

WELCOME TO THE NCES TECHGUIDE!

RESOURCES FOR...

More Information

Help Us Maintain the Tech Guide

TECHGUIDE MAIN PAGE | ABOUT | FAQ

Here you can find out how to share your information across the DoD and beyond using
capabilities provided by the Net-Centric Enterprise Services (NCES) Program. NCES provides an
infrastucture comprised of Core Enterprise Services (CES) to support the goals of the DoD Net-
Centric Data Strategy. This site focuses on the technical and procedural information
Developers, Architects and Program Managers need to create and deploy services which are
visible, accessible and understandable to other GIG participants.

PROGRAM MANAGERS ARCHITECTS DEVELOPERS

Key Concepts
DDMS and other Standards that
should be followed

How_to_Guide

Net-Centric Data Strategy
(NCES) Goals

High Level Guidance The Use Case Scenario

Community_of_Interest
Core Enterprise Service (CES)
Descriptions

The Goals

Information Sharing Payoffs How_to_Guide The Architecture

Net-Centric Data Asset
Lifecycle

Universal Core(UC) The Design

 Implementation Steps

 The Goals (revisited)

 Other Use cases

 Additional Considerations

User feedback mechanisms and
instrumentation to generate metrics

 Lessons Learned

Frequently Asked Questions Frequently Asked Questions Frequently Asked Questions

References

Definitions

Acronyms

Published Acquisition Guidance

"How to" Guidance examples from the Web
(Standards, conventions, or best practices to be included in the TechGuide?)

Transport

Notional Service Concept of Operations (ConOps)

Responses to this TechGuide, including corrections, additions, and approval, are solicited from primary users, sponsors,
and other stakeholders with the aim of enabling improvements to be made on a continuing basis.
An open process of communication among TechGuide users is being established whereby any person can disagree, ask a
question, verify information for understanding, or otherwise talk back to the TechGuide maintenance team.
TechGuide feedback is expected to include substantive responses to user proposals concerning, content, functionality,
and performance/effectiveness.
To provide feedback about this guidance, or to get help with any problems, see the message board on the NCES
Developers Workspace. This is the preferred feedback and support channel because it allows you to share your ideas,
questions, and solutions with the entire community.
Note: It is very important to understand that nothing published in the initial versions of the TechGuide or commentary

Page 1 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

The following describes key concepts associated with Department of Defense transformation and outlines their technical
implications re: Net-Centric Data Strategy implementation.

The GIG
The Global Information Grid (GIG) is a construct that embraces the entirely of Defense information sharing capabilities.
Not just communications, the GIG includes “computing systems and services, software (including applications), data,
security services . . .” etc. “. . . provides interfaces to coalition, allied, and non-DoD users and systems . . .” The
magnitude of the GIG has profound implications for the Department's "information system" designers and implementors.
Examples: Precision search capabilities that allow globally distributed users to rapidly pull what they want from ultra-
voluminous and variable information enclaves are critical. Large scale distribution and maintenance of heavy clients is
problematic. Metadata maintenance and high volume transaction processing required for fine grain access controls may
constitute unacceptable overhead.

Service Oriented
Characterized by on-demand services. Participants in a service-oriented architecture make their resources available by
publishing information in structured formats that describe their capabilities and how to access them. Other participants
can discover and request those services on demand, but have no power to modify their makeup (other than by feeding
back suggestions), ensuring their capabilities always remain available to other participants. This loosely coupled, on-
demand assembly of resources has the advantage of being highly adaptable to change. Implications: User populations
may expand dramatically to include rapid incorporation of unforeseen applications and data sources. This impacts the
nature of, timing of, and planning for upgrades.

Net-centricity
A property of systems and organizations that measures how open they are to interacting with others across a network to
accomplish their goals, how quickly they can adapt to support unanticipated interactions, and how much cost they are
willing to bear in order to be able to do these things. Net-centricity brings two revolutionary aspects to DoD information
systems: (1) The ability to communicate routinely across traditional system and organizational boundaries in an open-
ended or “asymmetric” way. (2) Being able to do this dynamically, changing the interaction and its organizational scope at
run time rather than at system development time. Implications: Political/social dynamics of organizations and their
supporting information technology systems change dramatically, challenging most existing information model assumptions
and frames of reference. Net-centric architectures generally make information systems more autonomic and adaptive but
also complex in terms of large scale, infinitely variable connections and dependencies.

The Unanticipated User
A key aspect of service orientation is the notion that service providers do not necessarily know who their service
consumers will be prior to performing the service and will provide their services to anyone with authorized access.

on it is final and authoritative. Ideas expressed there have not yet undergone the complete array of performance and
security tests or been exposed to "live" audiences, so the TechGuide patterns and practices team recommends treating
downloads from the Developers Workspace as beta guidance.
Coming Soon:
- PDM III-directed Specs and Tech Guidance Change Management
- Maintaining Links (Broken Link detection and re-establishment)
- Reflecting technical, organizational, policy and procedural change
- Coordinating actions on user feedback

PROGRAM MANAGERS

Contents

1 The GIG
2 Service Oriented
3 Net-centricity
4 The Unanticipated User
5 "Duty to Share"
6 "Post before Processing"
6.1 Net-Centric Data Strategy (NCDS) Goals
6.2 Main_Page

Page 2 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Typically service providers will publish descriptions of service offerings and associated usage conditions or caveats to
make them discoverable by potential customers (See DDMS). In essence, this activity constitutes a unilateral contract
offering on the part of service providers, a contract that is closed when a service consumer accepts the pre-published
terms for a given service and access is granted. Implications: Unanticipated users create uncertainty as to consumer
population size and the nature of service/product usage.

"Duty to Share"
Also referred to as the “responsibility to provide” in recent IC parlance. With net-centricity comes a dramatic reversal of
DoD communications behavior and significant changes in information security precepts. Net-centric warfare in the full
spectrum of global security operations mandates large scale information sharing among non-traditional partners and
across myriad security domains. Traditional information assurance solutions to support cross-domain information sharing
have focused heavily on tight point-to-point access control, restricting information flow and reducing the risk of
information compromise through limited dissemination. This constraint on information flow directly opposes the duty of
Information Age warfighters to share information. "Need to know" is being replaced by "Need to share." No one can know
every user's context. The millions of federal, state, local and tribal personnel working with their allied/coalition partners
face critical situations daily that require unanticipated data, potentially from sources in any domain. As demonstrated by
9-11, the negative consequences of failing to make information visible, accessible and understandable to large National
Security audiences can be huge. Along with unprecedented openness, new solutions are required to IA concerns. Robust,
hacker-resistant software components, real time monitoring and auditing, and efficient user-friendly permissions
management are needed to reduce risks without imposing severe information flow constraints.

"Post before Processing"
In net-centric warfare, rapid effective information sharing is an obligation not an option for Defense organizations and
their people. When DoD personnel come into possession of information, they are required to advertize its existance and
make it accessible to the widest possible audience as soon as possible. In the past, intelligence producers and others have
held information pending greater "completeness" and further interpretative processing by analysts. This approach denies
users the opportunity to apply their own context to data, interpret it, and act early on to clarify and/or respond.
Information producers, particularly those at large central facilities, cannot know even a small percentage of potential
users' knowledge (some of which may exceed that held by a center) or circumstances (some of which may be dangerous
in the extreme). Accordingly, it should be the policy of DoD organizations to publish data assets at the first possible
moment after acquiring them, and to follow-up initial publications with amplification as available. Holders of information
who fail to share expeditiously do so at their peril and bear responsibility for any negative consequency of not publishing
promptly.

Net-Centric Data Strategy (NCDS) Goals

This section contains:
- Amplifying information and explanations of primaryinformation sharing goals cited in PDM III (Visibility, Accessibility,
and Understandability) plus
- Important points about the other NCDS goals (Trustworthiness, Interoperability, Responsiveness, and Institutionalizing
Net-Centric Business Processes) plus
- How the implementation requirements implied by these goals are reflected in CES capabilities, specifications, technical
guidance, and use cases
The DoD Net-Centric Data Strategy is a key enabler of the Department's transformation. Significant attributes of the data
strategy include:
- Ensuring that data assets are visible to the widest possible audience and accessible on demand, so that they are
available when and where needed to both known and unanticipated users.
- Categorizing and tagging data assets (raw and processed) with well managed metadata that supports rapid and precise
discovery.
- Making data assets as understandable as possible through publication of rich descriptive metadata and trustworthy by
providing pedigree information, including producer POCs as well as security arrangements that foster data integrity.
- Posting data to shared spaces such that ultra-large user groups can efficiently access them, except when limited by
security policy or other regulations.
- Posting in parallel with processing; Task-Post-Process-Use replaces the Task-Process-Exploit-Disseminate paradigm.
Even data that is extremely raw and ambiguous to first phase analysts may have great significance is some user contexts.
- Separating data from applications to enable repurposing; users may choose different applications to exploit the same
data. Increase the variety of ways as well as numbers of users that capitalize on DoD-produced data improves the
Department's ROI in information resoures.
- Handling information only once to improve efficiency and reduce duplicative, non-authoritative data goes hand-in-hand

Page 3 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

with repurposing. Validated user identities for example can be applied to a wide range of purposes from financial and
personnel record keeping to security. Avoid creating redundant information sources or caches where possible.
- Pro-actively collecting user feedback on data asset quality and responsive to needs as well as instrumenting to collect
empirical usage data. Monitoring audience response and obtaining hard imperical performance data is keep to
optimization. User satisfaction should be the main objective of every information producer.

Strategic Goals

Visible
Visibility - The quality, fact or degree of being discoverable; perceptible or obvious to the eye. The ability to find,
understand, and interact with enterprise data for analysis and for making better business decisions. The degree of insight
into future requirements, or the key factors that will impact system performance. Scope of the members of a class of data
assets, especially as related to security. Can be private, protected, or public (Note: Net-centricity changes the “visibility
default” from private to public)
Ask yourself: Is a data asset discoverable by most users in DoD and, where applicable, the larger National Security
establishment (including allies/coalition partners)?

Accessible
Accessibility - The degree to which potential users can connect or bind with a given network capability and consume its
product or service. The degree of accessibility can be measured both in the ease with which it is possible to reach a
certain location from other locations and the number of users who actually do access the capability. (Note: Accessibility is
not to be confused with usability which describes how easily a data asset can be applied by users to a given purpose).
Ask yourself: Is a data asset available at well defined points of presence on the network, and are tools readily available
for large audiences to use it?

Understandable
Understandability - The degree to which the meaning and purpose of a data component is made clear to users through
published examples and descriptions (metadata). Understandability is closely related to and an aspect of transparency.
The more transparent the syntax and semantics associated with a given information sharing capability are, the easier it is
to understand. Net-centric principles such as self-descriptiveness and feedback also help to realize understandability.
Ask yourself: Can a data asset be intelligibly used? Are the semantics well documented and published to the widest
possible audience? Are usage examples provided?

Trustworthy
Trustworthiness means that an information service and the organization that operates it is accountable to recognized
authority, can produce reliable and authentic information and records, and provides sufficient pedigree metadata for users
to guage quality.
Ask yourself: Is the source, accuracy and currency of the data asset available to users? Is security sufficient to ensure its
integrity?

Interoperable
Data Interoperability - The ability to share information among components while preserving its accuracy, integrity and
appropriate use. The ability of two or more systems or components to exchange information and to use the information
that has been exchanged. Usability requires the technical condition of interoperability (mapping and matching) plus
understandability through data component definitions and descriptions. The NCDS and derivative guidance offers the
following in support of the interoperability goal:
1. Make data sets understandable by publishing associated semantic and structural metadata in the DoD MDR or
federated registry
2. Enable mission and business processes, including their semantics and data structures, to be reused where possible and

Contents

1 Strategic Goals
1.1 Visible
1.2 Accessible
1.3 Understandable
1.4 Trustworthy
1.5 Interoperable
1.6 Responsive
1.7 Institutionalized
1.7.1 DoD Discovery Metadata Specification (DDMS)
1.7.2 Main_Page

Page 4 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

mediated where required through careful componentizing and registration of associations
3. Decentralize data management to communities of interest (COIs) to allow prioritization and collaboration based on
immediate operational needs while providing enterprise infrastructure for self-synchronization on a larger scale

Ask yourself: Can users combine or compare my data asset with other information? Can it be readily mediated?

Responsive
Responsiveness - The quality of reacting quickly to fulfill users needs in terms of functionality, performance, content
coverage and content quality.
Ask yourself: Is the data asset providing what its users need? Are robust user feedback mechanisms and usage
instrumentation in place to guide its improvement?

Institutionalized
Institutionalization - the process of embedding something (for example a concept, a role, particular guidance or modes of
behavior) within an organization and/or establishing it as customary or normal within a given environment.
Ask yourself: Have organizational, procedural and policy steps been taken to enable effective data sharing operations?
Has an authorized, responsible and accountable service organization been set up to stand behind each data asset and
respond to user needs?

Community of Interest (COI)

What is a Community of Interest (COI), and why do they exist?
"A collaborative group of users that must exchange information in pursuit of its shared goals, interests, missions, or
business processes and therefore must have shared vocabulary for the information exchanges.”—DoD 8320.2, December
2, 2004
"Community of Interest" is an organizational construct for working collaboratively to establish clusters of data
interoperability that cross formal boundaries. COIs are important because they make explicit and widely visible (publish
names, advertisements of what they doing, who's involved etc.) vital information sharing task groups that would not
otherwise be even recognized as organizations.
What specific information sharing problems can COIs help with?
COIs bring together participants in information sharing federations (connected net-centric capabilities plus the
organizations that operate and develop them). These federations may be of varying degrees of "tightness;" i.e., the
groups and capabilities involved in them retain more or less autonomy.
COI participants are able to collaboratively make and maintain vocabulary choices, expresses in implementable artifacts,
and other agreements on information sharing modalities. In tighter federations, COIs may actually constitute
configuration control boards.
COIs are generally responsible for publishing and managing metadata via the MDR and its federates as well as formulating
and managing rules concerning usage of the net-centric capabilities they offer.
COI vocabulary development is not a one-shot deal! Information Age players make data assets visible and accessible
ASAP, while they pursue progressively more comprehensive vocabulary agreements in parallel. They refine and add
capability to express concepts throughout operational life cycles using inputs from capability operators/developers within
the federation, feedback from primary and other users, and the resources of multiple PoRs.
COIs can also help with defining SLAs. In addition to procedural choices, SLA development and maintenance is part of the
technical task . . . SLAs have technical aspects.
Identification or formation of appropriate COI(s) to handle info sharing issues should not be tightly controlled. Chartering
a new COI when needed is a good thing, and a large number will be required to deal with the many combinations and
permeatations of information sharing relationships.
How to find out about what COIs have been formed, their missions and their participants? (Hot button to COI Registry
coming soon. Links to associate COIs and metadata assets in the MDR that they manage and/or use will also be possible
in the near future).
Relationships between COIs and metadata governance namespaces is being assessed as part of net-centric concept
evolution/clarification (Point at COI Registry and COI Training site/materials if possible).

Page 5 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Figure: COI support for Piloting Data Asset Visibility and Accessibility

COI Attributes
1. Formed to achieve Data Strategy goals with respect to a specific set of interrelated and regularly interacting data
assets
2. Composed of formal organizations and their assigned personnel engaged in cross-Component data sharing as
producers, consumers, developers, and portfolio managers.
3. Resourced by providing personnel and facilities from constituent formal organizations and their supporting programs
4. Able to rapidly form and disband, shift focus, adjust goals and membership in response to changing circumstances
5. Registered to make name, purpose, membership, metadata management activities and other attributes visible
6. Frequently overlapping or even nested. All organizations and personnel "belong" to multiple COIs.

COI verus Stovepipes
When the COI concept was first introduced, some commentators opined that they are just a way of creating bigger
clusters of tightly integrated activity that are totally isolated from one another; i.e., "Stovepipes." In this context, it is
important to highlight the definition of COIs; viz.: that they are comprised of "frequent information trading (sharing)
partners." Partners are organizations, their constituent people, and their supporting information capabilities. Additionally
and importantly, COIs are expected to be substantially overlapping and even nested vice discreet entities.
This refers to the fact that rather than being confined to a single COI, any given information producer or consumer will
most likely be a member of many COIs. Any net-centric capability will probably have to engage multiple COIs (info
sharing agreements) in the course of a single orchestration. This is the normative condition. Additionally, COIs are
constantly rearranging themselves and cross-fertilizing. Some COIs are peers, and some live in a hierarchy. New COIs
form, old ones dissolve, and relationships shift around as the Enterprise adapts.
Rather than being stovepiped, cross-COI connections are always present, cropping up and disappearing, among producer-
consumers dealing in different information sharing clusters. Some of these clusters can become VERY large where many
producer-consumers swarm on a common requirement (e.g.; time, location, and perhaps person). In using COIs to
manage, ongoing visibility into their activites, transparency so decision makers can spot healthy convergence, highlight it
and otherwise nurture it, is critical.
Of major concern is the propensity for DoD, its parts and partners, to loose sight of the requirement to sustain a loosely
coupled, highly transparent “process” and rush into the erection of formal bureaucratic resource sinks, which view their
value in being enterprise-wide or “universal,” have flag level authority, and feel compelled to make and mandate arbitrary
decisions. TOo be successful, COIs should base their engineering decisions mainly on direct reflections of operational
reality as provided to them through network instrumentation and user feedback.

Information Sharing Payoffs -- specific use case examples

The following are focal points for managers to collect empirical and anecdotal evidence showing the effects of net-centric
implementation efforts undertaken in accordance with this guidance. Any properly engineered and operated service or
cluster of services should evolve to produce observable improvements of the kind summarized below. Arrangements
should be made to capture, measure and otherwise characterize, analyse, and publish these observables as provided on a
continuing basis through instrumentation and user feedback.

Contents

1 COI Attributes
2 COI verus Stovepipes
2.1 Information Sharing Payoffs -- specific use case examples
2.2 Main_Page

Page 6 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Increased Speed
At the higher levels of aggregation, ubiquitous situation awareness (SA) within communities should enable far greater
initiative and anticipatory behavior thereby speeding up orientation-observation-decision-action (OODA) cycles. With net-
centricity, actions previously constrained to the sequential can be taken in parallel. The degree of SA ubiquity measured in
numbers of registered users, subscribers, hits-on-data assets etc. for a given shared space. Times can be measured and
compared from detection events to completion of responsive asset marshalling to mission start and completion.

Improved Information Quality
Large scale visibility coupled with friendly feedback mechanisms rapidly identifies quality issues and enables powerful user
collaboration to resolve them. Constructive feedback involving specific attributes of a given data asset can be monitored
and measured (e.g., numbers of data asset error identification events together with numbers of corrective actions).

Enhanced Adaptibility
Improvements should be observed in how readily organizations and their supporting information systems adapt to answer
unanticipated requirements involving interaction among groups and with emergent data sources. Times from first
documented user need (e.g., through direct, online feedback -- see below) to specific requirements definition, to
implementation and positive user response can be measured. Anticipated improvements in responsiveness to emergent
user needs should be on the order of years to months, months to weeks.

Satisfied Users
User satisfaction and, more importantly, dissatisfaction must be reflected daily though efficient, friendly feedback
mechanisms. Direct, unvarnished user feedback is a key driver in net-centric capabilities development and maintenance.

Evolving Metrics Capability
Information Age organizations are evolving indices, composed of various observable indicators, to measure progress
toward net-centricity. Examples of these include:
Network indices: How "connected" are people? Landline phones, mobile cellular subscribers, and other personal
communications devices per capita in a given organization, and available internet bandwidth (kbps per user).
Skills indices: How proficient are people at sharing and managing information? Training programs and other school
enrolment rates in key information sharing skills.
Uptake indices: How many people have direct access to the GIG? Computers per capita within an organization, and
numbers of Internet and other key network capability users, and proportion of workspaces with TV/multi-media access.
Intensity indices: How much information sharing activity is there? Total internet and classified GIG subscribers per
organization, outgoing email and telephone traffic (minutes) per capita.
Average annual growth rates in these can me charted over time. Sharp declines can also be detected and correlated with
other factors.

Net-Centric Data Asset Lifecycle (decisions surrounding exposure of data assets)

Main_Page

Net-Centric Data Asset Lifecycle

The Net-centric lifecycle starts with two key steps:

 (1) Survey of the Information Market (Demand)

 (2) Inventory of Available Data Assets (Supply)

Contents

1 Increased Speed
2 Improved Information Quality
3 Enhanced Adaptibility
4 Satisfied Users
5 Evolving Metrics Capability
5.1 Net-Centric Data Asset Lifecycle (decisions surrounding exposure of data assets)
5.2 Main_Page

Page 7 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Note: These activities continue, culminating in assessments at relatively short intervals throughout the life cycle of any
healthy net-centric capability.

1. Defense Information Market Survey
An appreciation that some specific product and/or service will answer significant user population needs must be developed
by sponsors and implementers early on. The identification, validation and prioritization of known information requirements
need not be any more rigorous than experimental estimates and evaluations; i.e., prima facie evidence of user demand
sufficient to justify relatively small investments in exposing one or more data assets.
(Note: any deployed “system” built to answer formal program requirements and serving a known user group constitutes
ample evidence of significant user demand. The net-centric objective in the case of such systems is to dramatically
expand their potential user population and encourage additional purposes to be identified for their information products
and/or services.) Establish general context for prioritizing (Key Component missions and functions, versus information
generated for ancillary purposes etc.)

2. Inventory of Available Data Assets
After identifying and characterizing some demand, implementation teams must identify already available or soon-to-be-
available data assets and supportive organization(s) that can be adapted to expose information (i.e., make information
widely visible and accessible). Existing data asset “clusters” can often be traced through examination of major “system”
point-to-point interfaces within a given MA or Component AOR. The technical and operational states of assets that are
identified through this process should be explored . . . which can be most easily and cheaply exploited? Which is high
payoff if published, but harder to make net-centric etc? Look at specific data forms, content, and processing that each
resource deals in to determine what kinds products and services might be offered for large audience comsumption.

3. Definition of the Offering
It is extremely important to define the proposed information product(s) and/or service(s) that will be published for users
(What specifically will each data asset “do” for human and machine users?). Implementers should be sensitive to and take
action to remedy fuzziness in product or service definition. What's the key to solving this kind of problem? For starters,
here are four suggestions:
1. Recognize the definition problem. Consciously make a note of the fact that lack of clarity here is a very serious issue.
By your very sensitivity to the issue, you'll be better prepared to deal with it. At the same time, product or service
definition should not be overly rigid. Your team's understanding of what they are offering and the nature of what actually
gets offered should evolve over time, but you need good solid baseline definitions at the outset.
2. Focus on a crisp product or service description that immediately gets your value-added message across to potential
users. You ordinarily have a very short period of time in which to convince users to stay or leave, so make the most of it.
Make it a top priority to proclaim your message very clearly on a home page.
3. Write the service or product description for a twelve-year-old. If at all possible, try to make sure your message would
be comprehensible to a kid. Even if you have a product or service that a twelve-year-old wouldn't be interested in, it's
usually possible to write in terms they would understand.
4. Develop a good net-centric capability definition. A capability definition is a concise, objective one-sentence statement
explaining what your product and/or service does for known users. This statement should appear in a high-visibility
location, preferably at the top of each page.
5. Get the perspective of a few outsiders. Round up a few people who are unfamiliar with your service or products to help
you, and see if they are able to adequately describe your product to you based on the words and pictures your team has
created.

4. Determining how and where to publish*
Defining the widest possible audience is key to pursuing Net-Centric Data Strategy Goals. Start with the extreme upper
limits and throttle back. Everyone on the GIG potentially has a “Right to Know.” Service providers must determine who
absolutely must be excluded and why? Some exclusions/limitation may be temporary where, for example, a relatively

Contents

1 1. Defense Information Market Survey
2 2. Inventory of Available Data Assets
3 3. Definition of the Offering
4 4. Determining how and where to publish*
5 5. Product and/or Service Design Patterns
6 6. Establishing an Operational Service Organization
7 7. Evolving Technical and Organizational Capabilities
7.1 Evolution & Maintenance of Guidance & Specifications
7.2 Main_Page

Page 8 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

small "test" audience may be desirable for prototyping. However, it is vital for a variety of reasons to push continually for
expansion in user populations where there is an identifiable demand.
Other publishing challenges that must be faced include:
- Resolving the "CRUD" issue/who gets what user privideges?
- Addressing Security and integrity concerns (various kinds of information sensitivity restrictions and implementation
options re: network enclaves, guards, privacy act requirements versus sensor/source protection, etc.)
- Finding or creating the appropriate shared space(s) Note: ties into metadata registration choices*

5. Product and/or Service Design Patterns
Starting points (fundamental alternatives): (1) Does a net-centric means to publish your products/services exist or (2)
does a new shared space have to be created either from scratch or by adapting an existing capability?
- Human User Interfaces (Use Case?)
• Web Pages
- Machine-to-Machine Interfaces
• Web Service enabling (Use Case?)
• Addressing the machine readable vocabulary issues
- Typical information product and/or service types
• Dealing with semantic and syntactic heterogeneity
- NCES Mediation can perform simple XML Transformation between two different Capability Modules that are CDSA
compliant. For example, NCES M listens to a Capability Module A, and when it sends data, NCES M transforms it into a
format that CM B can understand. This service may someday be smart enough to listen in, but for at present one must
implement an orchestration service? See CDSA and non-CDSA web services re: mediation
• Packaging/repackaging information for sharing
- Registering information about your product(s) and services(s)
• CES Metadata Engines (how they work as a suite)
• Descriptions and interface specifications
(Note: What about testing? See FDCE T&E work-flow process)***

6. Establishing an Operational Service Organization
A common mistake in DoD is for personnel to regard implementation as purely a software DT&E problem. Surrounding
every successful net-centric capability is a powerful operational organization, the team that "runs" the service offering
24x7 or on whatever lesser schedule may be defined by sponsors in light of user demand. A key feature of Information
Age operational organizations is their close and continuing relationship with one or more engineering teams who provide
responsive sofware development and maintenance. Organizational constructs and business processes to illustrate this
(Use Cases?) should cover the following:
• Determining who will operate the service . . . Multiple instances?
- Procedural choices (tie into process improvement and user feedback)
• Determining Service operations parameters . . . 24x7? Updates?
• Service Level Agreements (SLAs) What form & content? Where posted?
- Technical and procedural issues to address NCDS goals
• When to register, what metadata, and where? (Use Cases?)
Figure: Process for Making Data Assets Visible & Accessible
• Setting up the user feedback loop and usage instrumentation to detect, measure and assess how the service is
performing.
• Tighly coupling the service development/maintenace team into the feedback to create a highly responsive, ongoing "fix"
and improvement process.

7. Evolving Technical and Organizational Capabilities
Every net-centric capability should pursue opporunities to improve its information product or service offering and to
expand its audience. Doing this will necessarily lead to changes in software (a series of planned or contingency
fixes/upgrades), changes in organization (numbers of personnel, their skills and their assignments), and changes in
policy/procedures (governenace, rules, and business processes). From the standpoint of any given service, managers
should be particularly open to the possibility of (1) federating more or less tightly with other service offerings on the GIG
(e.g., in an orchestration that creates a larger capability) or (2) converging their capability with one or more others to
form a more powerful and efficient offering. Whatever the evolutionary direction, toward extinction to ubiquity, change
must be handled gracefully such that user needs are satisfied without significant interruption.

Evolution & Maintenance of Guidance & Specifications

Page 9 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

DoD Discovery Metadata Specification (DDMS)

The DoD Discovery Metadata Specification (DDMS) constitues authoritative guidance for tagging Defense and Intelligence
Community data assets so that users can execute precision searches for data assets across the Enterprise.
The DDMS Home Page (http://metadata.dod.mil/mdr/irs/DDMS/) publishes current information about the discovery
specification as well as links to related documentation and resources.

DDMS-related FAQs (from MDR "Test Track" Feedback)
Q: Where can I look to find instructions on creating a "metacard" and storing it in a Federated Search accessible catalog?
A: See section 4 of the DDMS Home Page entitled "Known Users of the DDMS"
Q: Is it accurate to say that registering schemas in the MDR is not the same as creating/storing a metacard for discovery
by the NCES Program's Federated Search capability?
A: Yes! The MDR registers structural metadata (e.g., XML schema) for re-use and distributed management vice enabling
users to discover specific content. To advertise available content, DDMS-compliant metacards describing data assets
would be created and stored in a content catalog, either an Enterprise Catalog instance provided by NCES or a
community-sponsored catalog.

Normative guidance

Net-Centric Design Tenets
Design tenets can not only help the Department's implementers synchronize, but also enable DoD leadership at many
levels to better understand how net-centricity is evolving. The TechGuide organizes design tenets into the following
sections.
- Data
- Services
- Information Assurance/Security
- Transport
Each design tenet provides specific technical guidance to enable the system to satisfy its net-centric requirements.
The technical guidance statements are written in a form suitable for inclusion in acquisition documents. It is not necessary
to include every guidance statement. Instead, use these guidance statements as part of the overall system engineering
analysis of a program to facilitate its evolution to net-centricity.
Not all design tenets can be satisfied purely by strict adherance to technical guidance. All elements of Doctrine,
Organization, Training, Materiel, Leadership, Personnel, and Facilities (DOTMLPF) must participate in the evolution of net-
centricity in general and the realization of any given service operations in particular.
Net-Centric Checklist

Core Enterprise Service (CES) Descriptions

Core Enterprise Service (CES) Descriptions

The Net-Centric Enterprise Services (NCES) Program is chartered to field information sharing enablers that will boost
collaboration within the Department of Defense as well as among DoD, other federal, allied, coalition, and multinational
partners. Although in the early stages of implementation, NCES today provides several capabilities that can be leveraged
to achieve DoD Net-Centric Data Strategy goals. Available CES are aimed at enabling users to:

Find and access relevant information;
Expose the information they produce for others to discover;
Collaborate in a more effective manner;
Distribute data to forward deployed areas;
Increase performance and reliability of data access, and;
Utilize the enterprise infrastructure for evolving DoD systems to a Service-Oriented Architecture.

Page 10 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

This section provides a brief description of each of the capabilities currently in production. The primary starting point for
developers and users interested in learning more about NCES is the NCES Users Guide available at
(http://www.disa.mil/nces/nces_user_guide.html).

Defense Knowledge On-Line (DKO): https://www.dko.dod.mil

Collaboration: https://www.e-collabcenter.com
Image:Collaboration 1.JPG

DoD Metadata Registry: http://metadata.dod.mil

DoD Federated Search: https://search.nces.dod.mil/mse

Page 11 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Enterprise Catalog: https://search.nces.dod.mil/catalog

Machine-to-Machine Messaging:

Page 12 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Service Discovery: https://service.nces.dod.mil/wasp/uddi/bsc/web

Service Security: https://gesportal.dod.mil/sites/SOAF_Service_Security/v0.4.5_ABAC/default.aspx

Page 13 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

DoD Discovery Metadata Specification (DDMS)

• Visibility of developmental and operational metadata components

• Transparent, participatory Configuration Management (CM)

- CES User Feedback Mechanisms?

About User feedback Continuous product improvement process (Tie into “Responsiveness’ Use Case?)

Tight coupling between ops, user feedback, and improvements - technical capability improvement - product improvement
- process improvement - extending usage

Contact Us, Feedback, FAQ, Lessons-learned etc.

How to Guide

Introduction
There are four common patterns that can be used to expose information resources to the DoD Enterprise using capabilites
provided by the Net-Centric Enterprise Services (NCES) Program. Summarily these are:

Contents

1 Introduction
2 NCES Services Intelgration Lab (SIL)
3 The Use Case Scenario
4 The Goals
5 The Architecture
6 The Design
7 The Implementation
8 The Goals (revisited)
9 Additional Considerations
10 Other Use Cases
11 Reference Materials
12 Lessons-learned

Page 14 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

1. If the information asset is a web site, allow it to be crawled by the NCES Google Search Appliance.
2. Create an entry in the NCES Enterprise Catalog about an existing information asset.
3. Create a custom web service to expose the data asset and register that service with the NCES Service Registry.And
4. Implement the NCES Federated Search interface such that the information resource is able to respond to queries

federated by the Federated Search capability.

This tutorial will primarily focus on creating a custom web service and registering that service in the NCES Service
Registry. The reason for this is that it exercises more of the NCES Capabilities and therefore provides a greater level of
exposure to those capabilities. The other patterns are covered in their respective section inside Other Use Cases

NCES Services Intelgration Lab (SIL)
The Services Integration Lab (SIL), available from SPAWAR Systems Center Charleston, provides an environment to assist
program engineers with developing, testing, and evaluating the performance of their capabilities when integrated with
NCES provided Enterprise infrastructure.

The Use Case Scenario
In this use case scenario, the problem space in which we will be working is described. Principles illustrated in this use case
are applicable to a significant percentage of the challenges that DoD developers face. This scenario establishes a
foundation for the remainder of the developer's guidance in the sections that follow.

The Goals
This chapter discusses the high level Data Strategy Goals as well as the requirements that are levied on a data provider,
and in particular in the data provider of the weather service being developed as described in The Use Case Scenario.

The Architecture
This chapter defines the architectural approach for building the weather service and meeting requirements specified in The
Goals.

The Design
This chapter discusses the low-level design and patterns utilized in developing the weather service.

The Implementation
This chapter contains a highly detailed description of how the weather service is implemented. It includes a step-by-step
tutorial with sufficient detail that readers can follow to actually implement the weather service or similar use case, as well
as describe and register the resultant service using the NCES product lines.

The Goals (revisited)
This chapter is a recap of the goals with a discussion of how The Architecture, The Design, and The Implementation have
fulfilled requirements and objectives specified in The Goals.

Additional Considerations
This chapter discusses, at a high level, some of the additional issues that architects and developers may need to consider
in developing net-centric services, e.g. distinguishing between visibility and accessibility over various networks.

Other Use Cases
This chapter discusses the following use cases for exposing information assets:

Allowing a Web Site to be Crawled
Registering an Entry in the NCES Enterprise Catalog
Implementing the Federated Search Interface

Reference Materials
This chapter provides some useful links and additional developer's guidance that has been put together by various
programs (including NCES), which are leveraging the NCES capabilities.

Lessons-learned
This chapter contains links to lessons learned from various Communities of Interest gathered during pilot activities
focused on making data available in a net-centric manner and meeting Data Strategy objectives.

Universal Core(UC)

Universal Core Data Schema
A universal core data schema is being evolved to facilitate sharing “what, when, where” types of information. The UC
schema encodes a minimal set of terms that have been agreed to by DoD and Intel community. The schema embodies

Page 15 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

appropriate use of open and Government standards, and it is extensible by COIs and systems as needed. For more
information including Spiral 1 products sign in to the collaboration facilities at CORE.gov
(https://collab.core.gov/CommunityBrowser.aspx?id=1) and navigate to the Universal Core Data COI community
(https://collab.core.gov/CommunityBrowser.aspx?id=18954&lang=en-US).

How to Guide

Introduction
There are four common patterns that can be used to expose information resources to the DoD Enterprise using capabilites
provided by the Net-Centric Enterprise Services (NCES) Program. Summarily these are:

1. If the information asset is a web site, allow it to be crawled by the NCES Google Search Appliance.
2. Create an entry in the NCES Enterprise Catalog about an existing information asset.
3. Create a custom web service to expose the data asset and register that service with the NCES Service Registry.And
4. Implement the NCES Federated Search interface such that the information resource is able to respond to queries

federated by the Federated Search capability.

This tutorial will primarily focus on creating a custom web service and registering that service in the NCES Service
Registry. The reason for this is that it exercises more of the NCES Capabilities and therefore provides a greater level of
exposure to those capabilities. The other patterns are covered in their respective section inside Other Use Cases.

NCES Services Intelgration Lab (SIL)
The Services Integration Lab (SIL), available from SPAWAR Systems Center Charleston, provides an environment to assist
program engineers with developing, testing, and evaluating the performance of their capabilities when integrated with
NCES provided Enterprise infrastructure.

The Use Case Scenario
In this use case scenario, the problem space in which we will be working is described. Principles illustrated in this use case
are applicable to a significant percentage of the challenges that DoD developers face. This scenario establishes a
foundation for the remainder of the developer's guidance in the sections that follow.

The Goals
This chapter discusses the high level Data Strategy Goals as well as the requirements that are levied on a data provider,
and in particular in the data provider of the weather service being developed as described in The Use Case Scenario.

The Architecture
This chapter defines the architectural approach for building the weather service and meeting requirements specified in The
Goals.

The Design
This chapter discusses the low-level design and patterns utilized in developing the weather service.

The Implementation
This chapter contains a highly detailed description of how the weather service is implemented. It includes a step-by-step
tutorial with sufficient detail that readers can follow to actually implement the weather service or similar use case, as well

DEVELOPERS

Contents

1 Introduction
2 NCES Services Intelgration Lab (SIL)
3 The Use Case Scenario
4 The Goals
5 The Architecture
6 The Design
7 The Implementation
8 The Goals (revisited)
9 Additional Considerations
10 Other Use Cases
11 Reference Materials
12 Lessons-learned

Page 16 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

as describe and register the resultant service using the NCES product lines.

The Goals (revisited)
This chapter is a recap of the goals with a discussion of how The Architecture, The Design, and The Implementation have
fulfilled requirements and objectives specified in The Goals.

Additional Considerations
This chapter discusses, at a high level, some of the additional issues that architects and developers may need to consider
in developing net-centric services, e.g. distinguishing between visibility and accessibility over various networks.

Other Use Cases
This chapter discusses the following use cases for exposing information assets:

Allowing a Web Site to be Crawled
Registering an Entry in the NCES Enterprise Catalog
Implementing the Federated Search Interface

.

Reference Materials
This chapter provides some useful links and additional developer's guidance that has been put together by various
programs (including NCES), which are leveraging the NCES capabilities.

Lessons-learned
This chapter contains links to lessons learned from various Communities of Interest gathered during pilot activities
focused on making data available in a net-centric manner and meeting Data Strategy objectives.

The Use Case Scenario

The simple scenario that we will be working with is illustrated by the image below.

The basic problem is that today the weather satellite (or constellation of satellites) represented by the satellite in the
upper left hand corner of the image is feeding weather information to some number of ground-based sensors feeding
weather data to servers on the ground. For the purposes of this guidance we assume that the servers on the ground are
relational databases that are currently configured to support a single suite of applications, represented by the uniformed
soldier in front of a computer monitor in the image. Currently the flow of data from the antenna to the soldier is
represented by the red arrows.
This developer's guidance will discuss all of the steps necessary to take this currently stove-piped system of weather
information and modify it to be compliant with the DoD Net-Centric Data Strategy using DISA's Net-Centric Enterprise
Services.
In order to achieve this, we will build a Web service that exposes the data currently held in the relational database and go

Page 17 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

through all of the steps necessary to ensure that the new Web service achieves all of the applicable DoD Net-Centric Data
Strategy Goals. With the ultimate achievement of having made a previously stove-piped application net-centric and
enabling the war-fighter to discover, access, and understand the newly available data.
With that, please proceed to The Goals.

The Goals

Visibility
The DoD Net-Centric Data Strategy defines the visibility goal this way:
Users and applications can discover the existence of data assets through catalogs, registries, and other search services.
All data assets (intelligence, nonintelligence, raw, and processed) are advertised or “made visible” by providing metadata,
which describes the asset.
So what does this mean for the weather scenario? It means that whatever is done to expose the relational database in
The Scenario image, it must be advertised through some type of catalog, registry, or other search capability. This gives
rise to a requirement to advertise our data.
REQUIREMENT: Make weather data asset visible through advertisement.
We'll cover what needs to be done to advertise the weather data capability when we discuss advertisement and discovery
in The Implementation#Building a Submission Package and The Implementation#Registering the Weather Service.

Accessibility
The DoD Net-Centric Data Strategy defines the accessibility goal this way:
Users and applications post data to a “shared space.” Posting data implies that (1) descriptive information about the asset
(metadata) has been provided to a catalog that is visible to the Enterprise and (2) the data is stored such that users and
applications in the Enterprise can access it. Data assets are made available to any user or application except when limited
by policy, regulation, or security.
REQUIREMENT: Make weather data asset accessible by making it available in such a way that users and applications
within the larger enterprise can get at it.
We'll cover what needs to be done to make the weather data capability accessible when we discuss data exposure in The
Implementation#Implementing the Weather Service.

Understandability
The DoD Net-Centric Data Strategy defines the understandability goal this way:
Users and applications can comprehend the data, both structurally and semantically, and readily determine how the data
may be used for their specific needs.
REQUIREMENT: Make weather data understandable through the use and registration of common data exchange formats
and semantics.
We'll cover what needs to be done to make the weather data understandable when we discuss metadata use and
registration in The Implementation#Building a Submission Package.

Trustworthiness
The DoD Net-Centric Data Strategy defines the trustworthiness goal this way:
Users and applications can determine and assess the authority of the source because the pedigree, security level, and
access control level of each data asset is known and available.
REQUIREMENT: Make weather data asset trusted by capturing pedigree, security, and access control information about
the data.
We'll cover what needs to be done to make the weather data capability trusted when we discuss advertisement and
discovery, as well as metadata registration, and securing the capability The Implementation#Locating an Appropriate
Governance Namespace and The Implementation#Registering the Weather Service.

Contents

1 Visibility
2 Accessibility
3 Understandability
4 Trustworthiness
5 Interoperability
6 Responsiveness
7 Institutionalizing

Page 18 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Interoperability
The DoD Net-Centric Data Strategy defines the interoperability goal this way:
Many-to-many exchanges of data occur between systems, through interfaces that are sometimes predefined or
sometimes unanticipated. Metadata is available to allow mediation or translation of data between interfaces, as needed.
REQUIREMENT: Make weather data asset interoperable through the use and registration of data exchange formats
produced and accepted by the relevant COIs and ensuring that the data exposure solution is compliant with any relevant
standards and/or conventions. (E.g. that SOAP-based Web services are WS-I compliant.)
We'll cover what needs to be done to maximize the interoperability of the weather data capability when we metadata use
and registration, and data exposure in The Implementation#Testing for WS-I Basic Profile 1.1 Compliance.

Responsiveness
The DoD Net-Centric Data Strategy defines the responsiveness goal this way:
Perspectives of users, whether data consumers or data producers, are incorporated into data approaches via continual
feedback to ensure satisfaction.
REQUIREMENT: Make weather data asset responsive by providing a mechanism for users to provide feedback and
comments on the capability, as well as gathering usage metrics and incorporating that feedback and information into
future releases of the service.
We'll cover a few approaches for improving the responsiveness of the weather data capability when we discuss being
responsive in The Implementation#Building a Submission Package and The Implementation#Registering the Weather
Service and The Goals (revisited)#Responsiveness.

Institutionalizing
The DoD Net-Centric Data Strategy defines the institutionalization goal this way:
Data approaches are incorporated into Department processes and practices. The benefits of Enterprise and community
data are recognized throughout the Department.
REQUIREMENT: Engage with the relevant portfolio managers and COIs to facilitate and understand the organizational,
procedural and technical placement of the weather data asset within the Enterprise. This includes but is not limited to
ensuring that the organization and business processes surrounding the capability reflect and are committed to Data
Strategy principles as well as engaging and developing relationships with interested and complementary organizations and
unanticipated customers.
Institutionalization will be covered throughout the technical guidance. The How to guide section, however, will not cover
institutionalization in any more detail with the exception of how to work institutionalization issues within COIs discussed in
the metadata use and registration section. The Goals (revisited)#Institutionalizing.
Now that we've covered The Scenario and The Goals we're ready to move onto The Architecture for developing our net-
centric weather capability.

The Architecture

The sequence of diagrams below illustrate the high level architectural approach that will be taken to net-enable the
weather data being collected and transmitted from the weather satellite(s).

Page 19 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

As the above diagram shows the weather data is currently being collected and stored in a relational database which is
currently supporting a single legacy weather application symbolized by the computer and user in the lower left hand
corner. The approach will be to expose that database via a web service which will be protected by the NCES Security
Service. The new Web service will have a SQL connection to the existing database, and will query that database upon user
request, convert the information to an XML format, which will be designed in the The Design section, and provide the data
to the requesting user. The relational database will continue to support the legacy application. Considerations regarding
the increased load on the relational database and migration of the legacy application will be addressed in the Additional
Considerations chapter.

The above shows the unanticipated user using a client side agent to make a SOAP-based Web service request of the
Weather Web Service. The client will need to understand the Weather service semantics as well as invoke the necessary
NCES Security handlers to add the necessary WS-Security headers to the SOAP message. Although we do not show the
connection to the Web service itself as being secured, the service might well be accessible only via HTTPS over an SSL
connection or might be available over HTTP. This tutorial will not cover securing the connection to the Web service with
SSL as it is a very common pattern and most Web developers will be knowledgeable with respect to securing a
connection. If you are interested in learning more about web services over HTTPS, here is a list of useful resources:

WS Over SSL- How To
Consuming Webservices over HTTPS (SSL)
HOW TO: Secure XML Web Services with Secure Socket Layer in Windows 2000
Securing Web Services and the Java WSDP 1.5 XWS-Security Framework

Page 20 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

The illustration above shows the web service returning a SOAP message containing the weather data in response to the
user's initial query.

Now, in order to get the weather data in a format that the user's application can understand the user invokes the NCES
Mediation Service to transform the XML format of the weather data returned by the weather service into a more
appropriate format. In this tutorial we will create a simple XSL Transform that takes a document in the format returned by
the weather service and transforms it into a simple HTML document displayable in a standard Web browser.

Here the NCES Mediation service returns the transformed date to the user. (NOTE: Although not shown in the illustrations,
the NCES Mediation service is also protected by the NCES Security services. In The Implementation section the details of
invoking the mediation service will be detailed.

Architectural Alternatives
In this architecture a simple request/response pattern was selected to implement the Weather Web Service. It is
important to note that there are other architectural patterns that we may have selected. For example, we might have
selected to publish weather information to a channel via the NCES Messaging Service and had the user's access a
specified set of channels to access the data. This would require us to implement an agent that listened for changes to the
existing database and pushed information to the channels when a change occurred or on a periodic basis. (This is the
approach that the Maritime Domain Awareness COI took in their recent pilot. The Maritime Domain Awareness COI
maintains a presence on the Defense Knowledge Online Portal which you can access here: Maritime Domain Awareness
COI. A site is also currently maintained on Defense Online which can be accessed here: MDA COI on DOL. (NOTE: All DOL
Portal content will be migrating to DKO by the end of 2007.)

The Design

Contents

1 Introduction

Page 21 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Introduction
In order to build our service we will first need to understand the data store in which the weather information exists as well
as the structure of the data within the data store. For this tutorial, a sample database has been created to simulate the
information being gathered from the weather satellite in The Scenario.

Understanding the Data
We presume that the database containing the weather data already exists. The Entity-Relationship diagram below
describes a simple database that contains the data the Weather Service currently provides to the users of the stand-alone
application. This How-To guide will ultimately expose the data in this database to an unanticipated user.

The scripts to create the database and a text file with instructions on how to run them are included in the following zip
file: Media:Weather service db scripts.zip. The scripts contained in this package were built to be run on PostgreSQL 8.2.
You will need to alter the scripts if you wish to use a different database product.
NOTE: From this point on in the tutorial the reader will be provided with links to all of the relevant artifacts necessary to
build the service as he or she progresses through the tutorial.

Evaluate the Data
In the diagram above, we see that the database contains location information (zip code, city, state, latitude and
longitude) and numerous elements related to weather conditions (temperature, humidity, windspeed, sky cover,
precipitation...). Let's assume that the current stove-piped system has a general functionality that allows a user to enter
location information and retrieve weather conditions at the current time at that location. This functionality is similar to the
functionality that we would like to provide to unanticipated users in a net-centric manner.
In order to expose such a service to unanticipated users, we will need to create a few artifacts to support our web service.
These artifacts consist of (at a minimum) 1) an XML Schema defining the XML format for the weather data that is to flow
between the unanticipated user and our web service; and 2) a WSDL file that formally describes the web service that will
be exposed to unanticipated users. Additionally, data dictionaries describing the data, user guides and APIs for the web
service, and other documentation intended to assist a potential consumer understand and use the service might also be
created. Once these artifacts are created we'll want to implement the service (see The Implementation) and register it
and its related artifacts.

Designing the Service
As indicated above, we would like to build a service that accepts location information and returns weather conditions.
Using our images from The Architecture we will annotate with additional detail what the service should do.

The image above shows that we intend to encode location information into the request message, i.e. the message that will

2 Understanding the Data
3 Evaluate the Data
4 Designing the Service
5 Identify the Data Elements

Page 22 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

be sent from the user to our web service. The image below shows that we intend to encode weather condition information
in the response message, i.e. the message that will be sent in response from the web service to the user.

Because the mediation piece of the puzzle does not directly impact the data provider, (in this case us), we'll not worry
about that at the moment. What we do need to worry about however is creating an XML Schema for those messages.
It is important to be aware of the fact that the current release of NCES assumes that services are SOAP-based services
and that they are WS-I compliant. This awareness helps us to identify the technologies that we can use to implement the
service. Since we plan on using the NCES Security Services to secure the services we will be required to abide by these
constraints.

Identify the Data Elements
To keep the initial iteration of the service simple we're not going to support just any location information to be passed to
the service. It will initially be limited only to zip code. With that the XML Schema will need to support the following data
elements:

zip code
temperature
relative humidity
wind speed
sky cover
precipitation

The Design is relatively straightforward. At this point, if you are planning to follow along and implement the service
yourself, you will want to download and install the PostgreSQL 8.2 database to a working directory and run the scripts in
the Media:Weather service db scripts.zip package, then move on to The Implementation.

The Implementation

Contents

1 Introduction
2 Building the XML Schema
3 Building the WSDL File
3.1 Testing for WS-I Basic Profile 1.1 Compliance
4 Registering the XML Schema and WSDL files
4.1 Setting up an Account on the DoD Metadata Registry
4.2 Locating an Appropriate Governance Namespace
4.2.1 Contacting a Governance Namespace Manager
4.2.2 Creating a New Governance Namespace
4.3 Building a Submission Package
4.3.1 Validating and Submitting a Submission Package
4.3.2 Adding User-defined URLs
4.3.3 Requesting a Status Change
5 Implementing the Weather Service
5.1 Create an implementation of our original application
5.2 Making the application web service accessible
5.2.1 Generate stub classes with WSDL2Java
5.2.2 Create skeleton classes with WSDL2Java
5.2.3 Edit our original application
5.2.4 Edit the skeleton classes

Page 23 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Introduction
In this chapter we will build the XML Schema needed to define the XML format of the messages that will be used by the
Web service. We will also build the WSDL file that defines the Web service itself and we will go through all of the steps
necessary to implement and register the Web service so that it is discoverable and accessible on the GIG to unanticipated
users.

Building the XML Schema
To build an XML Schema effectively, you will want to have a working knowledge of the W3C's XML Schema Specification.
There are numerous books and tools available to developers for developing XML Schemas (see
http://www.w3.org/XML/Schema#Tools). There are also some XML Schema usage patterns that one should be aware of
before building an XML Schema so that one is aware of how the XML Schema being built might be used and reused by
other developers. Although this list is not exhaustive, here are some major design considerations to keep in mind when
building an XML Schema:

1. Always use a targetNamespace in your XML Schema files.
The value of the targetNamespace attribute combined with local element name of an element is the unique identifier
for that element. There are no other properties that an XML Schema parser can use to identify an element. This
means that if the targetNamespace combined with the local element names are not developed with universal
uniqueness in mind one runs the risk of duplicate element definitions and parser confusion.

2. Globally declare all components that might be reusable.
Many XML Schema developers fail to consider what portions of an XML Schema are reusable to other developers. As a
result many XML Schemas are developed only for an individual application and elements, attributes, and potential
groups, that could otherwise be reused are embedded within the XML Schema in ways that make them non-reusable
by other developers, even though the semantics and structure of the elements or attributes would otherwise meet
their needs. This unfortunately forces developers to "re-invent" elements, and reduces the chances of convergence on
a small set of formats.

3. Include an <xs:annotation><xs:documentation> set of child elements containing a definition of the
element being defined in the schema. The content of these elements will be copied from the XML Schema by the
DoD Metadata Registry’s Schema Tool and inserted into the generated manifest file (we'll get to that later). This
provides greater visibility and better discovery of the XML components (here elements) by other potential users
across the enterprise.

4. In the DoD, prefix your targetNamespace with http://metadata.dod.mil/mdr/ns/ and leverage a DoD
Metadata Registry Governance Namespace prefix and a versioning strategy in the targetNamespace
This approach helps ensure that targetNamespace values do not conflict between communities of interest (COIs) and
the XML Schema elements that they define.

The image below shows the XML Schema annotated with pointers to the conventions that have been discussed above.

5.2.5 Compiling and Packaging the web service
5.2.6 Deploying and testing the web service
5.2.7 Creating an Axis Client
6 Protecting the Service with NCES Security
6.1 Installing the NCES Security Services SDK
6.2 Configuring the NCES Security Service Handlers
6.2.1 Server Side Handlers
6.2.2 Client Side Handlers
6.3 Configuring the NCES Security Engine
6.3.1 Configuring the Keystore
6.3.2 Creating a Debug Security Engine properties file
6.4 Running the WeatherServiceSecureClient
6.4.1 Required JAR files
6.4.2 Setup
6.4.3 Modify the source for your environment
6.4.4 Run the WeatherServiceSecureClient app
7 Registering the Weather Service

Page 24 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

This image (below) is an illustration of the conditions element as it appears modeled in XML Spy.

The XML Schema file to be used in this tutorial is contained in the Media:WeatherServicePackage.zip file. (The other
artifacts in the zip file will be discussed later.)

Building the WSDL File
To build a WSDL file effectively, you will want to have a working knowledge of the W3C's Web Service Description
Language. There are numerous books and tutorials available to developers for developing WSDLs. As with XML Schema

Page 25 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Development there are several conventions that are encouraged when developing WSDL files. There is also a critical
requirement that WSDL files developed with the intention of using any of the NCES services should be WS-I Basic Profile
compliant. The WS-I Basic Profile contains a set of assertions that can be tested against a given WSDL file. The most
important of these tests is that the service must be document/literal as opposed to rpc encoded. What this means, in
English, is that the messages that are passed between a requester and the service must be fully defined XML documents,
not individual elements piece mealed together inside a machine generated element representing an operation. Without
going into a lot of detail about WSDL files there are a few things that one needs to understand about WSDL in order to
appreciate the other conventions that are recommended below. The first of these is that WSDL files are generally broken
down into two parts: an abstract part and a concrete part. The abstract part is the portion of the WSDL file that defines
the data types used within the messages, the message definitions themselves, and the "portTypes," which is a container
in which the operations supported by the service are defined including the input messages, output messages, and any
potential fault messages. The concrete part of a WSDL file is the portion of the WSDL file that binds one or more
portTypes to a particular encoding and network protocol, e.g. document/literal over HTTP, HTTPS, SMTP etc. (The
encodings should always be document literal given the WS-I Basic Profile, so other encodings will not be covered here).
The concrete part of a WSDL file also contains the network endpoint or accesspoint for the service, i.e. the location on the
network at which the service can be invoked. Without much more discussion, a savvy developer will quickly realize that
the abstract portion of a WSDL file might easily be reused by other developers who are developing capabilities that work
with the same or similar types of information, and might even directly reuse the types, messages, and even the portTypes
defined in a given WSDL file, however the bindings and the network locations of those services will likely be very different
and so the concrete portion will almost certainly not be reusable. That said, if WSDL files are built to optimize the ease of
reuse, the opportunity for information fusion, mash-ups, and complex workflow-based orchestrations increases
dramatically. With this in mind here are several other conventions to follow when developing WSDL files (to see these
conventions implemented see the weatherService.wsdl file in the Media:WeatherServicePackage.zip file.):

1. Always use a targetNamespace attribute for your WSDL file. Assigning a targetNamespace allows the abstract
portions of the WSDL file to be reused. In the schema file for the weather service we'll use the namespace
http://metadata.dod.mil/mdr/ns/TRAINING/WeatherService. Notice that we've used an XML Namespace that
maps to a governance namespace ("TRAINING" in this case) in the DoD Metadata Registry. This convention allows us
to post the WSDL file in the DoD Metadata Registry and assign to it a URL that is the same as the targetNamespace.
This makes accessing the WSDL file easier and follows a comment in future WSDL specifications that the WSDL file be
available at a location addressable by the value of the targetNamespace attribute. This addressability is also critical
for registering the service in the NCES Service Registry, which we'll get to later. Thus our first element in the WSDL
file looks something like this:

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://metadata.dod.mil/mdr/ns/TRAINING/WeatherService"
targetNamespace="http://metadata.dod.mil/mdr/ns/TRAINING/WeatherService"
xmlns:weather="http://metadata.dod.mil/mdr/ns/TRAINING/weatherInfo/">...</wsdl:definitions>.

Here we've declared all of the XML Namespaces that will be used in the WSDL file and also declared the
targetNamespace.

2. Never embed the XML Schema element definitions in the <wsdl:types> element. Embedding the XML Schema in the
types element causes the data types and elements defined in the XML Schema to be available only from that
particular WSDL file. It is important that the data types and elements be defined externally to the WSDL file so that
they can be reused outside of the scope of the service. Remember that XML Schema files define data exchange
formats that are reusable beyond a single service and are likely to be valuable to other developers in and of
themselves. In the WSDL file for the weather service you will see two elements within the types element, namely an
xs:schema element with an xs:import child element which points to the XML Schema that we defined in the "Building
the XML Schema" section above. This portion of the WSDL file is defined as follows:

<wsdl:types>
 <!--Notice that the wsdl:types element contains only two elements,
 xs:schema and xs:import. In the future the Federated Development and
 Certification Environment will check to ensure that these are the only
 two elements that appear in a WSDL file in order to ensure that the data
 and the operations associated with that data are cleanly separated.-->
 <xs:schema targetNamespace="http://new.webservice.namespace" elementFormDefault="qualified">
 <!-- Notice that the schemaLocation attribute points to a schema which
 resides on the metadata registry. FDCE will check this to ensure that

Page 26 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

 the XML Schema is available on the MDR. -->
 <xs:import namespace="http://metadata.dod.mil/mdr/ns/TRAINING/weatherInfo/" schemaLocation="./we
 </xs:schema>
</wsdl:types>

Notice also that the schemaLocation attribute points to a location relative to where this WSDL file will live. Because
we are going to register this WSDL file on the MDR and because we will make it available at a location identified by
the targetNamespace attribute, i.e. on the DoD Metadata Registry, we can use a relative reference. In this case the
relative reference will actually point to http://metadata.dod.mil/mdr/ns/TRAINING/weatherInfo/. Because the
WSDL will be available at http://metadata.dod.mil/mdr/ns/TRAINING/weatherService/ the ./weatherInfo/
reference for the schemaLocation will ultimately dereference properly once everything is registered. Although at this
point we've not registered the XML Schema, in the "Registering the XML Schema" section below we'll see how to
register and how to assign a URL so that the schemaLocation reference here dereferences properly. If we were
referring to an XML Schema in a different Governance Namespace on the MDR, e.g. WEATHER, i.e. the location of the
weatherInfo.xsd was at http://metadata.dod.mil/mdr/ns/WEATHER/weatherInfo/ we would need a relative
reference that looked like this: ../../WEATHER/weatherInfo/.

3. When describing the wsdl:messages use the elements defined in the imported XML Schema file. This ensures that
other services that might (in the future) interact with our service will know exactly what the messages look like and
can reuse them directly simply by using the same XML Schema that we've developed. This will ensure, that the
message formats are interoperable and eliminate guesswork for future developers. In the weather service WSDL file
note that this is exactly what has been done:

<wsdl:message name="getWeatherInput">
<!-- Notice that the element attribute refers to an element defined in the external XML Schema files
 <wsdl:part name="body" element="weather:zipCode"/>
</wsdl:message>
<wsdl:message name="getWeatherOutput">
<!-- Notice again that the element attribute refers to an element defined in the external XML Schema
 <wsdl:part name="body" element="weather:conditions"/>
</wsdl:message>

Notice that here we've referred directly to elements that are defined within the XML Schema, namely
weather:zipCode and weather:conditions. Because we were careful in defining all the elements in the XML Schema
globally, there is no problem in referring to zipCode separately from the conditions element, if we had not defined the
elements globally we might have found ourselves in a situation here where we needed to re-engineer the XML
Schema in order to make the zipCode element global. Fortunately, we've thought about that ahead of time.

4. Finally, the wsdl:bindingelement identifies that the binding style=“document” and both the wsdl:input and
wsdl:output have a use=”literal” attribute.

<wsdl:binding name="weatherServiceBinding" type="tns:weatherPortType">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getWeather">
 <soap:operation soapAction="tns:getWeather"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

This is the classic format for what is referred to as a document/literal service. Services that are not document/literal
violate the WS-I Basic Profile and will fail the WS-I Basic Profile conformance tests.

The remainder of the WSDL file simply follows the specification as required. The only thing to note is that although the
bindings service elements are included in this WSDL a better practice is to maintain those elements in separate WSDL
files that import the other elements defined in their own WSDL files. This practice provides sufficient modularity to the
service definition so that the abstract portions can be used without manual removal or modification of the concrete
portions of the file. For a better understanding of this modular capability see the specification text associated with
Document Naming and Linking. The information in the service element in this WSDL file is simply placeholder data.

Testing for WS-I Basic Profile 1.1 Compliance

Page 27 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Once the WSDL file is created we will want to test the file to ensure that it is compliant with the WS-I Basic Profile. Again
there are numerous tools that one could leverage to test for WS-I Basic Profile compliance, but here we'll go to the
source. To test the WSDL file for WS-I compliance follow these instructions:

1. Navigate to the WS-I Basic Profile test tools page at WS-I.org.
2. Scroll down to the section of the table titled "Interoperability Testing Tools 1.1." Select either the Java or the C#

version of the tool. Here we'll walk through using the C# version simply because it's a smaller download.
3. Extract the zip file to a directory of your choice. We'll use C:/WS-I/. This will create a subdirectory called wsi-test-

tools.
4. Open the wsi-test-tools directory and create a new directory called weatherService.
5. Now download the Media:WeatherServiceWS-I_Config.zip file and explode it in the wsi-test-

tools/weatherService/ directory. (The WSDL file in this package has been modified to point to a local copy of the
weatherInfo.xsd (also included) so that WS-I testing can take place locally.

6. Now we need to create a configuration file for the WS-I WSDL Analyzer tool. There is a sample AnalyzerConfig file in
the wsi-test-tools/cs/samples directory called analyzerConfig.xml. For convenience, a modified version,
renamed as "weatherServiceWS-I_Config.xml" is already available in the zip file downloaded in the previous step.

7. To test for WS-I Basic Profile compliance, open a command prompt and cd to the wsi-test-tools/cs/bin directory
and type:

./Analyzer -config ../../weatherService/weatherServiceServiceWS-I_Config.xml

This will run the WSDL Analyzer and produce a report file in the wsi-test-tools/weatherService directory called
"weatherServiceReport.xml." Opening this file in Internet Explorer will render an HTML version of the WS-I Report.
This report contains the results of all the test assertions run against the WSDL file. Scrolling down to the "Summary"
section of the report shows that our WSDL has passed the WS-I compliance test. For information on reading the
complete file, see the WS-I site.

For additional information on using the WS-I Test Tools, see
http://www.ibm.com/developerworks/webservices/library/ws-wsitest/.
Now that we know that the WSDL file is WS-I compliant we are ready to register the WSDL file and the XML Schema in
the DoD Metadata Registry. The following section discusses how to do this. After we've finished registering the WSDL and
XML Schema files, we'll move on to "Implementing the Weather Service" below.

Registering the XML Schema and WSDL files
This section walks through the process for registering the XML Schema file and the WSDL file in the DoD Metadata
Registry. At a high level the steps for registering metadata in the DoD Metadata Registry are (we'll go through each of
these in greater detail in the subsections below):

1. Get an account on the DoD Metadata Registry;
2. Locate or establish an appropriate Governance Namespace in which to register your metadata;
3. Contact the Governance Namespace Manager to alert them of your intention to register metadata in their Governance

Namespace;
4. Generate a submission package;
5. Submit the package to the Metadata Registry;
6. Contact the Governance Namespace Manager and request that they annotate the package with the appropriate

status, e.g. developmental, operational etc.;
7. Add any user-defined URLs for the registered metadata assets as desired.

Setting up an Account on the DoD Metadata Registry
The DoD requires that all users of the Metadata Registry and Clearinghouse register with the registry administrator before

they can use the site. To request an account, click the button in the upper right corner of the Metadata Registry
Home Page.

Register

Page 28 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Clicking the button will navigate the browser to the Registration page.

Here you will need to fill out the required fields (marked with a red *). You will be required to establish a password for
logging in so use a password that you will be able to remember.
You are also required to have a government sponsor. If you have a .mil or .gov email address you may self-sponsor. That
is, you may use your own email address if it ends in .mil or .gov. Once you have filled out the form, click the Register
button. The system will send an email to the sponsor’s email address asking to approve the account request. When the
sponsor responds in the affirmative to that email, your account will be created. (If you are your own sponsor, you must
reply to this email before your account will be created.) You will receive an email notification that your account has been
created.

Register

Page 29 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Once you have received an email indicating that your account has been created you can navigate to the MDR Home Page

and click the button.

This will navigate the browser to the login page where you will need to log in using the username and password that you
established during the registration phase.

Login

Page 30 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

After your account has been created and you log in you will be able to search, navigate, download, and register
information resources in the DoD Metadata Registry. You will do this primarily by navigating the registry using the links in
the left hand panel.

Help is always available by clicking on the “Help” link in the left hand panel. Details on submitting XML Schemas,
Taxonomies, and WSDL files is available from the Help Page.

Page 31 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Locating an Appropriate Governance Namespace
Once you have access to the DoD Metadata Regisry you can begin searching and discovering metadata assets that have
been registered. For additional information on the MDR and a good introductory briefing see "Introduction to MDR v6.0"
and "Advanced Features of MDR v6.0" on the MDR Documents Page.
The remainder of this section will focus on locating an appropriate Governance Namespace in which to register metadata
assets, like the WSDL file and XML Schema developed above. The first place to look for an appropriate Governance
Namespace is to your project leadership to determine if there has already been a determination as to which Governance
Namespace in which to register metadata assets developed under your project. Alternatively, you can browse the
Governance Namespaces on the DoD Metadata Registry and select a few that seem appropriate for the assets you wish to
register. Browsing the Governance Namespaces is very straightforward on the Metadata Registry. First go to the DoD
Metadata Registry and log in. Then mouse over the "View -->" link, this will open another menu with several options, one
of which is "By Namespace." This is illustrated in the screen capture below.

As can be seen from the image below there are numerous Governance Namespaces that have been established in the DoD

Page 32 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Metadata Registry. Choosing the one that best suits the artifacts that you wish to register is generally an out of band
process. However, the Metadata Registry provides descriptive information as well as contact information for the
Governance Namespace Managers and Points of Contact for all of the registered Governance Namespaces. Below we see a
screen capture in which a portion of the Governance Namespace hierarchy is visible. Also visible is the detailed
information for the "NECC-C2 Net-Enabled Command Capability (NECC)" Governance Namespace. Notice that the detailed
information contains a Description for the Namespace as well as an email address for the Governance Namespace
Manager. Similar detailed information is available for every Governance Namespace registered within the DoD Metadata
Registry.

NOTE: It is important to recognize that a Governance Namespace is not the same as an XML Namespace. The DoD
Metadata Registry concept of a Governance Namespace is generally a logical grouping of metadata assets along political
and/or functional lines, whereas an XML Namespace is a W3C technical specification that serves to disambiguate
elements, attributes, and groups that are encoded in the eXtensible Markup Language (XML).

Contacting a Governance Namespace Manager

Contacting a Governance Namespace Manager (or authorized person to answer questions about a particular Governance
Namespace) can generally be accomplished in one of two ways:

1. Send an email to either the Governance Namespace Manager or to the Point of Contact for the Governance
Namespace. Email addresses for these people can be found on the details page for the relevant Governance
Namespaces as shown above.

2. Attend the DoD Metadata Working Group meeting and introduce yourself to the Governance Namespace Manager in
person. Part of the responsiblity for all Governance Namespace Managers is to represent their Governance
Namespace at the Governance Namespace Manager's forum that concludes every DoD Metadata Working Group
meeting. For information on the next DoD Metadata Working Group Meeting, please check the DoD Metadata
Registry's Documents Page.

Creating a New Governance Namespace

In the event that you cannot locate an appropriate Governance Namespace in which to register your metadata assets, you
can create a new Governance Namespace. Details for creating a new Governance Namespace as well as how to manage a
Governance Namespace are available in the "Introduction to Namespace Administration" briefing available from the MDR
Documents Page.

Building a Submission Package
Once a Governance Namespace is decided upon or established on the DoD Metadata Registry you will be ready to register
your metadata assets. Here we're going to walk through the process of registering the WeatherInfo.xsd and the
WeatherService.wsdl files.
Building a registration package for the first time can be a somewhat daunting task, however the DoD Metadata Registry
provides some tools that can be leveraged to make the task easier. Once you create a registration package once,

Page 33 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

subsequent registrations will be much easier.
The first step is to gather together the metadata assets that we want to publish to the DoD Metadata Registry. In this
case we are primarily concerned with the weatherService.wsdl file and the weatherInfo.xsd. Gather these artifacts into a
directory that reflects the directory structure necessary to use the metadata. In this case our directory structure will be
flat and so will look like this:

Next we need to generate a manifest.xml file describing the metadata assets. The easiest way to create a manifest is to
leverage the MDR's Schema Tool, so open a browser and navigate to http://metadata.dod.mil/ and login. Using the left
hand panel navigate to “Add --> Schema Tool."

Next we click the browse button and navigate the explorer until we find our XML Schema file. Here we click the “Open”
button on the explorer window, then click the “Upload” button on the web page.

Page 34 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

After uploading the XML Schema we see the following screen. From here we can either check the schemas for validity by
following the “Check Schemas” link or enter the information for the package that will contain our XML Schema and WSDL
file. It is a good practice to follow the “Check Schemas” link to ensure that the XML Schema is valid.

After following the “Check Schemas” link we see that the schema files validated successfully. If there is a problem with
the schemas an error message with be displayed with some information about the problem encountered. Once validation
has occurred we are prepared to enter the package information by following the “Enter Package Information” link.

Page 35 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Following the “Enter Package Information” link takes us to the portion of the schema tool that collects information about
the submission, including the name we want to give to the package, the version number, effective date, any description or
comments we want to make about the package as well as a specification of the Governance Namespace in which this
package will be submitted. All of the fields with a red * are required.

After filling out the package information form, click the “Generate Manifest and Package” button at the bottom of the
form.

Page 36 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

If there are no problems then the schema tool generates a manifest and package. At this point the manifest will contain
information only about the XML Schema. If we were only registering the XML Schema we would proceed to validate the
generated package. But, since we want to register the WSDL file as well, we will instead download the unvalidated
package by following the “Download Unvalidated Package” link.

Save the package to a convenient directory. Viewing our package, we see that it includes a Manifest.xml file and our XML
Schema.

Now we will want to do two things:

Page 37 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

1. Add our WSDL file to the package

2. Modify the Manifest.xml file with an entry about the WSDL file. (If we had other documentation, sample documents

etc. we would add entries for those as well.)

The manifest is an XML file so it can be edited in a typical text editor or an XML editing tool. Upon opening the
Manifest.xml you will see that there are a series of <AddTransaction> elements as shown below. Each transaction
element represents a single information resource, here the information resources map to the individual elements
described in the XML Schema file as well as the XML Schema file itself.

We simply want to add a transaction for the WSDL file so we can use the <AddTransaction> for the XML Schema as a
template and create the following <AddTransaction> element.

In accomplishing this we modify the <Definition> element to describe our WSDL file. Then we modify the
<InformationResourceName> element to be the name of our WSDL file. Next, (and here is where an xml editor that
understands the schema file governing the manifest.xml file comes in handy), we need to change the
<InformationResourceTypeXMLschema> element to an <InformationResourceTypeWSDL> element and modify the

Page 38 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

<InformationResourceTypeLocation> element to the location of the WSDL file. (Because the wsdl file is at the top
level in our package, it is just the name of the file.) Finally we add the new <AddTransaction> element for the WSDL
file to the Manifest.xml file just below the last </AddTransaction> element in the file as outlined in green in above.

Now we save our newly modified Manifest.xml to the package that we downloaded from the Metadata Registry.

Validating and Submitting a Submission Package

We are now ready to register our WeatherService package. In order to register the package, navigate to the Submit
Metadata page of the DoD Metadata Registry. You can get to this page by navigating to the “Add --> Submit Metadata”
item of on the left hand panel.

We will now want to click the browse button and navigate in the explorer to our modified Weather Service Package and
click the “Open” button.

Page 39 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Next click the “Upload and Validate” button on the Metadata Registry. The next page will indicate any errors or warnings
with respect to the package which will have to be worked through if necessary. Errors require action on the user’s part
while warnings are mostly informational items of which the user should be aware, but do not require action. What is
important is that we receive the “Info:” item indicating that “This XML package is valid.” And that the “Submit Package”
Link appears at the bottom right of the page. Click the “Submit Package” link.

At this point our WSDL file and XML Schema file has been submitted for review by the Metadata Registry team. You will
receive an email indicating that the package has been added to the Metadata Registry.

Page 40 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Adding User-defined URLs

After the package has been added we can now add the URLs for the XML Schema and the WSDL file at which we want to
be able to retrieve the files. Recall that we predetermined these URLs as:

WSDL URL:
http://metadata.dod.mil/mdr/ns/TRAINING/WeatherService

XML Schema URL:
http://metadata.dod.mil/mdr/ns/TRAINING/weatherInfo/1.0/weatherInfo.xsd

In order to assign these URLs we must first locate the WSDL and XML Schema on the DoD Metadata Registry. (For the
purposes of this document we will assign the URL to the WSDL file. The process for assigning a URL to the XML Schema
document is identical.) So first we will locate the WSDL File. The fastest way to do this given that we know the
Governance Namespace in which we registered is to follow the View --> By Namespace in the left hand panel.

Page 41 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Using the Select Namespace tree navigator, locate the namespace into which the artifacts were registered. In this case we
used the “TRAINING” governance namespace.

Next scroll down to the Namespace Inventory table and click the number next to the WSDL entry.

Page 42 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Select the WSDL file that we registered from the returned list.

Scroll down to the “Defined URLs” section of the Information Resource Details page. In the Relative URL: field type the
relative portion of the URL to be established for the WSDL file. (The relative portion of the URL is the portion of the URL
that appears after http://metadata.dod.mil/mdr/ns/.
Here the relative portion is: TRAINING/WeatherService. Then click the “Add” button.

Page 43 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

At this point the Metadata Registry will assign the User-Defined URL to the WSDL file. To test the URL, simply click the
new URL link in the “Defined URLs” section of the Information Resource Details page. Notice that you are able to delete
this URL at a later date if you wish to assign the URL to a different resource. This URL can now be used by humans and
machines to access the WSDL file.
The same process can be followed to assign a URL of
http://metadata.dod.mil/mdr/ns/TRAINING/weatherInfo/1.0/weatherInfo.xsd to the XML Schema file.

Requesting a Status Change

Now that the artifacts are registered we can contact the Governance Namespace manager and request that they modify
the status of the IR to reflect its actual status, i.e. whether the artifacts are developmental, operational, retired, or
deprecated. Remember that you can request a status change at any time, so if you create a newer version or want to

Page 44 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

retire an existing version, just contact the Governance Namespace Manager and ask that they make the change.

Implementing the Weather Service
Required Software:

Apache Tomcat (this guide was written using version 4.1.24)
Apache Axis 1.4

This section assumes that Tomcat and Axis are installed and working correctly as evidenced by successfully running the
happyaxis.jsp page without any errors.
Helpful Software:

SoapUI

Create an implementation of our original application

The original application architecture was a stove piped application that had a front end and a database. We created the
database back in the Design section. Media:WeatherServiceSource.zip contains the code for the WeatherAppDAO class. It
resides in the package mil.dod.metadata.mdr.ns.TRAINING.howto. We chose this package to keep the directory structure
of the tutorial as simple as possible. The WSDL2Java tool discussed below creates a couple of packages based on the
WSDL and the XML schema created in previous sections. The package where the Data Access Object resides will sit
alongside the WSDL2Java generated directories after the tool is run.
Lets take a quick look at the WeatherAppDAO class. If you open the
file /path/to/tutorial/src/mil/dod/metadata/mdr/ns/TRAINING/WeatherAppDAO.java in your favorite editor you will see
that it is a simple class that does not implement any interfaces or extend any other classes. The class contains a method
getWeatherAsString(String zipCode). This function takes a zipcode, queries the database, and returns the results as a
String.
The file also contains a method that is commented out; getWeather(String zipCode) that returns an object of type
Conditions. Let's ignore this method for now. We'll return to it after we've done some magic with the Axis WSDL2Java
tool.
Finally there is a main method that simply calls the functions in the class for testing purposes.
Let's run the class and see what happens. To do this you'll need to add the postgresql-8.2-505.jdbc3.jar file to your
classpath, compile the code, and then run the program. To do this, follow these steps in a command window:

1. cd /path/to/your/tutorial/src
2. javac -classpath ..\lib\postgresql-8.2-505.jdbc3.jar mil\dod\metadata\mdr\ns\TRAINING\howto\WeatherAppDAO.java

This will create a WeatherAppDao.class file in the same directory as the source file.
3. java -classpath ..\lib\postgresql-8.2-505.jdbc3.jar;. mil.dod.metadata.mdr.ns.TRAINING.howto.WeatherAppDAO

or configure your IDE to do this automatically. Alternatively you can use the compileOriginalDAO target and
runOriginalDAO target from the Ant build file.
The commands above compile the code and run the main method which produces the following output:

Zip: 20001
Temp: 72
Humidity: 51
Wind Speed: 0
Wind Dir: Northwest
Sky Cover: Scattered Clouds
Precipitation: None
That's it for our original application. A DAO that calls the database and returns the weather for the specified zip code.

Making the application web service accessible
Now that we have our original application up and running we can see what it takes to make it accessible via a web service
using the Axis toolkit.
This requires a few steps. These are:

1. Generating stub classes
2. Generating skeleton classes
3. Connecting the skeleton classes to our original app
4. Packaging the web service
5. Deploying and testing the web service

Generate stub classes with WSDL2Java

The first thing we want to do is create a set of stub classes for our web service. This is accomplished by running the Axis

Page 45 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

WSDL2Java tool. This tool will parse the specified WSDL file and generate the classes needed for Axis to be able to publish
and use your web service. This will be done in two steps. First we will generate the client code.
To do this, run the following commands from a command line:

1. cd /path/to/your/axis/install/lib
2. java org.apache.axis.wsdl.WSDL2Java /path/to/tutorial/weatherService.wsdl -o /path/to/tutorial/src

Note that you may have to edit the java CLASSPATH to include the necessary jar files needed by Axis. These are axis.jar,
log4j-1.2.8.jar, commons-logging-1.0.4.jar, commons-discovery-0.2.jar, jaxrpc.jar, saaj.jar, and wsdl4j-1.5.1.jar.
Alternatively, you can run the generateAxisStubs target from the Ant build file.

This will create a directory structure in the location specified after the "-o" option that reflects the namespace used in the
WSDL file. Using the WeatherService.wsdl, this results in the creation of the following structure beginning in the
directory /path/to/tutorial/src:

mil/dod/metadata/mdr/ns/TRAINING/weatherInfo
mil/dod/metadata/mdr/ns/TRAINING/WeatherService

as well as the creation of the following classes:

mil/dod/metadata/mdr/ns/TRAINING/weatherInfo/Conditions.java
mil/dod/metadata/mdr/ns/TRAINING/weatherInfo/WindSpeedAndDirection.java
mil/dod/metadata/mdr/ns/TRAINING/WeatherService/WeatherPortType.java
mil/dod/metadata/mdr/ns/TRAINING/WeatherService/WeatherService.java
mil/dod/metadata/mdr/ns/TRAINING/WeatherService/WeatherServiceBindingStub.java
mil/dod/metadata/mdr/ns/TRAINING/WeatherService/WeatherServiceLocator.java

Create skeleton classes with WSDL2Java

The next step is to generate the skeleton classes for the server side implementation of the stub classes created in the
previous step. The WSDL2Java tool is used for this step as well, but with a different set of parameters. Run the following
commands to generate the skeleton classes:

1. cd /path/to/your/axis/install/lib
2. java org.apache.axis.wsdl.WSDL2Java --server-side --skeletonDeploy true /path/to/tutorial/weatherService.wsdl -

o /path/to/tutiorial/src

Alternatively, you can run the generateAxisSkeletons target from the Ant build file.
This will create the following classes in the output directory specified in the command:

mil/dod/metadata/mdr/ns/TRAINING/WeatherService/WeatherServiceBindingImpl.java
mil/dod/metadata/mdr/ns/TRAINING/WeatherService/WeatherServiceBindingSkeleton.java

As well as the following Axis deployment files:

deploy.wsdd
undeploy.wsdd

Move the deploy.wsdd and undeploy.wsdd files to the root directory of the tutorial to make them easier to find. They are
in the src/mil/dod/metadata/mdr/ns/TRAINING/WeatherService directory

Edit our original application

The WSDL2Java tool created two classes based on our schema. These are the Conditions and WindSpeedAndDirection
classes in the mil/dod/metadata/mdr/ns/TRAINING/weatherInfo directory. These classes are what Axis will use internally
to encode and decode our request and response. They are basically JavaBean classes with a set of getters/setters. We will
need to access the get* functions to see the data returned by our service.
Our original DAO has a method that takes a zip code and returns a String. However, we need to modify the DAO since
Axis expects to receive a return type of type Conditions. If you open the class
mil.dod.metadata.mdr.ns.TRAINING.howto.WeatherAppDao you will see a few sections of code that are commented out.
We'll uncomment these now.
First, uncomment the two import statements at lines 12 and 13 near the beginning of the file.
Next, uncomment the function public Conditions getWeather(String zipCode) by removing the comment characters on
lines 101 and 195.
Finally, uncomment the line ws.getWeather("20001"); on line 203 in the main method.
Recompile the class and test it by following the steps in the "Create an implementation of our original application" section.
You should see two sets of the same output shown in that section. Once from the call to the getWeatherAsString() method

Page 46 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

and once from the call to the getWeather() method.
Alternatively, you can run the compileAxisEnabledDAO target and runAxisEnabledDAO target from the Ant build file to
compile and test the changes.
Note: Changing the original application code may not be possible or desireable for existing systems. In that is the case,
the necessary steps to convert the original application code to the objects created by Axis needs to be done somewhere
else. For instance, it could be done in the WeatherServiceBindingImpl class (discussed below) or in another class that
bridges the web service and the original application. We've modified the original application for simplicity, though it is
important to recognize that this is often not possible.

Edit the skeleton classes

The next step is to edit the WeatherServiceBindingImpl class to connect it to our WeatherAppDAO class. This is
straightforward for our small service.

1. Open the mil.dod.metadata.mdr.ns.TRAINING.WeatherService.WeatherServiceBindingImpl class in the editor of your
choice.

2. Import our implementation class by adding the line import
mil.dod.metadata.mdr.ns.TRAINING.howto.WeatherAppDAO; below the package line.

3. Create and instance of our implementation class by adding the line WeatherAppDAO dao = new WeatherAppDAO();
after the class definition.

4. Add the call to the implemented getWeather(zipCode) function by adding the line return dao.getWeather(body); as
the only line in the local getWeather() function.

That should do it. Now, when Axis routes the web service call to the WeatherServiceBindingImpl class it will call our
implementation to get the results and return that to whomever called the service.

Compiling and Packaging the web service

Now that we have written all the necessary code we can compile and package it so that it is ready to be deployed. You
may already have a set of compiled classes if you use Eclipse or another java IDE. If you know where these files are
located then you can skip down to the packaging step (note: it may be necessary to modify the commands to create the
jar file based on the location of these compiled classes).
First, we need to compile all of the classes. Use the following commands to accomplish this:

1. cd /path/to/your/tutorial/src
2. javac -classpath /path/to/postgres/install/jdbc/postgresql-8.2-

505.jdbc3.jar;/path/to/axis/lib\axis.jar;/path/to/axis/lib\commons-loggin-1.0.4.jar;/path/to/axis/lib\commons-
discovery-0.2.jar;/path/to/axis/lib\jaxrpc.jar;/path/to/axis/lib\saaj.jar
mil\dod\metadata\mdr\ns\TRAINING\howto\WeatherAppDAO.java
mil\dod\metadata\mdr\ns\TRAINING\weatherInfo\Conditions.java
mil\dod\metadata\mdr\ns\TRAINING\weatherInfo\WindSpeedAndDirection.java
mil\dod\metadata\mdr\ns\TRAINING\WeatherService\WeatherPortType.java
mil\dod\metadata\mdr\ns\TRAINING\WeatherService\WeatherService.java
mil\dod\metadata\mdr\ns\TRAINING\WeatherService\WeatherServiceBindingImpl.java
mil\dod\metadata\mdr\ns\TRAINING\WeatherService\WeatherServiceBindingSkeleton.java
mil\dod\metadata\mdr\ns\TRAINING\WeatherService\WeatherServiceBindingStub.java
mil\dod\metadata\mdr\ns\TRAINING\WeatherService\WeatherServiceLocator.java

This will create the compiled .class files in the directory alongside the .java source files. Alternatively, you can run the
compileAxisClasses target from the Ant build file to compile the changes.
Now we should package our code into a jar file in order to make it easier to deploy and undeploy the web service
application. To do this we run the following commands:

1. cd /path/to/your/tutorial
2. copy ..\weatherService.wsdl .
3. jar -cvf

weather_service.jar .\weatherService.wsdl .\mil\dod\metadata\mdr\ns\TRAINING\howto\WeatherAppDAO.class .\mil\d

Alternatively, you can run the buildJar target from the Ant build file to create the jar file.
Once we have a jar file we'll need to copy it into the Axis web application so that Axis will be able to find our web service.
Copy the file /path/to/the/tutorial/src/weather_service.jar file into the directory /path/to/tomcat/webapps/axis/WEB-
INF/lib. If tomcat is running it should be stopped and started so that it will pick up the newly added jar when it loads.

Deploying and testing the web service

Before we deploy the web service we should look at the deploy.wsdd file generated by Axis. With your favorite editor,
open the file /path/to/tutorial/deploy.wsdd.

Page 47 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

The first thing you'll notice if you look at the service tag is that the name of the service isn't very friendly. Axis
automatically named our service "weatherServicePort". Let's change that to simply be "WeatherService".
Second, Axis is configured by default to generate it's own WSDL file for all the deployed services. Since we have made our
own WSDL, we want Axis to make that available instead of the auto-generated one. To do this we need to add a tag to
the service element. Immediately after the line <service name="WeatherService" provider="java:RPC" style="document"
use="literal"> add the following text: <wsdlFile>weatherService.wsdl</wsdlFile>.
This tells axis where to find the WSDL file once our web service has been deployed. Since the WSDL is included in the jar
it will be found by Axis as a classpath resource, and therefore does not need any other qualifiers. (Note that we would
have to have a full directory path before the file name if we put the WSDL in a directory other than the root of the JAR
file.) The rest of the file is pretty straightforward and does not need to be edited. You'll notice that Axis created two
typeMapping elements that map the WindSpeedAndDirection and Conditions classes to a pair of Serializers/Deserializers.
These tell Axis how to convert the classes it generated from our WSDL file into XML. It may be necessary for you to write
your own serializer/deserializer and the associated factory objects if the objects you wish to expose do not follow the
standard JavaBean getter/setter convention. See the Axis User Guide for more information.
That's about all we need to see in deploy.wsdd file.
Now it's time to deploy the web service into the Axis web application. We do this by running the Axis AdminClient utility.
Make sure that the Tomcat webserver is running and that Axis is installed properly by navigating to
http://your.tomcat.machine:port/axis in a web browser and clicking on the Validation link. If all the "Needed Components"
are found then axis should be running correctly. If they are not found then you'll need to consult the Axis documentation
to get your Axis install up and running correctly.
Once Tomcat is running and Axis is installed and working we can deploy our web service into the Axis application. Run the
following command to do this:

1. cd /path/to/axis/lib
2. java -classpath axis.jar;log4j-1.2.8.jar;commons-logging-1.0.4.jar;commons-discovery-

0.2.jar;jaxrpc.jar;saaj.jar;wsdl4j-1.5.1.jar org.apache.axis.client.AdminClient /path/to/the/tutorial/deploy.wsdd

You should see the following output indicating that the web service was deployed correctly:

Processing file /path/to/the/tutorial/deploy.wsdd
<Admin>Done processing</Admin>

Alternatively, you can run the deployService target from the Ant build file to deploy the service into Axis.
To verify that the web service is installed correctly navigate to http://your.tomcat.machine:port/axis in a web browser
and click on the "List" link. This should bring up a list of all the installed web services. One of them should be
"WeatherService". It should have a link next to the name "(wsdl)" and a bulleted list of method calls below it. Click on the
"wsdl" link. The document returned should be our custom wsdl file. If it is not the custom wsdl file you'll need to undeploy
the app (using the command above but with the undeploy.wsdd file as the argument), verify that the entry in the
deploy.wsdd file for the wsdl location is accurate, and redeploy the service.
The easiest way to test the web service is to use a third party application to send soap requests to it. I recommend using
SoapUI. It is a simple tool to use. Open SoapUI and click on the File->New WSDL Project menu. That opens up a dialog
box asking for a project name and Initial WSDL. Enter "WeatherService" for the name and then click the "Browse..."
button and find the weatherService.wsdl file on the filesystem and click "Ok". Make sure the "Create sample requests for
all operations" checkbox is selected and then click "Ok". A "Create Project" dialog box is shown. Navigate to the tutorial
location on the filesystem and click "Ok".
Once the project is created you should see a tree view on the left of the screen. Expand all of the tree nodes until you see
a node named "Request 1". Right-click on this node and select "Open Request Editor". This opens up a sample SOAP
request in the right hand pane.
To test our service we need to edit the URL that the request is sent to and to add a valid zipCode parameter to the
request. Enter "http://your.tomcat.machine:port/axis/services/WeatherService" in the address bar and the enter "20001"
where the "?" is between the open and close <weat:zipCode> tags.
Next, click on the "Play" button to the left of the address bar. This will send the request and display the result from the
WeatherService web service. If everything is working correctly you'll get the following response:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <conditions xmlns="http://metadata.dod.mil/mdr/ns/TRAINING/weatherInfo/">
 <zipCode>20001</zipCode>
 <temperatureInFahrenheit>72.0</temperatureInFahrenheit>
 <percentRelativeHumidity>51.0</percentRelativeHumidity>
 <windSpeedAndDirection>
 <windSpeed>0.0</windSpeed>

Page 48 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

 <windDirection>Northwest</windDirection>
 </windSpeedAndDirection>
 <skyCover>Scattered Clouds</skyCover>
 <precipitation>None</precipitation>
 </conditions>
 </soapenv:Body>
</soapenv:Envelope>

That's it! Our web service is now up and running inside Axis and can be called from anywhere with a valid SOAP request.

Creating an Axis Client

Included in the Media:WeatherServiceSource.zip is a basic Axis client that connects to the WeatherService that was just
deployed. The code for using the Axis for a simple service such as this is pretty straight forward. You simply have to call
the functions that have been created in the WeatherServiceBindingStub as you would call any other class. To get an
instance of the WeatherServiceBindingStub class you have to use the WeatherServiceLocator class. Both of these were
created for you when the WSDL2Java tool was run.
If you open the WeatherServiceClient class you will see that it only takes 4 lines of code to call the service. The first line is
an instantiation of the Locator class. The second tells the locator where the endpoint for the service is (note that you may
have to modify this location to suit your network setup). The third line gets an instance of the Stub class. The fourth line
calls the function on the stub.
Behind the scenes Axis creates the appropriate SOAP request and sends it across the wire to the Service that we created.
There Axis decodes the SOAP request and creates a set of Java objects as defined in the our WSDL and Schema
documents we fed to the WSDL2Java tool. Axis then calls our WeatherServiceDAO class which accesses the database and
returns the result. Axis then repeats the process of encoding the SOAP message, sending it across the wire, decoding the
SOAP message, and finally returning a Conditions object back to our client code to be used however we need.
That's all there is to a simple, non-secure Axis client application.
You can use the compileClient and runClient Ant targets from the Ant build file to test to see if the service has been
deployed correctly.

Protecting the Service with NCES Security
Protecting a service with the NCES Security Services is relatively straightforward once you understand the concept of
handlers in the Apache AXIS Web Services Stack. A good discussion of the AXIS architecture is available at Apache AXIS
Architecture Guide.

In this section of the Implementation tutorial we will be protecting the Weather Service with the NCES Security Services.
There are a few things that you will need to do to prepare to perform this portion of the tutorial. The first and most
important is to get the process for obtaining a software certificate that can be imported into the NCES Security Services
keystore. It is very important to note that you will not be able to use the certificate on your DoD CAC card because it is
not possible to obtain the private key from your CAC. As a result you will need to obtain a certificate from one of the DoD
approved external certificate authorities (ECAs). Details for obtaining a certificate from an ECA are available at DoD ECA
Program, and follow the link for "Obtain an ECA Certificate". This process typically takes several weeks so you will want to
get started early.

For the next step you will need access to the Defense Knowledge Online Portal. Registration instructions are available at
https://www.dko.dod.mil.
From here will need to obtain the NCES Security Services Software Developer's Kit (SDK). This SDK can be obtained from
the NCES Developer's Community Home Page. You will want to follow "The Services" link and then follow the link for
"Service Security." From this page you will scroll down to the "ECB" section and (for this tutorial) select the "Windows
Java SDK" under "Version 1.2." There is also thorough documentation available under the "Documentation" section of the
same page.</p>
The remainder of this section will detail how to install and leverage the NCES Security Services SDK to protect the
Weather Service.

Installing the NCES Security Services SDK
The SDK needs to be installed. The setup process is detailed in the NCES_SS_SDK_v0.4.3.pdf file that is included in the
SDK zip file.

Configuring the NCES Security Service Handlers
The NCES Security Services function by adding a set of "handlers" to the Axis web services stack. Before sending or
receiving data, Axis routes the messages through the NCES handlers. These handlers add the required signatures, SAML
assertions, etc. to the SOAP messages as well as checking the validity of users certificates, etc. These handlers have to be
configured on both the client side and the server side of an application that resides within NCES. The next two sections
show how to configure these handlers.

Page 49 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Server Side Handlers

In the Axis application deployed in Tomcat there is a file under the WEB-INF directory named server-config.wsdd. In this
file is the list of service configurations for the currently deployed services. Find the entry for our WeatherService. (If you'd
like to be able to keep the non-secure version of the service working you should make a copy of the <service> tag for the
WeatherService and rename it. You'll then be able to point the WeatherServiceClient, SoapUI, and a web-browser at that
service.) We need to add a set of handlers to the "requestFlow" and "responseFlow" sections (Note: These sections may
not be initially present in the "service" tag for our service. Add them if necessary). The text that needs to be added to
these sections can be found in two places. First, on pages 38 and 39 of the NCES_SS_SDK_v0.4.3.pdf file. Second, in the
NCES SDK sample app directory, /nces_sdk/sdk/java/samples-axis.war/WEB-INF/server-config.wsdd. Below is a
reproduction of that text:

<requestFlow>
 <handler type="java:org.apache.axis.handlers.JWSHandler">
 <parameter name="scope" value="session"/>
 </handler>
 <handler type="java:org.apache.axis.handlers.JWSHandler">
 <parameter name="scope" value="request"/>
 <parameter name="extension" value=".jwr"/>
 </handler>
 <handler type="java:mil.disa.nces.toolkit.handler.axis.VerificationHandler">
 <parameter name="disableCertificateStatusChecking" value="false"/>
 <parameter name="enableDynamicDiscovery" value="false"/>
 <parameter name="certificateVerificationServiceEndpoint"
value="https://security.nces.dod.mil:443/security/services/CertificateValidationService"/>
 </handler>
 <handler type="java:org.apache.axis.handlers.JAXRPCHandler">
 <parameter name="scope" value="request"/>
 <parameter name="className" value="mil.disa.nces.toolkit.handler.SecurityHeaderServerHandler"/>
 </handler>
 <handler type="java:org.apache.axis.handlers.JAXRPCHandler">
 <parameter name="scope" value="request"/>
 <parameter name="className" value="mil.disa.nces.toolkit.handler.SecurityAuthorizationHandler"/>
 <parameter name="serviceQName" value="http://localhost:8080/axis/services/WeatherService"/>
 <parameter name="enableDynamicDiscovery" value="false"/>
 <parameter name="policyDecisionServiceEndpoint"
value="https://security.nces.dod.mil:443/security/services/PolicyDecisionService"/>
 </handler>
</requestFlow>
<responseFlow>
 <handler type="java:org.apache.axis.handlers.JAXRPCHandler">
 <parameter name="scope" value="request"/>
 <parameter name="className" value="mil.disa.nces.toolkit.handler.SecurityHeaderServerHandler"/>
 <parameter name="needAddMessageIDHeader" value="true"/>
 <parameter name="needAddWSSHeader" value="true"/>
 <parameter name="needSignResponse" value="true"/>
 </handler>
 <handler type="java:mil.disa.nces.toolkit.handler.axis.SignatureHandler"/>
</responseFlow>

Ensure that the URI to your tomcat installation and WeatherService deployment is correct and save this file.

Client Side Handlers

Configuring the client handlers is as simple as copying a file. Find the file /nces_sdk/sdk/java/secure/client-config.wsdd
and copy that to /path/to/tutorial/. When you run the WeatherServiceSecureClient class you must make sure that the
client-config.wsdd file is on the classpath so that Axis finds it and routes the SOAP messages through the NCES handlers.

Configuring the NCES Security Engine

Configuring the Keystore

At this point you must have a valid certificate and it must be registered with NCES to fully test the setup of the NCES
Security Services. If you have a valid certificate but it is not registered with NCES, or if you have created your own set of
certificates, then you'll need to comment out the calls to the NCES security services in the server-config.wsdd file
(CertificateVerificationService and PolicyDecisionService) in order to do basic round trip testing between the
WeatherServiceSecureClient and the WeatherService sitting behind the NCES Security Services handlers.
More info about how to do this will appear in this space soon.

Page 50 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Creating a Debug Security Engine properties file

During testing you'll want to have a debugsecurityengine.properties file on your classpath. Place it in the same location as
the securityengine.properties file and the NCES Security Services SDK will automatically use it. This file specifies the
location of the keystore as well as the keystore passwords and aliases for the certificates in the keystore. Below is an
example file:
mil.disa.nces.toolkit.crypto.JKSToolkitCrypto.keystoreFile=/path/to/tutorial/keystore.jks
mil.disa.nces.toolkit.crypto.JKSToolkitCrypto.keystorePassword=password
mil.disa.nces.toolkit.crypto.JKSToolkitCrypto.keypairAlias=key
mil.disa.nces.toolkit.crypto.JKSToolkitCrypto.keypairPassword=password
SecurityEngine.MessageStamp.AllowedDelta=5
SecurityEngine.MessageID.cache.age=5
You will need to have a copy of the debugsecurityengine.properties file for both the client and the server. Ordinarily the
client and server will have separate keystores because they reside on different machines. However, for local development
they can use the same keystore file. If you are running this tutorial with two machines (one as a client and one as a
server) then you'll have to make a copy of your local keystore and copy it to the server OR ensure that the same set of
certificates is loaded in each keystore.
The server version should reside in the WEB-INF/classes directory of the axis web-app and the client version needs to
reside on the classpath.

Running the WeatherServiceSecureClient
The Image:WeatherServiceSource.zip contains a class for testing the NCES Security Services secured WeatherService
service. It is located in the mil.dod.metadata.mdr.ns.TRAINING.howto package. You can use the runSecureClient Ant
target to run the secure client.

Required JAR files

The NCES SS SDK requires a significant number of external libraries in addition to those required by Axis. Not all of these
libraries are included in the SDK. Also, some of the files included in the SDK are the incorrect versions. This is due to the
SDK using version 1.2b of Axis. We are using 1.4, and therefore require a different set of libraries. The full list is included
below:

JAR NAME - SOURCE
castor-0.9.5.3-xml-no-xsi.jar - SDK
commons-codec-1.3.jar - http://commons.apache.org/codec/
commons-lang-2.0.jar - SDK
httpclient-3.0.1.jar - http://commons.apache.org/httpclient/
jug.jar - SDK
nces-commons-0.4.3.jar - SDK
nces-sdk-0.4.3.jar - SDK
nces-sdk-axis-spi-0.4.3.jar - SDK
wss4j-1.0-dev.jar - SDK
xerxesImpl-2.6.2.jar - SDK
xml-apis.jar - SDK
xmlsec-1.1.0-patched.jar - SDK

Make sure that these libraries, along with the libraries required by Axis, are on the classpath when you run the
WeatherServiceSecureClient application as well as in the WEB-INF/lib directory of the axis web application.

Setup

You can skip this step if you have a valid certificate that is registered with NCES. If you do not have a valid certificate or
have created your own then you need to do the following.
Open the /path/to/tomcat/webapps/axis/WEB-INF/server-config.wsdd file and comment out the handlers for the
CertificateVerificationService and the PolicyDecisionService.
Restart tomcat.
This will allow the handlers that insert the signatures and the SAML assertions into the SOAP messages to function without
calling off to the NCES services to do any verification. This will allow you to troubleshoot the basic configuration of the
secure WeatherService as well as the WeatherServiceSecureClient app.

Modify the source for your environment

You need to modify some of the code for the WeatherServiceSecureClient in order to get it to run. There are two simple
changes that need to be made.
First, you need to set the location of your web server. Edit the line "locator.setEndpointAddress("weatherServicePort",
"http://your.web.server:8080/axis/WeatherService");" and place the URI to your web server as the second argument.
Second, you'll need to provide a DN for the certificate that you plan to use for testing. Edit the line "String subjectDN =
"your dn here";" and replace the string with the DN of the certificate used for testing the service.

Page 51 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Save and compile the source and you're ready to test your service.

Run the WeatherServiceSecureClient app

Execute the WeatherServiceSecureClient app from your IDE or from the command line with the following commands:
cd /path/to/tutorial/src java mil.dod.metadata.mdr.ns.TRAINING.howto.WeatherServiceSecureClient
Note that you'll have to include all of the required jars in the classpath variable.
The output from the WeatherServiceSecureClient should be the same as that from the WeatherServiceClient that we ran
earlier in the tutorial.
Alternatively, you can run the compileSecureClient target and runSecureClient from the Ant build file to compile and
execute the client code.
You should be able to see some output from Axis and the NCES Security Services handlers in the output of the client
application and the webserver if you include a log4j.properties file on the classpath of the Client app and in the WEB-
INF/classes directory of your web server that has the log4j.rootLogger set to INFO or DEBUG.
Some output to look for to see if the handlers are working correctly include the following:
- Added WS-Addressing MessageID SOAP Header...
- Added WS-Security Timestamp SOAP Header...
- Successfully signed outbound request SOAP Envelope with hashcode...
- Response received, SOAP Envelope hashcode: ..., Document hashcode: ...
- Verification successful for URI "..."
- Verification successful for URI "..."
- Verification successful for URI "..."
- Document with hashcode: ... bears a VALID signature from certificate subject...

If you set the log4j root logger to debug you will see a lot more output. This output will include the actual SOAP messages
that are sent between the client and server. You should check to ensure that this XML has the requisite signatures and
SAML assertions to verify that the NCES Security Services handlers are being invoked.

Registering the Weather Service
This section details the process for registering our Weather Service with the NCES Service Discovery capability, i.e. the
NCES Service Registry.
For this portion of the tutorial, you will need to have access to the NCES Service Registry. In order to complete this
section you will need to have authorization to publish Service Offers under at least one Service Provider. To attain this
authorization, you can either request that a new Service Provider be created or contact the POC for an existing Service
Provider and request Service Offer publication access. In most cases the former approach will apply.
Once you have authorization to publish Service Offers to the Service Registry you will want to follow the steps outlined in
the Service Discovery Publishing Process documentation available in the Media:ServiceDiscovery.zip. This documentation
walks through the steps necessary to publish the endpoint of a service in the NCES Service Registry. We'll leave it as an
exercise for the reader to fill in the required fields.
Once the service offer has been published the weather service will be available for discovery via the NCES Service
Discovery capability.
This concludes the implementation portion of the tutorial. You can now move on to The Goals (revisited).

The Goals (revisited)

Contents

1 Introduction
2 Visibility
2.1 How Did We Accomplish Visibility?
3 Accessibility
3.1 How Did We Accomplish Accessibility?
4 Understandability
4.1 How Did We Accomplish Understandability?
5 Trustworthiness
5.1 How Did We Accomplish Trustworthiness?
6 Interoperability
6.1 How Did We Accomplish Interoperability?
7 Responsiveness
7.1 How Did We Accomplish Responsiveness?

Page 52 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Introduction
As we discussed in The Goals our purpose was to expose the weather information being captured by our satellites to a
broader community and meet the goals of the DoD Net-Centric Data Strategy. The following sections discuss exactly what
we did, via The Implementation to meet each of these goals.

Visibility
The DoD Net-Centric Data Strategy defines the visibility goal this way:
Users and applications can discover the existence of data assets through catalogs, registries, and other search services.
All data assets (intelligence, nonintelligence, raw, and processed) are advertised or “made visible” by providing metadata,
which describes the asset.
So what does this mean for the weather scenario? It means that whatever is done to expose the relational database in
The Scenario image, it must be advertised through some type of catalog, registry, or other search capability. This gives
rise to a requirement to advertise our data.
REQUIREMENT: Make weather data asset visible through advertisement.

How Did We Accomplish Visibility?
Visibility was accomplished in several ways:

1. We registered the WSDL file for the service and the XML Schema for the data flowing between the services in the DoD
Metadata Registry, providing visiblity of those assets to anyone with access to the DoD Metadata Registry.

2. We registered the Service Endpoint with the NCES Service Registry, providing visibility of the service's existence to
anyone who can access the Service Registry.

Accessibility
The DoD Net-Centric Data Strategy defines the accessibility goal this way:
Users and applications post data to a “shared space.” Posting data implies that (1) descriptive information about the asset
(metadata) has been provided to a catalog that is visible to the Enterprise and (2) the data is stored such that users and
applications in the Enterprise can access it. Data assets are made available to any user or application except when limited
by policy, regulation, or security.
REQUIREMENT: Make weather data asset accessible by making it available in such a way that users and applications
within the larger enterprise can get at it.

How Did We Accomplish Accessibility?
Accessibility was accomplished by exposing the existing data source via a web service that we defined. We developed the
format in which the queries and replies would be encoded and provided a machine readable interface specification that
can be implemented through any compliant Web services tool suite.

Understandability
The DoD Net-Centric Data Strategy defines the understandability goal this way:
Users and applications can comprehend the data, both structurally and semantically, and readily determine how the data
may be used for their specific needs.
REQUIREMENT: Make weather data understandable through the use and registration of common data exchange formats
and semantics.

How Did We Accomplish Understandability?
Understandability was accomplished by ensuring that we annotated our XML Schema, indicating to developers what each
term in the vocabulary meant and how it would be populated. By registering this information, i.e. the XML Schema to the
DoD Metadata Registry we've promoted understandability of our service and data across the enterprise.

Trustworthiness
The DoD Net-Centric Data Strategy defines the trustworthiness goal this way:
Users and applications can determine and assess the authority of the source because the pedigree, security level, and
access control level of each data asset is known and available.
REQUIREMENT: Make weather data asset trusted by capturing pedigree, security, and access control information about
the data.

How Did We Accomplish Trustworthiness?
We've accomplished trustworthiness in numerous ways:

1. In registering the XML Schema, WSDL file, and Service endpoints we were required to provide point of contact
information as well as register under a particular Governance Namespace or Service Provider which provides

8 Institutionalizing
8.1 How Did We Accomplish Institutionalization?

Page 53 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

additional traceback and accountability for our metadata assets and service.
2. We also protected our service with the NCES Security Services ensuring that only those who are authorized to access

the service are able to do so.

These facts provide a significant level of trust in that there is always someone to contact about how the service is
performing, how the data is represented and who is accessing that data in addition to providing transparency of ownership
and stewardship.

Interoperability
The DoD Net-Centric Data Strategy defines the interoperability goal this way:
Many-to-many exchanges of data occur between systems, through interfaces that are sometimes predefined or
sometimes unanticipated. Metadata is available to allow mediation or translation of data between interfaces, as needed.
REQUIREMENT: Make weather data asset interoperable through the use and registration of data exchange formats
produced and accepted by the relevant COIs and ensuring that the data exposure solution is compliant with any relevant
standards and/or conventions. (E.g. that SOAP-based Web services are WS-I compliant.)

How Did We Accomplish Interoperability?
Interoperability was primarily accomplished through our dedication to ensuring that the service we created was WS-I
Basic Profile compliant. In the web services world, you can't get much better than that. But we went one step further by
taking advantage of the NCES Core Services which give us additional commonality with other services operating on the
GIG.

Responsiveness
The DoD Net-Centric Data Strategy defines the responsiveness goal this way:
Perspectives of users, whether data consumers or data producers, are incorporated into data approaches via continual
feedback to ensure satisfaction.
REQUIREMENT: Make weather data asset responsive by providing a mechanism for users to provide feedback and
comments on the capability, as well as gathering usage metrics and incorporating that feedback and information into
future releases of the service.

How Did We Accomplish Responsiveness?
Both the NCES Service Registry and the DoD Metadata Registry provide points of contact who can be reached in the event
that something goes wrong with the service. By registering our service and service metadata we've adopted common
forums for responding to people desiring to use or currently using our service. This provides a firm basis for highly
responsive customer support for our weather service consumers.

Institutionalizing
The DoD Net-Centric Data Strategy defines the institutionalization goal this way:
Data approaches are incorporated into Department processes and practices. The benefits of Enterprise and community
data are recognized throughout the Department.
REQUIREMENT: Engage with the relevant portfolio managers and COIs to facilitate and understand that place of the
weather data asset within the enterprise. This includes but is not limited to ensuring that the organization and business
processes surrounding the capability reflect and are committed to Data Strategy principles as well as engaging and
developing relationships with interested and complementary organizations and customers.

How Did We Accomplish Institutionalization?
Again, in registering within the DoD Metadata Registry under a selected Governance Namespace, as well as registration in
the Service Registry under a selected Service Provider, we've followed a set of practices and processes for making our
data visible, accessible, and understandable that is understood and repeatable across the DoD Enterprise. These common
practices and processes ensure that anyone looking for something, need only understand one process in order to
effectively find what is being sought and use it effectively.

Other Use cases

COMING SOON:
- Net-Centric Capability "Cookbooks"
- Other use case scenarios and implementation steps
Note to TechGuide users -- Suggestions welcome!

Page 54 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Additional Considerations
Topics to cover:

1. Considerations regarding the increased load on the relational database
2. Migration of the legacy application to use the weather service

User feedback mechanisms and instrumentation to generate metrics

Notes: Empiricism is the "name of the game" in evolving successful net-centric capabililties. Service offerings start with
sponsors' and developers' "best guess" concerning the information product(s) some significant National Security audience
needs. All hypotheses and theories concerning user requirements must be continually tested against observations of real
world behavior, rather than resting solely on a priori reasoning or intuition.

 - See http://ges.dod.mil/ServiceManagement.htm for NCES ESM information
 - leverage metadata registry feedback experience
 - leverage user feedback as key DDMS CM process and NCES CM
 - Lessons-learned re: ways to collect
 e.g. Developer's portal (bulletin boards, forums, etc.)
 - Collecting and publishing best practices, standards, conventions etc.

The big picture...

User feedback and behavior/performance metrics guide continuous product improvement process (Tie into
“Responsiveness’ Use Case?). Real world behaviors at steps (1), (2), and (3) in the graphic above can be continually
monitored, measured and analysed for trends.
Establishing and maintaining a tight coupling between ops, user feedback, and developers who can implement
improvements is a hallmark of net-centricity - continuous technical capability improvement - product improvement -
process improvement - all contribute to extending usage.
DDMS example . . . ?
Image:Mdr feedback1.jpg

Page 55 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Exploiting Questions or Suggestions? The importance of inviting users to "Click here and send your comments."
Online reflections and aggregations of users' opinion
Collecting and managing requirements from direct users feedback (IT capabilities upgrades, procedural change etc.)

Figure: NCES-provided services connected to support Warfighting services

Lessons learned

The following are lessons learned from from design and implementation of service oriented architectures (SOA):

1. Starting from scratch is a mistake. You are likely have a service oriented capability in your legacy systems struggling to
get out. Find it and release it before starting from scratch. Corollary: Basic SOA principles are nothing new to
knowledgeable engineers and programmers. Approaching these developers as if SOA is a radically new approach will just
show your ignorance and alienate you. What's new is the information sharing "culture," the notion of designing to
accommodate unanticipated users, the ultra-large scale and heterogeneity of DoD as an enterprise, and the availability of
Core Enterprise Services that cross numerous major organizational boundaries.

2. Web Services make sense among establilshed business partners, not necessarily among tighly coordinated actors
within a single unit. A hard part of the required net-centric culture change is learning to depend on partners outside your
immediate organization.

3. All services are not created equal. Service oriented architecture is somewhat of a fractal approach with coarse-grained
service calling finer-grained ones, and so forth. It is critical to acknowledge this and to come up with clean categories for
the different service types - some call these categories and groupings service sets. Indeed, the creation, application,
publication and management of categories is key to the Net-centric Data Strategy.

Page 56 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

4. Transaction management matters. In a SOA, there will likely be multiple transactional contexts associated with
different phases of the business process. Not all of these transactional contexts will map to a database transaction with
which programmers are familiar. Corollary: Services are not truly stateless. Services manage state and have side effects
on that state; you might be able to minimize the state passed to the service and maximize the state shared by service
instances, but if a service doesn't manage state it isn't very interesting.

5. An Enterprise Service Bus (ESB) is valuable for managing communication among coarse-grained entries in service sets
or clusters, but cannot be the only form of communications coordination available in the enterprise architecture. Lower
level coordination forms, including hard-coded procedure calls, may remain important at selected points in the
architecture to say nothing of Internet protocols which are the backbone of all large scale net-centricity.

6. SOA does not immediately solve high availability problems. Without care, SOA can actually make them worse. High
availability and disaster recovery have to be designed into the architecture.

7. There has to be room in the architecture for asynchronous services. You simply cannot build an enterprise class SOA
that coexists with existing applications without allowing for asynchronicity. This is another hard culture change for those
who want to field capabilities in blocks.

8. Services can and should have more than one available interface. They should have a single contract they exhibit, but
this should be available through a variety of mechanisms. One and only one of these will be native to the service; the
others will be transformations.

9. Service directories are best used at development type. Dynamic discovery of services at runtime is problematic if not
carefully managed.

10. Version control has to be a part of service interface design and governance. Once a service interface is published it
must be honored until formally deprecated and retired. Visibility into this will be provided via the Developers Workspace,
the Metadata Registry and other capabilities.

11. Each service should be focused on doing one thing. If you have to use the word "and" when describing a service,
watch out. Expanding a single service to multiple purposes is a bad idea; use service coordination with multiple underlying
services instead. This highlights the need for lightweight service coordination available within service sets.

12. Auditing and security can be designed into the service coordination or interface, but are authoritative only if the
service becomes the only mechanism for invoking a piece of code. So long as legacy or batch jobs have a back door to the
functionality, the service auditing and security has to cooperate with alternative mechanisms.

Techguide:FAQ

Q: If services designed and deployed for a pilot are intended to become operational, how and in what time frame can they
be phased in for use by large audiences?
A: Little “hard” information exists on this subject, but operational capabilities have been web service-enabled and
otherwise made net-centric in as little as 90 days. IOC for such a service could probably be reached within 6 months.

Q: Estimated user counts are important to avoid service overloading. How can the number of users and/or service calls
that are expected daily during the pilot phase and after “operationalization” be estimated?
A: For visibility services enabled through the NCES Federated Search/Enterprise Catalog capability, an initial user
population of thousands is OK. For accessibility, service offerings should be (1st) stress tested in the FDCE “sandbox” to
estimate their initial user load capacity and (2nd) opened up incrementally to larger and larger audiences once they have
reached IOC.

Q: How can the expected machine service consumers be characterized For example, specific visualization devices that
would ingest any given set of services offerings or known data sets of a nominal size/volume?

Q: How do Service Level Agreements (SLAs) play in the process? Are they first developed/established as part piloting? Or
will they just be required for operationalizing services?

Q: Will servers supporting SIPRNet queries require PKI certificates during the pilot phase? Or will they just be required for
operationalizing Services?

Page 57 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

Q: Will each service offering be expected to authenticate or authorize user access (aside from the server to server call
itself)?

Q: Does the NCES ECB have a tool for visualizing and marking collaborative design documents (aside from PowerPoint)?
Is there a process flow chart describing ECB processes available today?

Q: For service catalog testing, does the new service need to query other catalog (with published specs such as the CS-W
specification)? This could be an important benefit, the ability to merge services from UDDI, Fed Search and CS-W
registries.

Q: Some organizations (e.g., NGA) are currently providing brokerage services for data owned by other organizations. Are
such services candidates for Piloting and ultimately routine operational republishing?

Q: Are WSDLs and other XML schema for service pilots to be registered by DISA or the CC/S/A development activity
involved - or is formal registration even necessary for the pilot?

Q: What forms do “approvals” required to access data assets take (e.g., data is owned by various agencies and not
controlled by any single organization)? Who are the appropriate contacts for Governance questions?

Q: Is there value in the piloting phase to querying metadata against “unfinished” sources (e.g. field data or data in-work
by analysts)?
A: It would pilot a real-world requirement, “post before process.”

Q: Can KML data be used in DoD web service offerings? KML is currently being used for visualization and GML will be used
more often for asynchronous production processes.

Q: What types of Web service clients are being tested in the pilots that have been undertaken thus far?

Q: Are all pilots expecting to utilize W3C Web Services for data ingest or are other services such as OGC services also
anticipated for data rendering, or both?

Main Page | About Techguide

Page 58 of 58Main Page - Techguide

12/6/2007http://datastrategy.fgm.com/techguide/Printable_Techguide.html

