
UNCLASSIFIED

Net-Enabled Command Capability
INCREMENT 1 SOFTWARE ARCHITECTURE

19 October 2007
Version 1.0

Prepared by:

Net-Enabled Command Capability
Joint Program Management Office (JPMO)

P.O. Box 4502
Arlington, VA 22204-4502

In Collaboration with the NECC Component Program Manager's for Navy, Air Force, Army,
Marine Corps, USJFCOM and DISA.

DISTRIBUTION – Distribution authorized to DoD and DoD Contractors only; for administrative/operational use
(October 2007). Other requests for this document shall be referred to the NECC Program Management Office.

DESTRUCTION NOTICE – For unclassified, limited documents, destroy by any method that will prevent
disclosure of contents or reconstruction of the document.

UNCLASSIFIED

UNCLASSIFIED

REVISION HISTORY

REVISION
NUMBER

REVIEWER /
ORG

CHANGES REVISION DATE DATE
ENTERED

NAME OF PERSON
ENTERING CHANGE

1.0

Smiley/MITRE Baselined version. 17 October 2007 17 October
2007

Mark Smiley

 IGJ (BIT)
NECC
Documentation
Support

Reformatted and provided final edits.
Reset figures and tables so they present
better; corrected topic headings as well
as some bullets and numberings;
corrected the Approval page (only one
signature block for this document;
generated a new TOC to reflect
changes made to the document.

 19 Oct 2007 Issa Jones

Increment 1 Software Architecture iii

UNCLASSIFIED

UNCLASSIFIED

TABLE OF CONTENTS

APPROVAL PAGE..II
REVISION HISTORY... III
1 STRATEGY..1

1.1 RELATED DOCUMENTS..2
2 KEY CONCEPTS ..2

2.1 CAPABILITY MODULES..3
2.2 CAPABILITY PACKAGES ..3
2.3 SERVICE INTERFACES ..4
2.4 BACK-OFFICE COMPONENTS...5
2.5 RICH CLIENTS ...5

3 IMPLEMENTATION ...5
3.1 CAPABILITY PACKAGE ..5
3.2 KEY ARCHITECTURE PATTERNS ..7

3.2.1 Web Services Management Resource Access Pattern..7
3.2.2 Enterprise Service Bus (ESB) ..8

3.3 SERVICE IMPLEMENTATION GUIDANCE...10
3.3.1 Presentation Interfaces ..10
3.3.2 Machine to Machine Interfaces ...10

3.3.2.1 Resource Interfaces.. 10
3.3.2.2 Visualization Interfaces ... 11
3.3.2.3 Asynchronous Interfaces.. 11

3.4 DISCOVERY ...12
3.5 REMOTE ADMINISTRATION ...12
3.6 REDIRECTION ..12
3.7 DISCONNECTED, INTERMITTENT, AND LIMITED COMMUNICATIONS..13
3.8 RICH CLIENTS ...14
3.9 WAIVER PROCESS ...14
3.10 TECHNICAL STANDARDS ...15

4 CONCLUSION...15

LIST OF FIGURES

Figure 1: Interaction with a CM’s Service Interfaces .. 1
Figure 2: Software Architecture Taxonomy .. 2
Figure 3: NECC CM .. 3
Figure 4: Capability Package ... 6
Figure 5: Notional Services Showing Common “Get” Interface across Different Domains 8
Figure 6: Message Transport in an ESB Model ... 9
Figure 7: Redirection in NECC Increment 1 ... 13
Figure 8: Elements of the NECC Increment 1 DIL Strategy ... 13

Increment 1 Software Architecture iv

UNCLASSIFIED

UNCLASSIFIED

LIST OF TABLES

Table 1: Approved Guest Operating Systems.. 6
Table 2: Core Infrastructure Capabilities... 8
Table 3: Increment 1 Software Technical Standards ... 15

Increment 1 Software Architecture v

UNCLASSIFIED

UNCLASSIFIED

1 STRATEGY
The NECC Software Architecture strategy for Increment 1 is to build a foundational Service
Oriented Architecture (SOA) from building blocks called Capability Modules (CM). A CM is a
set of deployed software components that implements one or more services, which are logically
grouped by functional domain. Its services provide capabilities to the end-user and to other
applications on the Global Information Grid (GIG). By designing a CM as a set of services
rather than a set of applications, NECC aligns with the DoD migration to net-centricity and with
new architectural patterns emerging in industry.

A CM provides capabilities both to the end-user and to other applications (see Figure 1). It
provides capabilities to the end-user through user interfaces implemented as presentation
interfaces. All CMs, with the exception of a few special purpose cross-functional infrastructure
CMs, have presentation interfaces. CMs provide Machine-to-Machine (M2M) interfaces that
other CMs, or any application on the GIG, can access. These M2M interfaces enable the SOA
topology and bring flexibility to the NECC Software Architecture. Since they are loosely
coupled, they can be used in ways not anticipated during design.

Figure 1: Interaction with a CM’s Service Interfaces

Increment 1 Software Architecture 1

UNCLASSIFIED

UNCLASSIFIED

1.1 Related Documents
NECC Increment 1 Physical Architecture, version 1.0

NECC Increment 1 Data Architecture, version 1.0

NECC Increment 1 Technical Operations Architecture, version 1.0

NECC Increment 1 Information Assurance Architecture, version 1.0

NECC Developer’s Handbook, version 1.0

2 KEY CONCEPTS
The NECC Increment 1 Software Architecture constrains how materiel developers must design
the services that compose their CMs. This guidance includes the standards, external capabilities,
and architectural patterns developers must use. It applies to capabilities in all the functional
domains addressed by Increment 1.

The elements around which the software architecture is built are the CM, Capability Package
(CP), Services, Back-Office Systems, and Rich Clients. Figure 2 shows the relationships and
linkages among these and other elements.

Figure 2: Software Architecture Taxonomy

In the above Figure, items in blue are discussed in the Increment 1 Physical Architecture, while
items in brown are discussed in this document, and items in green in the Increment 1 Technical
Operations Architecture document.

Increment 1 Software Architecture 2

UNCLASSIFIED

UNCLASSIFIED

2.1 Capability Modules
The CM concept—a set of logically grouped services—benefits both NECC and the end-user.
CMs provide NECC a mechanism for managing a large set of services through its System
Engineering (SE) process. These services, packaged as a CM, move through the SE process
together as a single unit from design through development to deployment. CMs are deployed
onto standardized hardware called Global Information Grid (GIG) Computing Nodes (GCNs),
which are discussed in more detail in the Increment 1 Physical Architecture document.

End-users benefit from the CM concept because it provides them with a single, well-known
access point to a set of capabilities, independent of where they are physically hosted. End-users
on the GIG can access a CM’s capabilities using a single URL (per presentation interface) just as
users on the Internet can access Google’s search capabilities using a single URL. In both cases,
users do not need to know the physical location of the servers; transparent redirection routes the
request automatically to the appropriate server using custom Domain Name Server (DNS)
configurations and the services provided by the Redirection CM.

2.2 Capability Packages
A CP consists of four kinds of software: a virtual machine, a guest OS, an optional set of
supporting Commercial-Off-the-Shelf (COTS) infrastructure software such as a web server, and
NECC-developed (or adopted) software. The services provided by a CM are instantiated through
CPs. A CM consists of one or more CPs. These elements are depicted in Figure 3.

NECC SW

COTS

Guest OS

NECC SW

COTS

Guest OS

...

CP1 CPn

Virtual Machine Virtual Machine

NECC CM

Figure 3: NECC CM

A CM can be composed of one or more CP variants. CP variants differ from each other by
implementing different services or COTS infrastructure products. For example, one CP variant
may be optimized for disconnected operations at a Local GCN, while another may be built to
scale to support tens of thousands of users at an Enterprise GCN. Figure 2 depicts these (and
other) relationships.

Increment 1 Software Architecture 3

UNCLASSIFIED

UNCLASSIFIED

A CM is not required to have CP variants—it may be implemented by a single CP. However, in
cases where local and enterprise requirements differ, a CM may be required to have more than
one CP. Mapping services provide just such an example. A CM providing mapping services
would likely have one or more Enterprise CPs containing complex server software and very large
databases, while a Local CP might be a lighter-weight set of components with only a small
subset of the map data. In cases where this is explicitly required by the design, the CM
Specification will require and define what services each CP variant must contain. The materiel
developer may also decide to implement a CM using multiple CP variants for technical reasons.
For example, it may make sense to implement some of a CM's services using Windows and
others in Linux, in which case the materiel developer would deliver at least two CP variants.
This is particularly likely in cases where NECC is adopting pre-existing services that have
dependencies on certain infrastructure components.

The CP concept gives materiel developers tremendous latitude and flexibility. They are free to
select the software that best matches their functional and non-functional requirements. This
flexibility, however, adds an additional burden on system administrators who must become
familiar with a potentially open-ended set of software. For this and other reasons, NECC will
slightly constrain the middle two CP layers. NECC will identify a pre-determined set of Guest
OS plus COTS/infrastructure bundles that materiel developers must select from when
implementing services. For example, NECC might identify two Relational Database
Management System (RDBMS) bundles: one with mySQL and Linux, the other with Oracle and
Windows. In this case, materiel developers who need an RDBMS would be required to use one
of these two bundles in their CP. See Section 3.1 for more on this topic.

2.3 Service Interfaces
A service is a mechanism to enable access to one or more capabilities, where the access is
provided using a prescribed interface and is exercised consistent with constraints and policies as
specified by the service description.1

Services must provide three categories of interfaces: M2M, presentation and management.
Presentation interfaces are for end-users. They will be implemented using different types of
projected clients, such as web pages comprised of Java applets and Flash applications. For
example, a web site, which gives Commanders the ability to search for and view readiness
reports, is a capability provided by a service with a presentation interface. These presentation
interfaces (e.g., web pages, Java applets, and Flash applications) may run independently, or be
hosted in a portal along with others. NECC will designate the intended environment as part of
the CM design. All CMs (with the exception of certain cross-functional ones) must provide
presentation interfaces.

M2M interfaces are designed to be used by other services or applications. They provide a
machine interface for data access, querying, and various operations. For example, an M2M
interface might provide an API for searching and retrieving readiness data in a manner analogous
to the readiness presentation interface described above.

1 OASIS Reference Model for Service Oriented Architecture 1.0

Increment 1 Software Architecture 4

UNCLASSIFIED

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

UNCLASSIFIED

M2M interfaces may further be classified according to their Message Exchange Pattern (MEP).
MEPs are typically divided into synchronous (also called request-response or query-response)
and asynchronous. With a synchronous MEP, the client initiates an exchange with the service
provider by sending a request (i.e., a type of query). For example, a client might request the
readiness report for a given Unit Identification Code (UIC) from a M2M readiness service. With
the asynchronous pattern, a service provider attempts to send a message to the client. This
interaction may or may not be initiated by the client. In publish and subscribe architectures (a
type of asynchronous MEP), for example, it is the provider which initiates the transmission of
data, once the subscriber has subscribed to the message stream.

NECC has adopted two key architectural patterns aligned with the two kinds of M2M interface:
the Enterprise Resource Pattern for synchronous interactions and the Enterprise Service Bus
(ESB) for asynchronous interactions. These are discussed in the Implementation section below.

2.4 Back-Office Components
Back-office components are fielded Command and Control (C2) components from existing
systems that currently provide capabilities to the end-user. They play a key transitional role,
because in many cases NECC CMs will get their data or use services from these components.
The Global Command and Control System (GCCS) Family of Systems (FoS) components
(Army, Navy, Air Force, Joint, and Marine Corps) are the primary, but not the only, provider of
back-office components. Over time, many of them will transition to NECC.

Consumers of NECC services, however, will access any back-office data through standardized
NECC interfaces. They are not required to learn the custom protocols used by these
components.

2.5 Rich Clients
Rich clients (or thick clients) are applications, such as Microsoft Office, Google Earth, and
Command and Control for the Personal Computer (C2PC), which must be installed on the user’s
workstation. They are not part of a CM, because they do not provide services. They may
consume NECC services but they are not service providers.

NECC will formally support a small set of rich clients. They will be identified as part of the
Allocated Baseline Engineering part of the Systems Engineering process. NECC will also
designate certain clients as NECC compatible, when they have been shown to be compliant with
NECC standards.

3 IMPLEMENTATION
3.1 Capability Package
A CP contains four logical layers: a virtual machine, a guest OS, COTS, and NECC Software
(see Figure 4). A CP must always include a virtual machine and a guest OS. In addition, it must
also contain either COTS or NECC Software. Normally, CPs will contain all four layers.

Increment 1 Software Architecture 5

UNCLASSIFIED

UNCLASSIFIED

GIG Computing Node

NECC SW

COTS

Guest OS

CP

Virtual Machine

B
undle

Figure 4: Capability Package

Each of these software elements has the unique requirements listed below.

• NECC Software is software developed for or adopted by NECC to provide a capability
module’s services. The CM developer determines the implementation of a CM. As such,
the CM developer may choose to adopt and adapt an exiting solution from the GCCS FoS
or to develop custom code using the programming language and libraries of their choice.
NECC requires only that the implementation follow the standards specified in the
software architecture.

• COTS/GOTS Infrastructure. This layer includes supporting infrastructure software
(such as web servers, application servers, relational databases, etc.) that the CM
implementation software relies on directly in order to function.

• Guest OS. CM developers must select a guest OS from the list in Table 1. NECC highly
recommends Linux and Solaris x86 for reasons of cost, performance, and stability.

• Bundle. NECC will establish a small list of Infrastructure/Guest OS bundles. The JPMO
will attempt to purchase NECC-wide licenses for the COTS infrastructure components
that are selected for these bundles. Materiel developers must select one of the standard
bundles, where appropriate.

Table 1: Approved Guest Operating Systems

OS Version
Red Hat Enterprise Linux 4.0
Solaris x86 10
Windows Server 2003

Increment 1 Software Architecture 6

UNCLASSIFIED

UNCLASSIFIED

A CP contains a given set of capability module services and all the software (including OS) that
those services depend on. Each NECC CP will contain its own application server, which only
host the NECC software local to that CP. An application server from one CP cannot host the
applications of a different CP.

3.2 Key Architecture Patterns
The software architecture places data at the center of its design. Its goal is to make exchanging
and accessing data simpler and more rapid than in existing components. To achieve this, it uses
two key patterns: the Web Services Management – Resource Access Pattern and the ESB.

3.2.1 Web Services Management Resource Access Pattern
The Web Services Management Resource Access Pattern, which is based upon the Web Services
Management standard, has been selected to provide stateful web services. This means that a
service can “remember” information (i.e., maintain state). This is accomplished by keeping the
web service and the state information completely separate. The state information is contained in
a separate entity called a resource. Each resource has a unique key, so whenever a web service
requires stateful interaction it is instructed to use a particular resource. This pattern applies to all
synchronous operations regarding getting, setting, and enumerating values.

Resources can be any entity comprised of a C2 domain object, such as a readiness record stored
in a relational database, a blue track streamed from a satellite feed, intelligence reports, plans, or
overlays. Each resource uses a data model appropriate for its domain. The use of
complimenting standards, such as WS-Transfer, provides a common basis for simple unary
resource access: Get, Put, Delete, and Create. Multi-instance resource retrieval is achieved using
WS-Enumeration messages. It is important to note that WS-Enumeration does not define any
messages or techniques for performing batched operations (i.e., batched Get or batched Delete).
These operations must be sent as a series of messages.

Figure 5 shows how services from different C2 domains (Readiness, Situational Awareness, and
Intelligence) can access resources using a WS-Transfer Get operation.

Increment 1 Software Architecture 7

UNCLASSIFIED

UNCLASSIFIED

Figure 5: Notional Services Showing Common “Get” Interface across Different Domains

3.2.2 Enterprise Service Bus (ESB)
An ESB is a category of middleware infrastructure products that provide foundational services
using an event driven, standards-based messaging engine.

Core infrastructure capabilities provided as functions of an ESB are listed in the following table:

Table 2: Core Infrastructure Capabilities

Category ESB Function
Invocation Support for synchronous and asynchronous transport

protocols, service mapping (locating and binding).
Routing Addressability, static/deterministic routing, content-

based routing, rules-based routing, policy-based routing
Mediation Adapters, protocol transformation, service mapping
Messaging Message processing, message transformation and

message enhancement
Other Quality of Service Security (encryption and signing), reliable delivery,

transaction management
Management Monitoring, audit, logging, metering, admin console

Increment 1 Software Architecture 8

UNCLASSIFIED

UNCLASSIFIED

The ESB pattern provides NECC a shared set of common interfaces to provide messaging.
When a CM needs to publish data asynchronously, for example a track position update, it will
leverage this shared infrastructure capability. Clients will need only to use the common ESB
interface, as opposed to supporting multiple, point-to-point, custom interfaces.

The NECC brokered messaging model, depicted in the following figure, is based on the ESB
architectural pattern. Message brokers are servers which route and transport data (messages)
across the network. Most, if not all, GCNs will host NECC message brokers. They will be
distributed throughout the architecture as a key piece of infrastructure.

Figure 6: Message Transport in an ESB Model

The NECC ESB supports two messaging styles: topic-based publish and subscribe, and message
queues. Publish and subscribe is a one-to-many or many-to-many style that allows a publisher to
easily disseminate information to a group of interested clients (subscribers). A publisher will
send a message to its local message broker, which will in turn forward it to all the other message
brokers across the GIG, which have registered interest by subscribing (see Figure 6). The
brokered model is an efficient mechanism for distributing data and plays a key role in the NECC
Disconnected Operations, Intermittent Connectivity, and Limited Communications (DIL)
solution. Message brokers can continue to function on a Local GCN when disconnected; once
re-connected to the GIG, they can synchronize with the global state of the CM data.

Increment 1 Software Architecture 9

UNCLASSIFIED

UNCLASSIFIED

Message queues enable a store and forward communication between services in a manner
analogous to email. A message queue provides a way for services to communicate directly with
each other asynchronously. This also supports DIL, because the persistent nature of the queues
gives some guarantee that data can be delivered during the period of connection to the GIG.

3.3 Service Implementation Guidance
Materiel developers shall design and implement services using the guidance in the following
sections.

3.3.1 Presentation Interfaces
All presentation interfaces in Increment 1 shall consist of projected clients. They shall:

• Adhere to the presentation interface standards listed in the NECC Developer's Handbook.

• Conform to the HTML/XHTML standards, and not use browser-specific extensions.

• Use Java version 1.5 or greater for any applets.

• Use Flash version 7 or greater for any Flash-based applications.

• Function correctly in the Microsoft Internet Explorer 6.0 and 7.0, and Mozilla Firefox 1.5
or greater browsers. Materiel developers must test both of these browsers during
developmental piloting.

3.3.2 Machine to Machine Interfaces
In the context of the standards and patterns of the software architecture, NECC classifies the
M2M interfaces into three basic kinds: Resource interfaces, visualization interfaces, and
asynchronous interfaces. The guidance for each kind is listed in the following three sections.

3.3.2.1 Resource Interfaces
Resource interfaces are any synchronous interface, which follows the Web Services Management
Resource Access Pattern. All NECC M2M interfaces, which provide data or operations in a
synchronous mode must follow this guidance. This category includes the majority of M2M
interfaces that will be built for Increment 1.

These interfaces shall be implemented using the WS-Management 1.0 specification and any
adopted NECC profiles. All resource interfaces must use SOAP as their protocol in compliance
with WS-I. Developers may add to the basic interfaces required by WS-Management as needed
for their domain. WS-Management supports CRUD and query operations, but some interfaces
may require operations that do not fit into these categories. In this case, materiel developers may
add custom operations to their interface. These custom operations must also be WS-I compliant.

For asynchronous operations, an interface shall use the NECC ESB (message broker)
architecture instead of WS-Eventing. Developers may optionally support WS-Eventing as
specified in WS-Management.

The data schema that individual interfaces must use, as well as performance considerations, will
be identified in the Capability Module Specifications that are produced as part of the design
process.

Increment 1 Software Architecture 10

UNCLASSIFIED

UNCLASSIFIED

3.3.2.2 Visualization Interfaces
In a small number of key areas, NECC mandates the use of standards other than WS-
Management and WS-Notification. These apply primarily to display-oriented interfaces and are
classified as visualization interfaces.

NECC requires that all geospatial services adhere to the Open GIS Consortium (OGC) standards
listed in Table 3. Geospatial services are those which produce data or images intended for
display in a map (e.g., a Web Mapping Service (WMS) specifies how map layers are served) or
which supplement the map layer data in some way (e.g., a Web Feature Service (WFS) specifies
how data about objects in a map is served). Geospatial data services shall:

• Expose data suitable for rendering on a map using the WMS specification.

• Support at least the query subset of the Styled Layer Descriptor (SLD) specification for
every WMS service.

• Expose geospatial feature data using the Web Feature Service (WFS) specification.

The second exceptional area is lightweight event notification. Really Simple Syndication (RSS)
is used in the commercial world for this purpose and has become a widespread and popular tool.
Materiel developers may use RSS as a mechanism for notifying end-users of simple events. RSS
may not be used as a replacement, however, for the more robust M2M “publish and subscribe”
mechanism provided by the NECC message broker infrastructure.

3.3.2.3 Asynchronous Interfaces
Asynchronous interfaces publish “fire-and-forget” messages from one or more interface to one or
more others. All asynchronous interfaces shall use the message broker infrastructure provided
by the NECC messaging infrastructure. This infrastructure will be deployed as part of the C2
Messaging CM.

For data that must be published in near real-time (for example, track position updates),
developers shall use the “publish and subscribe” messaging style. They shall:

• Create topic names in accordance with NECC topic naming conventions2.

• Describe the topic with an NECC standard metacard and register it with NCES Federated
Search.

• Establish role-based access permissions for each topic; setting, at a minimum, topic read
(subscribe), and write (publish) privileges.

• Not publish another topic’s data, unless publishing it to a specially designated aggregator
topic.3

The Increment 1 domain specific designs will contain custom “publish and subscribe” protocols
appropriate for the domain’s data and expected usage.

2 Specified in the NECC Developer’s Handbook.
3 This measure is intended to prevent data-looping.

Increment 1 Software Architecture 11

UNCLASSIFIED

UNCLASSIFIED

Developers must use the “publish and subscribe” capabilities of the NECC messaging
infrastructure for distributing near real-time data from one CM to another. Developers may also
use it for communication across components within the CM boundary; for example, to replicate
data from one CP to another.

3.4 Discovery
NECC intends to leverage the Discovery services provided by NCES. These services aid clients
in discovering other services or content and data. The NCES Service Discovery is a UDDI based
service, where SOAP-based web services can be registered. NECC materiel developers are
required to register their services using Service Discovery as part of the FDCE process.

The content-oriented NCES services focus on the data provided by a CM. NECC Materiel
Developers are required to register their XML Schemas in the Metadata Registry. CM data
(resources) must be described using the DoD Discovery Metadata Specification (DDMS) and
entered into the NCES Enterprise Catalog. A client can use the NCES Federated Search to
search this metadata and retrieve links to the CM’s services.

3.5 Remote Administration
Materiel developers shall provide management interfaces to their CMs in order to give the NECC
Joint Technical Operations Control Capability (JTOCC) the ability to remotely monitor,
administer, and maintain them. They must also support the minimum property set specified in
the NECC Increment 1 Technical Operations Architecture.

3.6 Redirection
Redirection will allow clients of presentation and M2M interfaces to access those interfaces
using a single URL and have their requests automatically routed to an implementing CP.

As shown in Figure 7, the NECC redirection architecture allows a variety of possible service
access points. Clients can access the services in the most suitable manner (locally or at the
enterprise level) and NECC can provide additional ease-of-use via redirection at the enterprise
level.

A separate Redirection CM will provide redirection services for all of NECC in Increment 1.
CM developers do not need to implement this capability themselves. However, CM developers
must ensure that all the enterprise level CPs, deployed at different sites and which maintain CM
data state, replicate and synchronize their data so that clients get the latest data no matter which
CP they are routed to on the network.

Asynchronous data services do not require redirection because the message brokers provide a
similar capability.

Increment 1 Software Architecture 12

UNCLASSIFIED

UNCLASSIFIED

Figure 7: Redirection in NECC Increment 1

3.7 Disconnected, Intermittent, and Limited Communications
The CDD requires NECC to support DIL sites in Increment 1. NECC’s strategy for supporting
this environment relies on three elements: CPs installed at Local GCNs, brokered enterprise
messaging (the NECC ESB), and local CP proxies and caches (see Figure 8). These elements
work together to provide end-users at DIL sites with NECC capability when disconnected from
the GIG.

Figure 8: Elements of the NECC Increment 1 DIL Strategy

Increment 1 Software Architecture 13

UNCLASSIFIED

UNCLASSIFIED

CPs can be installed at both operational and enterprise sites. CPs installed at operational sites
support local end-users (whether or not they are disconnected from the GIG). Based on the
functional requirements for the capability, some CPs may be customized variants specifically for
the DIL environment. In other cases, the same CP may be deployed at both kinds of site.

The message brokers, which make up the NECC ESB architecture, will be hosted on Local as
well as Enterprise GCNs. This gives local applications and services the ability to function when
disconnected from the GIG. When connectivity returns, these brokers will re-synchronize with
the topics and message queues of interest. Similarly, under limited bandwidth conditions, local
administrators can control via careful topic selection what data goes out of and comes into the
local network. This gives local Commanders some ability to adjust their GIG bandwidth based
on mission requirements.

Local variant CPs, customized for the DIL environment, may also implement a custom caching
strategy. Local CPs may cache web pages (using readily available web proxies) or subsets of
data needed for M2M synchronous interfaces. Caching web pages and data gives end-users
continual access to a service (even if somewhat degraded in capability). Due to the very
different types of data managed by CMs, they must each implement their own proxy and caching
mechanism.

3.8 Rich Clients
Despite its focus on web-based presentation interfaces in Increment 1, NECC will support a
small set of rich clients. However, NECC does not plan to build new rich clients in Increment 1,
but it may do so in subsequent increments. Materiel developers may be funded to add capability
to existing rich clients, which NECC designates as “supported”. NECC “compatible” clients are
those that NECC has validated to work with NECC standards but are not directly funded by
NECC (e.g., they may be in Tier 3 partnership with NECC).

Both types of rich client must:

• Run Microsoft Windows 2000 or greater.

• Be able to use M2M interfaces, using NECC standard interfaces and APIs.

3.9 Waiver Process
Under certain circumstances, materiel developers may request and the JPMO may grant waivers
for compliance with the specifications contained in this document. Some specifications and
standards can be waived, some cannot be waived, and some can be waived for a limited period of
time.

Specific waiver guidance for the Software Architecture is as follows:

1. Full WS-Management compliance for M2M synchronous interfaces may be temporarily
waived provided the materiel developer presents a schedule for full compliance, and the
proposed solution is at least compliant with the SOAP 1.2 standard.

2. For geospatial services, WMS and WFS can not be waived. SLD compliance may be
temporarily waived, provided the materiel developer presents a schedule for full compliance.

3. Use of the NECC ESB can not be waived for asynchronous CM-to-CM communication.

Increment 1 Software Architecture 14

UNCLASSIFIED

UNCLASSIFIED

4. Use of the WS-Notification interface to the NECC ESB may be temporarily waived provided
the materiel developer presents a schedule for full compliance and an alternative API for the
NECC ESB is used (for example, JMS).

3.10 Technical Standards
The applicable software standards are listed in Table 3.

Table 3: Increment 1 Software Technical Standards

Interface Type Standard Version
Presentation HTML 4.0.1
Presentation XHTML 1.1
M2M, Synchronous SOAP 1.2
M2M, Synchronous WSDL 1.1
M2M, Synchronous WS-Management 1.0
M2M, Synchronous CDSA 2.0
M2M, Synchronous WS-Transfer 27 September 2006
M2M, Synchronous WS-Addressing 10 August 2004
M2M, Synchronous WS-Enumeration 15 March 2006
M2M, Synchronous XPath 1.0
M2M, Visualization WMS 1.1.1
M2M, Visualization WFS 1.1
M2M, Visualization SLD 1.0
M2M, Visualization RSS 2.0
M2M, Asynchronous WS-Notification 1.3

4 CONCLUSION
This document describes the major NECC software concepts and implementation guidance
applicable for NECC Increment 1. Capability Modules, Capability Packages, Services,
Interfaces, and other elements of the NECC software architecture are defined in this document.
Software standards that materiel developers must follow are also included.

Increment 1 Software Architecture 15

UNCLASSIFIED

	1 Strategy
	1.1 Related Documents

	2 Key Concepts
	2.1 Capability Modules
	2.2 Capability Packages
	2.3 Service Interfaces
	2.4 Back-Office Components
	2.5 Rich Clients

	3 Implementation
	3.1 Capability Package
	3.2 Key Architecture Patterns
	3.2.1 Web Services Management Resource Access Pattern
	3.2.2 Enterprise Service Bus (ESB)

	3.3 Service Implementation Guidance
	3.3.1 Presentation Interfaces
	3.3.2 Machine to Machine Interfaces
	3.3.2.1 Resource Interfaces
	3.3.2.2 Visualization Interfaces
	3.3.2.3 Asynchronous Interfaces

	3.4 Discovery
	3.5 Remote Administration
	3.6 Redirection
	3.7 Disconnected, Intermittent, and Limited Communications
	3.8 Rich Clients
	3.9 Waiver Process
	3.10 Technical Standards

	4 Conclusion

