ensure that team progress is met according to the FMS Project Plan and report status to FMS Management. Development issues will be recorded in the Master Project Issue Log, Oracle system issues will be recorded in the TAR Summary Log, and both are reported to FMS Management.

FMS Developers are responsible for the following key activities:

1. Maintain the FMS source code using the tools required by the software to complete the requirements of a CR. A list of developer tools and their descriptions is located in Appendix F: FMS Development Tools.
2. Utilize the standards described in Appendix E: FMS Software Development Standards to apply Source Code Standards, Naming Conventions, Language Restrictions and SQL Tuning Considerations to coding.

3. Follow the steps for the development in Appendix D: Oracle Forms and Reports and use the FMS Oracle Forms Standard Library in the development of Oracle Forms (refer to: Appendix D: Compile Oracle Forms).

4. Follow the steps in the development of Discoverer queries and reports located in Section 2.3.1.1 Discoverer. See the DiscoRpts section in Appendix D: Oracle Forms and Reports for developing Discoverer reports.

Maintain ‘Section 508’ standard compliancy in the development of Oracle Forms (refer to: Appendix K: Section 508 Compliancy).

5. Document the FMS source code. A Descriptive Header Box Appendix H: Descriptive Header Box Template is included in every FMS source file as part of development. The header is placed at the top of FMS software file to identify the object, describe the object’s usage and maintain CR and release tracking information.
6. Participate in FMS source code reviews. See Section 2.3.1.4 Source Code Reviews.
7. Create build packages for FMS CRs. The creation and contents of build packages are described in Section 2.3.1.5 Build Package.
8. Participate in and support FMS testing as described in Section 2.3.2 FMS Testing.
9. Support the implementation of FMS releases as described in Section 2.4.1 Release Build.
1.3.9.1 Discoverer

Discoverer is an ad-hoc query tool tailored to create SQL and reports for FMS business analysis purposes and provides users with access to information from FSA data marts, FSA online transaction processing systems and FMS databases. Discoverer users are able to view and analyze specific data in predefined folders created in the FMS business areas. Users can create ad-hoc reports and export them to MS Excel sheets on their PC.

The Discoverer Administrator creates and provides access to work folders within business areas that organizes FMS data, based on FMS business requirements. The administrator creates SQL and reports using the precise data needed for analysis, decision support, and presentation of results.

The following table lists the Discoverer Business Areas and associated Oracle Application Responsibilities (as listed in the Discoverer Detail Design Document.doc).

	#
	Oracle Application Responsibilities
	Oracle Discoverer Business Areas

	1
	FSA Discoverer FFELGA
	FSA FFELGA Business Area

	2
	FSA Discoverer Direct Loan
	FSA Direct Loan Business Area

	3
	FSA Discoverer AD
	FSA Accounting Division Business Area & FSA Reconciliation Business Area

	4
	FSA Discoverer ACS DLS
	FSA External (ACS, EDS) Business Area

	5
	FSA Discoverer Grants
	FSA Grants Business Area

	6
	FSA Discoverer FFELLEN
	FSA LARS Business Area

	7
	FSA Discoverer FRD
	FSA FRD Business Area

	8
	FSA Discoverer CFO
	

	9
	FSA Discoverer Operations
	ALL Business Areas

During Discoverer Requirement Gathering, the following must be included:

The Requirements Matrix must specify the following:

1. The list of Business Area (BA)/Folders that will be modified.
2. Whether an existing report will be modified or a new report needs to be created.

3. Layouts that explicitly show the required formatting for all columns, totals, etc., needed in the reports.

4. For new reports, the following requirements must be specified:

a. The responsibility the report is shared with.

b. The list of columns and the order they are to be displayed.

c. The list of parameters and whether they are required and if an LOV is available to provide the values.

d. The total and sub-totals in the report and to which columns they apply.

e. The sort order of the columns: primary, secondary, tertiary, etc.

f. Follow the Discoverer report standards at: Appendix D: FMS Discoverer Reports.

5. The following documentation will need to be considered for updates:

a. Discoverer Detail Design Document.doc (Add new BA folder and the supporting query)

b. Discoverer New Reports Inventory.xls (Add new Discoverer Reports)

c. Cheat Sheet.xls

d. Discoverer Navigation Guide.doc

e. Discoverer Training.doc

f. The Discoverer Production Hand Book.doc details the development activity to be followed for each FMS CR pertaining to Discoverer. The Discoverer Production Hand Book.doc is referenced in Appendix C: FMS Processes and is located in ClearCase.
During Discoverer testing (UAT), the following needs to be included:

1. A test script shall be required for all Discoverer reports in UAT. The URL to the instance where the test shall take place shall be included in the test script, along with the report parameters.

2. The test script shall contain specific steps for exporting the reports to Excel and validating the results.
During Discoverer migration to production, the following step will be taken:

1. The FMS Operations individual designated to migrate the reports shall take screenshots before performing the migration in order to compare and further validate that the introduced changes in production are according to requirement specifications.

1.3.9.2 FMS Source Code

Oracle forms, reports (see Appendix D: Oracle Forms and Reports), source code and database objects are used to develop the FMS system. This includes Unix shell scripts, Java code, Oracle PL/SQL packages and SQL. The FMS source code is under configuration control in ClearCase and organized under parent folders or tops, by FMS application business area, FMS interfaces and common user interface (see Appendix J: FMS Application Tops). Test drivers, test stubs, and test data are saved in the environments where they are needed but are not under configuration control.

1.3.9.3 FMS Global Packages

The global packages belong to the FMS standard library of reusable code that can be applied to all programs. This was created under the SFALIB schema. To date, the procedures and functions listed in the Global Package Table have been incorporated into the global package. The list and descriptions of FMS global packages is located in Appendix I: FSA FMS Global Packages.

1.3.9.4 Source Code Reviews

Technical leads are responsible for conducting peer reviews to manage quality control of the source code that developers create. Source code reviews will be performed using the Source Code Review checklist, referred to in Appendix C: FMS ProcessesAppendix B: FMS Templates

. The Source Code Review checklist includes project standards for file types and conventions for the coding languages used to maintain the FMS System. Source code reviews are conducted before testing begins. The source code review process is described in the FMS Peer Review Process document, referred to in .
1.3.9.5 Build Package

The development team creates build scripts to deploy, compile, and configure software and load setup files into the FMS testing, staging and production environments. The build package consists of build scripts, source code/objects, the Readme, setup load files and manual setup documents, Post‑Validation scripts and the FMS Back Out CR Plan. The following sections describe the components of a build package.

1.3.9.5.1 Build Script Files

Build scripts are required to automate a variety of functions and tasks and are expected to execute consistently in each FMS environment. Every file required in a build script will be identified in the Readme file and checked in to ClearCase as part of an FMS release. See Appendix G: JDeveloper Tool File Control Process for the specific handling of Java files. The following is required in the design of FMS automated build scripts.

· Be a text file and have a header box Appendix H: Descriptive Header Box Template at the top of the file,

· Copy source objects to target destinations,

· Backup the existing copy of the object being modified,

· Create new directories as required,

· Compile source code into executable files,

· Compile Oracle Forms (refer to Appendix D: Compile Oracle Forms) where necessary,

· Perform required configuration changes that will prepare the deployed file(s) for execution and create log files, change file and directory permissions as required,

· Execute post‑migration code validation scripts (Note: In some cases, the post-migration script has to be run manually when manual setups are required after the execution of the build script),

· Create log files and direct output to show the execution progress of the build script:

· The log file will validate the deployment of files and compilations and other required changes. See the LogFiles section in Appendix E: FMS Software Development Standards for the naming conventions. Once the development team is satisfied with the results in the logs, the DBA team can use those results to determine that the automated scripts successfully deployed and configured all files for the release build in each FMS environment: testing (UATDB, TSTING) and staging (STGING) and production (PROD).

· Show the server name in the log file,

· Prompt for a password, but do not display the password,

· Do not include exit statements,

· Use one of the following file naming conventions, where the extension is for PL/SQL or shell script as required:

· Task Order Number-Release Id-BUILD.extension

This version is for all CRs in a release for a given task order.

Examples:
TO02-7024-BUILD.sql or TO02-7024-BUILD.sh

· CR Number-BUILD.extension

This version is for a single CR.

Examples:
CR1098-BUILD.sql or CR1098-BUILD.sh

CR1098-FORM-BUILD.sql or CR1098-FORM-BUILD.sh

The use of one-time executable files and supporting scripts are required in the design of automated build scripts to deploy, configure and validate code for an entire release or for individual CRs. The following steps are intended to identify the use of one‑time executables and supporting files and when they should be removed from FMS file systems after use.

1. One‑time executables and supporting files can perform such a wide variety of functions such as DB alterations, setup loads, data conversions and post‑validations, but specifically they are not view creation scripts, trigger creation scripts, packages, procedures and functions. Automated scripts shall be designed to execute in the current directory, where they are staged on each FMS platform. Some build scripts will automate all CRs in a release, while other CRs are staged and built individually.

2. The DBA team will create release folders on FMS platforms (TSTING, UATDB, STGING and PROD) where developers' automated scripts and files will be staged. Build scripts will copy application files to specific application tops. Developers should not copy one‑time use files to the application tops. Staging one-time files for execution from a release folder makes it easy to locate files that will be required for the Compare Code Report at the end of UAT.

3. Developers can make incremental builds to the TSTING/UATDB instances and will need to request the DBAs to update the staging directory with individual files and also to execute the incremental builds to update the application files.
4. Peer reviews will be held to ensure that if one-time execution files are copied outside of the staging folders, those scripts will also remove/delete the files after the build or setup scripts are run. We should not normally copy one-time files outside of the staging area. This standard is included in the Source Code Review Checklist (Appendix B: FMS Templates).

a. Build scripts will be reviewed prior to UAT testing and during pre-ORRs.

b. Applications files are required to contain the release label, with exceptions defined in (Section 2.1.5.5.1 Apply Release Labels). The Readme files will be reviewed to validate post‑migration and setup validation scripts and identify all one-time execution files.

5. Developers will check-in automated scripts and all one-time files and application files into ClearCase. To comply with this, please follow the instructions below:

· Copy all application Packages, Procedures, Functions, Triggers and View scripts to the '$CUSTOM_TOP/install/sql' directory.
· All other SQL (build script, validation script, table creation, index creation, data insertion, etc.) and LDT files will be checked-in to ClearCase under:
\FMS11i\Documentation\FMS Release\[Release Id folder]\ for CR builds
or

\FMS11i\Documentation\FMS Release\[Release Id folder]\[CR folder]\for release builds.
6. The DBA team can clean-up the release folders on the FMS platforms after one-time scripts/files are no longer needed, these files have no defined purpose after their execution in PROD and copies are stored in ClearCase. Periodically, the DBA team will be requested to remove identified on-time files from applications areas.

1.3.9.5.2 Release Folders

The DBA team is responsible for creating release-related staging folders in each FMS environment: TSTING, UATDB, STGING and PROD. Builds are staged and executed by CR or as a consolidated build. The following process is repeatable on the Unix servers, at the Apps and DB Tier nodes. The DBA team creates a "build" directory under the applmgr account.

In the FMS testing (TSTING, UATDB) environments, the DBA team creates subfolders for each CR (crxxxx) or a single consolidated release subfolder "rxxxx" (where xxx is the release ID) under the build directory to stage the developers’ build scripts,

1. All files belonging to a CR build will be staged in its own CR folder where the DBA will execute the CR build script: applmgr home directory/build/crxxxx /

2. For a consolidated build, the DBA team creates a release folder under the build directory and executes the build script for the entire release: applmgr home directory/build/rxxxx/

In the FMS STGING and PROD environments, the DBA creates a release folder "rxxxx" (where xxx is the release ID) that contains either all of the CR build scripts or one build script for the entire release, to be staged and executed under the release folder: applmgr home directory/build/rxxxx/

There are no CR folders in STGING and PROD.

The developer must request the DBA team to copy individual files into the release folder and are responsible to request the DBAs to execute individual scripts to keep the release folder current with the files migrated into the system. The DBAs will save all files related to the Apps Tier and the DB Tier in the appropriate release folder. When files are requested from the FMS environments, the DBAs will pull files from applmgr home directory/build/rxxxx or from applmgr homedirectory/build/crxxxx. The DBA team will save the builds' log files to the shared F-drive where developers can access them.

1.3.9.5.3 Readme

The Readme document will be created from a template to request builds across platforms within the FMS development/test and production environments (see the FMS Change Management Procedures). The Readme document is sent to the FMS Operations Database Administration (DBA) team to execute deployments. To FSA FMS Readme template and FSA FMS Readme Instructions are referenced in Appendix C: FMS ProcessesAppendix B: FMS Templates

 and , respectively. The FMS Operations CR Manager will consolidate the individual Readme documents from the Development team to include all CRs in the release (see Section 2.3.3.1 Release Implementation Plan).

1.3.9.5.4 Setups

Setups for Oracle objects are created to configure an application to the requirement of a CR. Use the setup document “Oracle FNDLOAD Process and Procedures.doc” to create automated FNDLOAD setup scripts as part of the build package (referenced in Appendix B: FMS Templates

). The FNDLOAD utility is a concurrent program that loads Oracle Applications data from text files to the database and simplifies the process of migrating setup definitions to another FMS environment.

FNDLOAD applies to the objects within the Oracle Application Object Library (AOL) (refer to the Oracle FNDLOAD Process and Procedures.doc for the comprehensive list). Other objects require manual setups. Some setups may be performed through FNDLOAD utility although customer discretion would require a manual setup, for example sensitive production data during migration. The Setup Object Template.doc and Setup Object Template Instructions.doc are used to create and document setups that are manually performed; they are referenced in Appendix C: FMS ProcessesAppendix B: FMS Templates

 and , respectively.

1.3.9.5.5 Post-Migration Validation Scripts

Post-validation is a process to verify that code objects have successfully deployed. We validate the Unix files and database objects in each FMS environment. The Unix script uses shell variables that define absolute directory paths and are de-referenced by the Unix post‑validation script. The CM team develops the script to traverse all paths indicated in the Readme files and modifies the script to include new source paths as they are developed.

Usage:
post_validation_Unix_script.sh <RELEASE_ID_NUMBER> <Change Release

 Number.CR Number>

Eg:
post_validation_Unix_script.sh 7.015 1.1675
The second parameter is needed only to identify compiled Oracle Forms (Section 2.1.5.5.1 Apply Release Labels). The post_validation_Unix_script.sh is referenced at: Appendix B: FMS Templates
.

For database validation, the FMS Operations Development lead consolidates all post‑validation SQL scripts provided by developers. The Post‑Validation SQL Template is referenced in: Appendix B: FMS Templates

.

FMS post-migration validation scripts search for the release label of the form: “CR_RELEASE_ReleaseID” throughout the application tops and database instances, to verify that objects can be identified by the release label and release ID for compiled Oracle Forms. The post‑validation scripts will be executed in all instances for each deployment. The FMS Post‑Validation Template Instructions describes the FMS post‑validation process, referenced in: Appendix C: FMS Processes.

The post-validation scripts are included in automated build scripts, thus completely automating deployment, configuration and validation in one execution. In some cases, the post-migration script has to be run manually when manual setups are required after the execution of the build script. The DBA team will return all log and output files produced by the automated scripts to the development team for their review and analysis. Once the development team is satisfied with the results of the post-validation scripts, the DBA team can use those results to determine that the automated scripts successfully deployed all files for the release build in each FMS environment: testing (UATDB, TSTING) and staging (STGING) and production (PROD).

1.3.9.5.6 Back Out Plan

The FMS Back Out CR Plan details how to reverse the implementation of an FMS CR most recently deployed in FMS production as part of a CR Release. The plan is developed on the contingency that the changes deployed to the production system have adversely affected the operation of the FMS system. The decision to reverse a CR mitigates the risks of unexpected system behavior or implementation results in production, or sub-standard results of post‑migration validations. FMS Management makes the decision to back out a CR. To create a Back Out CR Plan document, use the Back Out CR Plan Template in Appendix B: FMS Templates

 and refer to the FMS Back Out CR process in the FMS Change Management Procedures.

1.3.10 FMS Testing

This section describes the FMS environments, artifacts produced and types of testing conducted during the development of FMS Change Requests. The developers, Functionals and users perform successive levels of software quality assurance (QA) Unit Testing, Integration Testing and User Acceptance Testing in cloned environments with existing production code and current patches (refer to Section 2.1.5.4 Cloning). During UAT, all code changes in an FMS release are tested together. Regression testing is performed if a problem is found during UAT. Users are responsible for preserving test results in resulting screenshots, output files and reports.

1.3.10.1 FMS Test Scripts

FMS Test Scripts are produced from the FMS Requirements Matrix for every CR in a release and project. The completed versions are attached to CRs in ClearQuest. The master FMS System Test Scripts and FMS Test Plan is located in ClearCase at: \FMS_11i\Documentation\System Documentation\FMS Test Plan and Test Scripts\ (refer to the Test Script template at: Appendix B: FMS Templates

). The master FMS System Test Scripts shall be updated during every FMS release.

1.3.10.2 System Incident Report

A SIR is a document created from the SIR template (referred to in Appendix B: FMS Templates

) is required to track SIRs from issues to resolution during both IT and UAT.Appendix B: FMS Templates

) to record unexpected results that occur during testing. The information collected in the SIR should be sufficient to re-construct how testing was conducted and describe the problem and its effects. Resolution of a SIR represents a corrective change to FMS release code and possibly documentation, during the testing processes. The SIR is required documentation during Integration Testing (IT) and User Acceptance Test (UAT). The SIRs Testing Issue Log (referred to in
1.3.10.3 Unit Testing

A fresh copy of the production environment is cloned (see Section 2.1.5.4 Cloning) in the development environment for new development and unit testing. The developers are responsible for performing unit testing on all software changes at their workstation and debugging in development instances using the developer’s tools listed in Appendix F: FMS Development Tools. See Appendix G: JDeveloper Tool File Control Process on Java file inventory in the Readme.

1.3.10.4 Integration Testing

The EDS Functional Lead is responsible for creating a FMS Test Plan and Test Scripts (referred to in Appendix B: FMS Templates

) from the requirements of the FMS CR. The EDS Functional Lead is responsible for executing Integration Test scenarios in the instance designated by FMS Operations.

Note: *FMS Operations Developers perform as Developers and Functional Leads for TO02 CRs.
1.3.10.5 User Acceptance Testing

A fresh copy of the production environment is cloned (see Section 2.1.5.4 Cloning) in the testing environment designated for UAT. The DBA team will run the Developers’ build scripts to load setup data, migrate source code and build executables, into the UAT instances for every CR in the release. The Developers will validate the results of the migration.

The EDS Functional Lead* is responsible for providing a copy of UAT Test Scripts to users who are responsible for executing the test script’s scenarios, completing the Expected Results (including any comments) and assigning a Pass/Fail indication to every step. The UAT users may also exercise test scenarios of their own design. After UAT is completed, the users will send an e‑mail approval of the UAT results as a sign-off that each CR operates as requested. FSA FMS approval of the UAT results will be required.

When SIRs are created during UAT, the software resolution must be developed and tested in a testing instance before the fix is placed into the UAT instance for retesting.

At UAT Kickoff, the UAT Environment Certification must be completed before UAT can begin. The roles in the certification are associated with activities that prepare the environment for UAT. The certification provides sufficient QA and documented signoffs to certify that the instance is ready for the users to perform UAT activities. The certification lists the history of builds and patches applied to the testing instance. The Technical team, FMS Operations CR Manger, DBA team and Functionals will perform activities to validate the builds and URL, system operations, setups and user profiles for UAT, according to prerequisites in the FMS Test Plan and Test Scripts. The completed certification to sent to the FMS CR Operations Manager and EDS Operations Manager.

Note: *FMS Operations Developers perform as Developers and Functional Leads for TO02 CRs.

1.3.10.5.1 Regression Testing

Regression testing will be performed as part of UAT to verify the execution results of all code changes in a CR release in an environment designated by FMS Operations. The intent is to focus on issues detected in UAT. These are the objectives of regression testing:

· To assure that all code changes do not adversely affect one another

· To achieve the expected results consistent with all prior testing of this release and the system

· To identify execution issues as either pre-existing to the release or outside the scope of the current requirements.

1.3.10.6 Inter-System Testing

The OCIO Enterprise Operational Change Management (EOCM) provides enterprise system support when FSA development requires external systems for Inter-System Testing (IST). The EOCM’s Enterprise Change Control Board (ECCB) supports IST and promotes advanced scheduling to ensure that resources are available to participate. FMS will be required to create and submit an Impact Analysis Impact Analysis of the FMS CR to the EOCM, with the following information:

· Interdependencies with other Applications/Systems/Business Areas (and those POCs)
· Related Change Requests and Change Control Management (CCM) Requests

· Risks – Schedule, Technical, Organizational
· Contractual Issues

· Cost Estimate and Sensitivity

· Alternatives

· Estimated Development Effort in Business Days to Complete.

The managing ECCB provides an ECM number, which FMS will copy into the Change Control Management (CCM) Migration Request in ClearCase. The ECCB also provides FMS with an Impact Analysis Recommendation Report, which evaluates the Impact Analysis and recommends whether Inter‑System Test (IST) is necessary. The Impact Analysis Recommendation Report includes the following release activity timelines for each participating system:

· Development

· Testing (Inter-System is not internal to FMS)

· Implementation.

The participating systems will provide IST Test Script scenarios to FMS and FMS will conduct IST as part of a UAT.
1.3.11 Transition to FMS Operations

FMS Operations will hold a Transition meeting to plan the implementation that applies to every new FMS system baseline. The respective project manager shall coordinate activity for their project, as required. The Development teams will represent the CRs that they developed for the proposed baseline. Each project teams' developers and Functionals are responsible to check-in their CR artifacts to FMS repositories (see section Section 2.1.5.2 Check In/Out) and adhering to QC standards (refer to Section 2.1.5 Configuration Management Activities). The following activities create new artifacts as a result of the transition.

1.3.11.1 Release Implementation Plan

The FMS Operations CR Manager will create the Diff report and release zip file from the consolidated Readme for every FMS release. The execution of automated build packages and setups and post‑validation scripts will be included in the FMS Release Implementation plan. The plan is a work breakdown and schedule of all of the tasks necessary to migrate the release baseline into the FMS production environment, validate the source code and database objects, implement and validate the setups, send communication to users and resume normal processing. The FMS Operations CR Manager will assign FMS Operations team members to execute the tasks on the scheduled release date.

1.3.11.2 Staging a Release

After UAT is completed and approved by FMS, the FMS DBA team will execute consolidated build scripts and stage a dry-run exercise of the tasks in the implementation plan, all performed in the FMS STGING instance. Staging the release helps to establish the validity of the consolidated Readme, setup loads, the release zip file and post‑validation scripts. When staging is successfully completed then the release is ready to deploy in the production environment on the release date.

1.3.12 Operational Readiness Review

The Operational Readiness Review (ORR) document is a recommendation signoff that is currently required only for Enhancement task orders. The ORR review may require more than one meeting to prepare for the final ORR Signoff, held before the release is implemented. The artifacts include the build packages (see Section 2.3.1.5 Build Package) for every CR in the release and all CR artifacts that will be checked‑in to ClearCase. The ORR should always include a confirmation (usually email) from external systems that supporting changes provided by them are ready for release in tandem with an FMS release date, when applicable. Once the ORR is signed, the release has officially transitioned to FMS Operations for implementation into the FMS production environment and is supported by results from staging the release. Refer to the ORR Instructions in Appendix C: FMS Processes and the ORR template in Appendix B: FMS Templates

 for more details.
1.3.13 Key Activities, Deliverables, Roles

This Key Activities table depicts a sequence of steps for this LCM stage.
	Key Activity
	Deliverable
	Role
	Quality Control

	Change CR Phase in ClearQuest to ‘Development & Unit Test’

(See CQ_FMSCR_Phases)
	N/A
	Assigned Developer
	Verify CR phase is ‘Development & Unit Test’

	Check out (see Section 2.1.5.1 Check In/Out) Source Code
	Source code
	Developer
	Source code is reserved in ClearCase

	Perform Coding and Unit Testing

· Identify the source code related to the scope of the CR
	Source code

	Developer
	

	Prepare the build package for the release (see Section 2.3.1.5 Build Package)
	Build Scripts,

Readme,

Setup Document,

FNDLOAD utility scripts,

Post-Validation Scripts,

Back Out CR Plan
	Developer,

FMS Operations DBA team
	Developers review build logs and verify the post migration validation results provided by the FMS Operations DBAs

	· Execute the build package for Integration Testing

	
	
	

	Develop Test Plan and Test Scripts for Integration Testing
	IT Test Plan,

Test Scripts
	EDS Functional Lead*
	Verify that FMS Test Script Templates (refer to Appendix B: FMS Templates) are completed to project specifications

	Perform Integration Testing

· Identify, Rework, Retest Issues

· Approve Results

	SIR Form,

SIR Summary Issues Log,

Completed Test Scripts,

Test Results
	EDS Functional Lead*,

FMS Functional Lead
	Notify FMS Management on completion of IT and any issues identified

	Check-in Integration Testing Artifacts
	SIR Form,

SIR Summary Issues Log,

IT Test Results
	EDS Functional Lead*
	Verify IT artifacts before check-in to ClearQuest

	Conduct UAT Kickoff
	Release Test Plan

Meeting Minutes (Work Product)
	FMS Functional Lead,

EDS Project Manager,

EDS Functional Lead*,

Users
	Prepare UAT Environment Certification

	Build and Certify UAT Environment

· Send the UAT build package (see Section 2.3.1.5 Build Package) for all CRs in the release to the FMS Operations CR Manager

Note: UAT Environment Certification must be competed before UAT can begin
	Build Package, Consolidated Readme,

CR Release Zip File,

Setup Load Files,

Consolidated Post Validation,

UAT Instance Certification (Work Product)
	Developers,

EDS Development Lead,

FMS Operations Development Lead

FMS Operations DBA Team,

EDS Functionals,

FMS Operations CR Manager
	Developers review build logs and verify the post migration validation results provided by the FMS Operations DBAs

EDS Functionals verify setups and user profiles

	Perform UAT

· Send Test Scripts to Users

· Identify, Rework, Retest Issues

	SIR Form,

SIR Summary Issues Log,

Completed Test Scripts,

UAT Results (testing output files and reports)
	Users (Testers)

FSA Functional Lead,

EDS Functional Lead*
	Notify FMS Management of issues identified

	Review and Approve UAT Results

· Users approve UAT Results

· Request Design Documentation Approvals

· Submit UAT Results to FSA for approval

· UAT Signoff
	SIR Form,

SIR Summary Issues Log,

Completed Test Scripts,

UAT Results,

Requirements Matrix,

UAT Email Approvals
	UAT Users (Testers),

FSA Functional Lead,

EDS Functional Lead*
	Request Approvals from Users and FMS Management

	Check-in UAT Results and CR Artifacts

· Change CR Phase to ‘Passed_User_Testing’ (see CQ_FMSCR_Phases)
	Build Package,

Source Code,

UAT User Approval,

UAT SIRs,

UAT SIRs Issue Log,

Completed UAT Test Scripts,

UAT Output and Results.zip,

UAT Results sent to FSA for Review-Approval,

Requirements Sent to FSA for Review-Approval,

Requirements Matrix Approval From FSA,

UAT Approval from FSA,

Compare Code Report,

FMS Operations Handbooks,

Design Documentation and Approvals
	Developer,

EDS Functional Lead*

	Verify CR artifacts before check-in to ClearQuest and ClearCase

Verify CR phase(s) is ‘Completed End to End / User Testing’ (by Code Freeze date)

	Prepare consolidated Release Artifacts

	Prepare Consolidated:

· Readme

· Build Scripts

· Setups

· Post Validations.

Create:

· Diff Report

· CR Release Zip File.
	FMS Operations CR Manager and Project Support
	Support FMS Operations CR Manager:

· Run Compare Code Report

· Review Consolidated Artifacts

	Validate CR Artifacts in ClearQuest and Deliverable Documentation in ClearCase

(See Check-In Checklist)

· List CR Findings
	CR Artifacts and Deliverable Documentation

(See Check-In Checklist)
	FMS Operations Maintenance Development Manager
	Verify CR Artifacts and Design Documentation in ClearQuest and ClearCase

	Resolve CR Findings

· Correct Artifact Deficiencies in CR Findings

	CR Artifacts

(See Check-In Checklist)
	Project Support, Developer,

EDS Functional Lead
	Re-Evaluate and Re-Verify CR Artifacts and Documentation

	Change the CQ Phase of the release CRs to ‘Ready for Release’
	N/A
	FMS Operations Maintenance Development Manager
	Verify CQ Phase is ‘Ready for Release’ for all CRs in the release

	Transition To Operations

· Create a Release Implementation Plan

· Assign FMS Operations staff to specific Release Implementation tasks
· Schedule an Operations Readiness Review (ORR)
· Complete the initial Release Implementation Plan
· Check-in the initial Release Implementation Plan

	Meeting Minutes (Work Product),

Release Implementation Plan
	EDS Project Manager,

EDS Development Lead,

FMS Operations Development Lead,

EDS Operations Manager,

FMS Operations CR Manager
	Verify initial Release Implementation Plan in ClearCase

	Stage the Release
	Build Packages for all CRs in the release
	FMS DBA Team,

FMS Operations CR Manager,

Project Support
	Verify the build logs and post migration validation results provided by the FMS Operations DBAs

	Conduct Operations Readiness Review Meetings

· Obtain Sign-offs for Release Approval

· Check ORR Signoff into ClearCase

	ORR Signoff, Meeting Minutes (Work Product)

	FMS Operations Technical Manager,

FMS Functional Lead,

EDS Operations Manager,

EDS Project Manager

	Verify initial Release Implementation Plan, ORR Signoff artifacts in ClearCase

	Check-In Consolidated Release Artifacts into ClearCase
	Consolidated Readme,

Consolidated Post‑Validation,

Consolidated Build Packages,

CR Release Zip File,

Diff Report,

Completed Check-In Checklist
	FMS Operations CR Manager
	Verify Consolidated Release Artifacts in ClearCase

	Change the CQ Phase of the Release CRs to ‘Approved for Release’

(See CQ_FMSCR_Phases)

Note: ORR must be signed first.
	N/A
	FMS Operations Technical Manager or FMS Operations Manager
	Validate CR Artifacts and Documentation artifacts

Verify CQ Phase is ‘Approved for Release’ for all CRs in the release.

Note: *FMS Operations Developers perform as Developers and Functional Leads for TO02 CRs.

Implementation Stage

The purpose of this stage is to install the new or enhanced solution into the FMS production environment, to train users, convert the data as needed and transition the solution to end-users. These tasks will be included in the FMS Release Implementation Plan. All CRs in the release must be in the ‘Approved for Release’ phase. This stage emphasizes the execution of the Implementation Plan and the implementation of the release into the production environment by the FMS Operations team.

The following describes the FMS artifacts that are produced and processes conducted during this stage.

1.3.14 Release Build

The FMS Operations CR Manager will send the consolidated Readme and the release ZIP file to the FMS DBA team. Execution of the FMS Release Implementation Plan is coordinated with the FMS Operations team to deploy the release in the production environment. Developers and EDS Functionals are required to support the implementation of FMS releases as necessary. The VDC provides root support on request, if necessary.

The FMS DBAs apply all FMS Releases into the production environment based on FMS Readme instructions. After the FMS Release Implementation plan is completed it is checked into ClearCase. The completion of the implementation plan marks the effective turnover of the new baseline to the FMS Operations team for lifetime support.

1.3.15 Key Activities, Deliverables, Roles

This Key Activities table depicts a sequence of steps for this LCM stage.
	Key Activity
	Deliverable
	Role
	Quality Control

	Execute the Release Implementation Plan

· Support the implementation and migration of FMS releases

· Coordinate completion of activities in the Release Implementation Plan
	Implementation Plan (Refer to: Section 2.3.3.1 Release Implementation Plan)

	EDS Operations Manager,

FMS Operations CR Manager, EDS Project Manager,

Assigned FMS Operations team members,

Assigned Developers,

EDS Functional Leads
	Verify Release Implementation Plan at component checkpoints

	Check the completed Implementation Plan into ClearCase
	Release Implementation Plan
	FMS Operations CR Manager
	Verify Release Implementation Plan in ClearCase.

Support and Improvement Stage

The FMS Operations CR Manager sends an email to users to close each CR that was migrated to production (as defined in the Release Implementation Plan). The user will determine whether the functionality satisfies the requirements of the CR. Based on the users’ confirmations the FMS Operations CR Manager will change the CR to the ‘Completed and Closed’ or ‘Closed’ (without implementation) phase and update the Notes in the CR. The Back Out CR Plan might have been implemented for a CR that has been ‘Closed’. And, a ‘Closed’ CR may be changed to ‘Reopened’ in the future. Lastly, the Enhancements Task Order will conduct a Lessons Learned session after the implementation of an FMS Release.
1.3.16 Lessons Learned

The Lessons Learned template (referred to in Appendix B: FMS Templates

) is required for Enhancement task order teams to schedule and conduct a Lessons Learned session, after the implementation of the FMS CR release in which they were involved. The purpose of the meeting is to identify what went well during the SDLC and what could be improved that would benefit the entire organization. After the meeting, the document is completed and checked-in to ClearCase for documentation.
1.3.17 Production Support

The FMS Operations team will provide operations and maintenance support of the new FMS program baseline and its components. FMS Operations will collect and track system metrics to ensure that the system continues to perform and operate according to specifications. FMS Management, users and FMS Operations team will monitor the system to ensure that it measures up to the expectations and requirements of the current baseline and enhance the system as needed to increase efficiency. Routine hardware and software maintenance and upgrades will be performed to ensure effective system operations until the system is retired.

The following describes the FMS artifacts that will be produced and processes conducted during this stage.

1.3.18 Key Activities, Deliverables, Roles

This Key Activities table depicts a sequence of steps for this LCM stage.
	Key Activity
	Deliverable
	Role
	Quality Control

	Conduct Lessons Learned Session.

Check completed Lessons Learned document into ClearCase.
	Completed Lessons Learned document
	FMS Management,

EDS Project Manager,

EDS Operations Manager
	Verify Lessons Learned deliverable

	Change the phase of the release CRs to ‘Completed & Closed’ or ‘Closed’ (see CQ_FMSCR_Phases)
	Closed Change Request
	FMS Operations CR Manager
	Verify CR phase is ‘Completed & Closed’ or Closed’

	Provide (O&M) Production Support
	FMS System Baseline
	FMS Management, Users,

FMS Operations Team
	Monitor the system until its retirement.

Retirement Stage

The FMS Operations team members are required to support the collection of metrics that may be requested prior to shutdown of the specific application. Developer and Functional support will not be required to support the retired application.

Appendix A: Acronym List

	ACRONYM
	DESCRIPTION

	AI
	Action Item

	CC
	ClearCase

	CCB
	Change Control Board

	CCM
	Change Control Management

	CIO
	Chief Information Officer

	CM
	Configuration Management

	CQ
	ClearQuest

	CR
	Change Request

	DBA
	Database Administrator

	DoEd
	Department of Education

	ECCB
	Enterprise Change Control Board

	ED
	Department of Education

	EDNet
	U.S. Department of Education's (ED's) Computer Network

	EOCM
	Enterprise Operational Change Management

	FMS
	Financial Management System

	FSA
	Federal Student Aid

	JAR
	Java Archive File

	IST
	Inter-Systems Test

	IT
	Integration Testing

	LCM
	Lifecycle Management

	OCFO
	Office of the Chief Financial Officer

	OCIO
	Office of the Chief Information Officer

	QA
	Quality Assurance

	QC
	Quality Control

	SDLC
	Systems Development Lifecycle

	SME
	Subject Matter Expert

	UAT
	User Acceptance Test

Appendix B: FMS Templates

The project templates are stored on the FMS project’s shared F‑drive at: \\wdcucpfpr02\sfa_fms\. FMS templates are required to create FMS artifacts during development of FMS releases. FMS approves the templates before they can be used on the project. The project templates are located on the FMS Shared F‑drive at the following locations:

	Template Description:
	Type
	Location:

	Back Out CR Plan Template
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\Back Out\Back Out CR Plan Template.doc

	Check-In Checklist
	Work Product
	F:\FMS Project Workbook\Templates\Current Templates\Check-In Checklist\Check-In Checklist.xls

	Detail Design Document
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\DDD\ Detail Design Document Template.doc

	FSA FMS Change Request Form
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\FSA FMS Change Request Form.doc

	Sun Java Code Conventions
	Work Product
	F:\FMS Project Workbook\Templates\Current Templates\Source Code Review Criteria\ Sun Java Code Conventions.pdf

	Lessons Learned
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\ Lessons Learned Template.doc

	Master Project Issues Log
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\Master Project Issues Log\Master_Project_Issues_Log.xls

	Operations Readiness Review
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\ORR\ Operations Readiness Review.doc

	Oracle FNDLOAD Process and Procedures.doc
	Deliverable
	In ClearCase at: \FMS_11i\Documentation\Production\Support\

	post_validation_Unix_script.sh
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\post_validation_Unix_script.sh

	FSA FMS DB Post Validation
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\FSA FMS DB Post Validation

	Setup Object Template
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\Setup Object Template

	Readme
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\ Readme\FSA FMS README Template.doc

	Requirements Matrix
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\Requirements\Requirements Matrix Template.xls

	SIR Form
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\SIRs\SIR Form.doc

	SIRs Testing Issue Log
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\SIRs\SIRs Testing Issue Log.xls

	Source Code Review Criteria Checklist
	Work Product
	F:\FMS Project Workbook\Templates\Current Templates\Source Code Review Criteria\Source Code Review Criteria Checklist.doc

	TAR Summary Log
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\TAR Summary\TAR Summary Log.xls

	Test Script
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\Test Scripts\Test Script Template.xls

	Test Summary Log
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\Test Summary Log\Test_Summary_Log.xls

	UAT Environment Certification.xls
	Work Product
	F:\FMS Project Workbook\Templates\Current Templates\ UAT Environment Certification\UAT Environment Certification.xls

	Write-Up
	Deliverable
	F:\FMS Project Workbook\Templates\Current Templates\ Write‑up\Write-up Template.doc

Appendix C: FMS Processes

The project templates are stored on the FMS project’s shared F‑drive at: \\wdcucpfpr02\sfa_fms\. The majority of FMS project processes are derived from the Production Support Handbook, FMS Change Management Procedures (located in ClearCase). The FMS project processes referenced in this document are located at the following locations:
	Process Name:
	Location:

	Discoverer Production Hand Book.doc
	(In ClearCase) \FMS_11i\Documentation\Discoverer\Discoverer Production Hand Book.doc

	FMS Change Management Procedures
	(In ClearCase) \FMS_11i\Documentation\Production Support\FMS Change Management Procedures

	FMS Post-Validation Template Instructions
	F:\FMS Project Workbook\Templates\Post-Validation\FMS Post-Validation Template Instructions.doc

	FSA FMS Readme Instructions
	F:\FMS Project Workbook\Templates\Current Templates\Readme\FSA FMS Readme Instructions.doc

	FMS Check-In Checklist Instructions
	F:\FMS Project Workbook\Templates\Current Templates\Check-In Checklist\FMS Check-In Checklist Instructions.doc

	FMS Operations Readiness Review Instructions
	F:\FMS Project Workbook\Templates\Current Templates\ORR\Operations Readiness Review Instructions.doc

	FMS Source Code Review Process
	F:\FMS Project Workbook\Templates\Current Templates\FMS Source Code Review Process

Project Issues

Tracked issues related to a FMS CR release or to Production Support (O&M) and are described in the following sections.

Release Issues

Release issues are recorded in the Master Issues Project Log (refer to: Appendix B: FMS Templates

). These issues may arise from any CR involved in a scheduled release or from processes relating to the release. Issues recorded by Fridays will be discussed at the next weekly Project/Task Order meeting. The Master Project Issues log has a column to indicate the task order that originated the issue.

Production Support Issues

FMS Operations handles O&M issues that arise from open Help Desk tickets and CRs, or from users or procedural practices. Depending upon the nature and scope of the issue, a Write-up template (refer to: Appendix B: FMS Templates

) is required. The EDS Operations Manager will assign a member of the Operations team to prepare the Write-up, review it with the team, and forward it to the FMS Operations Technical Manager and FMS Management to approve recommendations. Issue Write-ups may generate a subsequent Help Desk ticket or a CR for resolution.

Oracle Service Requests

The TAR Summary Log is used to record Service Requests (SR) s (a.k.a. Technical Assistance Request (TAR)s opened with Oracle Support that are related to particular FMS O&M issues (see Appendix B: FMS Templates

). FMS Operations records open SRs in the FMS Operations Meeting minutes (in ClearCase at: \FMS_11i\Documentation\Status Meeting minutes\).

Appendix D: Oracle Forms and Reports
FMS Oracle Forms

FMS programs are accessible to users through the navigation of core applications and extensions in menus and the interactivity of data input forms (see the FSA FMS Technical Architecture document in ClearCase for more details). FMS users are assigned responsibilities, which define the menus, forms and reports available to the user.

Create / Modify Oracle Forms

Oracle Forms *.fmb files are provided for all Oracle Application menus and forms.

Follow these steps to create a new form:

1. Request the DBAs for the latest template.fmb from the production server.

2. Make the modifications to the template.fmb to create the new form using Oracle Forms.

3. Ensure the form is ‘Section 508’ compliant (refer to: Appendix K: Section 508 Compliancy).

4. Comment the form in the Pre-Form trigger (see Section 2.1.5.5.1 Apply Release Labels). Create or update the Descriptive Header Box (Appendix H: Descriptive Header Box Template).

5. Link the menu or form to functions or other menus or forms. Define the lowest-level submenus first.

6. Link the menu or form into the application.

7. Create an executable *.fmx of the form.

8. Check-in the new developed form into ClearCase in the \APPL_TOP\au\11.0.28\forms\US\ folder.

Follow these steps to modify a form:

1. Identify the *.fmb file.

a. Identify the Oracle Application menu or form in the specific business area (see Appendix J: FMS Application Tops) under the custom application tops.

b. Check out the form file in Rational ClearCase in the corresponding business area.

2. Make modifications using Oracle Forms.

3. Comment the form in the Pre-Form trigger (see Section 2.1.5.5.1 Apply Release Labels). Create or update the Descriptive Header Box (refer to: Appendix H: Descriptive Header Box Template).

4. Link the menu or form to functions or other menus or forms. Define the lowest-level submenus first.

5. Link the menu or form into the application.

6. Migrate the modified *.fmb file on the form server
7. Create an executable *.fmx of the form.

8. Check-in the updated/modified version of the form in ClearCase after the UAT sign-off.
The application menus and forms designs are provided in the user’s requirements.
Compile Oracle Forms

The FMS Oracle Forms Library is resident in the FMS production environment for all Oracle Application menus and forms. A copy of the FMS Oracle Forms Library is located on the FMS Shared F-Drive at: F:\FMS Libraries\Oracle Forms\ where it will be maintained in read-only mode in a sub-directory that is regularly backed-up.

The LAN copy of the Forms library will be updated after every Oracle Quarterly Security patch is migrated to production. The FMS DBA team will maintain the Forms Library on the LAN FMS F‑drive. FMS Developers will use the LAN copy to compile every form in the FMS system, for new and older forms that were created before the 11i release. Developers may be required to change user interface attributes on older forms in order to compile using updated library components. The Oracle patch migrations will be recorded in a Readme for FMS releases.
Follow these steps to compile new or existing forms:
After the Form has been created or modified the *.fmb file needs to be (re)compiled. A build script for forms is required to build all of the forms for each CR. The form build script should use the following format, which contains the standard commands and standard forms library to compile. This example shows how to migrate and compile two Forms for one CR. Additional Forms should be included in one script per CR, as required.

The script uses two parameters, username and password, to access the FMS database. The script uses two internal variables, $SOURCE_TOP and $DESTINATION_TOP, to copy the input *.fmb file and the compiled output *.fmx file to separate locations. The developer needs to supply the two internal variables in the script.

#===

Program : CRXXXX-FORM-BUILD.sh

Written by : Author Name

Date Written : MM-DD-YYYY

Purpose : To migrate CRXXXX forms (hpl10 & hpl11)

Arguments : Database username and password

#

USAGE : This script should be run at UNIX shell command line

 : . CRXXXX-FORM-BUILD.sh APPS <PASSWORD>

#

Modification History:

Date Author Change

---- ------ ------

MM/DD/YYYY Your Name
 CRXXXX for CR_RELEASE_N.0XX
#===
username=$1

passwd=$2

DATE=`date` %m%d%y%H%M

logfile=CRXXXX-FORMS-COMPILE-DATE.txt

touch ${logfile}

echo Begin compilation log file of CRXXXX forms > ${logfile}

echo Migrate Form(s) >> ${logfile}

echo >> ${logfile}

echo Making backup of FORM_NAME.fmb >> ${logfile}

cp $SOURCE_TOP/FORM_NAME.fmb $DESTINATION_TOP/FORM_NAME.fmx >> ${logfile}

ls –ltr $DESTINATION_TOP/FORM_NAME.fmx >> ${logfile}

echo Copy FORM_NAME.fmb to $SOURCE_TOP >> ${logfile}

cp FORM_NAME.fmb $SOURCE_TOP 2>> ${logfile}

ls –ltr $SOURCE_TOP/ >> ${logfile}

cd $SOURCE_TOP

echo `pwd` >> ${logfile}

echo Compiling Form: FORM_NAME.fmb >> ${logfile}

echo >> ${logfile}

f60gen module=$SOURCE_TOP/FORM_NAME.fmb userid=$username/$passwd module_type=FORM module_access=FILE output_file=$DESTINATION_TOP/FORM_NAME.fmx >> ${logfile}

ADDITIONAL FORMS

echo Migrate Form(s) >> ${logfile}

echo >> ${logfile}

echo Copy FORM_NAME.fmb to $SOURCE_TOP >> ${logfile}

cp FORM_NAME.fmb $SOURCE_TOP 2>> ${logfile}

cd $SOURCE_TOP

echo `pwd` >> ${logfile}

echo Compiling Form: FORM_NAME.fmb >> ${logfile}

echo >> ${logfile}

f60gen module=$SOURCE_TOP/FORM_NAME.fmb userid=$username/$passwd module_type=FORM module_access=FILE output_file=$DESTINATION_TOP/FORM_NAME.fmx >> ${logfile}

echo >> ${logfile}

echo List the newly compiled forms >> ${logfile}

ls –ltr $DESTINATION_TOP/FORM_NAME.fmx >> ${logfile}

echo End compilation log file of Forms for CRXXXX >> ${logfile}
FMS Oracle Reports

The FSA FMS 11i Oracle reporting database (FMSRPT) is dedicated to FMSRPT users via an applications link. The FMSRPT DB instance is independent of the production servers and provides users with FMS reporting without taxing the load on the production server. FMSRPT is refreshed nightly and users see FMS reports based on the prior day’s data. See the FSA FMS Technical Architecture document in ClearCase for more details.

FMS reporting is provided to users that have responsibilities defined with reporting capability including the Discoverer business intelligence tool with Ad Hoc capability. FSA FMS reports are built from Oracle .rdf files and created as .txt files in an ASCII file format (Setup is required for all other file formats).

Create /Modify Reports

Oracle Reports *.rdf files are provided for all Oracle Application modules.

Follow these steps to create a new report:

1. Create the new report using Oracle Reports.

2. Create the Descriptive Header Box (refer to: Appendix H: Descriptive Header Box Template) .

3. Comment the report (see Section 2.1.5.5.1 Apply Release Labels).

4. Register the Concurrent Program in the application:

a. Link the new report file to a unique report name.

b. Create a program definition with parameters as required.

c. Link the program to the new report name.

d. Link the program to a request group.

Follow these steps to modify an existing report:

1. Identify the *.rdf file.

a. Identify the Oracle Application report in the specific business area (see Appendix J: FMS Application Tops) under the custom application tops.

b. Check out the report file in Rational ClearCase in the corresponding business area.

2. Make modifications using Oracle Reports.

3. Comment the report (see Section 2.1.5.5.1 Apply Release Labels) and create or update the Descriptive Header Box (refer to: Appendix H: Descriptive Header Box Template)

4. Register the Concurrent Program in the application:

c. Link the report file to a unique report name.

d. Create a program definition with parameters as required.

e. Link the program to the report name.

f. Link the program to a request group.

Submit Reports

Report run requests can be submitted through the application, with or without parameters, from the Oracle standard report submission request form.

FMS Oracle Report Standards

At a minimum, all newly created FSA FMS custom Oracle report formats (*.rdf) will include the following standard features:

	FMS Oracle Standard Report Features

	Field
	Attribute Type

	Run Parameters (if applicable)
	Alphanumeric

	Organization Title
	Alphanumeric

	Run Date and Time
	DD-MMM-YYYY HH:MM

	Environment
	Alphanumeric

	Page Number
	Numeric

	Name of the Report
	Alphanumeric

	Column Headings
	Alphanumeric

	Total Record Count
	Numeric

	End of Report
	Alpha

The following is a sample of FMS Report Standard Features visible in a standard Oracle application report.

	Env: FMSRPT 10-AUG-2007 09:08

 Federal Student Aid Financial Management System Page: 1

 Active Users and Their Active Responsibilities

As of 08/10/2007

 User Security Group Application Responsibility Start End

------------------------- ------------------------ ------------------------------ ------------------------------ --------------- -----------

ANGBZZA1 Standard Receivables FSA Lender Receivable 22-JAN-2004

 SuperUser

 System Administration System Administrator 31-JUL-2001

ARVCCBKK Standard Application Object FSA Discoverer AD 18-DEC-2006

 Library

 Application Object FSA Discoverer FFELGA 18-DEC-2006

 Library

 Application Object FSA Discoverer FFELLEN 18-DEC-2006

 Library

 FSA LARS Extensions FSA LARS ED Inquiry 11-JUL-2006

 FSA LARS Extensions FSA LARS ED Manager 01-OCT-2002

 FSA LARS Extensions FSA LARS Lender/Servicer 04-MAY-2004

 FSA LARS Extensions FSA Lender Man

Total Records: 10

End of Report

Notes:

1. The standards defined in the above sample will apply even when no data is available to present in the report.

2. Users will define the specific report headers in the Requirements for the business area they represent.

FMS Discoverer Reports

The FMS Discoverer Report Standard Features listed below are applied to Discoverer report (*.dis) and the Business Area report (*.eex) formats. The flexibility of Discoverer reporting will permit combinations of these features that will be determined by user requirements and capability of the Discoverer tool (refer to: Appendix F: FMS Development Tools).

	FMS Discoverer Report Standard Features

	Field
	Attribute Type

	Title
	Alphanumeric

	Run Parameters (if applicable)
	Alphanumeric

	Run Date and Time
	DD-MMM-YY HH.MM.SS AM/PM

	Page Number of Pages
	Numeric

	Notes (As required by BA Users)
	Alphanumeric

	Environment (future enhancement)
	Alphanumeric

	Auto Email Scheduled Reports Email (future enhancement)
	Alphanumeric

The following is a sample of FMS Discoverer application report with its features circled:

· Title (Checkfree FMS Grants Detail)

· Run Parameter ('Apr-07')

· Run Date and Time (15-APR-08 01.58.05 PM)

· Page Number of Pages (1 of 103).

[image: image4.png]
Appendix E: FMS Software Development Standards

This section describes required coding standards for implementing source code changes. It is necessary to review new and modifications to existing Oracle extensions for compliance with Oracle design and coding standards. The following coding standards apply for all types of FMS software produced.

Source Code Standards
The purpose of this section is to provide programming style guidelines for FMS software, covering standards related to Oracle development and maintenance of the FMS system. Oracle programmers must use good programming practices on this project based on well-established software engineering principles. Coding standards are established to ensure uniformity within the application. Coding standards are also used as review criteria to ensure that the standards are being followed.

The FMS project follows the development standards as outlined within the Application Developer’s Guide provided by Oracle. A copy of the Oracle document is saved locally as: Oracle Applications Developers Guide. The Source Code Review Criteria Checklist and the Sun Java Code Conventions are referred to in Appendix B: FMS Templates

 to facilitate the development needs of the FMS system.

All stored procedures and packages should be created in the APPS schema. All other objects like tables, indexes, sequences etc., should be created under the custom schema.

Database Instances

The FMS release schedule will determine which instances are to be used by the team. Development will always be in the APPS schema.

Note: Do not use the APPLSYSPUB instance for any custom development.

Section 508 Compliance

All developed forms will be subject to for ‘Section 508’ compliancy (refer to: Appendix K: Section 508 Compliancy). The DoED’s Assistive Technology Program will perform compliancy testing.

Coding Comments

Comments are a convention for all packages and Unix shell and SQL scripts, using the languages’ comment feature. Comments are always important in communicating critical information that others need to know. The constructive use of comments improves readability and ensures that information is understood more quickly and thoroughly.

Comments are added in the Descriptive Header Box (Appendix H: Descriptive Header Box Template) or in the body of the code to provide explanations or instructions. The release label must be commented into all code developed for a new release to enable the success of the post‑validation scripts (see Section 2.3.1.5.5 Post-Migration Validation Scripts).

This block shows examples of comments in a program or Unix script:
/***

* CR#677 – CR_RELEASE_7.012 Add parameters to pass the interest rate.

***/
/* Cursor to get record type 03 information */

These statements show examples of comments in a stored procedure:
-- CR#804: Added following code to monitor all COD Non GAPS (FMSS) transactions

-- CR#744: 02/25/2004: Added a new parameter, p_cutoff_date, to the procedure

-- CR#637 : Added new columns, date_sent and creation_date, to the where clauses of the

-- INSERT and SELECT statements

These statements show how to add comments in a database view or SQL script:

COMMENT ON TABLE <custom_view_name> IS 'CR_RELEASE_ReleaseID. This table is modified to include a user date-time stamp'

COMMENT ON TABLE FFELGA_AP_GL_SBLGR_ROLLUP_TEMP IS ' CR_RELEASE_ReleaseID. This table is created for the FSA FMS FFELGA AP to GL Subledger Reconciliation';

See Section 2.1.5.5.1 Apply Release Labels on how to apply release labels to objects.

Descriptive Header Box Template

The Descriptive Header Box is a documentation convention for all FMS program files and objects. For each source file created or modified, create or update the code’s history with appropriate comments during the Development and Unit Test phase. The FMS project requires the Descriptive Header Box be consistently updated to accurately record all changes in FMS program files and objects. See the example at: Appendix H: Descriptive Header Box Template.

Log Files

Create log files to capture results and monitor performance and include timestamps to evaluate execution and progress. Consult with your Development Team Lead or DBA Team Lead to consider restrictions on log files practices that may hinder performance or use too much file space.

The following conventions apply to all log files:

1. Log filenames will follow one of the following naming conventions. The .txt extension is required to maintain ASCII text files in Notepad or Wordpad on Windows platforms.

The format is:
Task Order Number-CR Number-Date-LOG.extension

CR Number-Date-Date-LOG.extension

Examples:
TO02-CR1114-MMDDYYYYHHMM-LOG.txt

CR1098-MMDDYYYYHHMM-LOG.txt

2. The following example shows the content of a log file:

CR1098-1103-BUILD.sql is being executed.

Database

PROD

1 row selected.

USER is "APPS"

SYSTEM DATE AND TIME IS AS follows:

Date Time

11-NOV-2007 08:17:58

1 row selected.

------------------- PROMPT

Compiling SQL Files

------------------- PROMPT

Creating Package Spec and Body sfalib_wf_se_pkg

Package created.

Package body created.

No errors.

No errors.

----------------- PROMPT Copying SQL Files

Backup SFALIB_WF_SE_PKG.sql

Copy SFALIB_WF_SE_PKG.sql

------------------- PROMPT

Copying Host Files

copying FSASEWFDIS.prog

------------------- PROMPT

Loading AOL Objects

Downloading System Administrator Reports request Group for Backup

Uploading FSA SE Bounced Back Emails Conc Prog

Uploading FSA Security Enhancements Discard File conc prog

Uploading FSA Security Enhancements Bounced Back Notifications conc prog

Uploading System Administrator Reports Request Group
Sample Compilation of Oracle Form:

Compilation log file of TO 11 CR1109 forms

Forms Compiling Logfile

Copy CUSTOM.pll to /app/uatdb/uatdbappl/au/11.5.0/forms/US

compiling the Form CUSTOM.pll

Database Alter Scripts

Developers will create data definitions using data control, access and database manipulation language in the form of SQL scripts for each database object pertaining to a CR. The Developer shall also write individual SQL scripts to validate the results of the database changes. These post‑validation scripts should originally be created in the development environment and changed only as necessary as code is migrated to other environments.

The FMS Operations Development Lead will combine all of the developers’ SQL scripts into a single file that will spool separate output files to capture the results of each Developer’s work. The consolidated SQL script will serve to validate SQL builds in each environment.

Naming Conventions

Naming conventions must be consistently applied to all object identifiers and requires compliance by everyone to be 100% effective.

Name Abbreviations

Name abbreviations should follow the client’s standard. If there is no client standard, the application team standard should be used. If no client or team standard is available, the recommendation is to use an agreed upon source, such as an acronym/abbreviation web site (e.g., the word search function on the world wide web site http://www.acronyma.com/).

Unix Filenames

Source code filenames must comply with object-type naming conventions. When the source files are ported to a target platform, the filenames are required to adhere to naming convention standards for the suffix or file extension. The suffix will indicate the type of file.

Unix Filename Extensions

Filename extensions (See the FSA FMS README Template) must match the type of file to which it is attached. The following is a list of file types and their corresponding extensions:

*.sql
Oracle SQL and PL/SQL package body and specification

*.ldt
FNDLOAD load files

*.fmb
Oracle forms

*.fmx
Oracle compiled forms

*.rdf
Oracle reports

*.cfg
Configuration files

*.ctl

Control files

*.htm
HTML files

*.sh
Unix shell scripts

*.prog
Unix program shell scripts

*wft
Oracle workflow files

.java
Java File

.jar

Java Archive File
Database Object Naming Standards

This section covers the minimum requirements for application objects that are developed in‑house. The naming standards for the application schema owner and objects are not applicable for commercial off-the-shelf applications, which typically require specific object names. All objects must adhere to the following naming requirements:

· Do not use reserved words

· Names must be more than one character, e.g.: A.rdf

· Names can not exceed 30 characters

· Names should relate to a specific business area and functional component
· The prefix FSA_* must be used on all objects, such as: Forms, Reports, Concurrent programs, Profile Options, Lookups Types, Value Sets, etc.
· Include the Business Area in the name, e.g.:
· FSA_DLCS_
· FSA_COD_
· FSA_GAPS_
Note: The prefix FSA* convention applies to all newly created file objects and will supercede the earlier SFA* convention.
If it is necessary to reduce the size of the column name, consider removing vowels and duplicate letters. Reserved words should always be checked when naming database objects. Since the reserved words will vary, an underscore in the name can be used to ensure that no reserved words are used. Even if development is being done with an older version of Oracle, always include as reserved words those for the most recent version of Oracle. Including the most recent version will enable easier upgrades for the database. Reserved words can be researched at http://www.oracle.com/technology/index.html. For Oracle 10g, refer to the following resources:

· http://download-east.oracle.com/docs/cd/B19306_01/server.102/b14200/ap_keywd.htm
· http://download-east.oracle.com/docs/cd/B19306_01/appdev.102/b14261/reservewords.htm
Tables and Views

The following requirements should be followed for in-house developed applications:

· Plural (e.g., employees instead of employee)

· Use a suffix or prefix to indicate the type of data (e.g., hst or hist for historical data)

· Include a suffix of v for views (see Executable Objects).
Columns

The following are recommended naming conventions for columns:

· The same name should not be used in other tables where the column data type or domain is different (e.g., do not use app_time for a varchar2 column in one table and for a date column in another table)

· Foreign key columns should have the same name as the key column name.

Constraints

Constraints (with the exception of not null constraints) should not use system-generated names. Constraints that have associated indexes should have the same name for both the constraint and index. If the constraint is associated with a single column, consider using the column name in the constraint name. For primary key constraints, consider using the table name in the constraint/index name.

Indexes

The following are recommended when naming indexes:

· Include the column or table name in the index name

· Include a prefix or suffix to indicate the type of index:

· <tablename>_u1 for unique index

· <tablename>_n1 for non-unique index

Synonyms

In many cases, synonyms are required to be the same as the object name in order to point the application code to the objects owned by the application schema.
Tablespaces

The FMS Operations DBA team creates and manages tablespaces in the FMS production environment and follows these standard guidelines. Therefore, the following are recommended to use for all databases:

· Use plural tense (e.g., Users instead of User) for table names

· Tablespace names should have meaningful names to indicate the purpose or application
· Create separate tablespaces for the following:

· rbs for rollback segments

· sysaux is required for Oracle10g (mandatory)

· system is required for the sys objects (mandatory)

· temp tablespace for temporary segments or temp files

· tools for database tools (e.g., perfstat)

· undo for undo tablespaces

· users as the default tablespace for end users (not for application schema)

· Index tablespace names should enable the DBA to identify the associated application schema and include a prefix or suffix to indicate that these are for indexes (e.g., finance_idx)

· Data tablespaces names should enable the DBA to identify the associated application schema and include a prefix or suffix to indicate this is for data (e.g., finance_dat)

· Tablespaces with a LOB should consider using l as the prefix or suffix in the name (e.g.,emp_pict_l)

· When installing Oracle options, a separate tablespace is recommended for each (e.g. wksys for ultrasearch)

Executable Objects

Including a suffix to identify the type of object is recommended, as follows:

· pkg for package specification

· pkb for package body

· prc for procedure

· fct for function

· trg for trigger

· _s for sequences

· _t for table creation scripts

· _v for view creation scripts

· _idx for index creation scripts

For database triggers associated with a table, the recommendation is to include the table name in the name of the trigger (e.g., emp_data_trg for a trigger associated with the emp_data table).

Language Restrictions

Language restrictions or constraints may present unavoidable problems and usually bear a trade-off. We balance trade-offs between calculated risk‑taking and proper decision–making to determine the desired outcome. We acknowledge inevitable restrictions by naming some here to inspire better programming practices:

a. The advantages of enforcing data integrity rules come with some loss in performance. In general, the cost of including an integrity constraint is, at most, the same as executing a SQL statement that evaluates the constraint.

b. Any conditions where integrity rules cannot be enforced should be documented to explain and clarify the business rules.

c. Object Declarations:

1) Ensure each identifier is distinct
2) Follow the project’s naming conventions
3) Avoid ambiguous grammar between function style casts and declarations.
d. The following data concurrency rules apply in a multi-user environment:

1) Oracle locks data minimally at the row level
2) Readers don’t block readers

3) Readers do not block writers. Note: SELECT ... FOR UPDATE behaves as a writer

4) Writers don’t block readers

5) Writers only block writers trying to write the same row. Oracle locks at the row level and does not escalate locks (Reference: http://www.wisc.edu/drmt/oratips/sess001.html

e. Use the Show command to identify all errors, e.g.:

1) Show errors procedure <procedure_name>;

2) "SHO ERR" is an abbreviation for "SHOW ERRORS"

3) You can omit "PROCEDURE ..." or "TRIGGER ..." if you just want to see the most recent compilation error.

f. Be careful regarding code dependencies. If you modify a database object that another database object depends on, the dependent object may be in an INVALID state. For example, if you add a new procedure or function to the global package and then re-create the global package, any database objects (e.g. other packages, views, etc.) making use of the global package will become INVALID. To fix this, the INVALID object needs to be recompiled.

In order to check to see which objects are invalid (if any), perform the following query:

SELECT
OBJECT_NAME, OBJECT_TYPE

FROM

USER_OBJECTS

WHERE
STATUS = ‘INVALID’;

Note: This query will only provide invalid objects for the schema where you are logged in. Therefore, this must be done for each schema.

In order to recompile an existing object use the following command:

ALTER object_type object_name RECOMPILE;

Where object type is PACKAGE, PROCEDURE, FUNCTION, or VIEW.

SQL Tuning Considerations

The following considerations are intended to enhance performance:

· All Non Dynamic PL/SQL should be compiled for better performance.
· Create all custom objects in the custom schema.

· SQL can be shared within Oracle only if it is absolutely identical. Therefore, the following rules will allow more sharing within Oracle's memory:
· Use a single case for all SQL verbs
· Begin all SQL verbs on a new line
· Right or left aligning verbs within the initial SQL verb
· Separate all words with a single space
· Use a standard approach to table aliases. If there are two aliases for the same table, then the SQL is different and will not be shared.
· Do not perform operations on database objects referenced in the WHERE clause.
Recommendations for Preferred SQL usage:
	Do Not Use
	Use

	SELECT account_name, trans_date, amount
FROM transaction
WHERE SUBSTR(account_name,1,7) = 'CAPITAL';
	SELECT account_name, trans_date, amount
FROM transaction
WHERE account_name LIKE 'CAPITAL%';

	SELECT account_name, trans_date, amount
FROM transaction
WHERE TRUNC (trans_date) = TRUNC (SYSDATE);
	SELECT account_name, trans_date, amount
FROM transaction
WHERE trans_date BETWEEN TRUNC (SYSDATE) AND TRUNC (SYSDATE) + .99999;

	SELECT account_name, trans_date, amount
FROM transaction
WHERE amount + 3000 < 5000;
	SELECT account_name, trans_date, amount
FROM transaction
WHERE amount < 2000;

	SELECT account_name, trans_date, amount
FROM transaction
WHERE amount > 0

AND amount < 0;
	SELECT account_name, trans_date, amount
FROM transaction
WHERE amount NOT Equal to 0;

· All tuning applicable to any SQL statement are equally applicable to views.
· Oracle automatically performs simple column type conversions (or casting) when it compares columns of different types. Declare program variables as the same type as your Oracle columns. E.g.:
	SELECT ...
FROM emp
WHERE emp_no = '123';
	SELECT ...
FROM emp
WHERE emp_no = TO_NUMBER('123');

· Use ‘DECODE’ to avoid having to scan the same rows repetitively or join the same table repetitively. Note, ‘DECODE’ is not necessarily faster as it depends on your data and the complexity of the resulting query. In addition, using DECODE requires you to change your code when new values are allowed in the field.
References:

· http://www.wisc.edu/drmt/oratips/sess006.html
Appendix F: FMS Development Tools

This section provides information about reusable software tools that are used to compile, test and debug, and verify FMS software on a target platform in the FMS environments. These tools include maintaining and modifying existing application code, implementing new requirements, and making changes to the database structure and data values and verifying code builds. The following lists the tool names, a descriptive purpose and the location of each tool:

	Oracle Developer
	PC desktop tool for development and debug of Oracle PL/SQL packages

	Toad for Oracle
	PC desktop tool for FMS database definition, manipulation, control and access using ANSI SQL

	Oracle Reports
	PC desktop tool for development of new and existing Oracle Reports

	Oracle Forms
	PC desktop tool for development of new and existing Oracle Forms

	Oracle Workflow Builder
	PC desktop tool for development of new and existing workflow schema

	Oracle Message Designer
	PC desktop tool for Oracle XML Gateway Message Designer for designing XML message maps for a data source and data target

	Discoverer
	PC desktop tool for development of new and existing Discoverer Queries and Reports.

	JDeveloper
	PC desktop tool for development of new and existing Java programs

	Applimation
	PC desktop and sever tool to archive data

	FNDLOAD Utility
	An Oracle concurrent program that loads Oracle Applications setup data from text files to the database.

See the FMS Operations Technical Manager for the versions of these tools.

The commonly used tool for FMS development in Unix is the vi editor. Unix scripts are written using the C shell (.sh) script facility.

Appendix G: JDeveloper Tool File Control Process

Java development is unique because the tool produces Zip files. We put Inventory Readme files in each Zip file to accurately account for all individual files in the consolidated Readme.

1. The JDeveloper tool creates a Java-based project and exports Zip files. The Zip files follow these Naming Conventions and Content Descriptions:

a. “fsa_sec_dash_prj_src.zip”
Project file with .java source code,

b. “fsa_sec_dash_app.zip”

Applications files from project (.class, .xml, .xcfg),

c. “sfalib_sec_dash_mds.zip”
Database Interface Objects for Reports.

2. The Developers’ automated build scripts will deploy the Java Zip files.

3. Each Zip file contains an Inventory Readme file, which includes the following:

a. Header Box:

i. Name,

ii. Object Type,

iii. Purpose,

iv. Usage,

v. Modification History (Date, Name, Description – CR#, Release Label).

b. Numbered List of Files:

i. Object Name,

ii. User Updateable Flag.

4. The Inventory Readme file in each Zip File is updated when the Zip file is modified for the next FMS release.

5. Before each Zip file is checked-in to ClearCase, the Inventory Readme file is reconciled with the contents of the Zip File and included in the Zip file, by the Development team.

Note: The CM team should check that the inventory of files matches actual files in the zip file, both file names and sizes. This will also validate actual counts of files.

6. Each ZIP file and its Inventory Readme file are listed the consolidated Readme for the release. Again, the Inventory Readme file is reconciled with the contents of the Zip File and included in the Zip file by the CM team.

7. Lastly, the Compare Code Report is assembled based on the consolidated Readme file.
Appendix H: Descriptive Header Box Template

General Header for all Programs and Scripts:

/***

* NAME : Package spec/body, Function/Procedure, Trigger, *

* View, Script, SQL *

* *

* PURPOSE : To create/modify this Package spec/body/, *

* Function, Procedure, Trigger, View, Script, SQL *

* *

* AUTHOR : Developer’s name and Team name *

* *

* USAGE : Run this under the APPS schema *

* e.g. sqlplus APPS/<password>@instance *

* or $>control.prog parm1 parm2 *

* The routines within this package may be *

* referenced by other FSA interface packages. *

* *

* Tables/View used: *

* 1. Table 1 *

* 2. Table 2 *

* 3. View 1 *

* 4. View 2 *

* Packages used: *

* 1. Package 1 *

* 2. Package 2 *

* Indexes used: *

* Sequences used: *

* Functions/Procedures: *

* Func/Proc Name Parameter(s) Mode *

* --------- ----- -------------- ----- *

* Function NEW_FILE p_filename IN *

* p_file_loc IN *

* p_file_type IN *

* p_batch_no OUT *

* p_system_id OUT *

* p_run_date OUT *

* p_run_time OUT *

* Function CHECK_REQUEST p_request_code IN *
* *

* MODIFICATION HISTORY: *

* Date Author CR#, Release Label, Description *

* ---- ------ ------------------------------- *

* mm/dd/yyyy First Last Name ####, CR_RELEASE_ReleaseID, *

* Descriptive information of the *

* change. *

* 01/01/1999 Mary Smith CR1009, CR_RELEASE_7.006, This *

* form has been upgraded from 4.5 *

* to 6i as part of the current *

* release. *

* 02/05/2006 John Smith CR1117. CR_RELEASE_7.006, This *

* form has been upgraded from 6i to*

* 8i as part of this new release. *

See Section 2.1.5.5.1 Apply Release Labels on how to apply release labels to objects.

Appendix I: FSA FMS Global Packages

FSA FMS Global Packages (SFALIB_GLOBAL_PKG) is defined in the ‘Shared Component Detail Design Document’. This package incorporates generic routines that can be used by all custom extensions. The package includes routines that are responsible for processes such as inserting into the AP interface tables, inserting into the GL interface table, getting a vendor’s information needed for invoice creation, submitting concurrent requests, etc.

Package Name: SFALIB_GLOBAL_PKG
	Procedure/Function
	Purpose

	PROCEDURE ASSIGN_ACCT_SEGMENTS
	ASSIGN_ACCT_SEGMENTS assigns 14 out of the possible 15 accounting segments to the OUT parameters based on the item input. These values are referenced from the account-mapping table. The institution segment is looked up from the PO_VENDOR_SITES table.

	PROCEDURE COMMIT_TRANSACTION
	Use “COMMIT_TRANSACTION” in your code to commit changes to the database. This procedure checks to see if your code is being called from a database trigger. If no then it commits the changes. This was written because a commit cannot be performed from a database trigger.

	FUNCTION FILE_EXISTS RETURNS BOOLEAN

	This function returns a Boolean value based on the existence of a file in a given directory. This function is used to verify the existence of a data file when interfacing with third party systems.

	FUNCTION GET_AP_GROUP_ID RETURNS NUMBER

	This function returns the next available group ID that is to be used when creating records in the AP_INVOICES_INTERFACE open interface table. This value is used to segregate multiple instances of the Invoice Open Interface process working on the same data.

	FUNCTION GET_EMAIL_LIST RETURNS VARCHAR2
	This function returns a list of the email addresses associated to all contacts of a given GA. This list is used by the alerts in the system for various notifications associated to the Forms 2000 submission process.

	FUNCTION GET_FISCAL_MONTH RETURNS NUMBER
	This function returns the fiscal month based on a given calendar date. The parameter defaults to sysdate.

	FUNCTION GET_FISCAL_YEAR RETURNS NUMBER
	This function returns the fiscal year based on a given month and year. The parameters default to the sysdate month and year.

	FUNCTION GET_GL_CURRENCY_CODE RETURNS VARCHAR2
	This function returns either “USD” or “STAT” based on the account segment.

	FUNCTION GET_INVOICE_ID RETURNS NUMBER
	This function returns the next available invoice id for the AP Invoices open interface table.

	FUNCTION GET_INVOICE_LINE_ID RETURNS NUMBER
	This function returns the next available invoice line id from the AP Invoice Lines open interface table.

	FUNCTION GET_JOURNAL_IMPORT_ID RETURNS NUMBER
	This function returns the next available Journal Import ID for the GL interface. This value is needed for the GL_INTERFACE_CONTROL table.

	FUNCTION GET_SET_OF_BOOKS_ID RETURNS NUMBER
	This function returns the appropriate set of books id based on the parameter value. Parameter values can be either “FSA” or “CFO.” Default is “FSA”

	PROCEDURE GET_VENDOR_INFO

	This procedure provides the Vendor ID, Vendor Site ID, the Terms ID, and the Institution Code for a given GA. The value of the GA is compared against Attribute2 in the PO_VENDOR_SITES Table. These values are needed for the AP invoices open interface tables. In addition, the Institution Code returned here is also used as an accounting segment.

	PROCEDURE INSERT_AP_INVOICES_INTERFACE
	A simple procedure to insert a record into the AP_INVOICES_INTERFACE table. The parameters accommodate for all columns within the table.

	PROCEDURE INSERT_AP_INV_LINES_INTERFACE
	A simple procedure to insert a record into the AP_INVOICE_LINES_INTERFACE table. The parameters accommodate for all columns within the table.

	PROCEDURE INSERT_GL_INTERFACE

	A simple procedure to insert a record into the GL_INTERFACE table. The parameters accommodate for all columns within the table.

	FUNCTION SUBMIT_REQUEST RETURNS NUMBER
	A function to handle submission of requests to the concurrent manager. The first three parameters are as follows: The Application Short Name, The Program Short Name, The Start Time (defaults to sysdate). After the three parameters, there is additional accommodation for up to 10 arguments for the program to be submitted.

	PROCEDURE WRITE_LOG
	A procedure used to write to the concurrent request log file.

	PROCEDURE WRITE_OUT
	A procedure used to write to the concurrent request output file.

Note: The prefix FSA* convention applies to all newly created file objects and will supercede the earlier SFA* convention.
Appendix J: FMS Application Tops

These ClearCase parent folders or tops, map the source code to the FMS applications on FSA production servers. The following folders are grouped by: application business areas, FMS interfaces and user interfaces.
\FMS_11i\APPL_TOP\admin\

\FMS_11i\APPL_TOP\ap\

\FMS_11i\APPL_TOP\ar\

\FMS_11i\APPL_TOP\au\

\FMS_11i\APPL_TOP\cbsp\

\FMS_11i\APPL_TOP\cmdm

\FMS_11i\APPL_TOP\codx\

\FMS_11i\APPL_TOP\dlco\

\FMS_11i\APPL_TOP\dlor\

\FMS_11i\APPL_TOP\dlss\

\FMS_11i\APPL_TOP\edcfo\

\FMS_11i\APPL_TOP\ffeldcs\

\FMS_11i\APPL_TOP\ffelga\

\FMS_11i\APPL_TOP\ffelvfa\

\FMS_11i\APPL_TOP\fnd\

\FMS_11i\APPL_TOP\gl\

\FMS_11i\APPL_TOP\html\

\FMS_11i\APPL_TOP\ippp\

\FMS_11i\APPL_TOP\lapx\

\FMS_11i\APPL_TOP\lars\

\FMS_11i\APPL_TOP\leap\

\FMS_11i\APPL_TOP\pell\

\FMS_11i\APPL_TOP\sfalib\

\FMS_11i\APPL_TOP\xvci\

These source code contain common user areas related to user authentication:

\FMS_11i\COMMON_TOP\

\FMS_11i\COMMON_TOP\html\

\FMS_11i\COMMON_TOP\java

\FMS_11i\COMMON_TOP\portal\

Appendix K: Section 508 Compliancy
The Investment Act of 1998, Public Law 105–220, was enacted on August 7, 1998. Title IV of the Act is the Rehabilitation Act Amendments of 1998. Subsection 408(b) amended section 508 of the Rehabilitation Act of 1973 (29 U.S.C. 794d).

Subsection 508(a)(1) requires that when Federal departments or agencies develop, procure, maintain, or use Electronic and Information Technology (EIT) (FAR Part 2.101 Definition), they must ensure that the EIT allows Federal employees with disabilities to have access to and use of information and data that is comparable to the access to and use of information and data by other Federal employees.

Section 508 also requires that individuals with disabilities, who are members of the public seeking information or services from a Federal department or agency, have access to and use of information and data that is comparable to that provided to the public without disabilities. Comparable access is not required if it would impose an undue burden (FAR 39.204(e)) of difficulty or expense.

Examples of Disability Types:
· Blindness and Vision Impairments

· Deafness and Hearing Impairments

· Mobility Impairments

· Cognitive and Learning Disabilities

· Multiple Disabilities.

� EMBED Word.Picture.8 ���

PAGE
iii
FSA FMS Developer Process Guide

_1251108570.wmf

_1251203634

_1225028650.doc
[image: image1.png]

