DEFENSE LOGISTICS AGENCY
LEA TRAINING GUIDE

DEFENSE LOGISTICS AGENCY
J-6 WEB DEVELOPMENT STANDARDS

DEFENSE LOGISTICS AGENCY

[image: image1.jpg]

WEB DEVELOPMENT DATABASE STANDARD

V 1.0.0

November 12, 2004

Table of Contents

21.0
INTRODUCTION

22.0
PURPOSE

23.0
SCOPE

24.0
REFERENCES

25.0
GLOSSARY

36.0
DATABASE DEVELOPMENT STANDARDS

36.1
DATABASE DESIGN TOOLS

46.1.1
ERwin

46.1.2
Visio

46.2
DATABASE DEVELOPMENT STEPS

66.3
DATABASE DESIGN

76.3.1
Data Modeling

76.3.2
Physical Database Design Additional Steps

86.3.3
Normalization

86.3.4
Table Relationships

96.4
DATABASE DEVELOPMENT

96.4.1
Standard Practices

96.4.2
Object Naming Convention

96.4.3
Databases

106.4.4
Tables

106.4.5
Attributes

126.4.6
Identifiers

126.4.7
Views

136.4.8
SQL Queries

146.4.9
Stored Procedures

156.4.10
Indexes

156.4.11
Alerts

156.4.12
Tasks and Jobs

166.4.13
Triggers

166.4.14
Error Handling

177.0
CHANGE HISTORY

1.0 INTRODUCTION
This document contains guidelines for database design, development, and sustainment of databases that support web applications deployed by the Defense Logistics Agency (DLA), and will establish consistency for web application databases. For DLA’s Internet Development Life Cycle (iDLC), the concept of a database standard is established to prescribe a set of guidelines to achieve consistency across a variety of projects. This standard will further efficiencies by facilitating developers to understand quickly database code in all DLA web products.
2.0 PURPOSE
The purpose of this document is to ensure that all DLA database-driven web products are functional, consistent with all applicable instructions and regulations, and support project objectives. Consistency in databases promotes data sharing, portability, and reuse by multiple applications, while reducing the effort to gather data and providing a level of consistency in reports and metrics. This document provides standards for logical planning through modeling and physical database design and implementation as needed by a project. Depending on the size of the application, all or part of the document may be used to develop robust databases. This document does not discuss network aspects of database administration, but rather the creation of databases.
3.0 SCOPE

This procedure applies to all new DLA web products including web sites and applications. Legacy database design changes should be considered at an appropriate time in the sustainment life cycle.

4.0 REFERENCES

The following references were used in producing this document.
· Style Guide (SCM-STA.SY.6450)

· J-645 Architecture Standard (SCM-STA.AR.6450)

· Federal Information Processing Standards Publication 184, Integration Definition for Information Modeling (IDEF1X) , http://www.itl.nist.gov/fipspubs/by-num.htm
· The Microsoft Developer’s Network, http://www.msdn.Microsoft.com
· MS SQL Server, http://www.microsoft.com/sql

· Oracle, http://www.oracle.com
· DataModel.org, http://www.datamodel.org.

5.0 GLOSSARY
The following acronyms, abbreviations, and definitions are used in this document.
	Term
	Description

	CAT
	Category

	DBA
	Database Administrator

	DLA
	Defense Logistics Agency

	DoD
	Department of Defense

	ER
	Entity Relationship

	ERwin
	Database Development Tool

	iDLC
	internet Development Life Cycle

	IT
	Information Technology

	MAC
	Mission Assurance Code

	PM
	Project Manager

	RAD
	Rapid Application Development

	SP
	Stored Procedure

	SQL
	Structured Query Language

	SSN
	Social Security Number

6.0 DATABASE DEVELOPMENT STANDARDS
This guide is intended to help developers meet requirements and guidelines without restricting development creativity. DLA database developers need to design web products to support flexible, consistent, efficient databases. Good database design practices ensure consistency in style, structure, ease in readability, efficiency, and lower maintenance costs.
This standard provides information for database architecture necessary to support all new and sustained DLA web development products. Each software product identified in this document has been approved by the DLA Information Technology (IT) Architecture Working Group. Refer to the J-6 Architecture Standards document at https://today.dla.mil/J-6/j-6421/scm_docs.asp?id=Standards for detailed information.
There are many areas of database administration that are not covered here as they are either accomplished by the Network support contract or are not used in databases of the size normally found for web applications. Specifically not addressed is:
· Attribute, row level, and table level locks – due to the size of the user community, or the type of access (read only), web sites usually use a session concept where locking, if done at all, is done for a message and response versus locking for an entire session

· Database backups – while it is highly encouraged to have the database schema in ERwin for disaster recovery, databases are routinely backed up by the Network administrators. Additionally there should be a Dev/test version of the database. While some databases used (Oracle, for example) contain a log for recovery and backup purposes, others (SQL Server and Access) do not. If a project is going to have large amounts of high changing data, the design should stress this requirement and a more “robust” database should be considered for use

· Since the mission criticality or mission assurance code (MAC) of most web sites is category (CAT) III (administrative), databases do not have mirrored arrays and or hot backups. Assurance of the data in the database(s) is dependent on system backups or some other means if determined to be necessary

· Databases will be accessed via an application user id and password and should be application to database and return (via messaging or other web server means). In no case should the user have direct database access via a user id and password in the database

· Typically, there is no dedicated database administrator (DBA) for a specific database. Sometimes the Developer or Project Manager (PM) serves in this role. Thus the expectation that there is a DBA to make structured query language (SQL) queries efficient, set a table structure for more efficient use, denormalize a logical model, and address data loads is not valid and should not be presumed in the development process

· Rollback and commit – the majority of the databases used do not have a rollback and commit concept. The data is sent as a packet or message and either is accepted (committed) or rejected (error). So the need for logs and rollbacks is not necessary for the volume of data and transactions that take place.

6.1 DATABASE DESIGN TOOLS

Tools assist the process of analysis and design as well as providing a repository for data objects, business logic, operational rules, and thought and alternatives raised in the analysis and development processes. While it may not seem economical in terms of time, effort, and payback to use these tools on small database projects, the time to re-document when expansion occurs should be considered before use of tools is discarded. DLA approved design tools are available at https://today.dla.mil/J-6/j-644/scm_docs.asp?id=Standards and are discussed below.
6.1.1 ERwin

AllFusionERwin Data Modeler (ERwin) tool is the primary tool used to create logical models and convert them to the physical structures necessary for database implementation. ERwin is also used to create physical data models which ERwin then automatically generates into tables and thousands of lines of stored procedure and trigger code. The complete and compare technology used by ERwin allows iterative development, keeping models synchronized with databases at all times. ERwin’s process modeling feature allows developers to visualize the information flow, procedure sequences, time relationships, business rules and decision logic, and associate of all of these with the physical architecture. ERwin also has the capability to reverse-engineer existing databases in order to begin the data discovery process.
An example of a reverse-engineered database is seen in the figure below.
[image: image2.jpg]

Figure 1 - Reverse-Engineered Data Model

6.1.2 Visio
Visio from Microsoft is a program that can create business and technical diagrams which document and organize complex ideas, processes, and systems. Visio also automates data visualization by synchronizing directly with data sources to provide up-to-date diagrams, and it can be customized to meet organizational needs.

6.2 DATABASE DEVELOPMENT STEPS

A database may be only one table or be extensive with hundreds of tables. This standard supports all these levels. Actual steps may vary due to the size or the type of database (i.e., relational, object, warehouse, flatfile), the type of development (i.e. full build to completion, rapid application development (RAD), prototype, incremental build) and the resources available (Oracle or SQL Server), types of staff available (designers, developers, modelers, database administrators etc.), and the level of involvement and technical expertise from the functional community. Specific steps of one project may be different from another, but the process is the same.

The following steps are typically used to ensure proper database design:

1. Define Project Purpose and Objectives

In order to create a database, the purpose and overall objectives for developing the database must be defined. This purpose will define the tasks that are to be performed by users against the data in the database. Databases typically fall into two types: support for a transaction processing system (e.g. a sales or accounting system) or a repository of data which will be used primarily to provide status and reports (e.g. a data warehouse, a case tracking system, a data collection effort, where the data typically does not ‘trigger’ other data). Defining the purpose or use of the database is crucial for the success of the project.

2. Collect and Analyze the Requirements

Identify data needs by:
· Conducting interviews with users and management to determine how data will be used on a daily basis
· Reviewing current documents and work products for data elements
· Determining early whether the data will be ‘processed’ using business rules, or is being gathered for analysis and reports/review
· Determining the functional and data requirements of the organization by reviewing the way data is currently collected and presented, as well as how it is used.
The following documents from the iDLC Model may be used to assist in the requirements collection and traceability:
· System Requirements Specification (SCM-TMP.RD.6450)

· Traceability Matrix (SCM-TMP.TM.6450)

· Initial logical or physical data model (used to collect high level tables and relationships of the data)

· Use Case Scenarios (SCM-TMP.UC.6450)

· Use Case Scenarios Procedure (SCM-PRD.UC.6450)

· Allocated Requirements Review Procedure (SCM-PRD.RR.6450).
The goals of this analysis are to:

· Determine the data requirements of the database

· Classify and describe the information about these objects

· Identify and classify the relationships among the objects

· Determine the types of transactions that will be executed on the database and the interactions between the data and the transactions

· Identify rules governing the integrity of the data.

It is imperative to understand that analysis can never uncover all the needs and rules of the business. Analysis is only used to get started and to initiate discussions. Databases will evolve with the project, and the analysis required for a web application is not the same as for major applications. Therefore after initially identifying primary data tables, most expansion will be dictated by the developers needs to support the application development effort or as previously un-identified needs are discovered in use of the project.

3. Create Data Structures

Data structures include tables for data storage, data attributes (the data details), relationships between tables, indexes, views, and stored procedures/triggers (PL/SQL and alerts for Oracle type databases are also included).
Naming for these fields will follow the following pattern:

· Establish tables by identifying the objects that will be tracked by the database. Tables will be named in business language, but kept as short as possible to aid developers who must use the table names in code (e.g. Person table, Org[anization] Table, Skill table)

· Designate a Primary Key. Primary Keys will be of the auto create type and will make use of the database capability to ‘auto number’. Primary Keys will be ‘idiot keys’, that is the key has no meaning in and of itself, it is only a number.

· Primary Key will be named based on the table they originate in. If passed as a Foreign Key to other tables, these keys will maintain their name (e.g. O_id, Org_id) regardless of which table it is residing in. This will maintain traceability of the data.

· Create attribute fields that represent the necessary data to be collected along with specifications for every field in the table. Attributes are specified by identifying the size (number of characters), indexing, (not) Null, range, default, data type (i.e., numeric, text, alpha-numeric, varchar, Boolean), etc. The actual data type is determined by the types available to the database used.

· Attribute names will be as short as possible to aid coding and still support an understanding by the functional community of what the data field stores. This is critical to support end user analysis tools and data review by the user community.

· Use of a suffix for attribute names is good practice. Examples include:

· Foreign Keys are _id

· Text is _txt

· Code is _cd

4. Determine and Establish Table Relationships
Identify relationships that exist between the database tables and then establish the logical connection for each relationship using Primary Keys and Foreign Keys to link tables.

5. Determine and Define Business Rules

Conduct interviews with users and management to identify constraints on the data in the database based on the way the organization views and uses its data. These constraints are then declared as business rules, which will serve to establish various levels of data integrity.

6. Determine and Establish Views

During the interviews with the users and management, identify the various ways they look at the data in the database. After these various perspectives have been identified, views may be established. Each view is defined using the appropriate table or tables. Views use criteria that limit the records that they display.

7. Review Data Integrity

This phase involves four steps. First, evaluate each table to ensure that it meets proper design criteria. Second, review and verify all field specifications. Third, test the validity of each relationship. Fourth, analyze and confirm the business rules.

6.3 DATABASE DESIGN

In order to support large complex systems, modeling is used to simplify the analysis and development efforts and support a dialog between the users, developers, and project managers. Models aid in this support by providing a common vocabulary. Normally, the logical design produces a purely logical view of the data required by the business area. Logical design ensures that the stored database will be non-redundant and properly connected through normalization, procedures, and the definition of integrity rules. It is used to work out the business logic, aid communication with functional business users, and provide a starting point for the actual database construction.
Physical models are used to map the data in the database and provide a “roadmap” of the data in the database. The structure is changed from a logical normalized concept into a denormalized structure built for performance and to support the application.
In most web applications, the databases are relatively simple and the logical model is usually foregone in favor of using only a physical model which serves both the logic and design processes as well as being in the database and used directly. Also, normalization which is so critical for large 100+ table databases is actually a hindrance to small databases which must support reporting criteria. The data model referred to here is the physical data model and will be the model that the developers actually code from for their applications. When a logical model is necessary, it will reference, conform, and comply with either the DLA Data Dictionary or the Department of Defense (DoD) Data model. Physical models will use business language to maximum extent to support users understanding of the data and make reporting simpler.
6.3.1 Data Modeling
The data model, either logical or physical, is one part of the design process, and focuses on what data should be stored in the database. The information needed to build a data model is gathered during requirements analysis phase. In order to be effective and to gain the greatest benefit, the modeling and requirements analysis are done simultaneously. Data models may be logical, physical, or object depending on the needs of the project.
Steps in building the data model are listed below:

1. Identify the data objects and relationships.

2. Decide on the level of normalization needed.
3. Draft the initial diagram with entities and relationships or objects.

4. Refine the diagram.
This is the logical to physical transition point. A truly logical model does not include the following; however, a physical model may include the above steps. Thus an application or project can be done by only physical modeling.
5. Add key attributes to the diagram.

6. Add non-key attributes.

7. Validate the model.

8. Add business and integrity rules to the model.

In addition to constraints, the following must be captured in a data model repository:

· Definitions

· Data type/format of each attribute

· A domain for each applicable attribute

· Referential integrity rules if existing.

6.3.2 Physical Database Design Additional Steps
8. Use Least Privileges

· Grant users and applications the minimum permissions required to complete a task and only for the time it takes to execute the task.

· Design for and configure the native Group and/or Role based permissions supported by all major web and database servers.

· Use administrator accounts only when required.

9. Validate All Input

· Use of database tables as a means to validate data input is an industry best practice and ensures consistent data. For example, there are many possible spellings of Washington DC.
· Design lookup tables to the maximum extent.
· Validation should never be done in application.
· An admin capability will have to be included in the application to Create Read Update and Delete (CRUD) data in the tables.
See the figure below for an example of a physical data model.

[image: image3.png]& P BmETY

U D HoT L
FU e L

o WL

L P L
iR

e Tk

i

(S Ph s BB BT

o e o N

EeCTEGT UL 61
Uit

o

i

&, 7-77-c0 cowmETT

[e AT

SR B WL
e e

E070T. e UL
HAI0R SR ek UL

v e T |
A T UL

aaren or o

8 v-puu_1r_ - woETTY

 FUTY D R ULE
R et

o
e oo e

LNEAGE Sroarci o
neiGE P 1

Figure 2 - Example of Fully-Attributed Physical Data Model

6.3.3 Normalization

Normalization is the process of refining and regrouping attributes in entities according to the normal forms. Normalization is needed when the data must be maintained without having to worry about redundant data and having inconsistencies due to multiple occurrences of the same data in the database (e.g. enter the same data to multiple places, and if one is missed, inconsistencies occur). A database is normalized when each attribute is placed into an entity where it is functionally dependent on the entire Primary Key, and where it is not functionally dependent upon any other attributes in the model.
Object and warehouse databases are actually impeded by a normalized process. Since there is a specific known data entry, inconsistencies are not issues. These databases may need a highly denormalized data structure to provide simple reporting and data analysis.
The driving factor for incorporating normalization is use of the database and the means that the database uses to load data.

6.3.4 Table Relationships

The Table-Relationship Model, or Entity-Relationship (ER) Model, views the real world as consisting of entities and relationships. The basic constructs of the ER model are entities, relationships, and attributes. Entities are concepts, real or abstract, about which information is collected. Relationships are associations between the entities. Attributes are properties which describe the entities.

A relationship is a named connection or association between entities. For example, in a data model that manages human resources, the relationship “is a member of” links the entities Employee and Team, because employees can be members of teams. This relationship expresses that each employee works in a team and that each team has employees.

An occurrence of a relationship corresponds to one instance of each of the two entities involved in the relationship. For example, the employee Martin working in the Marketing team is one occurrence of the relationship "is a member of”
Example
A basic ER model is shown in the figure below:
[image: image4.jpg]Relationship

i Name

N |

is amerber of
(=T 2 / EnPyovEE

Relationship Entity Name

Figure 3 - Entity-Relationship Example
6.4 DATABASE DEVELOPMENT

6.4.1 Standard Practices
1. Developers shall not hard code values in the application code, but instead will use tables to store the values.

2. Use stored procedures whenever possible to simplify and reduce future changes of the application.

6.4.2 Object Naming Convention
Naming standards makes databases understandable for all participants in the life-cycle process. The benefits of using a naming convention are more to do with human factors than any system limitations. When designing a database, following naming conventions shall be used for consistency, readability, and maintenance. Developers learned long ago that naming standards makes it easier to train new developers, troubleshoot code, and reduce errors. Using a standard naming convention ensures that developers code in a consistent and efficient manner. When something is standardized, developers can obtain some amount of information just from the name. This aids in finding objects quicker, understanding an object’s purpose, or just keeping everything more organized.

The most important thing to keep in mind when it comes to naming any object is that business needs are continually evolving and changing. Initially, a developer may be thinking the application has a relatively small backend, but finds the next release may include some type of auditing which makes the database grow 100 fold. It is this type of unpredictability where one should choose the lowest common denominator. For example, some database engines have restrictions that will make portability to them quite expensive if the lowest common denominator of both of the database systems is not taken into consideration. For example, the current version may only allow for 18 characters. In a future release, it will support 30 characters. Design conservatively with 18 characters knowing how slow most organizations move. Another example: Oracle supports only upper case table and element names easily. If Oracle is even a remote possibility for migration, make sure the SQL Server table names and field names are always in upper case. If a create table statement is issued in Oracle, Oracle will convert everything to upper case, however some of the migration utilities do have this luxury.

If the current application or application components will be integrating with other applications, prefix those components for easy migration. For example, a workflow system is used in 8 different applications should have a prefix on those tables with the two letter abbreviation WF (WF_QUEUE). In doing this, tables can be easily found in Enterprise Manager. At the table level, avoid using abbreviations in other cases.

6.4.3 Databases
In the service industry where applications are mass-produced, a debate usually begins when the decision must be made to go with one database per organization or project or to a shared database. While this is really a political decision, once the decision is made, stick to the decision. The general rule of thumb is to have a separate database for each client for anything that contains financial or client-level data. Data that can be shared, such as code tables or forms, may have a shared database.

· The database name will be the same as the project name

· Do not use characters like asterisk (*), ampersand (&),period (.), dash (-), or slash (/)

· Keep the name short but understandable. Many procedures must name the table name as well as the attributes.
6.4.4 Tables

A table in a relational database is a predefined format of rows and columns that define an entity. Tables represent the instances of an entity. There should be a table for each kind of thing such as Employees, Client, Suppliers, and Products. Name tables using the entity they represent. Databases are made up of one or more of these tables. If the database deals with different logical functions and the developer wants to group the tables according to the logical group they belong to, prefixing the table name with a two or three character prefix that can identify the group is acceptable. Tables should be named for the type of data that they are holding in accordance with the business lexicon used by the organization. This prevents developers from confusing or being confused when working with functional people. Abbreviations for words should conform to the list of abbreviations that has been declared the standard abbreviations. Tables that link other tables together should have a suffix (e.g. of Lx, where x is a numerical indicator). This allows multiple independent links between tables. Lookup tables that contain the Primary Key and another duplicate field in them to speed lookups should be suffixed (e.g. by a _lu). Proper case names should be used for names.

Table Name Examples:

· Person
· Organization
· Product

· Product_lu

· Do not use reserved words for naming database objects such as tables, as that can lead to some unpredictable situations.

· Do not use spaces within the name of tables, as spaces confuse front-end data access tools and applications.

· Use 'mixed case' names instead of using underscores to separate two words of a name.

· Avoid using long names for tables, keep it simple.

· Prefix the table names with owner names, as this improves readability, avoids any unnecessary confusions.

· Use plural in naming tables whenever possible. For example, name a table as Customers instead of Customer. This is a more natural way of naming tables as compared to approaches which name tables as tblCustomers, tbl_Orders. When looking at queries after using this method, it is obvious that a particular name refers to a table, as table names are always preceded by FROM clause of the SELECT statement.

· Names of database objects shall consist of two parts: the base part, which describes the content/subject/purpose of the object and the suffix which denotes role of the object.
· Use tbl for primary data table

· Use lkup for data reference table or data lookup table

· For join tables, use the base name of each joined table

· Use tmp – for temporary tables used for data loads and other purposes where data is not maintained

6.4.5 Attributes

An attribute is a single data item related to a database object (table). The database schema associates one or more attributes with each database table. An attribute is also known as field or column. Attributes are data items that describe a table. An attribute instance is a single value of an attribute for an instance of a table. For example, Name and Hire Date are attributes of the Table EMPLOYEE. "Jane Doe" and "3 March 2004" are instances of the attributes Name and Hire Date.

Attributes may be Primary, Native, or Foreign Keys. Primary Keys enforce table integrity by uniquely identifying table instances. Foreign Keys enforce referential integrity by completing an association between two entities. Native Keys are those keys that are not part of the Primary Key or a part of a composite Primary Key of an entity. Foreign Keys may be native keys. These keys further describe the table, but may have null values in some instances of the table.

The Primary Key is an attribute or a set of attributes that uniquely identify a specific instance of a table. Every table in the data model must have a Primary Key whose values uniquely identify instances of the table.

The Foreign Key is an attribute that completes a relationship by identifying the parent table. Foreign Keys provide a method for maintaining integrity in the data (called referential integrity) and for navigating between different instances of a table. Every relationship in the model must be supported by a Foreign Key. The Foreign Key can be used to cross-reference tables and can be used for cascading deletes and updates.
The following guidelines shall be adhered to when naming database attributes.

· Attributes shall be named as descriptively as possible

· Attributes shall be in the singular, in upper case, using white space (not underscores) as delimiters

· Attributes shall usually be no more than three words

· Prefix the column names with the table that they are representing.

To qualify as a Primary Key for a table, an attribute must have the following properties:

· It must have a non-null value for each instance of the table
· The value must be unique for each instance of a table
· The values must not change or become null during the life of each table instance.
Basic Foreign Key guidelines are listed below:

· The Foreign Key must set up by matching columns in one table (child) to the Primary Key columns in another table (parent)

· If a Foreign Key contains a value, the value must refer to an existing record in the related table.

Example
Below is an example of a table called Project with the following attributes:
ProjID (the key), ProjName, TaskID, TaskName that has been populated with sample data
	ProjID (PK)
	ProjName
	TaskID
	TaskName

	01
	A
	01
	Analysis

	01
	A
	02
	Design

	01
	A
	03
	Programming

	01
	A
	04
	Tuning

	02
	B
	01
	Analysis

· Each column (attribute) name must be derived from the business name identified during the business/data analysis process

· Each column name must be unique within its table

· Do not use reserved or key words as object names

· Do not use spaces within the name of database objects

· Use 'mixed case' names instead of using underscores to separate two words of a name

· Foreign Keys will be named the exact same as they are in their host table (e.g. if the Key ID of the people(PEO) table is PEO_ID, then in the PEO_ORG table, the Foreign Key is also named PEO_ID

· Avoid using characters like asterisk (*), ampersand (&), period (.), dash (-) and slash (/)
6.4.6 Identifiers

Identifiers are usually described as Primary and Foreign Keys. Certain symbols at the beginning of an identifier have special meaning in SQL Server. An identifier beginning with the "at" sign denotes a local variable or parameter. An identifier beginning with a number sign denotes a temporary table or procedure. An identifier beginning with double number signs (##) denotes a global temporary object. Some Transact-SQL functions have names that start with double at signs (@@). To avoid confusion with these functions, it is recommended that not to use names that start with @@.

· Subsequent characters can be:

· Letters as defined in the Unicode Standard 2.0.

· Decimal numbers from either Basic Latin or other national scripts.

· The "at" sign (@), dollar sign ($), number sign, or underscore.

· The identifier must not be a Transact-SQL reserved word. SQL Server reserves both the uppercase and lowercase versions of reserved words.

· Embedded spaces or special characters are not allowed.
· A primary field that uniquely identifies a record in a table. In an Employees table, for instance, a key built from last name + first name might not give a unique identifier, as there might be two or more Jane Does in the company. To identify each employee uniquely, add a special Employee ID field to be used as the Primary Key. Primary Keys will be neutral as to data value. That is they should have no meaning in and of themselves, they merely serve to provide a unique value. For example, a Social Security Number (SSN) may seem to fulfill the needs of uniquely identifying a person. However, SSNs have meaning and do not always uniquely identify an instance of a person. The standard is to use an “idiot” key or a numerical index for all Primary Keys
· A Foreign Key is a key that is specified in the definition of a referential constraint. It is used in one table to represent the value of a Primary Key in a related table. While Primary Keys must contain unique values, Foreign Keys may have duplicates. For instance, if we use Employee ID as the Primary Key in an Employees table (each employee has a unique ID), we could use Employee ID as a Foreign Key in an Assignments table: as each employee may do more than one task, the employee ID field in the Assignments table will hold duplicate values. Be careful of making Foreign Keys mandatory (not null) as this can create data problems.
Example

Example of a regular identifier is shown below:

[image: image5.png]SELECT
FROM TebleX
VHERE KeyCol = 124

Delimited identifiers are enclosed in double quotation marks (") or brackets ([]).

Example of a delimited identifier is shown below:

[image: image6.png]SELECT *
FROM [Tablex] —-Delimiter is optional.
WHERE [KeyCol] = 124 --Delimiter is optionmal.

6.4.7 Views

A view is nothing but a virtual table for any application that is accessing it. Views are read only, the system will not allow an insert, update, or delete on a view. Views can be based on other views, not just tables. The same naming convention defined above for tables applies to views as well, except for the following:
· Views not always represent a single entity. A view can be a combination of two tables based on a join condition, thus effectively representing two entities. In this case, consider combining the names of both the base tables. For example: If there is a view combining two tables 'Customers' and 'Addresses', name the view as 'CustomersAddresses'.

· Views can summarize data from existing base tables in the form of reports. This type of view can be seen in the 'Northwind' database that ships with SQL Server.

· Views are generally used to show specific data to specific users based on their interest. Views are also used to restrict access to the base tables by granting permission only on views.

Standard
· Views do not always represent a single entity. A view can be a combination of two tables based on a join condition, thus effectively representing two entities. In this case, consider combining the names of both the base tables

· View names follow the same conventions as table names, but shall be prefixed with the literal 'v_' or ‘vw’

· Views can summarize data from existing base tables in the form of reports as seen in the 'Northwind' database that ships with SQL Server

· Do not add spaces within view names

· Do not use parameters to pass criteria for the view

· Views cannot be used with temporary tables.

Example

CREATE VIEW ProjectEmployees AS SELECT Employees.EmployeeID, Employees.EmployeeName, Projects.ProjectTitle FROM Employees, Projects WHERE Employees.EmployeeID = Projects.EmployeeID

6.4.8 SQL Queries

SQL defines the methods used to create and manipulate relational databases on all major platforms.

SQL commands can be divided into two main sub languages. The Data Definition Language (DDL) contains the commands used to create and destroy databases and database objects. After the database structure is defined with DDL, database administrators and users can utilize the Data Manipulation Language (DML) to insert, retrieve, and modify the data contained within it. However, DML is used to retrieve, insert, and modify database information. These commands should be used by all database users during the routine operation of the database.

· Do not use SELECT * in queries. Always write the required column names after the SELECT statement, like SELECT CustomerID, CustomerFirstName, City. The above technique results in less disk IO, less network traffic, and hence better performance.

· Avoid dynamic SQL statements as much as possible. Dynamic SQL tends to be slower than static SQL, as SQL Server must generate an execution plan every time at runtime.

Example

· CREATE DATABASE employees

· DROP DATABASE employees

· SELECT empID, empName FROM EmployeesList

· DELETE FROM EmployeesList WHERE empid = 12345

Comments

Comments are non executing text strings in program code also known as remarks. Comments can be used to document code or temporarily disable parts of Transact-SQL statements. A comment can consist of one or more lines.
The following table shows three different character sets that can be used to add comments in SQL:

	Characters
	Description

	//
	C++-style forward slashes. All text between the forward slashes and the end of the same line is ignored.

	--
	SQL-style hyphens. All text between the dashes and the end of the same line is ignored.

	/* … */
	C-style forward slash and asterisk pairs. All text between the opening forward slash and asterisk and the closing asterisk and backward slash is ignored. This type of comment can span multiple

Standard
· Add comments in the stored procedures, triggers, and SQL batches generously whenever something is not obvious. This may help other programmers understand code clearly

· All alphanumeric characters or symbols can be used within the comment

· Comments shall be short and to the point

Example

/* Using this query to view

 info about units shipped

 and units ordered */

6.4.9 Stored Procedures

A stored procedure is a group of Transact-SQL statements compiled into a single execution plan. Stored procedures can have full-blown code, meaning that they can have loops, conditions, and other program logic. The output they produce can be a recordset, and they can return a computed value, the result of a calculation on values returned from another stored procedure. When developing a component to an application versus the entire application, prefix the stored procedure name with a 2 letter prefix. Begin stored procedures with a prefix (e.g. SP__ (2 underscores)) followed by the component base name. Examples are SP for a stored procedure, WF for a workflow. The learning curve can be reduced tremendously if descriptive names are used, and if the name denotes whether the stored procedure selects, inserts, updates, or deletes data.

· Since Oracle uses PL/SQL, stored procedures may represent the majority of the business logic and code. Triggers, alerts, and stored procedures are the same thing, only the purpose is different and thus the name trigger or alert is for conceptual purposes only
· The base name of a stored procedure should usually be created from a verb followed by a noun to describe the process the stored procedure performs on an object

· In SQL Server, do not prefix your stored procedure names with "sp_". The prefix sp_ is reserved for system stored procedure that ships with SQL Server. Whenever SQL Server encounters a procedure name starting with sp_, it first tries to locate the procedure in the master database, then it looks for any qualifiers (database, owner) provided, then it tries dbo as the owner

· Use SET NOCOUNT ON at the beginning of the stored procedures in production environments, as this suppresses messages like '(1 row(s) affected)' after executing INSERT, UPDATE, DELETE, and SELECT statements. This technique improves the performance of the stored procedures by reducing the network traffic

· Make sure stored procedures always return a value indicating the status such as success or failure. The RETURN statement is meant for returning the execution status only

· The maximum number of local variables in a stored procedure is limited only by available memory

· The maximum number of parameters in a stored procedure is 2100.

Example:

· SP__WFSELECTBORROWER (WF is the workflow system)

· SP__UPDATEPAYEESTATUS

· SP_APINSERTBILLRECORD (AP is the Accounts Payable system)

· spIns<table name> - Insert procedure for all columns for the table, except identity column

· spDel<table name) - requires Primary Key and removes the specified row from the table

· spSel<table name> - Returns data from a single table or view. Takes the Primary Key as a parameter (optional). If sent, then the matching row is returned. If no parameter sent, then all rows are returned

· spUpd<table name> - takes Primary Key as parameters and then all columns in order that they appear in the table. If a NULL is sent for a parameter, then that column is not updated

· spGet<description> - select procedure returning data from joined tables

· spTot<description> - returns an aggregate of some type

· spSet<table><column> - sets a specific column value. A specialized procedure to set a value for a specific business purpose

· spInc<table><column> - increments the column value

· spFix<purpose> - procedure to scrub or correct data that may be incorrect

· spSend<purpose> - Stored procedure that sends a message to someone. This could be email, broadcast, http post, etc.

· dbsp<purpose> - DBA stored procedure to perform administrative or maintenance tasks. NOT FOR USE by applications. Permissions are not necessarily set for non-sa level logins on objects used in these procedures

· sp__LoadData

· spChkTime

· spGetEmpRpt

· spInsCustomer

· spDelOrder.
Abbreviations should be used where appropriate.
6.4.10 Indexes

Indexes shall be named for the table they are attached to and the purpose of the index. All letters shall be lower in case. Primary Keys shall have a suffix of _ID. Clustered indexes shall have a suffix of _IDX. All other indexes shall have a suffix of _NDXx where x is an incremental number. Only one suffix per index shall be appended.

Example:

· employee_ID

· customer_IDX

· employee_FK1

· employee_NDX1

· employee_NDX2

6.4.11 Alerts

Alerts are unique to the Oracle database and are named by the Oracle Alert builder. Alerts will be used when needed to interface with Oracle Applications. In Government off-the-shelf (GOTS) applications, triggers are preferable as they are transferable to other database engines. Alerts shall be named with the database in UPPER CASE, a description of what the alert is for, and what level of alert it is.

Example:

· CUSTOMER Fatal Errors 19

6.4.12 Tasks and Jobs

Tasks shall be named with the database, the frequency or time (in 24hr format) a description of what the task is, the name of the procedure, or the name of the DTS task being run.

Example:

· ALL DATABASES Daily 0100 synch of development server Admin

· PRODUCTION Sun 0400 DBCC checktable

· Dynamics MTWRF 0500 Import_Sales_Flat_File.
6.4.13 Triggers

Triggers, like stored procedures, should designate what happens to the data (i = insert, u = update, d =delete). Begin all triggers with the letter T and the table name. For example, a trigger that inserts into the payable table would be TI_PAYABLE. A trigger can include SQL statements to execute as a unit and can invoke stored procedures. Triggers (one or more) are implicitly fired (executed) by SQL Server when a triggering INSERT, UPDATE, or DELETE statement is issued. Triggers can be used for tracking unauthorized changes in a database, can be transformed from a lengthy and difficult security task to an automated routines.

Standard
The following guidelines shall be kept in mind when programming triggers.

· Only the table owner has permission to create triggers, and permission cannot be transferred

· A trigger is considered a database object, so use object rules when naming and referencing a trigger

· Triggers are restricted to the current database, although an object outside the database can be referenced
· A trigger can reference a temporary table but cannot modify it

· A trigger can not reference a system table

· A trigger shall be prefixed with the 'trg'

· Write comments in the triggers for readability

· Use SET NOCOUNT ON at the beginning of triggers in production environments, as this suppresses messages like '(1 row(s) affected)' after executing INSERT, UPDATE, DELETE and SELECT statements

· Add no spaces within trigger names

Example
CREATE TRIGGER [trgAuditInsertUpdate] ON dbo.Products

 FOR INSERT, UPDATE

 AS

 INSERT INTO AuditTrail (TableName, ActionTaken, ActionUser, ActionDate)

 VALUES ('Products', 'I', User_Name(), GetDate())

6.4.14 Error Handling

Error handling or error trapping is a sign of more sophisticated application. Errors will occur, so plan for them and capture them prior to display to the user. Comments such as “Database error” are meaningless to a user. Databases can issue informational, warning, or error messages to applications. Most messages returned to applications contain these parts:

· Error number: A one-to-five-digit number that identifies the message. Error numbers for user-defined messages can contain more digits

· Description: A Unicode string that contains information about the condition that generated the message

· Severity level: A one- or two-digit number that indicates the severity of the error condition

· State: A one- to three-digit number with a maximum value of 127 that indicates to Microsoft support engineers and developers the location in the SQL Server code that generated the message

· Line number: A number within the batch or stored procedure that contains the statement that generated the message. Line number can also be within the text of the stored procedure that is being executed.
Standard
· Use RaiseError to raise an error in a stored procedure. It returns a user-defined error message and sets a system flag to record that an error has occurred.

RAISERROR ({ msg_id | msg_str } { , severity , state }
 [, argument [,...n]])
 [WITH option [,...n]]

Example

The following examples demonstrate error handling in stored procedures:

IF (@@JOB_ID = 1) and (@@EMP_lVl <> 10)

BEGIN

 RAISERROR ('Job id 1 expects the default level of 10.', 16, 1)

 ROLLBACK TRANSACTION

END

USE tempdb

go

CREATE PROCEDURE ps_FatalError_SELECT

AS

SELECT * FROM NonExistentTable

PRINT 'Fatal Error'

go

EXEC ps_FatalError _SELECT

--Results--

Server:Msg 208,Level 16,State 1,Procedure ps_FatalError_SELECT,Line 3

Invalid object name 'NonExistentTable'.

7.0 CHANGE HISTORY

The following table is used to track all document changes in accordance with the Style Guide.

	Date
	Change Description
	Type of Change
	Author
	Version Issue

	11.12.2004
	Create baseline document at v 1.0.0
	Baseline
	L. Babbitt
	v 1.0.0

SCM-STA.DA

Page 2 of 19

_1140268741.bin

