C-17 Corrosion Control / Fuel Cell Hangar Project
Douglas International Airport - Charlotte, North Carolina

B-3 Final Design Submission

SPECIFICATIONS

22 September 2017

Contract Number: W9133L-15-D-0002
Task Order Number: D303
PN: FJRP159062

JACOBS
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCUREMENT AND CONTRACTING REQUIREMENTS GROUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Procurement And Contracting Requirements</td>
<td></td>
</tr>
<tr>
<td>00 01 07</td>
<td>SEALS PAGE</td>
</tr>
<tr>
<td>00 01 10</td>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIFICATIONS GROUP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>General Requirements Subgroup</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVISION 01 - GENERAL REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>01 10 00</td>
<td>SUMMARY</td>
</tr>
<tr>
<td>01 14 16</td>
<td>COORDINATION WITH NORTH CAROLINA AIR NATIONAL GUARD (NCANG) & CHARLOTTE-DOUGLAS AIR NATIONAL GUARD BASE (ANGB)</td>
</tr>
<tr>
<td>01 23 00</td>
<td>OPTIONAL LINE ITEMS (OLI’S)</td>
</tr>
<tr>
<td>01 31 00</td>
<td>PROJECT MANAGEMENT AND COORDINATION</td>
</tr>
<tr>
<td>01 32 00</td>
<td>CONSTRUCTION PROGRESS DOCUMENTATION</td>
</tr>
<tr>
<td>01 33 00</td>
<td>SUBMITTAL PROCEDURES</td>
</tr>
<tr>
<td></td>
<td>ATTACHMENT: SUBMITTAL REGISTER</td>
</tr>
<tr>
<td>01 35 43</td>
<td>SAFETY, HAZARDOUS MATERIALS, AND HEALTH REQUIREMENTS</td>
</tr>
<tr>
<td>01 40 00</td>
<td>QUALITY REQUIREMENTS</td>
</tr>
<tr>
<td>01 45 35</td>
<td>SPECIAL INSPECTIONS</td>
</tr>
<tr>
<td>01 50 00</td>
<td>TEMPORARY FACILITIES AND CONTROLS</td>
</tr>
<tr>
<td>01 60 00</td>
<td>PRODUCT REQUIREMENTS</td>
</tr>
<tr>
<td>01 73 29</td>
<td>CUTTING AND PATCHING</td>
</tr>
<tr>
<td>01 74 19</td>
<td>CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL</td>
</tr>
<tr>
<td>01 77 00</td>
<td>CLOSEOUT PROCEDURES</td>
</tr>
<tr>
<td>01 78 23</td>
<td>OPERATION AND MAINTENANCE DATA</td>
</tr>
<tr>
<td>01 78 39</td>
<td>PROJECT RECORD DOCUMENTS</td>
</tr>
<tr>
<td>01 79 00</td>
<td>DEMONSTRATION AND TRAINING</td>
</tr>
<tr>
<td>01 81 13</td>
<td>SUSTAINABLE DESIGN REQUIREMENTS</td>
</tr>
<tr>
<td></td>
<td>ATTACHMENT: LEED CHECKLISTS</td>
</tr>
<tr>
<td>01 91 13</td>
<td>GENERAL COMMISSIONING REQUIREMENTS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>DIVISION</td>
<td>SECTION TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Facility Construction Subgroup</td>
</tr>
<tr>
<td>DIVISION 02 - EXISTING CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>02 41 16</td>
<td>STRUCTURE DEMOLITION</td>
</tr>
<tr>
<td>DIVISION 03 - CONCRETE</td>
<td></td>
</tr>
<tr>
<td>03 30 00</td>
<td>CAST-IN-PLACE CONCRETE</td>
</tr>
<tr>
<td>DIVISION 04 - MASONRY</td>
<td></td>
</tr>
<tr>
<td>04 20 00</td>
<td>UNIT MASONRY</td>
</tr>
<tr>
<td>04 72 00</td>
<td>CAST STONE MASONRY</td>
</tr>
<tr>
<td>DIVISION 05 - METALS</td>
<td></td>
</tr>
<tr>
<td>05 12 00</td>
<td>STRUCTURAL STEEL FRAMING</td>
</tr>
<tr>
<td>05 21 00</td>
<td>STEEL JOIST FRAMING</td>
</tr>
<tr>
<td>05 31 00</td>
<td>STEEL DECKING</td>
</tr>
<tr>
<td>05 40 00</td>
<td>COLD-FORMED METAL FRAMING</td>
</tr>
<tr>
<td>05 50 00</td>
<td>METAL FABRICATIONS</td>
</tr>
<tr>
<td>05 51 13</td>
<td>METAL PAN STAIRS</td>
</tr>
<tr>
<td>05 51 19</td>
<td>METAL GRATING STAIRS</td>
</tr>
<tr>
<td>05 52 13</td>
<td>PIPE AND TUBE RAILINGS</td>
</tr>
<tr>
<td>DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES</td>
<td></td>
</tr>
<tr>
<td>06 10 53</td>
<td>MISCELLANEOUS ROUGH CARPENTRY</td>
</tr>
<tr>
<td>06 16 00</td>
<td>SHEATHING</td>
</tr>
<tr>
<td>06 41 16</td>
<td>PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS</td>
</tr>
<tr>
<td>06 64 00</td>
<td>PLASTIC PANELING</td>
</tr>
<tr>
<td>DIVISION 07 - THERMAL AND MOISTURE PROTECTION</td>
<td></td>
</tr>
<tr>
<td>07 13 26</td>
<td>SELF-ADHERING SHEET WATERPROOFING</td>
</tr>
<tr>
<td>07 21 00</td>
<td>THERMAL INSULATION</td>
</tr>
<tr>
<td>07 27 26</td>
<td>FLUID-APPLIED MEMBRANE AIR BARRIERS</td>
</tr>
<tr>
<td>07 41 13.16</td>
<td>STANDING-SEAM METAL ROOF PANELS</td>
</tr>
<tr>
<td>07 42 13.13</td>
<td>FORMED METAL WALL PANELS</td>
</tr>
<tr>
<td>07 42 13.19</td>
<td>INSULATED METAL WALL PANELS</td>
</tr>
<tr>
<td>07 42 13.23</td>
<td>METAL COMPOSITE MATERIAL WALL PANELS</td>
</tr>
<tr>
<td>07 54 19</td>
<td>POLYVINYL-CHLORIDE (PVC) ROOFING</td>
</tr>
<tr>
<td>07 62 00</td>
<td>SHEET METAL FLASHING AND TRIM</td>
</tr>
<tr>
<td>07 72 00</td>
<td>ROOF ACCESSORIES</td>
</tr>
<tr>
<td>DIVISION</td>
<td>SECTION TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>07 72 10</td>
<td>ROOFTOP FALL ARREST SYSTEM</td>
</tr>
<tr>
<td>07 81 00</td>
<td>APPLIED FIREPROOFING</td>
</tr>
<tr>
<td>07 82 50</td>
<td>FABRIC DRAFT CURTAIN</td>
</tr>
<tr>
<td>07 84 43</td>
<td>JOINT FIRESTOPPING</td>
</tr>
<tr>
<td>07 91 00</td>
<td>PREFORMED JOINT SEALS</td>
</tr>
<tr>
<td>07 92 00</td>
<td>JOINT SEALANTS</td>
</tr>
<tr>
<td>07 95 13.13</td>
<td>INTERIOR EXPANSION JOINT COVER ASSEMBLIES</td>
</tr>
<tr>
<td>07 95 13.16</td>
<td>EXTERIOR EXPANSION JOINT COVER ASSEMBLIES</td>
</tr>
</tbody>
</table>

DIVISION 08 - OPENINGS

08 04 00	BLAST RESISTANCE
08 05 00	COMMON WORK RESULTS FOR OPENINGS ATTACHMENT: WINDOW SYSTEM DESIGN LOAD COMPLIANCES & ANALYSIS
08 11 13	HOLLOW METAL DOORS AND FRAMES
08 12 16	ALUMINUM FRAMES
08 14 16	FLUSH WOOD DOORS
08 31 13	ACCESS DOORS AND FRAMES
08 33 23	OVERHEAD COILING DOORS
08 34 73.13	METAL SOUND CONTROL DOOR ASSEMBLIES
08 36 13	SECTIONAL DOORS
08 36 20	HANGAR DOORS
08 41 13	ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
08 44 13	GLAZED ALUMINUM CURTAIN WALLS
08 45 13	STRUCTURED-POLYCARBONATE-PANEL ASSEMBLIES
08 71 00	DOOR HARDWARE
08 80 00	GLAZING
08 88 13	FIRE RESISTANT GLAZING
08 91 19	FIXED LOUVERS

DIVISION 09 - FINISHES

<p>| 09 22 16 | NON-STRUCTURAL METAL FRAMING |
| 09 29 00 | GYPSUM BOARD |
| 09 30 00 | TILING |
| 09 51 13 | ACOUSTICAL PANEL CEILINGS |
| 09 65 13 | RESILIENT BASE AND ACCESSORIES |
| 09 65 19 | RESILIENT TILE FLOORING |
| 09 65 36 | STATIC-CONTROL RESILIENT FLOORING |
| 09 67 23 | RESINOUS FLOORING |
| 09 68 13 | TILE CARPETING |
| 09 69 00 | ACCESS FLOORING |</p>
<table>
<thead>
<tr>
<th>DIVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 91 13 EXTERIOR PAINTING</td>
</tr>
<tr>
<td>09 91 23 INTERIOR PAINTING</td>
</tr>
</tbody>
</table>

DIVISION 10 - SPECIALTIES

<table>
<thead>
<tr>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 14 00 SIGNAGE</td>
</tr>
<tr>
<td>10 21 13.19 PLASTIC TOILET COMPARTMENTS</td>
</tr>
<tr>
<td>10 22 19 DEMOUNTABLE PARTITIONS</td>
</tr>
<tr>
<td>10 22 39 FOLDING PANEL PARTITIONS</td>
</tr>
<tr>
<td>10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES</td>
</tr>
<tr>
<td>10 44 13 FIRE EXTINGUISHER CABINETS</td>
</tr>
<tr>
<td>10 51 13 METAL LOCKERS</td>
</tr>
</tbody>
</table>

DIVISION 11 - EQUIPMENT

<table>
<thead>
<tr>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 24 29 FALL PROTECTION SYSTEMS</td>
</tr>
</tbody>
</table>

DIVISION 12 - FURNISHINGS

<table>
<thead>
<tr>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 21 13 HORIZONTAL LOUVER BLINDS</td>
</tr>
<tr>
<td>12 36 23.13 PLASTIC-LAMINATE-CLAD COUNTERTOPS</td>
</tr>
<tr>
<td>12 36 61.16 SOLID SURFACE COUNTERTOPS</td>
</tr>
<tr>
<td>12 48 13 ENTRANCE FLOOR GRILLES</td>
</tr>
</tbody>
</table>

DIVISION 13 - SPECIAL CONSTRUCTION

NOT APPLICABLE

DIVISION 14 - CONVEYING EQUIPMENT

NOT APPLICABLE

Facility Services Subgroup

DIVISION 21 - FIRE SUPPRESSION

<table>
<thead>
<tr>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 05 13 COMMON MOTOR REQUIREMENTS FOR FIRE SUPPRESSION EQUIPMENT</td>
</tr>
<tr>
<td>21 05 17 SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING</td>
</tr>
<tr>
<td>21 05 18 ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING</td>
</tr>
<tr>
<td>21 05 23 GENERAL-DUTY VALVES FOR WATER-BASED FIRE-SUPPRESSION PIPING</td>
</tr>
<tr>
<td>21 05 48 VIBRATION AND SEISMIC CONTROLS FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>21 05 53 IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>21 11 19 FIRE-DEPARTMENT CONNECTIONS</td>
</tr>
<tr>
<td>21 13 13 WET-PIPE SPRINKLER SYSTEMS</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 13 16</td>
<td>PRE-ACTION SPRINKLER SYSTEMS</td>
</tr>
<tr>
<td>21 13 25</td>
<td>HIGH EXPANSION FOAM SYSTEM</td>
</tr>
<tr>
<td>21 31 13</td>
<td>ELECTRIC-DRIVE, CENTRIFUGAL FIRE PUMPS</td>
</tr>
<tr>
<td>21 34 00</td>
<td>PRESSURE-MAINTENANCE PUMPS</td>
</tr>
</tbody>
</table>

DIVISION 22 - PLUMBING

22 05 13	COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT
22 05 19	METERS AND GAGES FOR PLUMBING PIPING
22 05 23.12	BALL VALVES FOR PLUMBING PIPING
22 05 23.14	CHECK VALVES FOR PLUMBING PIPING
22 05 29	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
22 05 48	VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT
22 05 53	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
22 07 19	PLUMBING PIPING INSULATION
22 11 13	FACILITY WATER DISTRIBUTION PIPING
22 11 16	DOMESTIC WATER PIPING
22 11 19	DOMESTIC WATER PIPING SPECIALTIES
22 11 23	DOMESTIC WATER PUMPS
22 13 13	FACILITY SANITARY SEWERS
22 13 16	SANITARY WASTE AND VENT PIPING
22 13 19	SANITARY WASTE PIPING SPECIALTIES
22 13 19.13	SANITARY DRAINS
22 13 23	SANITARY WASTE INTERCEPTORS
22 15 13	GENERAL-SERVICE COMPRESSED-AIR PIPING
22 15 19	GENERAL-SERVICE PACKAGED AIR COMPRESSORS AND RECEIVERS
22 34 00	FUEL-FIRED, DOMESTIC-WATER HEATERS
22 42 13.13	COMMERCIAL WATER CLOSETS
22 42 13.16	COMMERCIAL URINALS
22 42 16.13	COMMERCIAL LAVATORIES
22 42 16.16	COMMERCIAL SINKS
22 45 23	COMMERCIAL SHOWERS
22 47 00	EMERGENCY PLUMBING FIXTURES
22 47 16	PRESSURE WATER COOLERS

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

<p>| 23 05 13 | COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT |
| 23 05 19 | METERS AND GAGES FOR HVAC PIPING |</p>
<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 05 23.12</td>
<td>BALL VALVES FOR HVAC PIPING</td>
</tr>
<tr>
<td>23 05 23.14</td>
<td>CHECK VALVES FOR HVAC PIPING</td>
</tr>
<tr>
<td>23 05 29</td>
<td>HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>23 05 48</td>
<td>VIBRATION AND SEISMIC CONTROLS FOR HVAC</td>
</tr>
<tr>
<td>23 05 53</td>
<td>IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT</td>
</tr>
<tr>
<td>23 05 93</td>
<td>TESTING, ADJUSTING, AND BALANCING FOR HVAC</td>
</tr>
<tr>
<td>23 07 13</td>
<td>DUCT INSULATION</td>
</tr>
<tr>
<td>23 07 19</td>
<td>HVAC PIPING INSULATION</td>
</tr>
<tr>
<td>23 09 23</td>
<td>DIRECT DIGITAL CONTROL SYSTEM FOR HVAC</td>
</tr>
<tr>
<td>23 11 23</td>
<td>FACILITY NATURAL-GAS PIPING</td>
</tr>
<tr>
<td>23 13 13</td>
<td>FACILITY UNDERGROUND STORAGE TANKS</td>
</tr>
<tr>
<td>23 21 13</td>
<td>HYDRONIC PIPING</td>
</tr>
<tr>
<td>23 21 16</td>
<td>HYDRONIC PIPING SPECIALTIES</td>
</tr>
<tr>
<td>23 25 13</td>
<td>WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS</td>
</tr>
<tr>
<td>23 31 13</td>
<td>METAL DUCTS</td>
</tr>
<tr>
<td>23 33 00</td>
<td>AIR DUCT ACCESSORIES</td>
</tr>
<tr>
<td>23 33 46</td>
<td>FLEXIBLE DUCTS</td>
</tr>
<tr>
<td>23 34 23</td>
<td>HVAC POWER VENTILATORS</td>
</tr>
<tr>
<td>23 36 00</td>
<td>AIR TERMINAL UNITS</td>
</tr>
<tr>
<td>23 37 13.13</td>
<td>AIR DIFFUSERS</td>
</tr>
<tr>
<td>23 37 13.23</td>
<td>AIR REGISTERS AND GRILLES</td>
</tr>
<tr>
<td>23 73 13</td>
<td>MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS</td>
</tr>
<tr>
<td>23 73 33.16</td>
<td>INDOOR, INDIRECT GAS-FIRED HEATING AND VENTILATING UNITS</td>
</tr>
<tr>
<td>23 74 16.13</td>
<td>PACKAGED, LARGE-CAPACITIY, ROOFTOP AIR-CONDITIONING UNITS</td>
</tr>
<tr>
<td>23 74 33</td>
<td>DEDICATED OUTDOOR-AIR UNITS</td>
</tr>
<tr>
<td>23 81 23.11</td>
<td>COMPUTER ROOM AIR CONDITIONERS</td>
</tr>
<tr>
<td>23 81 26</td>
<td>SPLIT-SYSTEM AIR-CONDITIONERS</td>
</tr>
</tbody>
</table>

DIVISION 25 - INTEGRATED AUTOMATION

NOT APPLICABLE

DIVISION 26 - ELECTRICAL

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 05 13</td>
<td>MEDIUM-VOLTAGE CABLES</td>
</tr>
<tr>
<td>26 05 19</td>
<td>LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES</td>
</tr>
<tr>
<td>26 05 26</td>
<td>GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 05 29</td>
<td>HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 05 33</td>
<td>RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 05 43</td>
<td>UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>DIVISION</td>
<td>SECTION TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>26 05 44</td>
<td>SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING</td>
</tr>
<tr>
<td>26 05 48.16</td>
<td>SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 05 53</td>
<td>IDENTIFICATION FOR ELECTRICAL SYSTEMS</td>
</tr>
<tr>
<td>26 05 72</td>
<td>OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY</td>
</tr>
<tr>
<td>26 05 73</td>
<td>OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY</td>
</tr>
<tr>
<td>26 05 74</td>
<td>OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY</td>
</tr>
<tr>
<td>26 09 23</td>
<td>LIGHTING CONTROL DEVICES</td>
</tr>
<tr>
<td>26 12 19</td>
<td>PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS</td>
</tr>
<tr>
<td>26 13 29.20</td>
<td>MEDIUM-VOLTAGE, PAD-MOUNTED GEAR</td>
</tr>
<tr>
<td>26 22 13</td>
<td>LOW-VOLTAGE, DISTRIBUTION TRANSFORMERS</td>
</tr>
<tr>
<td>26 24 13</td>
<td>SWITCHBOARDS</td>
</tr>
<tr>
<td>26 24 16</td>
<td>PANELBOARDS</td>
</tr>
<tr>
<td>26 27 26</td>
<td>WIRING DEVICES</td>
</tr>
<tr>
<td>26 28 13</td>
<td>FUSES</td>
</tr>
<tr>
<td>26 28 16</td>
<td>ENCLOSED SWITCHES AND CIRCUIT BREAKERS</td>
</tr>
<tr>
<td>26 29 13</td>
<td>ENCLOSED CONTROLLERS</td>
</tr>
<tr>
<td>26 29 33</td>
<td>CONTROLLERS FOR FIRE-PUMP DRIVERS</td>
</tr>
<tr>
<td>26 32 26</td>
<td>FREQUENCY CONVERTER UNITS</td>
</tr>
<tr>
<td>26 33 53</td>
<td>STATIC UNINTERRUPTIBLE POWER SUPPLY</td>
</tr>
<tr>
<td>26 41 13</td>
<td>LIGHTNING PROTECTION FOR STRUCTURES</td>
</tr>
<tr>
<td>26 43 13</td>
<td>SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS</td>
</tr>
<tr>
<td>26 51 19</td>
<td>LED INTERIOR LIGHTING</td>
</tr>
<tr>
<td>26 52 19</td>
<td>EMERGENCY AND EXIT LIGHTING</td>
</tr>
<tr>
<td>26 56 13</td>
<td>LIGHTING POLES AND STANDARDS</td>
</tr>
<tr>
<td>26 56 19</td>
<td>LED EXTERIOR LIGHTING</td>
</tr>
</tbody>
</table>

DIVISION 27 - COMMUNICATIONS

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 05 26</td>
<td>GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>27 05 36</td>
<td>CABLE TRAYS FOR COMMUNICATIONS SYSTEMS</td>
</tr>
<tr>
<td>27 05 44</td>
<td>SLEEVES AND SLEEVE SEALS FOR COMMUNICATIONS PATHWAYS AND CABLING</td>
</tr>
<tr>
<td>27 11 00</td>
<td>COMMUNICATIONS EQUIPMENT ROOM FITTINGS</td>
</tr>
<tr>
<td>27 13 00</td>
<td>COMMUNICATIONS BACKBONE CABLING</td>
</tr>
<tr>
<td>27 15 00</td>
<td>COMMUNICATIONS HORIZONTAL CABLING</td>
</tr>
<tr>
<td>27 51 16</td>
<td>PUBLIC ADDRESS SYSTEMS</td>
</tr>
</tbody>
</table>

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

<table>
<thead>
<tr>
<th>DIVISION</th>
<th>SECTION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 31 11</td>
<td>DIGITAL, ADDRESSABLE FIRE-ALARM AND MASS NOTIFICATION SYSTEM</td>
</tr>
</tbody>
</table>
DIVISION 31 - EARTHWORK
- **31 10 00** Site Clearing
- **31 20 00** Earth Moving
- **31 23 19** Dewatering

DIVISION 32 - EXTERIOR IMPROVEMENTS
- **32 12 16** Asphalt Paving
- **32 13 13** Concrete Paving
- **32 13 73** Concrete Paving Joint Sealants
- **32 17 23** Pavement Markings
- **32 17 26** Tactile Warning Surfacing
- **32 31 13** Chain Link Fences and Gates
- **32 31 19.53** Decorative Metal Security Fences and Gates
- **32 92 00** Turf and Grasses
- **32 93 00** Plants

DIVISION 33 - UTILITIES
- **33 41 00** Storm Utility Drainage Piping

Process Equipment Subgroup

DIVISION 41 – MATERIAL PROCESSING AND HANDLING EQUIPMENT
- **41 22 13.15** Bridge Cranes, Overhead Electric, Under Running
- **41 22 23.19** Monorail Hoists
- **41 34 23.33** Spray Painting Booth and Sanding Room System

END OF TABLE OF CONTENTS
SECTION 22 05 13 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION
A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 1. Motor controllers.
 2. Torque, speed, and horsepower requirements of the load.
 3. Ratings and characteristics of supply circuit and required control sequence.
 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS
A. Comply with NEMA MG 1 unless otherwise indicated.
B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS
A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS
A. Description: NEMA MG 1, Design B, medium induction motor.
B. **Efficiency:** Energy efficient, as defined in NEMA MG 1.

C. **Service Factor:** 1.15.

D. **Multispeed Motors:** Variable torque.

 1. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. **Multispeed Motors:** Separate winding for each speed.

F. **Rotor:** Random-wound, squirrel cage.

G. **Bearings:** Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. **Temperature Rise:** Match insulation rating.

I. **Insulation:** Class F.

J. **Code Letter Designation:**

 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. **Enclosure Material:** Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 **POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS**

 A. **Motors Used with Reduced-Voltage and Multispeed Controllers:** Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

 B. **Severe-Duty Motors:** Comply with IEEE 841, with 1.15 minimum service factor.

2.5 **SINGLE-PHASE MOTORS**

 A. **Motors larger than 1/20 hp** shall be one of the following, to suit starting torque and requirements of specific motor application:

 1. Permanent-split capacitor.
 2. Split phase.
 3. Capacitor start, inductor run.
 4. Capacitor start, capacitor run.

 B. **Multispeed Motors:** Variable-torque, permanent-split-capacitor type.

 C. **Bearings:** Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 22 05 13
SECTION 22 05 19 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Liquid-in-glass thermometers.
 2. Dial-type pressure gages.
 4. Test plugs.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Tel-Tru Manufacturing Company.
 c. Trerice, H. O. Co.
 d. Weiss Instruments, Inc.
3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.
4. Case Form: Adjustable angle Back angle unless otherwise indicated.
5. Tube: Glass with magnifying lens and blue or red organic liquid.
6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
7. Window: Glass.
8. Stem: Aluminum and of length to suit installation.
 a. Design for Thermowell Installation: Bare stem.
10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 c. Tel-Tru Manufacturing Company.
 d. Trerice, H. O. Co.
 e. Watts; a Watts Water Technologies company.
 f. Weiss Instruments, Inc.

3. Case: Liquid-filled Sealed Solid-front, pressure relief type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
6. Movement: Mechanical, with link to pressure element and connection to pointer.
7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.3 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Valves: Brass ball, with NPS 1/4, ASME B1.20.1 pipe threads.
2.4 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Miljoco Corporation.
2. Trerice, H. O. Co.
3. Watts; a Watts Water Technologies company.
4. Weiss Instruments, Inc.

B. Description: Test-station fitting made for insertion into piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

B. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

C. Install valve and snubber in piping for each pressure gage for fluids.

D. Install test plugs in piping tees.

E. Install thermometers in the following locations:

1. Inlet and outlet of each water heater.
2. Inlet and outlet of each domestic hot-water storage tank.

F. Install pressure gages in the following locations:

1. Building water service entrance into building.
2. Inlet and outlet of each pressure-reducing valve.
3. Suction and discharge of each domestic water pump.
3.2 CONNECTIONS
 A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING
 A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCALE-RANGE SCHEDULE
 A. Scale Range for Domestic Cold-Water Piping: 0 to 100 deg F.
 B. Scale Range for Domestic Hot-Water Piping: 30 to 240 deg F.

3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE
 A. Scale Range for Water Service Piping: 0 to 160 psi.
 B. Scale Range for Domestic Water Piping: 0 to 100 psi.

END OF SECTION 22 05 19
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bronze ball valves.

1.2 DEFINITIONS

A. CWP: Cold working pressure.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and soldered ends.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

A. Bronze Ball Valves, Two-Piece with Full Port, and Bronze or Brass Trim:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
2. Description:

b. CWP Rating: 600 psig.
c. Body Design: Two piece.
d. Body Material: Bronze.
e. Ends: Threaded and soldered.
f. Seats: PTFE.
g. Stem: Bronze or brass.
h. Ball: Chrome-plated brass.
i. Port: Full.

B. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.

2. Description:

 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded or soldered.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel, vented.
 i. Port: Full.

2.3 STEEL BALL VALVES

A. Steel Ball Valves with Full Port, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Conbraco Industries, Inc.
 b. Jamesbury; Metso.
 c. NIBCO INC.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.
3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

B. Select valves with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze ball valves, two-piece with full port and stainless-steel trim.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze and Brass Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze ball valves, two-piece with full port and bronze trim.

B. Pipe NPS 2-1/2 and Larger:

1. Steel and Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.
2. Steel ball valves, Class 150 with full port.
3. Iron ball valves, Class 150.

END OF SECTION 22 05 23.12
SECTION 22 05 23.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Bronze swing check valves.
 2. Iron swing check valves.

1.2 DEFINITIONS

A. CWP: Cold working pressure.

B. EPDM: Ethylene propylene-diene terpolymer rubber.

C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, grooves, and weld ends.
 3. Set check valves in either closed or open position.

B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Conbraco Industries, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Milwaukee Valve Company.
 e. NIBCO INC.
 f. Watts; a Watts Water Technologies company.
 2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
f. Disc: Bronze.

B. Bronze Swing Check Valves with Bronze Disc, Class 150:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Milwaukee Valve Company.
 c. NIBCO INC.

2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 300 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded or soldered. See valve schedule articles.
 f. Disc: Bronze.

2.3 IRON SWING CHECK VALVES

A. Iron Swing Check Valves with Metal Seats, Class 250:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Crane; Crane Energy Flow Solutions.
 b. Hammond Valve.
 c. Milwaukee Valve Company.
 d. NIBCO INC.
 e. Watts; a Watts Water Technologies company.

2. Description:
 a. Standard: MSS SP-71, Type I.
 b. CWP Rating: 500 psig.
 c. Body Design: Clear or full waterway.
 d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 e. Ends: Flanged or threaded. See valve schedule articles.
 f. Trim: Bronze.
 g. Gasket: Asbestos free.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:

 1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or spring; or iron, center-guided, metal-seat check valves.
 c. NPS 2-1/2 and Larger for Sanitary Waste and Storm Drainage: Iron swing check valves with lever and weight or spring.

B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.

C. End Connections:
 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded.
 3. For Steel Piping, NPS 2 and Smaller: Threaded.
 4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged or threaded.

3.5 LOW-PRESSURE, COMPRESSED-AIR VALVE SCHEDULE (150 PSIG OR LESS)

A. Pipe NPS 2 and Smaller:
 1. Horizontal and Vertical Applications: Bronze swing check valves with bronze disc, Class 150, with threaded end connections.

B. Pipe NPS 2-1/2 and Larger:
 1. Iron swing check valves with metal seats, Class 250, with threaded or flanged end connections.

3.6 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze swing check valves with bronze disc, Class 125, with soldered or threaded end connections.

END OF SECTION 22 05 23.14
SECTION 22 05 29 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Metal pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Equipment supports – Including but not limited to:
 a. Distribution nodes.
 b. Compressors.
 c. Utility Reels.
 d. Monitoring Equipment.

B. Related Requirements:

1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

A. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following:

1. Trapeze pipe hangers.
2. Metal framing systems.
3. Equipment supports.

B. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of trapeze hangers.
2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

B. Structural Performance: Hangers and supports for plumbing piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.
2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.1 METAL FRAMING SYSTEMS

A. Non-MFMA Manufacturer Metal Framing Systems:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Flex-Strut Inc.
 b. G-Strut.
 c. Unistrut; Part of Atkore International.
 2. Description: Shop- or field-fabricated pipe-support assembly, made of steel channels, accessories, fittings, and other components for supporting multiple parallel pipes.
 4. Channels: Continuous slotted carbon-steel channel with inturned lips.
 5. Channel Width: Select for applicable load criteria.
 6. Channel Nuts: Formed or stamped nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 8. Metallic Coating: Hot-dip galvanized
 9. Paint Coating: Green epoxy, acrylic, or urethane.

2.2 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Carpenter & Paterson, Inc.
 3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.
9. Value Engineered Products, Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.1 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-carbon-steel shapes.

2.2 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.3 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

E. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:
 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb. See Section 07 72 00 "Roof Accessories" for curbs.

G. Pipe Positioning-System Installation: Install support devices to make rigid supply and waste piping connections to each plumbing fixture.

H. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

J. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

K. Install lateral bracing with pipe hangers and supports to prevent swaying.
L. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

M. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

N. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

O. Insulated Piping:
 1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
 3. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 4. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.
 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.
3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and attachments for general service applications.

F. Use stainless-steel pipe hangers and fiberglass pipe hangers and corrosion-resistant attachments for hostile environment applications.

G. Use padded hangers for piping that is subject to scratching.

H. Use thermal-hanger shield inserts for insulated piping and tubing.

I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.

11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.

12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.

13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

N. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

O. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

P. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

Q. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

R. Use pipe positioning systems in pipe spaces behind plumbing fixtures to support supply and waste piping for plumbing fixtures.

END OF SECTION 22 05 29
SECTION 22 05 48 - VIBRATION AND SEISMIC CONTROLS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Open-spring isolators.
5. Housed-spring isolators.
6. Restrained-spring isolators.
8. Pipe-riser resilient supports.
9. Resilient pipe guides.
10. Elastomeric hangers.
11. Spring hangers.
12. Snubbers.
13. Restraint channel bracings.
15. Seismic-restraint accessories.
16. Mechanical anchor bolts.
17. Adhesive anchor bolts.

B. Related Requirements:

1. Section 23 05 48 "Vibration and Seismic Controls for HVAC" for devices for HVAC equipment and systems.

1.2 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 b. Annotate to indicate application of each product submitted and compliance with requirements.
3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:

1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.

1. Include design calculations and details for selecting vibration isolators and seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, due to seismic forces required to select vibration isolators, and due to seismic restraints.
3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
4. Seismic-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.
 c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for plumbing piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer and testing agency.

C. Welding certificates.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II.
 a. Component Importance Factor: 1.0.
 b. Component Response Modification Factor: Reference Table 13.6-1 of ASCE 7-10 Chapter 13 for specific component factors.
 c. Component Amplification Factor: 2.5.
3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 0.256.
4. Design Spectral Response Acceleration at 1.0-Second Period: 0.164.
5. Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of ICC-ES.
 a. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they are subjected.

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.
 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 3. Size: Factory or field cut to match requirements of supported equipment.
 4. Pad Material: Oil and water resistant with elastomeric properties.
 5. Surface Pattern: Waffle pattern.
 6. Infused nonwoven cotton or synthetic fibers.
 7. Load-bearing metal plates adhered to pads.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.
 2. Mounting Plates:
 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
2.6 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.

a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt.

2.7 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Housing: Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.

a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top plate with threaded mounting holes.
 c. Internal leveling bolt that acts as blocking during installation.

3. Restraint: Limit stop as required for equipment and authorities having jurisdiction.
4. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
5. Minimum Additional Travel: 50 percent of the required deflection at rated load.
7. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.

3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch thick neoprene.

1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
2. Maximum Load Per Support: 500 psig isolation material providing equal isolation in all directions.
2.10 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch thick neoprene.

1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.

3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.12 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Vibration Mountings & Controls, Inc.

B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.
2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.
3. Maximum 1/4-inch air gap, and minimum 1/4-inch thick resilient cushion.

2.14 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.
2.15 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Vibration Mountings & Controls, Inc.

B. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.16 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
4. Vibration & Seismic Technologies, LLC.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.17 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
4. Mason Industries, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.18 ADHESIVE ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hilti, Inc.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.
3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 07 72 00 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:
 1. Install seismic snubbers on plumbing equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

E. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

F. Install cables so they do not bend across edges of adjacent equipment or building structure.

G. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

K. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are
encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque, using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 22 11 16 “Domestic Water Piping” for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.

4. Test at least four of each type and size of installed anchors and fasteners selected by Architect.

5. Test to 90 percent of rated proof load of device.

7. Measure isolator deflection.

8. Verify snubber minimum clearances.

D. Remove and replace malfunctioning units and retest as specified above.
E. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

END OF SECTION 22 05 48
SECTION 22 05 53 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS
A. Plastic Labels for Equipment:
 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

C. Background Color: Red.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

H. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

C. Pipe Label Color Schedule:

 1. Low-Pressure Compressed Air Piping:
 a. Background: Safety blue.
 c. Indicate system pressure along with utility.

 2. Domestic Water Piping
 a. Background: Safety green.
 c. Distinguish cold water, hot water and hot water return.

 3. Sanitary Waste and Storm Drainage Piping:
 a. Background Color: Safety black.

 4. Pressure Wash Piping:
 a. Background Color: Safety red.
 c. Indicate unit/system number along with utility.

 5. Breathing Air Piping:
 a. Background Color: Safety orange.
 b. Letter Color: Black.
 c. Indicate system pressure along with utility.

3.5 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 22 05 53
SECTION 22 07 19 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following plumbing piping services:

1. Domestic hot-water piping.
2. Domestic recirculating hot-water piping.
3. Power-wash hot-water piping.
4. Supplies and drains for handicap-accessible lavatories and sinks.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

B. Sustainable Design Submittals:

1. Product Data: For adhesives, mastics, and sealants, indicate VOC content.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

C. Comply with the following applicable standards and other requirements specified for miscellaneous components:

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Manson Insulation Inc.
 e. Owens Corning.

G. Mineral-Fiber, Preformed Pipe Insulation:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Johns Manville; a Berkshire Hathaway company.
 b. Knauf Insulation.
 c. Manson Insulation Inc.
 d. Owens Corning.

2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

B. Expanded or Exfoliated Vermiculite Insulating Cement: Comply with ASTM C 196.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
c. Foster Brand; H. B. Fuller Construction Products.
d. Mon-Eco Industries, Inc.

2. Adhesive: As recommended by mineral fiber manufacturer and with a VOC content of 80 g/L or less.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

2. Adhesives shall have a VOC content of 80 g/L or less.

D. PVC Jacket Adhesive: Compatible with PVC jacket.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Dow Corning Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. P.I.C. Plastics, Inc.
 d. Speedline Corporation.

2. Adhesive: As recommended by Adhesive - PVC Jacket manufacturer and with a VOC content of 50 g/L or less.

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. Mastics: As recommended by insulation manufacturer and with a VOC content of 50 g/L or less.

2.5 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A, and shall be compatible with insulation materials, jackets, and substrates.

1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
3. Service Temperature Range: 0 to plus 180 deg F.

2.6 SEALANTS

A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 2. Fire- and water-resistant, flexible, elastomeric sealant.
 3. Service Temperature Range: Minus 40 to plus 250 deg F.
 5. Sealant shall have a VOC content of 420 g/L or less.

2.7 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 1. Width: 2 inches.
 2. Thickness: 6 mils.
 3. Adhesion: 64 ounces force/inch in width.
 4. Elongation: 500 percent.
 5. Tensile Strength: 18 lbf/inch in width.
2.9 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:

1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
For above-ambient services, do not install insulation to the following:

1. Vibration-control devices.
2. Testing agency labels and stamps.
3. Nameplates and data plates.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies.
3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:
1. Install preformed sections of same material as straight segments of pipe insulation when available.
2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 4. Install insulation to flanges as specified for flange insulation application.

3.7 FINISHES
A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Contracting Officer. Vary first and second coats to allow visual inspection of the completed Work.

3.8 FIELD QUALITY CONTROL
A. Perform tests and inspections.
B. Tests and Inspections:
 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Contracting Officer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.
C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 1. Drainage piping located in crawl spaces.
 2. Underground piping.
 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.10 INDOOR PIPING INSULATION SCHEDULE

A. Exposed Domestic Cold Water:
 1. NPS 1 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/4 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

B. Domestic Hot Water, Recirculated Hot Water, and Power-wash Hot Water:
 1. NPS 1-1/4 and Smaller: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.
 2. NPS 1-1/2 and Larger: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1/2 inch thick.

3.11 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Domestic Water Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 2 inches thick.
END OF SECTION 22 07 19
SECTION 22 11 13 - FACILITY WATER DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes water-distribution piping and related components outside the building for combined water service and fire-service mains.

B. Utility-furnished products include water meters that will be furnished to the site, ready for installation.

1.2 DEFINITIONS

A. EPDM: Ethylene propylene diene terpolymer rubber.

B. LLDPE: Linear, low-density polyethylene plastic.

C. PA: Polyamide (nylon) plastic.

D. PE: Polyethylene plastic.

E. PP: Polypropylene plastic.

F. PVC: Polyvinyl chloride plastic.

G. RTRF: Reinforced thermosetting resin (fiberglass) fittings.

H. RTRP: Reinforced thermosetting resin (fiberglass) pipe.

I. DIP: Ductile Iron Pipe

J. GI: Gray Iron Pipe

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings: Detail precast concrete vault assemblies and indicate dimensions, method of field assembly, and components.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: For piping and specialties including relation to other services in same area, drawn to scale. Show piping and specialty sizes and valves, meter and specialty locations, and elevations.

B. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For water valves and specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Regulatory Requirements:
 1. Comply with requirements of utility company supplying water. Include tapping of water mains and backflow prevention.
 2. Comply with standards of authorities having jurisdiction for potable-water-service piping, including materials, installation, testing, and disinfection.
 3. Comply with standards of authorities having jurisdiction for fire-suppression water-service piping, including materials, hose threads, installation, and testing.

B. Piping materials shall bear label, stamp, or other markings of specified testing agency.

D. NFPA Compliance: Comply with NFPA 24 for materials, installations, tests, flushing, and valve and hydrant supervision for fire-service-main piping for fire suppression.

E. NSF Compliance:
 1. Comply with NSF 61 for materials for water-service piping and specialties for domestic water.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Preparation for Transport: Prepare valves, including fire hydrants, according to the following:
 1. Ensure that valves are dry and internally protected against rust and corrosion.
 2. Protect valves against damage to threaded ends and flange faces.
 3. Set valves in best position for handling. Set valves closed to prevent rattling.

B. During Storage: Use precautions for valves, including fire hydrants, according to the following:
1. Do not remove end protectors unless necessary for inspection; then reinstall for storage.
2. Protect from weather. Store indoors and maintain temperature higher than ambient dew-point temperature. Support off the ground or pavement in watertight enclosures when outdoor storage is necessary.

C. Handling: Use sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

D. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.

E. Protect stored piping from moisture and dirt. Elevate above grade. Do not exceed structural capacity of floor when storing inside.

F. Protect flanges, fittings, and specialties from moisture and dirt.

1.8 PROJECT CONDITIONS

A. Interruption of Existing Water-Distribution Service: Do not interrupt service to facilities occupied by the Government or others unless permitted under the following conditions and then only after arranging to provide temporary water-distribution service according to requirements indicated:

1. Notify Contracting Officer no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of water-distribution service without Contracting Officer’s written permission.

1.9 COORDINATION

A. Coordinate connection to water main with Contracting Officer.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Soft Copper Tube: ASTM B 88, Type K, water tube, annealed temper.

2. Copper, Pressure-Seal Fittings:
 a. NPS 2 and Smaller: Wrought-copper fitting with EPDM O-ring seal in each end.
B. Bronze Flanges: ASME B16.24, Class 150, with solder-joint end. Furnish Class 300 flanges if required to match piping.

C. Copper Unions: MSS SP-123, cast-copper-alloy, hexagonal-stock body with ball-and-socket, metal-to-metal seating surfaces, and solder-joint or threaded ends.

2.2 DUCTILE-IRON PIPE AND FITTINGS

A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.

2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.

1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.

2. Gaskets: AWWA C111, rubber.

C. Flanges: ASME 16.1, Class 125, cast iron.

2.3 SPECIAL PIPE FITTINGS

A. Ductile-Iron Flexible Expansion Joints:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. EBAA Iron, Inc.
 b. Hays Fluid Controls; a division of ROMAC Industries Inc.
 c. Star Pipe Products.

2. Description: Compound, ductile-iron fitting with combination of flanged and mechanical-joint ends complying with AWWA C110 or AWWA C153. Include two gasketed ball-joint sections and one or more gasketed sleeve sections. Assemble components for offset and expansion indicated. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.

 a. Pressure Rating: 250 psig minimum.
 b. Offset: 21 inches.
 c. Expansion Required: 12 inches.

B. Ductile-Iron Deflection Fittings:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. EBAA Iron, Inc.
 b. U.S. Pipe

2. Description: Compound, ductile-iron coupling fitting with sleeve and 1 or 2 flexing sections for up to 15-degree deflection, gaskets, and restrained-joint ends complying with AWWA C110 or AWWA C153. Include AWWA C111, ductile-iron glands, rubber gaskets, and steel bolts.
 a. Pressure Rating: 250 psig minimum.

2.4 PIPING SPECIALTIES

A. Transition Fittings: Manufactured fitting or coupling same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

B. Flexible Connectors:
 1. Ferrous-Metal Piping: Stainless-steel hose covered with stainless-steel wire braid; with ASME B1.20.1, threaded steel pipe nipples or ASME B16.5, steel pipe flanges welded to hose.

2.5 CORROSION-PROTECTION PIPING ENCASEMENT

A. Encasement for Underground Metal Piping:
 1. Standards: ASTM A 674 or AWWA C105.
 2. Form: Sheet or tube.
 3. Material: LLDPE film of 0.008-inch minimum thickness, or high-density, crosslaminated PE film of 0.004-inch minimum thickness.

2.6 GATE VALVES

A. AWWA, Cast-Iron Gate Valves:
 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 d. Crane Co.; Crane Valve Group; Stockham Div.
e. East Jordan Iron Works, Inc.
f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
g. McWane, Inc.; Kennedy Valve Div.
h. McWane, Inc.; M & H Valve Company Div.
i. McWane, Inc.; Tyler Pipe Div.; Utilities Div.
k. NIBCO INC.
l. U.S. Pipe and Foundry Company.

2. Nonrising-Stem, Resilient-Seated Gate Valves:

a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.

1) Standard: AWWA C509.
2) Minimum Pressure Rating: 200 psig.
3) End Connections: Mechanical joint.
4) Interior Coating: Complying with AWWA C550.

B. UL/FMG, Cast-Iron Gate Valves:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

c. Crane Co.; Crane Valve Group; Stockham Div.
d. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
e. McWane, Inc.; Kennedy Valve Div.
f. McWane, Inc.; M & H Valve Company Div.
g. Mueller Co.; Water Products Div.
h. NIBCO INC.
i. U.S. Pipe and Foundry Company.

2. UL/FMG, Nonrising-Stem Gate Valves:

a. Description: Iron body and bonnet with flange for indicator post, bronze seating material, and inside screw.

1) Standards: UL 262 and FMG approved.
2) Minimum Pressure Rating: 175 psig.
3) End Connections: Flanged.

2.7 GATE VALVE ACCESSORIES AND SPECIALTIES

A. Tapping-Sleeve Assemblies:
1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. East Jordan Iron Works, Inc.
 c. Flowserve.
 d. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 e. McWane, Inc.; Kennedy Valve Div.
 f. McWane, Inc.; M & H Valve Company Div.
 g. Mueller Co.; Water Products Div.
 h. U.S. Pipe and Foundry Company.

2. Description: Sleeve and valve compatible with drilling machine.
 a. Standard: MSS SP-60.
 b. Tapping Sleeve: Ductile-iron, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
 c. Valve: AWWA, cast-iron, nonrising-stem, resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.

B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.

1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.

C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.

2.8 FIRE HYDRANTS

A. Dry-Barrel Fire Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 d. American Foundry Group, Inc.
 e. East Jordan Iron Works, Inc.
 f. McWane, Inc.; Clow Valve Co. Div. (Oskaloosa).
 g. McWane, Inc.; Kennedy Valve Div.
 h. McWane, Inc.; M & H Valve Company Div.
i. Mueller Co.; Water Products Div.

j. Troy Valve; a division of Penn-Troy Manufacturing, Inc.

k. U.S. Pipe and Foundry Company.

2. Description: Freestanding, with one NPS 4-1/2 and two NPS 2-1/2 outlets, 5-1/4-inch main valve, drain valve, and NPS 6 mechanical-joint inlet. Include interior coating according to AWWA C550. Hydrant shall have cast-iron body, compression-type valve opening against pressure and closing with pressure.

b. Pressure Rating: 250 psig.

2.9 FLUSHING HYDRANTS

A. Post-Type Flushing Hydrants:

1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

a. GIL Industries, Inc.

b. Kupferle Foundry Co. (The).

c. Mueller Co.; Water Products Div.

2. Description: Nonfreeze and drainable, of length required for shutoff valve installation below frost line.

a. Pressure Rating: 150 psig minimum.

b. Outlet: One, with horizontal discharge.

c. Hose Thread: NPS 2-1/2, with NFPA 1963 external hose thread for use by local fire department, and with cast-iron cap with brass chain.

d. Barrel: Cast-iron or steel pipe with breakaway feature.

e. Valve: Bronze body with bronze-ball or plunger closure, and automatic draining.

g. Exterior Finish: Red alkyd-gloss enamel paint, unless otherwise indicated.

h. Inlet: NPS 2 minimum.

i. Operating Wrench: One for each unit.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Refer to Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.
3.2 PIPING APPLICATIONS

A. General: Use pipe, fittings, and joining methods for piping systems according to the following applications.

B. Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.

C. Do not use flanges or unions for underground piping.

D. Underground water-service piping NPS 3/4 to NPS 3 shall be the following:
 1. Soft copper tube, ASTM B 88, Type K; copper, pressure-seal fittings; and pressure-sealed joints.

E. Underground Combined Water-Service and Fire-Service-Main Piping NPS 3 to NPS 12 shall be the following:
 1. Ductile-iron, push-on-joint pipe; ductile-iron, push-on-joint fittings; and gasketed or mechanical-joint pipe; ductile-iron, mechanical-joint fittings; and mechanical joints.

3.3 VALVE APPLICATIONS

A. General Application: Use mechanical-joint-end valves for NPS 3 and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, nonrising-stem gate valves for installation with indicator posts.

B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 2. Underground Valves, NPS 4 and Larger, for Indicator Posts: UL/FMG, cast-iron, nonrising-stem gate valves with indicator post.

3.4 PIPING INSTALLATION

A. Water-Main Connection: Tap water main according to requirements of water utility company and of size and in location indicated.

B. Make connections larger than NPS 2 with tapping machine according to the following:
 1. Install tapping sleeve and tapping valve according to MSS SP-60.
 2. Install tapping sleeve on pipe to be tapped. Position flanged outlet for gate valve.
 3. Use tapping machine compatible with valve and tapping sleeve; cut hole in main. Remove tapping machine and connect water-service piping.
 4. Install gate valve onto tapping sleeve. Comply with MSS SP-60. Install valve with stem pointing up and with valve box.
C. Comply with NFPA 24 for fire-service-main piping materials and installation.
 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

D. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
 1. Install PE corrosion-protection encasement according to ASTM A 674 or AWWA C105.

E. Bury piping with depth of cover over top at least 36 inches, with top at least 12 inches below level of maximum frost penetration, and according to the following:
 1. Under Driveways: With at least 36 inches cover over top.
 2. In Loose Gravelly Soil and Rock: With at least 12 inches additional cover.

F. Install piping by tunneling or jacking, or combination of both, under streets and other obstructions that cannot be disturbed.

G. Extend water-service piping and connect to water-supply source and building-water-piping systems at outside face of building wall in locations and pipe sizes indicated.
 1. Terminate water-service piping at building wall until building-water-piping systems are installed. Terminate piping with caps, plugs, or flanges as required for piping material. Make connections to building-water-piping systems when those systems are installed.

H. Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

I. See Section 21 13 13 "Wet-Pipe Sprinkler Systems," for fire-suppression-water piping inside the building.

J. See Section 22 11 16 "Domestic Water Piping" for potable-water piping inside the building.

3.5 JOINT CONSTRUCTION

A. Make pipe joints according to the following:
 3. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
 a. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges or flange kits.
 b. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.6 ANCHORAGE INSTALLATION

A. Anchorage, General: Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include the following:

FACILITY WATER DISTRIBUTION PIPING
1. Concrete thrust blocks.
2. Locking mechanical joints.

B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:

C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.7 VALVE INSTALLATION

A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.

B. UL/FMG, Gate Valves: Comply with NFPA 24. Install each underground valve and valves in vaults with stem pointing up and with vertical cast-iron indicator post.

C. UL/FMG, Valves Other Than Gate Valves: Comply with NFPA 24.

3.8 FIRE HYDRANT INSTALLATION

A. General: Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.

B. AWWA Fire Hydrants: Comply with AWWA M17.

3.9 FLUSHING HYDRANT INSTALLATION

A. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.

3.10 CONNECTIONS

A. Connect water-distribution piping to existing water main. Use tapping sleeve and tapping valve.

B. Connect water-distribution piping to interior domestic water and fire-suppression piping.
3.11 FIELD QUALITY CONTROL

A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.

B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.

 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

C. Prepare reports of testing activities.

3.12 IDENTIFICATION

A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 312000 "Earth Moving."

3.13 CLEANING

A. Clean and disinfect water-distribution piping as follows:

 1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.

 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.

 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:

 a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.

 b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.

 c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.

 d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.

B. Prepare reports of purging and disinfecting activities.
END OF SECTION 22 11 13
SECTION 22 11 16 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Under-building-slab and aboveground domestic water pipes, tubes, and fittings inside buildings.

1.2 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

B. Sustainable Design Submittals:

1. Product Data: For adhesives, indicating VOC content.

1.3 INFORMATIONAL SUBMITTALS

A. System purging and disinfecting activities report.

B. Field quality-control reports.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."

2.2 COPPER TUBE AND FITTINGS

A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.

B. Cast-Copper, Solder-Joint Fittings: ASME B16.18, pressure fittings.

D. Copper Unions:
 1. MSS SP-123.
 4. Solder-joint or threaded ends.

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, plain ends, welded and seamless, Grade B, and Schedule as indicated in piping applications articles.

B. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

C. Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, black steel of same Type, Grade, and Schedule as pipe in which installed.

2.4 COPPER PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials:
 1. AWWA C110/A21.10, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free unless otherwise indicated.
 2. Full-face or ring type unless otherwise indicated.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solder Filler Metals: ASTM B 32, lead-free alloys.

D. Flux: ASTM B 813, water flushable.

E. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for general-duty brazing unless otherwise indicated.

2.5 STEEL PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
D. Welding Materials: Comply with Section II, Part C, of ASME Boiler and Pressure Vessel Code for welding materials appropriate for wall thickness and for chemical analysis of pipe being welded.

2.6 TRANSITION FITTINGS

A. General Requirements:
 1. Same size as pipes to be joined.
 2. Pressure rating at least equal to pipes to be joined.
 3. End connections compatible with pipes to be joined.

2.7 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:
 2. Pressure Rating: 125 psig minimum at 180 deg F.

C. Dielectric Flanges:
 2. Factory-fabricated, bolted, companion-flange assembly.
 4. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.
B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."

C. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 22 05 19 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 22 11 19 "Domestic Water Piping Specialties."

D. Install shutoff valve immediately upstream of each dielectric fitting.

E. Install water-pressure-reducing valves downstream from shutoff valves. Comply with requirements for pressure-reducing valves in Section 22 11 19 "Domestic Water Piping Specialties."

F. Install domestic water piping level with 0.25 percent slope downward toward drain and plumb.

G. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.

I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.

K. Install piping to permit valve servicing.

L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.

M. Install piping free of sags and bends.

N. Install fittings for changes in direction and branch connections.

O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.

P. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 22 11 23 "Domestic Water Pumps."

Q. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 22 05 19 "Meters and Gages for Plumbing Piping."

R. Install sleeves for piping penetrations of walls, ceilings, and floors.

S. Install sleeve seals for piping penetrations of concrete walls and slabs.
T. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

D. Brazed Joints for Copper Tubing: Comply with CDA's "Copper Tube Handbook," "Brazed Joints" chapter.

E. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."

F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

3.5 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger, support products, and installation in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."
 1. Vertical Piping: MSS Type 8 or 42, clamps.
 2. Individual, Straight, Horizontal Piping Runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
3. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.

4. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support vertical piping and tubing at base and at each floor.

D. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.

E. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
4. NPS 2-1/2: 108 inches with 1/2-inch rod.
5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
6. NPS 6: 10 feet with 5/8-inch rod.
7. NPS 8: 10 feet with 3/4-inch rod.

F. Install supports for vertical copper tubing every 10 feet.

G. Support piping and tubing not listed in this article according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.

C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.

D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:

1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.
3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.
3.7 IDENTIFICATION

A. Identify system components. Comply with requirements for identification materials and installation in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Piping Inspections:
 a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:
 a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
 b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
 c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
 e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
 f. Prepare reports for tests and for corrective action required.

B. Domestic water piping will be considered defective if it does not pass tests and inspections.
C. Prepare test and inspection reports.

3.9 ADJUSTING

A. Perform the following adjustments before operation:

1. Close drain valves, hydrants, and hose bibbs.
2. Open shutoff valves to fully open position.
3. Open throttling valves to proper setting.
4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 b. Adjust calibrated balancing valves to flows indicated.
5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

A. Clean and disinfect potable domestic water piping as follows:

1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 b. Fill and isolate system according to either of the following:
 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.
 c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
 d. Repeat procedures if biological examination shows contamination.
 e. Submit water samples in sterile bottles to authorities having jurisdiction.

B. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
C. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.

C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.

D. Aboveground domestic water piping, NPS 2 and smaller, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

E. Aboveground domestic water piping, NPS 2-1/2 to NPS 4, shall be the following:
 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.

F. Power-wash Piping: Schedule 80, Type S, Grade B, steel pipe; Class 125 cast-iron fittings; and threaded joints. (Power-wash piping material shall follow power-wash manufacturer requirements and may differ from project requirements noted.)

3.12 VALVE SCHEDULE

A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use butterfly, ball, or gate valves with flanged ends for piping NPS 2-1/2 and larger.
 2. Throttling Duty: Use ball or globe valves for piping NPS 2 and smaller. Use butterfly or ball valves with flanged ends for piping NPS 2-1/2 and larger.

B. Use check valves to maintain correct direction of domestic water flow to and from equipment.

C. Iron grooved-end valves may be used with grooved-end piping.
SECTION 22 11 19 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Vacuum breakers.
2. Backflow preventers.
5. Temperature-actuated, water mixing valves.
7. Outlet boxes.
8. Hose stations.
9. Hose bibbs.
10. Wall hydrants.
11. Drain valves.
13. Air vents.
15. Trap-seal primer systems.
17. Flexible connectors.
18. Water meters.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Product Data: For water consumption.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 Annex G and NSF 14.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

A. Hose-Connection Vacuum Breakers:

2. Body: Bronze, nonremovable, with manual drain.

2.4 BACKFLOW PREVENTERS

A. Double-Check, Backflow-Prevention Assemblies:

2. Operation: Continuous-pressure applications unless otherwise indicated.
3. Pressure Loss: 5 psig maximum, through middle third of flow range.
4. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
5. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
6. Configuration: Designed for vertical, straight-through flow.
7. Accessories:

a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.

2.5 BALANCING VALVES

A. Memory-Stop Balancing Valves:

2. Pressure Rating: 400-psig minimum CWP.
3. Size: NPS 2 or smaller.
4. Body: Copper alloy.
5. Port: Standard or full port.
7. Seats and Seals: Replaceable.
8. End Connections: Solder joint or threaded.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Water-Temperature Limiting Devices:
 3. Type: Thermostatically controlled, water mixing valve.
 5. Connections: Threaded union inlets and outlet.
 6. Accessories: Check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
 7. Tempered-Water Setting: 110 deg F.

B. Primary, Thermostatic, Water Mixing Valves:
 2. Pressure Rating: 125 psig minimum unless otherwise indicated.
 3. Type: Cabinet-type, thermostatically controlled, water mixing valve.
 5. Connections: Threaded union inlets and outlet.
 6. Accessories: Manual temperature control, check stops on hot- and cold-water supplies, and adjustable, temperature-control handle.
 7. Valve Finish: Rough bronze.
 8. Piping Finish: Copper.
 9. Cabinet: Factory fabricated, stainless steel, for surface mounting and with hinged, stainless-steel door.

C. Individual-Fixture, Water Tempering Valves:
 2. Pressure Rating: 125 psig minimum unless otherwise indicated.
 5. Inlets and Outlet: Threaded.
 6. Finish: Rough or chrome-plated bronze.

2.7 STRainers FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:
 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
4. Screen: Stainless steel with round perforations unless otherwise indicated.

2.8 OUTLET BOXES

A. Clothes Washer Outlet Boxes:
 1. Mounting: Recessed.
 3. Faucet: Combination valved fitting or separate hot- and cold-water valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
 4. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
 5. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.

B. Icemaker Outlet Boxes:
 1. Mounting: Recessed.
 3. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
 4. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.9 HOSE BIBBS

A. Hose Bibbs:
 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
 10. Finish for Finished Rooms: Chrome or nickel plated.
 11. Operation for Equipment Rooms: Wheel handle or operating key.
 14. Include operating key with each operating-key hose bibb.
 15. Include wall flange with each chrome- or nickel-plated hose bibb.
2.10 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

3. Operation: Loose key.
4. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
5. Inlet: NPS 3/4 or NPS 1.
6. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
7. Box: Deep, flush mounted with cover.
8. Box and Cover Finish: Polished nickel bronze.
10. Operating Keys(s): Two with each wall hydrant.

2.11 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

2. Pressure Rating: 400-psig minimum CWP.
4. Body: Copper alloy.
5. Ball: Chrome-plated brass.
8. Inlet: Threaded or solder joint.

2.12 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

2. Type: Metal bellows.
3. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.13 AIR VENTS

A. Bolted-Construction Automatic Air Vents:

1. Body: Bronze.
2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
3. Float: Replaceable, corrosion-resistant metal.

2.14 TRAP-SEAL PRIMER DEVICE

A. Supply-Type, Trap-Seal Primer Device:
 4. Inlet and Outlet Connections: NPS 1/2 threaded, union, or solder joint.
 5. Gravity Drain Outlet Connection: NPS 1/2 threaded or solder joint.
 6. Finish: Chrome plated, or rough bronze for units used with pipe or tube that is not chrome finished.

B. Drainage-Type, Trap-Seal Primer Device:
 2. Size: NPS 1-1/4 minimum.

2.15 TRAP-SEAL PRIMER SYSTEMS

A. Trap-Seal Primer Systems:
 2. Piping: NPS 3/4, ASTM B 88, Type L; copper, water tubing.
 3. Cabinet: Surface-mounted steel box with stainless-steel cover.
 4. Electric Controls: 24-hour timer, solenoid valve, and manual switch for 120-V ac power.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.16 FLEXIBLE CONNECTORS

A. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.
 3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.
2.17 WATER METERS

A. Turbine-Type Water Meters:
 1. Description:
 b. Pressure Rating: 150-psig working pressure.
 c. Body Design: Turbine; totalization meter.
 d. Registration: In gallons or cubic feet as required by utility company.
 e. Case: Bronze.
 f. End Connections for Meters NPS 2 and Smaller: Threaded.
 g. End Connections for Meters NPS 2-1/2 and Larger: Flanged.

B. Remote Registration System: Direct-reading type complying with AWWA C706 with a pulse output signal to the BAS, low-voltage connecting wiring, and remote register assembly as required by utility company.

C. Meter is for owner data only and associated with utility company meter.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 1. Locate backflow preventers in same room as connected equipment or system.
 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 3. Do not install bypass piping around backflow preventers.

B. Install balancing valves in locations where they can easily be adjusted.

C. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
 1. Install cabinet-type units recessed in or surface mounted on wall as specified.

D. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs.

E. Install water-hammer arresters in water piping according to PDI-WH 201.

F. Install air vents at high points of water piping. Install drain piping and discharge onto floor drain.
G. Install supply-type, trap-seal primer valves with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust valve for proper flow.

H. Install drainage-type, trap-seal primer valves as lavatory trap with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting.

I. Install trap-seal primer systems with outlet piping pitched down toward drain trap a minimum of 1 percent, and connect to floor-drain body, trap, or inlet fitting. Adjust system for proper flow.

3.2 CONNECTIONS

A. Comply with requirements for ground equipment in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

B. Fire-retardant-treated-wood blocking is specified in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test each pressure vacuum and breaker reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.

B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.4 ADJUSTING

A. Set field-adjustable pressure set points of water pressure-reducing valves.

B. Set field-adjustable flow set points of balancing valves.

C. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 22 11 19
SECTION 22 11 23 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Horizontally mounted, in-line, close-coupled centrifugal pumps.

1.2 DEFINITIONS
 A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Sustainable Design Submittals:
 1. Product Data: For pump controls.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Retain shipping flange protective covers and protective coatings during storage.
 B. Protect bearings and couplings against damage.
C. Comply with pump manufacturer's written rigging instructions for handling.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Armstrong Pumps, Inc.
2. Bell & Gossett; a Xylem brand.
3. TACO Incorporated.

B. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhung-impeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.

C. Pump Construction:

1. Casing: Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
2. Impeller: Statically and dynamically balanced, closed, and keyed to shaft.
3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
5. Bearings: Oil-lubricated; bronze-journal or ball type.
6. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.

D. Motor: Single speed, with grease-lubricated ball bearings; and resiliently or rigidly mounted to pump casing.

E. Capacities and Characteristics:

2. Impeller Material: ASTM B 584, cast bronze.
4. Maximum Continuous Operating Temperature: 225 deg F.
2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 22.05.13 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

A. Thermostats: Electric; adjustable for control of hot-water circulation pump.

1. Type: Water-immersion temperature sensor, for installation in piping.
2. Range: 65 to 200 deg F.
3. Enclosure: NEMA 250, Type 4X.
4. Operation of Pump: On or off.
5. Transformer: Provide if required.
7. Settings: Start pump at 105 deg F and stop pump at 120 deg F.

B. Timers: Electric, for control of hot-water circulation pump.

1. Type: Programmable, seven-day clock with manual override on-off switch.
2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
3. Operation of Pump: On or off.
4. Transformer: Provide if required.
5. Power Requirement: 120-V ac.
6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.

C. Time-Delay Relays: Electric, for control of hot-water circulation pump between water heater and connected hot-water storage tank.

1. Type: Adjustable time-delay relay.
2. Range: Up to five minutes.
4. Enclosure: NEMA 250, Type 4X.
5. Operation of Pump: On or off.
6. Transformer: Provide if required.
8. Programmable Sequence of Operation: Limit pump operation to periods of burner operation plus maximum five minutes after the burner stops.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

A. Comply with HI 1.4.

B. Install horizontally mounted, in-line, centrifugal pumps with shaft(s) horizontal.
 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 5. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Install continuous-thread hanger rods and spring hangers of size required to support pump weight.
 1. Comply with requirements for hangers and supports specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

D. Install pressure switches in water supply piping.

E. Install thermostats in hot-water return piping.

F. Install timers on wall in mechanical space.

G. Install time-delay relays in piping between water heaters and hot-water storage tanks.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 11 16 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to pumps to allow service and maintenance.

C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 a. Horizontally mounted, in-line, separately coupled centrifugal pumps.
 b. Horizontally mounted, in-line, close-coupled centrifugal pumps.
 c. Vertically mounted, in-line, close-coupled centrifugal pumps.
 d. Comply with requirements for flexible connectors specified in Section 22 11 16 "Domestic Water Piping."

D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping" and Section 22 05 23.14 "Check Valves for Plumbing Piping," and comply with requirements for strainers specified in Section 22 11 19 "Domestic Water Piping Specialties."

1. Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

E. Connect pressure switches, thermostats, time-delay relays, and timers to pumps that they control.

F. Interlock pump between water heater and hot-water storage tank with water heater burner and time-delay relay.

3.4 IDENTIFICATION

A. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Check piping connections for tightness.
3. Clean strainers on suction piping.
4. Set pressure switches, thermostats, timers, and time-delay relays for automatic starting and stopping operation of pumps.
5. Perform the following startup checks for each pump before starting:

 a. Verify bearing lubrication.
 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
c. Verify that pump is rotating in the correct direction.

6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Start motor.
8. Open discharge valve slowly.
9. Adjust temperature settings on thermostats.
10. Adjust timer settings.

3.6 ADJUSTING

A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.

B. Adjust initial temperature set points.

C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 22 11 23
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Nonpressure and pressure couplings.
 3. Cleanouts.

1.2 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.
B. PVC: Polyvinyl chloride.

1.3 ACTION SUBMITTALS

A. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Profile Drawings: Show system piping in elevation. Draw profiles to horizontal scale of not less than 1 inch equals 50 feet and to vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.

C. Field quality-control reports.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic pipe, and fittings in direct sunlight.
B. Protect pipe, pipe fittings, and seals from dirt and damage.
C. Handle manholes according to manufacturer’s written rigging instructions.

1.6 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Sewerage Service: Do not interrupt service to facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Contracting Officer no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Contracting Officer’s written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:

1. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: ASTM D 3034, PVC with bell ends.

2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:

1. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 b. Fernco Inc.
 c. Logan Clay Pipe.
 d. Mission Rubber Company; a division of MCP Industries, Inc.
e. NDS.
f. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.

2. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Shielded, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Cascade Waterworks Mfg.
 c. Mission Rubber Company; a division of MCP Industries, Inc.

2. Description: ASTM C 1460, elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

E. Ring-Type, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fernco Inc.
 b. Logan Clay Pipe.
 c. Mission Rubber Company; a division of MCP Industries, Inc.

2. Description: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.3 CLEANOUTS

A. Cast-Iron Cleanouts:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MIFAB, Inc.
 d. Tyler Pipe.
 e. Watts Water Technologies, Inc.
 f. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
2. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

3. Top-Loading Classification(s): Light Duty, Medium Duty, Heavy Duty, and Extra-Heavy Duty.

4. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

2.4 MANHOLES

A. Standard Precast Concrete Manholes:

1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.

2. Diameter: 48 inches minimum unless otherwise indicated.

3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.

4. Base Section: 10-inch minimum thickness for floor slab and 6-inch minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.

5. Riser Sections: 6-inch minimum thickness, of length to provide depth indicated.

6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.

7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.

8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.

9. Steps: ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP; wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.

10. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser, with 4-inch-minimum-width flange and 26-inch-diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SANITARY SEWER."

C. Manhole-Cover Inserts:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

 a. FRW Industries; a Syneco Systems, Inc. company.
 b. Knutson Enterprises.
 c. L. F. Manufacturing, Inc.
 d. Parson Environmental Products, Inc.

2. Description; Manufactured, plastic form, of size to fit between manhole frame and cover and designed to prevent stormwater inflow. Include handle for removal and gasket for gastight sealing.

3. Type: Solid.

2.5 CONCRETE

A. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R, and the following:

 1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.

 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.

 a. Invert Slope: 1 percent through manhole.

 2. Benches: Concrete, sloped to drain into channel.

 a. Slope: 4 percent.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.

 1. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 deformed steel.
PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.

C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.

E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Install gravity-flow, nonpressure, drainage piping according to the following:
 1. Install piping pitched down in direction of flow, at minimum slope of 1 percent unless otherwise indicated.
 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
 3. Install piping with 36-inch minimum cover.
 4. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.

G. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:
 1. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
2. Join dissimilar pipe materials with nonpressure-type, flexible couplings.

 B. Pipe couplings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

 1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.

 a. Shielded flexible couplings for pipes of same or slightly different OD.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping’s OD and larger piping’s ID permits installation.

3.4 MANHOLE INSTALLATION

 A. General: Install manholes complete with appurtenances and accessories indicated.

 B. Install precast concrete manhole sections with sealants according to ASTM C 891.

 C. Form continuous concrete channels and benches between inlets and outlet.

 D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

 E. Install manhole-cover inserts in frame and immediately below cover.

3.5 CONCRETE PLACEMENT

 A. Place cast-in-place concrete according to ACI 318.

3.6 CLEANOUT INSTALLATION

 A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewers pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

 B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.7 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

B. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.

 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.8 IDENTIFICATION

A. Comply with requirements in Section 31 20 00 "Earth Moving" for underground utility identification devices. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

1. Use detectable warning tape over ferrous piping.

2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.
3.9 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.

3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 b. Close openings in system and fill with water.
 c. Purge air and refill with water.
 d. Disconnect water supply.
 e. Test and inspect joints for leaks.

6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
 b. Option: Test concrete gravity sewer piping according to ASTM C 924.

7. Manholes: Perform hydraulic test according to ASTM C 969.

C. Leaks and loss in test pressure constitute defects that must be repaired.

D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.
3.10 CLEANING

A. Clean dirt and superfluous material from interior of piping. Flush with potable water.

END OF SECTION 22 13 13
SECTION 22 13 16 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Pipe, tube, and fittings.
 2. Specialty pipe fittings.

1.2 ACTION SUBMITTALS
A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS
A. Seismic Qualification Certificates: For waste and vent piping, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Detailed description of piping anchorage devices on which the certification is based and their installation requirements.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:

B. Seismic Performance: Soil, waste, and vent piping and support and installation shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

2.2 PIPING MATERIALS
A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 74, Service class(es).
B. Gaskets: ASTM C 564, rubber.
C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

A. Pipe and Fittings: ASTM A 888 or CISPI 301.
B. CISPI, Hubless-Piping Couplings:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. MIFAB, Inc.
 c. Tyler Pipe; a subsidiary of McWane Inc.
 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 COPPER TUBE AND FITTINGS

A. Copper Type DWV Tube: ASTM B 306, drainage tube, drawn temper.
B. Copper Drainage Fittings: ASME B16.23, cast copper or ASME B16.29, wrought copper, solder-joint fittings.
C. Copper Pressure Fittings:
PART 3 - EXECUTION

3.1 EARTH MOVING
 A. Comply with requirements for excavating, trenching, and backfilling specified in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION
 A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
 B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
 C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
 D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
 E. Install piping to permit valve servicing.
 F. Install piping at indicated slopes.
 G. Install piping free of sags and bends.
 H. Install fittings for changes in direction and branch connections.
 I. Install piping to allow application of insulation.
 J. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."
 K. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
NORTH CAROLINA AIR NATIONAL GUARD – 145TH WING
22 SEPTEMBER 2017
C-17 CORROSION CONTROL / FUEL CELL HANGAR PROJECT
CHARLOTTE-DOUGLAS ANG BASE – CHARLOTTE, NC
FINAL B-3 SUBMITTAL

SANITARY WASTE AND VENT PIPING

22 13 16 - 4

a. Straight tees, elbows, and crosses may be used on vent lines.

3. Do not change direction of flow more than 90 degrees.
4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.

a. Reducing size of waste piping in direction of flow is prohibited.

L. Lay buried building waste piping beginning at low point of each system.

1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
3. Maintain swab in piping and pull past each joint as completed.

M. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:

1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.

N. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."

O. Install aboveground copper tubing according to CDA's "Copper Tube Handbook."

P. Install engineered soil and waste and vent piping systems as follows:

3. Reduced-Size Venting: Comply with standards of authorities having jurisdiction.

Q. Install underground, copper, force-main tubing according to CDA's "Copper Tube Handbook."

R. Install force mains at elevations indicated.

S. Plumbing Specialties:

1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.

a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.

b. Comply with requirements for cleanouts specified in Section 22 13 19 "Sanitary Waste Piping Specialties."
2. Install drains in sanitary waste gravity-flow piping.
 a. Comply with requirements for drains specified in Section 22 13 19 "Sanitary Waste Piping Specialties."

T. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.

U. Install sleeves for piping penetrations of walls, ceilings, and floors.

V. Install sleeve seals for piping penetrations of concrete walls and slabs.

W. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 JOINT CONSTRUCTION

B. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.

C. Join copper tube and fittings with soldered joints according to ASTM B 828. Use ASTM B 813, water-flushable, lead-free flux and ASTM B 32, lead-free-alloy solder.

D. Grooved Joints: Cut groove ends of pipe according to AWWA C606. Lubricate and install gasket over ends of pipes or pipe and fitting. Install coupling housing sections, over gasket, with keys seated in piping grooves. Install and tighten housing bolts.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

B. Comply with requirements for pipe hanger and support devices and installation specified in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment."

1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
3. Vertical Piping: MSS Type 8 or Type 42, clamps.
4. Install individual, straight, horizontal piping runs:
 a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.

5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
6. Base of Vertical Piping: MSS Type 52, spring hangers.

C. Support horizontal piping and tubing within 12 inches of each fitting and coupling.

D. Support vertical piping and tubing at base and at each floor.

E. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.

F. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
2. NPS 3: 60 inches with 1/2-inch rod.
3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.

G. Install supports for vertical cast-iron soil piping every 15 feet.

H. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1-1/4: 72 inches with 3/8-inch rod.
2. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
3. NPS 2-1/2: 108 inches with 1/2-inch rod.
4. NPS 3 and NPS 5: 10 feet with 1/2-inch rod.
5. NPS 6: 10 feet with 5/8-inch rod.
6. NPS 8: 10 feet with 3/4-inch rod.

I. Install supports for vertical copper tubing every 10 feet.

J. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.5 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.

C. Connect waste and vent piping to the following:

1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
6. Equipment: Connect waste piping as indicated.
 a. Provide shutoff valve if indicated and union for each connection.
 b. Use flanges instead of unions for connections NPS 2-1/2 and larger.

D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
E. Make connections according to the following unless otherwise indicated:
 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.6 IDENTIFICATION
 A. Identify exposed sanitary waste and vent piping.
 B. Comply with requirements for identification specified in Section 22.05.53 "Identification for Plumbing Piping and Equipment."

3.7 FIELD QUALITY CONTROL
 A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
 B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
 C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
 D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.

2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.

3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 c. Inspect joints for leaks.

4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 d. Inspect plumbing fixture connections for gas and water leaks.

5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

E. Test force-main piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:

1. Leave uncovered and unconcealed new, altered, extended, or replaced force-main piping until it has been tested and approved.
 a. Expose work that was covered or concealed before it was tested.

2. Cap and subject piping to static-water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials.
 a. Isolate test source and allow to stand for four hours.
 b. Leaks and loss in test pressure constitute defects that must be repaired.

3. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
4. Prepare reports for tests and required corrective action.
3.8 CLEANING AND PROTECTION

A. Clean interior of piping. Remove dirt and debris as work progresses.

B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.

C. Place plugs in ends of uncompleted piping at end of day and when work stops.

D. Repair damage to adjacent materials caused by waste and vent piping installation.

3.9 PIPING SCHEDULE

A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.

B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 2. Copper Type DWV tube, copper drainage fittings, and soldered joints.

C. Aboveground, vent piping NPS 4 and smaller shall be the following:
 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 2. Copper Type DWV tube, copper drainage fittings, and soldered joints.
 a. Option for Vent Piping, NPS 2-1/2 and NPS 3-1/2: Hard copper tube, Type M; copper pressure fittings; and soldered joints.

D. Underground, soil, waste, and vent piping NPS 4 and smaller shall be the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

E. Underground, soil and waste piping NPS 5 and larger shall be the following:
 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.

END OF SECTION 22 13 16
SECTION 22 13 19 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Backwater valves.
2. Cleanouts.

1.2 DEFINITIONS

A. PVC: Polyvinyl chloride.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.

B. Comply with NSF 14 for plastic sanitary waste piping specialty components.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 BACKWATER VALVES

A. Drain-Outlet Backwater Valves:

1. Size: Same as floor drain outlet.
2. Body: Cast iron or bronze made for vertical installation in bottom outlet of floor drain.
3. Check Valve: Removable ball float.
4. Inlet: Threaded.
5. Outlet: Threaded or spigot.
2.3 CLEANOUTS

A. Cast-Iron Exposed Cleanouts:
 1. Standard: ASME A112.36.2M.
 2. Size: Same as connected drainage piping
 5. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Cast-Iron Exposed Floor Cleanouts:
 1. Standard: ASME A112.36.2M for adjustable housing cleanout.
 2. Size: Same as connected branch.
 3. Body or Ferrule: Cast iron.
 4. Outlet Connection: Threaded.
 5. Closure: Brass plug with straight threads and gasket.
 7. Top Loading Classification: Medium Duty.
 8. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.

C. Cast-Iron Wall Cleanouts:
 1. Standard: ASME A112.36.2M. Include wall access.
 2. Size: Same as connected drainage piping.
 4. Closure Plug:
 a. Brass.
 b. Countersunk or raised head.
 c. Drilled and threaded for cover attachment screw.
 d. Size: Same as or not more than one size smaller than cleanout size.
 5. Wall Access: Round, flat, chrome-plated brass or stainless-steel cover plate with screw.

D. Aircraft Hangar Cleanouts:
 1. Standard: ASME A112.36.2M for adjustable housing cleanout.
 2. Size: Same as connected branch.
 3. Body or Ferrule: Cast iron.
 4. Outlet Connection: Threaded.
 5. Closure: Brass plug with straight threads and gasket.
 7. Top Loading Classification: Extra Heavy Duty (50,000 lb / 250 psi).
 8. Riser: ASTM A 74, Service class, cast-iron drainage pipe fitting and riser to cleanout.
2.4 MOTORS

A. General requirements for motors are specified in Section 22 05 13 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, motor shall be large enough, so driven load will not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install backwater valves in building drain piping.

1. For interior installation, provide cleanout deck plate flush with floor and centered over backwater valve cover, and of adequate size to remove valve cover for servicing.

B. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
2. Locate at each change in direction of piping greater than 45 degrees.
3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
4. Locate at base of each vertical soil and waste stack.

C. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.

D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.

E. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

F. Install frost-resistant vent terminals on each vent pipe passing through roof. Maintain 1-inch clearance between vent pipe and roof substrate.

G. Install expansion joints on vertical stacks and conductors. Position expansion joints for easy access and maintenance.

3.2 CONNECTIONS

A. Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
B. Install piping adjacent to equipment to allow service and maintenance.

C. FOG Disposal Systems: Connect inlet and outlet to unit, connect flow-control fitting and fresh-air inlet piping to unit inlet piping, and connect vent piping between trap and media chamber. Connect electrical power.

D. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

A. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.

B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.

1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.

C. Set flashing on floors and roofs in solid coating of bituminous cement.

D. Secure flashing into sleeve and specialty clamping ring or device.

E. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings.

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:

1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.5 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.
3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government's maintenance personnel to adjust, operate, and maintain FOG disposal systems. Refer to Section 01 79 00 "Demonstration and Training."

END OF SECTION 22 13 19
SECTION 22 13 19.13 - SANITARY DRAINS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Floor drains.
 2. Trench drains.

1.2 DEFINITIONS

A. ABS: Acrylonitrile-butadiene styrene.
B. FRP: Fiberglass-reinforced plastic.
C. HDPE: High-density polyethylene.
D. PE: Polyethylene.
E. PP: Polypropylene.
F. PVC: Polyvinyl chloride.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES

A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
B. Comply with NSF 14 for plastic sanitary piping specialty components.

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains FD-1:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Zurn Industries, LLC.

2. Standard: ASME A112.6.3 with backwater valve.

5. Collar: Adjustable to finished floor.
7. Anchor Flange: Required.
8. Clamping Device: Not required.
13. Top or Strainer Material: Bronze.
15. Trap Material: Bronze.
17. Trap Features: Trap-seal primer valve drain connection.

B. Cast-Iron Shower Drains FD-1:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Zurn Industries, LLC.

2. Standard: ASME A112.6.3 with backwater valve.

5. Seepage Flange: Not required.
6. Anchor Flange: Required.
7. Clamping Device: Not required.
8. Outlet: Bottom.
11. Sediment Bucket: Not required.
12. Top or Strainer Material: Bronze.

2.3 TRENCH DRAINS

A. Trench Drains TD-1:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. Zurn Industries, LLC.

5. Clamping Device: Required.

6. Outlet: Bottom drain outlet with side vent outlet.

7. Grate Material: Ductile iron.

10. Trap Material: Cast iron.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.

1. Position floor drains for easy access and maintenance.

2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.

3. Set with grates depressed according to the following drainage area radii:
 a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.

4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 a. Maintain integrity of waterproof membranes where penetrated.
5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

B. Install trench drains at low points of surface areas to be drained.

1. Set grates of drains flush with finished surface, unless otherwise indicated.

C. Install FRP drainage system components on support devices, so that top will be flush with adjacent surface.

D. Install open drain fittings with top of hub 2 inches above floor.

3.2 CONNECTIONS

A. Comply with requirements in Section 22 13 16 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Comply with requirements in Section 22 13 19 "Sanitary Waste Piping Specialties" for backwater valves, air admittance devices and miscellaneous sanitary drainage piping specialties.

C. Comply with requirements in Section 22 13 23 "Sanitary Waste Interceptors" for grease interceptors, grease-removal devices, oil interceptors, sand interceptors, and solid interceptors.

D. Install piping adjacent to equipment to allow service and maintenance.

E. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.

B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 22 13 19.13
SECTION 22 13 23 - SANITARY WASTE INTERCEPTORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Oil interceptors.

1.2 DEFINITIONS

A. FRP: Fiberglass-reinforced plastic.

1.3 ACTION SUBMITTALS

A. Product Data: For each interceptor. Include materials of fabrication, dimensions, rated capacities, retention capacities, operating characteristics, size and location of each pipe connection, furnished specialties, and accessories.

B. Shop Drawings: For each type and size of precast concrete interceptor indicated.
 1. Include materials of construction, dimensions, rated capacities, retention capacities, location and size of each pipe connection, furnished specialties, and accessories.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Interceptors, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Piping connections. Include size, location, and elevation of each.
 2. Interface with underground structures and utility services.

PART 2 - PRODUCTS

2.1 OIL INTERCEPTORS

A. Precast Concrete Oil Interceptors: Comply with ASTM C 913.
 1. Include rubber-gasketed joints, vent connections, manholes, compartments or baffles, and piping or openings to retain oil and to permit wastewater flow.
2. Structural Design Loads:

3. Resilient Pipe Connectors: ASTM C 923, cast or fitted into interceptor walls, for each pipe connection.

4. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of interceptor to finished grade is less than 60 inches.

5. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover.

6. Manhole Frames and Covers: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch-minimum width flange and 26-inch-diameter cover.
 a. Ductile Iron: ASTM A 536, Grade 60-40-18, unless otherwise indicated.
 b. Include indented top design with lettering cast into cover, using wording equivalent to "OIL INTERCEPTOR."

7. Waste-oil storage tank and piping are specified in Section 23 11 13 "Facility Fuel-Oil Piping."

B. Cast-Iron or Steel Oil Interceptors: Factory-fabricated; with removable sediment bucket or strainer, baffles, vents, and flow-control fitting on inlet.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.

2. Inlet, Outlet, Vent, and Waste-Oil Outlet Piping Connections: Hub, hubless, or threaded, unless otherwise indicated.

3. Extension: Cast-iron or steel shroud, full size of interceptor, extending from top of interceptor to grade.

4. Cover: Cast iron or steel, with steel reinforcement to provide ASTM C 890, A-03, walkway load.

5. Comply with requirements in Section 231113 "Facility Fuel-Oil Piping" for waste-oil storage tank and piping.

6. Flow-Control Fitting: Required.

2.2 PRECAST CONCRETE MANHOLE RISERS

A. Precast Concrete Manhole Risers: ASTM C 913, with rubber-gasket joints.

1. Structural Design Loads:

2. Length: From top of underground concrete structure to grade.
3. Riser Sections: 3-inch minimum thickness and 36-inch diameter.
4. Top Section: Eccentric cone, unless otherwise indicated. Include top of cone to match grade ring size.
5. Gaskets: ASTM C 443, rubber.
6. Steps: Individual FRP steps or FRP ladder, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals.

B. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, diameter matching manhole frame and cover, and height as required to adjust the manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch-minimum width flange and 26-inch-diameter cover.

1. Ductile Iron: ASTM A 536, Grade 60-40-18, unless otherwise indicated.
2. Include indented top design with lettering cast into cover, using wording equivalent to the following:

 a. Oil Interceptors in Sanitary Sewerage System: "OIL INTERCEPTOR."

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install precast concrete interceptors according to ASTM C 891.

B. Set interceptors level and plumb.

C. Install manhole risers from top of underground concrete interceptors to manholes and gratings at finished grade.

D. Set tops of manhole frames and covers flush with finished surface in pavements.

 1. Set tops 3 inches above finish surface elsewhere unless otherwise indicated.

E. Set tops of grating frames and grates flush with finished surface.

F. Set metal interceptors level and plumb.

G. Set tops of metal interceptor covers flush with finished surface in pavements.

 1. Set tops 3 inches above finish surface elsewhere unless otherwise indicated.

H. Install piping and oil storage tanks according to Section 23 11 13 "Facility Fuel-Oil Piping."
I. Install oil interceptors, including trapping, venting, and flow-control fitting, according to authorities having jurisdiction and with clear space for servicing.
 1. Coordinate oil-interceptor storage tank and gravity drain with Section 23 11 13 "Facility Fuel-Oil Piping."

3.2 CONNECTIONS
 A. Piping installation requirements are specified in Section 22 13 16 "Sanitary Waste and Vent Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
 B. Make piping connections between interceptors and piping systems.

3.3 IDENTIFICATION
 A. Identification materials and installation are specified in Section 312000 "Earth Moving."
 1. Arrange for installation of green warning tapes directly over piping and at outside edges of underground interceptors.
 2. Use warning tapes or detectable warning tape over ferrous piping.
 3. Use detectable warning tape over nonferrous piping and over edges of underground structures.
 B. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 1. Oil interceptors.

3.4 PROTECTION
 A. Protect sanitary waste interceptors from damage during construction period.
 B. Repair damage to adjacent materials caused by sanitary waste interceptor installation.

END OF SECTION 22 13 23
SECTION 22 15 13 - GENERAL-SERVICE COMPRESSED-AIR PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. This Section includes piping and related specialties for general-service compressed-air systems operating at 200 psig or less.

1.2 DEFINITIONS
B. CR: Chlorosulfonated polyethylene synthetic rubber.
C. EPDM: Ethylene-propylene-diene terpolymer rubber.
D. HDPE: High-density polyethylene plastic.
E. NBR: Acrylonitrile-butadiene rubber.
F. PE: Polyethylene plastic.
G. PVC: Polyvinyl chloride plastic.
H. High-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures between 150 and 200 psig.
I. Low-Pressure Compressed-Air Piping: System of compressed-air piping and specialties operating at pressures of 150 psig or less.

1.3 PERFORMANCE REQUIREMENTS
A. Seismic Performance: Compressed-air piping and support and installation shall withstand effects of seismic events determined according to SEI/ASCE 7, "Minimum Design Loads for Buildings and Other Structures."

1.4 ACTION SUBMITTALS
A. Product Data: For the following:
 1. Pipes, fittings, and valves.
 2. Dielectric fittings.
 3. Flexible pipe connectors.
4. Safety valves.
5. Pressure regulators. Include rated capacities and operating characteristics.
6. Automatic drain valves.
7. Filters. Include rated capacities and operating characteristics.
8. Quick couplings.
9. Hose assemblies.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.
B. Qualification Data: For Installers.
C. Field quality-control test reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For general-service compressed-air piping specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Installer Qualifications:
 1. Extruded-Tee Outlet Procedure: Qualify operators according to training provided by T-DRILL Industries Inc., for making branch outlets.
 2. Pressure-Seal Joining Procedure for Copper Tubing: Qualify operators according to training provided by Viega; Plumbing and Heating Systems.
 3. Pressure-Seal Joining Procedure for Steel Piping. Qualify operators according to training provided by Victaulic Company.

B. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

C. ASME Compliance:
PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Schedule 40, Steel Pipe: ASTM A 53/A 53M, Type E or S, Grade B, black or hot-dip zinc coated with ends threaded according to ASME B1.20.1.

4. Steel Flanges: ASME B16.5, Class 150 or 300, carbon steel, threaded.
7. Grooved-End Fittings and Couplings:
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) Anvil International.
 2) Grinnell Mechanical Products.
 3) Star Pipe Products.
 4) Ward Manufacturing, Inc.
 b. Grooved-End Fittings: ASTM A 47/A 47M, malleable-iron castings or ASTM A 536, ductile-iron casting; with grooves according to AWWA C606 and dimensions matching steel pipe.
 c. Couplings: AWWA C606 or UL 213, for steel-pipe dimensions and rated for 300-psig minimum working pressure. Include ferrous housing sections, gasket suitable for compressed air, and bolts and nuts. Provide EDPM gaskets for oil-free compressed air. Provide NBR gaskets if compressed air contains oil or oil vapor.

B. Transition Couplings for Metal Piping: Metal coupling or other manufactured fitting same size as, with pressure rating at least equal to and ends compatible with, piping to be joined.

2.2 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for compressed-air piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

2.3 VALVES

A. Metal Ball, Butterfly, Check, and Gate Valves: Comply with requirements in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," Section 22 05 23.14 "Check Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping."

2.4 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. HART Industrial Unions, LLC.
 b. Watts; a Watts Water Technologies company.
 c. Wilkins.

2. Description:
 b. Pressure Rating: 250 psig.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.5 FLEXIBLE PIPE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flex-Hose Co., Inc.
2. Hyspan Precision Products, Inc.
3. Metraflex Company (The).
4. Proco Products, Inc.
5. Unaflex.
6. Universal Metal Hose.

B. Stainless-Steel-Hose Flexible Pipe Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.

2. End Connections, NPS 2 and Smaller: Threaded steel pipe nipple.
3. End Connections, NPS 2-1/2 and Larger: Flanged steel nipple.

2.6 SPECIALTIES

A. Safety Valves: ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," construction; National Board certified, labeled, and factory sealed; constructed of bronze body with poppet-type safety valve for compressed-air service.

1. Pressure Settings: Higher than discharge pressure and same or lower than receiver

B. Air-Main Pressure Regulators: Bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 250-psig inlet pressure, unless otherwise indicated.

1. Type: Pilot operated.

C. Air-Line Pressure Regulators: Diaphragm operated, bronze body, direct acting, spring-loaded manual pressure-setting adjustment, and rated for 200-psig minimum inlet pressure, unless otherwise indicated.

D. Automatic Drain Valves: Stainless-steel body and internal parts, rated for 200-psig minimum working pressure, capable of automatic discharge of collected condensate. Include mounting bracket.

E. Coalescing Filters: Coalescing type with activated carbon capable of removing water and oil aerosols; with color-change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded. Include mounting bracket.

F. Mechanical Filters: Two-stage, mechanical-separation-type, air-line filters. Equip with deflector plates, resin-impregnated-ribbon-type filters with edge filtration, and drain cock. Include mounting bracket.

2.7 QUICK COUPLINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Aeroquip Corporation.
2. Bowes Manufacturing Inc.
3. Foster Manufacturing, Inc.
5. Parker Hannifin Corp.
6. Rectus Corp.
8. TOMCO Products Inc.

B. General Requirements for Quick Couplings: Assembly with locking-mechanism feature for quick connection and disconnection of compressed-air hose.
C. Automatic-Shutoff Quick Couplings: Straight-through brass body with O-ring or gasket seal and stainless-steel or nickel-plated-steel operating parts.
 1. Socket End: With one-way valve and threaded inlet for connection to piping or threaded hose fitting.
 2. Plug End: Straight-through type with barbed outlet for attaching hose.

D. Valveless Quick Couplings: Straight-through brass body with stainless-steel or nickel-plated-steel operating parts.
 1. Socket End: With O-ring or gasket seal, without valve, and with barbed inlet for attaching hose.
 2. Plug End: With barbed outlet for attaching hose.

2.8 HOSE ASSEMBLIES

A. Description: Compatible hose, clamps, couplings, and splicers suitable for compressed-air service, of nominal diameter indicated, and rated for 300-psig minimum working pressure, unless otherwise indicated.
 2. Hose Clamps: Stainless-steel clamps or bands.
 3. Hose Couplings: Two-piece, straight-through, threaded brass or stainless-steel O-ring or gasket-seal swivel coupling with barbed ends for connecting two sections of hose.
 4. Hose Splicers: One-piece, straight-through brass or stainless-steel fitting with barbed ends for connecting two sections of hose.

2.9 HOSE REEL UNITS

A. Manual Spring Retractable Reels.
 2. Steel construction with baked on powder coat finish.
 3. One piece guide roller with stainless steel pins.

B. Electric Automatic Remote Controlled Reels.
 1. Motor Operated.
 2. Wall Mounted Remote Controller: Operates lowering and raising of hose reel.
 3. Steel construction with baked on powder coat finish.
 4. One piece guide roller with stainless steel pins.
PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Compressed-Air Piping between Air Compressors and Receivers: Use the following piping materials for each size range:

1. Schedule 40, galvanized-steel pipe; threaded, malleable-iron fittings; and threaded joints.

B. Drain Piping: Use the following piping materials:

1. Type M copper tube; wrought-copper fittings; and brazed or soldered joints.

3.2 VALVE APPLICATIONS

A. Metal General-Duty Valves: Comply with requirements and use valve types specified in "Valve Applications" Articles in Section 22 05 23.12 "Ball Valves for Plumbing Piping," Section 22 05 23.13 "Butterfly Valves for Plumbing Piping," Section 22 05 23.14 "Check Valves for Plumbing Piping," and Section 22 05 23.15 "Gate Valves for Plumbing Piping," according to the following:

1. Low-Pressure Compressed Air: Valve types specified for low-pressure compressed air.
2. High-Pressure Compressed Air: Valve types specified for medium-pressure compressed air.
3. Equipment Isolation NPS 2 and Smaller: Safety-exhaust, copper-alloy ball valve with exhaust vent and pressure rating at least as great as piping system operating pressure.
4. Grooved-end valves may be used with grooved-end piping and grooved joints.

3.3 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of compressed-air piping. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, air-compressor sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping concealed from view and protected from physical contact by building occupants, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited, unless otherwise indicated.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal and to coordinate with other services occupying that space.

E. Install piping adjacent to equipment and machines to allow service and maintenance.

F. Install air and drain piping with 1 percent slope downward in direction of flow.
G. Install nipples, flanges, unions, transition and special fittings, and valves with pressure ratings same as or higher than system pressure rating, unless otherwise indicated.

H. Equipment and Specialty Flanged Connections:
 1. Use steel companion flange with gasket for connection to steel pipe.
 2. Use cast-copper-alloy companion flange with gasket and brazed joint for connection to copper tube. Do not use soldered joints for connection to air compressors or to equipment or machines producing shock or vibration.

I. Flanged joints may be used instead of specified joint for any piping or tubing system.

J. Extended-tee outlets with brazed branch connection may be used for copper tubing, within extruded-tee connection diameter to run tube diameter ratio for tube type, according to Extruded Tee Connections Sizes and Wall Thickness for Copper Tube (Inches) Table in ASTM F 2014.

K. Install eccentric reducers where compressed-air piping is reduced in direction of flow, with bottoms of both pipes and reducer fitting flush.

L. Install branch connections to compressed-air mains from top of main. Provide drain leg and drain trap at end of each main and branch and at low points.

M. Install thermometer and pressure gage on discharge piping from each air compressor and on each receiver. Comply with requirements in Section 22 05 19 "Meters and Gages for Plumbing Piping."

N. Install piping to permit valve servicing.

O. Install piping free of sags and bends.

P. Install fittings for changes in direction and branch connections.

Q. Install seismic restraints on piping. Seismic-restraint devices are specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

R. Install sleeves for piping penetrations of walls, ceilings, and floors.

S. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.4 JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints for Steel Piping: Join according to AWS D10.12/D10.12M.
E. Flanged Joints: Use asbestos-free, nonmetallic gasket suitable for compressed air. Join flanges with gasket and bolts according to ASME B31.9 for bolting procedure.
F. Grooved Joints: Assemble couplings with housing, gasket, lubricant, and bolts. Join according to AWWA C606 for grooved joints. Do not apply lubricant to prelubricated gaskets.
G. Dissimilar Metal Piping Material Joints: Use dielectric fittings.

3.5 VALVE INSTALLATION
A. General-Duty Valves: Comply with requirements in Section 22 05 23.12 "Ball Valves for Plumbing Piping," and Section 22 05 23.14 "Check Valves for Plumbing Piping."
B. Install shutoff valves and unions or flanged joints at compressed-air piping to air compressors.
C. Install shutoff valve at inlet to each automatic drain valve, filter, lubricator, and pressure regulator.
D. Install check valves to maintain correct direction of compressed-air flow to and from compressed-air piping specialties and equipment.

3.6 DIELECTRIC FITTING INSTALLATION
A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
B. NPS 2 and Smaller: Use dielectric unions.
C. NPS 2-1/2 to NPS 4: Use dielectric flanges.

3.7 FLEXIBLE PIPE CONNECTOR INSTALLATION
A. Install flexible pipe connectors in discharge piping of each air compressor.
B. Install bronze-hose flexible pipe connectors in copper compressed-air tubing.
C. Install stainless-steel-hose flexible pipe connectors in steel compressed-air piping.
3.8 SPECIALTY INSTALLATION

A. Install safety valves on receivers in quantity and size to relieve at least the capacity of connected air compressors.

B. Install air-main pressure regulators in compressed-air piping at or near air compressors.

C. Install air-line pressure regulators in branch piping to equipment and tools.

D. Install automatic drain valves on aftercoolers, receivers, and dryers. Discharge condensate onto nearest floor drain.

E. Install coalescing filters in compressed-air piping at or near air compressors and upstream from mechanical filters. Mount on wall at locations indicated.

F. Install mechanical filters in compressed-air piping at or near air compressors and downstream from coalescing filters. Mount on wall at locations indicated.

G. Install quick couplings at piping terminals for hose connections.

H. Install hose assemblies at hose connections.

3.9 CONNECTIONS

A. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment and machine.

B. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment and machine.

3.10 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment" for seismic-restraint devices.

B. Comply with requirements in Section 22 05 29 "Hangers and Supports for Plumbing Piping and Equipment" for pipe hanger and support devices.

C. Vertical Piping: MSS Type 8 or 42, clamps.

D. Individual, Straight, Horizontal Piping Runs:

1. 100 Feet or Less: MSS Type 1, adjustable, steel clevis hangers.
2. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.

E. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
F. Base of Vertical Piping: MSS Type 52, spring hangers.

G. Support horizontal piping within 12 inches of each fitting and coupling.

H. Rod diameter may be reduced 1 size for double-rod hangers, with 3/8-inch minimum rods.

I. Install hangers for Schedule 40, steel piping with the following maximum horizontal spacing and minimum rod diameters:

1. NPS 1/4 to NPS 1/2: 96 inches with 3/8-inch rod.
2. NPS 3/4 to NPS 1-1/4: 84 inches with 3/8-inch rod.
3. NPS 1-1/2: 12 feet with 3/8-inch rod.
4. NPS 2: 13 feet with 3/8-inch rod.
5. NPS 2-1/2: 14 feet with 1/2-inch rod.
6. NPS 3: 15 feet with 1/2-inch rod.

3.11 LABELING AND IDENTIFICATION

A. Install identifying labels and devices for general-service compressed-air piping, valves, and specialties. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment."

3.12 FIELD QUALITY CONTROL

A. Perform field tests and inspections.

B. Tests and Inspections:

1. Piping Leak Tests for Metal Compressed-Air Piping: Test new and modified parts of existing piping. Cap and fill general-service compressed-air piping with oil-free dry air or gaseous nitrogen to pressure of 50 psig above system operating pressure, but not less than 150 psig. Isolate test source and let stand for four hours to equalize temperature. Refill system, if required, to test pressure; hold for two hours with no drop in pressure.
2. Repair leaks and retest until no leaks exist.
3. Inspect filters and pressure regulators for proper operation.

C. Prepare test reports.

END OF SECTION 22 15 13
SECTION 22 15 19 - GENERAL-SERVICE PACKAGED AIR COMPRESSORS AND RECEIVERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Oil-free, reciprocating air compressors.
2. Inlet-air filters.
3. Air-cooled, compressed-air aftercoolers.
4. Refrigerant compressed-air dryers.

1.2 DEFINITIONS

A. Actual Air: Air delivered from air compressors. Flow rate is delivered compressed air measured in acfm.

B. Standard Air: Free air at 68 deg F and 1 atmosphere before compression or expansion and measured in scfm.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings:

1. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For compressed-air equipment mounting.

1. Detail fabrication and assembly of supports.
2. Include design calculations for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For compressed-air equipment, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For compressed-air equipment to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Air-Compressor, Inlet-Air-Filter Elements: One unit.
2. Belts: One for each belt-driven compressor.

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASME Compliance: Fabricate and label receivers to comply with ASME Boiler and Pressure Vessel Code.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design compressed-air equipment mounting.

B. Seismic Performance: Compressed-air equipment shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.3 GENERAL REQUIREMENTS FOR PACKAGED AIR COMPRESSORS AND RECEIVERS

A. General Description: Factory-assembled, -wired, -piped, and -tested; electric-motor-driven; air-cooled; continuous-duty air compressors and receivers that deliver air of quality equal to intake air.

B. Control Panels: Automatic control station with load control and protection functions. Comply with NEMA ICS 2 and UL 508.

1. Enclosure: NEMA ICS 6, Type 12 control panel unless otherwise indicated.
3. Control Voltage: 120-V ac or less, using integral control power transformer.
5. Starting Devices: Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.
6. Instrumentation: Include discharge-air pressure gage, air-filter maintenance indicator, hour meter, compressor discharge-air and coolant temperature gages, and control transformer.
7. Alarm Signal Device: For connection to alarm system to indicate when backup air compressor is operating.

C. Receivers: Steel tank constructed according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

1. Pressure Rating: At least as high as highest discharge pressure of connected compressors, and bearing appropriate code symbols.
2. Interior Finish: Corrosion-resistant coating.
3. Accessories: Include safety valve, pressure gage, drain, and pressure-reducing valve.

D. Mounting Frame: Fabricate mounting and attachment to pressure vessel with reinforcement strong enough to resist packaged equipment movement during a seismic event when base is anchored to building structure.

2.4 LUBRICATED, RECIPROCATING AIR COMPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Champion.
2. Ingersoll-Rand.
3. Kaeser Compressors, Inc.
4. Powerex, Inc.
5. Atlas Copco.
B. Compressor(s): Lubricated, reciprocating-piston type with lubricated compression chamber and crankcase.
 1. Submerged gear-type oil pump.
 2. Oil filter.
 3. Combined high discharge-air temperature and low lubrication-oil pressure switch.
 4. Belt guard totally enclosing pulleys and belts.

C. Capacities and Characteristics:
 1. Air Compressor(s): Two; two stage.
 a. Intercooler between stages of two-stage units.
 2. Discharge-Air Pressure: 125 psig.
 b. Interior Finish: Epoxy coating.
 c. Pressure Rating: 200 psig minimum.
 d. Drain: Automatic valve.

2.5 OILLESS, RECIPROCATING AIR COMPRESSORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Champion.
 2. Ingersoll-Rand.
 3. Kaeser Compressors, Inc.
 4. Powerex, Inc.
 5. Atlas Copco.

B. Compressor(s): Oilless (nonlubricated), reciprocating-piston type, with sealed oil-free bearings, that deliver air of quality equal to intake air.
 1. High discharge-air temperature switch.
 2. Belt guard totally enclosing pulleys and belts.

C. Characteristics:
 1. Air Compressor(s): Two; single stage.
 2. Discharge-Air Pressure: 125 psig.
 4. Motor (Each Air Compressor):
 5. Receiver: ASME construction steel tank.
 b. Interior Finish: Epoxy coating.
 c. Pressure Rating: 200 psig minimum.
 d. Drain: Automatic valve.
2.6 INLET-AIR FILTERS

A. Description: Combination inlet-air filter-silencer, suitable for remote installation, for each air compressor.

1. Construction: Weatherproof housing for replaceable, dry-type filter element, with silencer tubes or other method of sound reduction.
2. Capacity: Match capacity of air compressor, with filter having collection efficiency of 99 percent retention of particles larger than 10 micrometers.

2.7 AIR-COOLED, COMPRESSED-AIR AFTERCOOLERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air/Tak, Inc.
2. Ingersoll-Rand.
3. Van Air Systems, Inc.
4. Zeks Compressed Air Solutions.

B. Description: Electric-motor-driven, fan-operation, finned-tube unit; rated at 250 psig and leak tested at 350-psig minimum air pressure; in capacities indicated. Size units to cool compressed air in compressor-rated capacities to 10 deg F above summertime maximum ambient temperature. Include moisture separator and automatic drain.

2.8 REFRIGERANT COMPRESSED-AIR DRYERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Air/Tak, Inc.
2. Ingersoll-Rand.
3. Van Air Systems, Inc.
5. Zeks Compressed Air Solutions.

B. Description: Noncycling, air-cooled, electric-motor-driven unit with steel enclosure and capability to deliver 35 deg F, 100-psig air at dew point. Include automatic ejection of condensate from airstream, step-down transformers, disconnect switches, inlet and outlet pressure gages, thermometers, automatic controls, and filters.

2.9 COMPUTER INTERFACE CABINET

A. Description:

1. Wall mounting.
2. Welded steel with white enamel finish.
3. Gasketed door.
4. Grounding device.
5. Factory-installed, signal circuit boards.
7. Circuit breaker.
8. Wiring terminal board.
9. Internal wiring capable of interfacing 20 alarm signals.

2.10 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Enclosure: Open, dripproof
2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load does not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Equipment Mounting:

1. Install air compressors, aftercoolers, and air dryers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-In-Place Concrete."
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment"

B. Arrange equipment so controls and devices are accessible for servicing.

C. Maintain manufacturer's recommended clearances for service and maintenance.

D. Install the following devices on compressed-air equipment:

1. Thermometer, Pressure Gage, and Safety Valve: Install on each compressed-air receiver.
2. Pressure Regulators: Install downstream from air compressors and dryers.
3. Automatic Drain Valves: Install on aftercoolers, receivers, and dryers. Discharge condensate over nearest floor drain.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 22 15 13 "General-Service Compressed-Air Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
B. Where installing piping adjacent to machine, allow space for service and maintenance.

3.3 IDENTIFICATION

A. Identify general-service air compressors and components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.
2. Check for lubricating oil in lubricated-type equipment.
3. Check belt drives for proper tension.
4. Verify that air-compressor inlet filters and piping are clear.
5. Check for equipment vibration-control supports and flexible pipe connectors, and verify that equipment is properly attached to substrate.
6. Check safety valves for correct settings. Ensure that settings are higher than air-compressor discharge pressure, but not higher than rating of system components.
7. Check for proper seismic restraints.
8. Drain receiver tanks.
9. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
10. Test and adjust controls and safeties.

3.5 DEMONSTRATION

A. Train Government’s maintenance personnel to adjust, operate, and maintain air compressors, aftercoolers, and air dryers.

END OF SECTION 22 15 19
SECTION 22 34 00 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Commercial, gas-fired, high-efficiency, storage, domestic-water heaters.
2. Gas-fired, tankless, domestic-water heaters.
3. Domestic-water heater accessories.

1.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Commercial domestic-water heaters shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:

1. Product Data: For energy efficiency.

C. Shop Drawings:

1. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For fuel-fired, domestic-water heaters, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.

C. ASME Compliance:
 1. Where ASME-code construction is indicated, fabricate and label commercial, domestic-water heater storage tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

D. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Structural failures including storage tank and supports.
 b. Faulty operation of controls.
 c. Deterioration of metals, metal finishes, and other materials beyond normal use.

2. Warranty Periods: From date of Substantial Completion.
a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 1) Storage Tank: Five years.
 2) Controls and Other Components: Five year(s).

b. Compression Tanks: Five years.

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

A. Commercial, Gas-Fired, High-Efficiency, Storage, Domestic-Water Heaters:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lochinvar, LLC.
 b. Rheem Manufacturing Company.
 c. Smith, A. O. Corporation.

3. Description: Manufacturer's proprietary design to provide at least 96 percent combustion efficiency at optimum operating conditions.
 a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.

5. Factory-Installed Storage-Tank Appurtenances:
 a. Anode Rod: Replaceable magnesium.
 b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 e. Jacket: Steel with enameled finish.
 f. Burner or Heat Exchanger: Comply with UL 795 or approved testing agency requirements for gas-fired, high-efficiency, domestic-water heaters and natural-gas fuel.
g. Temperature Control: Adjustable thermostat.
h. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
i. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.

2.2 GAS-FIRED, TANKLESS, DOMESTIC-WATER HEATERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. NORITZ America Corp.
 4. Rinnai Corporation.

C. Construction: Copper piping or tubing complying with NSF 61 Annex G barrier materials for potable water, without storage capacity.
 3. Heat Exchanger: Copper tubing.
 4. Insulation: Comply with ASHRAE/IESNA 90.1.
 5. Jacket: Metal, with enameled finish, or plastic.
 7. Automatic Ignition: Manufacturer's proprietary system for automatic, gas ignition.
 8. Temperature Control: Adjustable thermostat.

D. Support: Bracket for wall mounting.

2.3 DOMESTIC-WATER HEATER ACCESSORIES

A. Domestic-Water Compression Tanks:

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. AMTROL, Inc.
 c. State Industries.
 d. Taco, Inc.
2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:
 a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
 b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 c. Air-Charging Valve: Factory installed.

B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.

C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.

D. Heat-Trap Fittings: ASHRAE 90.2.

E. Comply with requirements for ball-, butterfly-, or gate-type shutoff valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping."
 1. Comply with requirements for balancing valves specified in Section 22 11 19 "Domestic Water Piping Specialties."

H. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.

I. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.

J. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
2.4 SOURCE QUALITY CONTROL

A. Factory Tests: Test and inspect assembled domestic-water heaters and storage tanks specified to be ASME-code construction, according to ASME Boiler and Pressure Vessel Code.

B. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.

C. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.

D. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
 1. Maintain manufacturer's recommended clearances.
 2. Arrange units so controls and devices that require servicing are accessible.
 3. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 4. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 5. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 6. Install anchor bolts to elevations required for proper attachment to supported equipment.
 7. Anchor domestic-water heaters to substrate.

B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping."

C. Install gas-fired, domestic-water heaters according to NFPA 54.
 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 23 11 23 "Facility Natural-Gas Piping."

D. Install commercial domestic-water heaters with seismic-restraint devices. Comply with requirements for seismic-restraint devices specified in Section 22 05 48 "Vibration and Seismic Controls for Plumbing Piping and Equipment."

E. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

F. Install combination temperature and pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.

G. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 22 11 19 "Domestic Water Piping Specialties."

H. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

I. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.

J. Fill domestic-water heaters with water.

K. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 22 11 16 "Domestic Water Piping."

B. Comply with requirements for gas piping specified in Section 23 11 23 "Facility Natural-Gas Piping."

C. Drawings indicate general arrangement of piping, fittings, and specialties.

D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.
3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 01 40 00 "Quality Requirements" for retesting and reinspecting requirements and Section 01 73 00 "Execution" for requirements for correcting the Work.

C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Government's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage, domestic-water heaters.

END OF SECTION 22 34 00
SECTION 22 42 13.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Water closets.
 2. Flushometer valves.
 3. Toilet seats.
 4. Supports.

1.2 DEFINITIONS

A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:
 1. Product Data: For water consumption.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

A. Water Closets: Wall mounted, top spud, accessible.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2.2 FLUSHOMETER VALVES

A. Manual Flushometer Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Moen Incorporated.
 b. Sloan Valve Company.
 c. Zurn Industries, LLC.

4. Features: Include integral check stop and backflow-prevention device.
5. Material: Brass body with corrosion-resistant components.
7. Panel Finish: Chrome plated or stainless steel.
9. Actuator: Solenoid complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
10. Trip Mechanism: Hard-wired electronic sensor complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
11. Consumption: 1.1 gal. per flush.

2.3 TOILET SEATS

A. Toilet Seats:

b. Crane Plumbing, L.L.C.
c. Kohler Co.
d. Zurn Industries, LLC.

e. Height: Standard.
f. Rim Contour: Elongated.
g. Water Consumption: 1.28 gal. per flush.
h. Spud Size and Location: NPS 1-1/2; top.
3. Type: Commercial (Standard).
4. Shape: Elongated rim, open front.
7. Seat Cover: Not required.

2.4 SUPPORTS

A. Water Closet Carrier:
 1. Standard: ASME A112.6.1M.
 2. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.

B. Examine walls and floors for suitable conditions where water closets will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:
 1. Install level and plumb according to roughing-in drawings.
 2. Install floor-mounted water closets on bowl-to-drain connecting fitting attachments to piping or building substrate.
 3. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:
 1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
 2. Use carrier supports with waste-fitting assembly and seal.
 3. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.
C. Flushometer-Valve Installation:
 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
 3. Install actuators in locations that are easy for people with disabilities to reach.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.

F. Joint Sealing:
 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
 2. Match sealant color to water-closet color.

3.3 CONNECTIONS

A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION

A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed water closets and fittings.

C. Do not allow use of water closets for temporary facilities unless approved in writing by Government.
END OF SECTION 224213.13
SECTION 22 42 13.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Urinals.
 2. Flushometer valves.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for urinals.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:
 1. Product Data: For water consumption.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

A. Urinals: Wall hung, back outlet, washout, accessible.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Kohler Co.
 d. Zurn Industries, LLC.
2. Fixture:
 b. Material: Vitreous china.
 c. Type: Washout with extended shields.
 d. Strainer or Trapway: Manufacturer's standard strainer with integral trap.
 e. Water Consumption: Low.
 f. Spud Size and Location: NPS 3/4, top.
 g. Outlet Size and Location: NPS 2, back.
 h. Color: White.

3. Waste Fitting:
 b. Size: NPS 2.

2.2 URINAL FLUSHOMETER VALVES

A. Manual Flushometer Valves:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Moen Incorporated.
 b. Sloan Valve Company.
 c. Zurn Industries, LLC.
 4. Features: Include integral check stop and backflow-prevention device.
 5. Material: Brass body with corrosion-resistant components.
 7. Style: Exposed.
 8. Actuator: Solenoid complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
 9. Consumption: 0.125 gal. per flush.

2.3 SUPPORTS

A. Type I Urinal Carrier:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
c. MIFAB, Inc.
d. Watts; a Watts Water Technologies company.
e. Zurn Industries, LLC.

2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.

B. Examine walls and floors for suitable conditions where urinals will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:
 1. Install urinals level and plumb according to roughing-in drawings.
 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
 3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:
 1. Install supports, affixed to building substrate, for wall-hung urinals.
 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
 3. Use carriers without waste fitting for urinals with tubular waste piping.

C. Flushometer-Valve Installation:
 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.

D. Wall Flange and Escutcheon Installation:
 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
 2. Install deep-pattern escutcheons if required to conceal protruding fittings.

E. Joint Sealing:
 1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
2. Match sealant color to urinal color.

3.3 CONNECTIONS

A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.

B. Adjust water pressure at flushometer valves to produce proper flow.

3.5 CLEANING AND PROTECTION

A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.

B. Install protective covering for installed urinals and fittings.

C. Do not allow use of urinals for temporary facilities unless approved in writing by Government.

END OF SECTION 22 42 13.16
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Lavatories
2. Faucets.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:

1. Product Data: For water consumption.

C. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.

1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

a. Servicing and adjustments of automatic faucets.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, COUNTER-MOUNTED LAVATORIES

A. Lavatory: Oval, self-rimming, vitreous china, counter mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Kohler Co.
 d. Zurn Industries, LLC.

2. Fixture:
 b. Type: Self-rimming for above-counter mounting.
 c. Nominal Size: Oval, 21 by 19 inches.
 d. Faucet-Hole Punching: Three holes, 4-inch centers.
 e. Faucet-Hole Location: Top.
 g. Mounting Material: Sealant.

2.2 SOLID-BRASS, MANUALLY OPERATED LAVATORY FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet materials that will be in contact with potable water.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Kohler Co.
 c. Sloan Valve Company.
 d. Zurn Industries, LLC.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
4. Body Type: Centerset.
7. Maximum Flow Rate: 0.5 gpm.
8. Mounting Type: Deck, concealed
10. Spout Outlet: Aerator.

2.3 SUPPLY FITTINGS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.

B. Standard: ASME A112.18.1/CSA B125.1.

C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.

D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.

E. Operation: Wheel handle.

F. Risers:
 2. ASME A112.18.6, braided- or corrugated-stainless-steel, flexible hose riser.

2.4 WASTE FITTINGS

A. Standard: ASME A112.18.2/CSA B125.2.

B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.

C. Trap:
 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.
PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
 B. Examine counters and walls for suitable conditions where lavatories will be installed.
 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install lavatories level and plumb according to roughing-in drawings.
 B. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings.
 C. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."
 D. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 22 07 19 "Plumbing Piping Insulation."

3.3 CONNECTIONS
 A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
 B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
 C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING
 A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.
 B. Adjust water pressure at faucets to produce proper flow.
 C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.
3.5 CLEANING AND PROTECTION

A. After completing installation of lavatories, inspect and repair damaged finishes.

B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed lavatories and fittings.

D. Do not allow use of lavatories for temporary facilities unless approved in writing by Government.

END OF SECTION 22 42 16.13
SECTION 22 42 16.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Service basins.
 2. Utility sinks.
 3. Sink faucets.
 4. Supply fittings.
 5. Waste fittings.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.

B. Sustainable Design Submittals:
 1. Product Data: For water consumption.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

A. Service Basins: Terrazzo, floor mounted.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Crane Plumbing, L.L.C.
 c. Florestone Products Co., Inc.
 d. Stern-Williams Co., Inc.
 2. Fixture:
2.2 UTILITY SINKS

A. Utility Sinks, Break Room Sinks: Stainless steel, counter mounted.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Advance Tabco.
 b. Eagle Group.
 c. Elkay Manufacturing Co.
 d. Griffin Products, Inc.
 e. Just Manufacturing.

2. Fixture:

 b. Type: Ledge back.
 c. Number of Compartments: Two.
 d. Overall Dimensions: As indicated on plans.
 e. Metal Thickness: 0.050 inch.

 f. Each Compartment:

 1) Dimensions: as indicated on plans.
 2) Drains: Grid with NPS 2 tailpiece and twist drain.
 3) Drain Location: Near back of compartment.

3. Supply Fittings:

 a. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for supply-fitting materials that will be in contact with potable water.
 c. Supplies: Chrome-plated brass compression stop with inlet connection matching water-supply piping type and size.

 1) Operation: Wheel handle.
 2) Risers: NPS 1/2, ASME A112.18.6, braided or corrugated stainless-steel flexible hose.
4. Waste Fittings:
 b. Trap(s):
 1) Size: NPS 2.
 2) Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.

5. Mounting: On counter with sealant.

2.3 SINK FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet-spout materials that will be in contact with potable water.

A. Sink Faucets, Service Basin: Manual type, two-lever-handle mixing valve.
 a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1) American Standard America.
 2) Delta Faucet Company.
 3) Elkay Manufacturing Co.
 4) Kohler Co.
 5) Sloan Valve Company.
 6) Zurn Industries, LLC.

 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
 4. Body Type: Widespread.
 6. Finish: Chrome plated.
 7. Maximum Flow Rate: 4.0 gpm.
 8. Handle(s): Cross, four arm.
 9. Mounting Type: Back/wall, exposed.
 10. Spout Type: Rigid, solid brass with wall brace.
 12. Spout Outlet: Laminar flow Hose thread according to ASME B1.20.7.

a. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1) American Standard America.
2) Delta Faucet Company.
3) Elkay Manufacturing Co.
4) Kohler Co.
5) Sloan Valve Company.
6) Zurn Industries, LLC.

3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.

7. Maximum Flow Rate: 2.2 gpm.
8. Handle(s): Lever.
10. Spout Type: Swing, shaped tube.

2.4 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.

B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

B. Set floor-mounted sinks in leveling bed of cement grout.

C. Install water-supply piping with stop on each supply to each sink faucet.
 1. Exception: Use ball valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping."
 2. Install stops in locations where they can be easily reached for operation.

D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings.

E. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 07 92 00 "Joint Sealants."

3.3 CONNECTIONS

A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of sinks, inspect and repair damaged finishes.

B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed sinks and fittings.

D. Do not allow use of sinks for temporary facilities unless approved in writing by Government.

END OF SECTION 22 42 16.16
SECTION 22 42 23 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Shower faucets.
2. Shower basins.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for showers.
2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:

1. Product Data: For water consumption.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For shower faucets to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

b. Kohler Co.
c. Moen Incorporated.
d. Zurn Industries, LLC.

2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.

3. Faucet:
 a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
 c. Finish: Polished chrome plate.
 d. Shower-Arm, Flow-Control Fitting: 1.5 gpm.
 e. EPA WaterSense: Required.
 g. Operation: Single-handle, twist or rotate control.
 h. Antiscald Device: Integral with mixing valve.
 i. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.

5. Shower Head:
 b. Type: Ball joint with arm and flange.
 c. Shower Head Material: Metallic with chrome-plated finish.
 e. Shower-Arm, Flow-Control Fitting: 1.5 gpm.

2.2 SHOWER BASINS
A. Shower Basins: Cast-polymer shower basin.
 1. General: Cast-polymer base for built-up-type shower fixture.
 3. Type: Handicapped/wheelchair.
 5. Outlet: Drain with NPS 2 outlet.
 6. Bathing Surface: Slip resistant according to ASTM F 462.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.

C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.
B. Examine walls and floors for suitable conditions where showers will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Assemble shower components according to manufacturers' written instructions.
B. Install showers level and plumb according to roughing-in drawings.
C. Install water-supply piping with stop on each supply to each shower faucet.
 1. Install stops in locations where they can be easily reached for operation.
D. Install shower flow-control fittings with specified maximum flow rates in shower arms.
E. Set shower receptors and shower basins in leveling bed of cement grout.
F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings.
G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS
A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."
C. Comply with traps and soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."
3.4 ADJUSTING

A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.

B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

A. After completing installation of showers, inspect and repair damaged finishes.

B. Clean showers, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

C. Provide protective covering for installed fixtures and fittings.

D. Do not allow use of showers for temporary facilities unless approved in writing by Government.

END OF SECTION 22 42 23
SECTION 22 45 00 - EMERGENCY PLUMBING FIXTURES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Eyewash equipment.
2. Combination units.
3. Water-tempering equipment.

1.2 DEFINITIONS

A. Accessible Fixture: Emergency plumbing fixture that can be approached, entered, and used by people with disabilities.

B. Plumbed Emergency Plumbing Fixture: Fixture with fixed, potable-water supply.

C. Tepid: Moderately warm.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include flow rates and capacities, furnished specialties, and accessories.

B. Shop Drawings: Diagram power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: Submit certificates of performance testing specified in "Source Quality Control" Article.

B. Field quality-control test reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For emergency plumbing fixtures to include in operation and maintenance manuals.
1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ANSI Standard: Comply with ANSI Z358.1, "Emergency Eyewash and Shower Equipment."

C. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for fixture materials that will be in contact with potable water.

PART 2 - PRODUCTS

2.1 EYEWASH EQUIPMENT

A. Accessible, Wall-Mounted, Plumbed Eyewash Units,

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Safety.
 b. Bradley Corporation.
 c. Encon Safety Products.
 d. Guardian Equipment Co.
 e. Haws Corporation.
 f. Speakman Company.

2. Capacity: Not less than 0.4 gpm for at least 15 minutes.

3. Supply Piping: NPS 1/2 chrome-plated brass or stainless steel with flow regulator and stay-open control valve.

5. Spray-Head Assembly: Two receptor-mounted spray heads.

6. Receptor: Chrome-plated brass or stainless-steel bowl.

7. Drain Piping: NPS 1-1/4 minimum, chrome-plated brass, receptor drain, P-trap, waste to wall, and wall flange complying with ASME A112.18.2/CSA B125.2.

2.2 COMBINATION UNITS

A. Accessible, Plumbed Emergency Shower with Eye/Face Wash Combination Units:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
2. Piping:
 b. Unit Supply: NPS 1-1/4 minimum.
 c. Unit Drain: Outlet at back or side near bottom.

3. Shower:
 a. Capacity: Not less than 20 gpm for at least 15 minutes.
 b. Supply Piping: NPS 1 with flow regulator and stay-open control valve.
 c. Control-Valve Actuator: Pull rod.
 d. Shower Head: 8-inch-minimum diameter, chrome-plated brass or stainless steel.
 e. Mounting: Pedestal.

4. Eye/Face Wash Unit:
 a. Capacity: Not less than 3 gpm for at least 15 minutes.
 b. Supply Piping: NPS 1/2 with flow regulator and stay-open control valve.
 d. Spray-Head Assembly: Two or four receptor-mounted spray heads.
 e. Receptor: Chrome-plated brass or stainless-steel bowl.
 f. Mounting: Attached to shower pedestal.
 g. Drench-Hose Option: May be provided instead of eye/face wash unit.

 1) Capacity: Not less than 3 gpm for at least 15 minutes.
 2) Drench Hose: Hand-held spray head with squeeze-handle actuator and hose.
 3) Mounting: Bracket on shower pedestal.

2.3 WATER-TEMPERING EQUIPMENT

A. Hot- and Cold-Water, Water-Tempering Equipment:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Acorn Safety.
 b. Armstrong International, Inc.
 c. Bradley Corporation.
 d. Encon Safety Products.
 e. Guardian Equipment Co.
 f. Haws Corporation.
 g. Lawler Manufacturing Company, Inc.
h. Leonard Valve Company.
i. Speakman Company.
j. Watts; a Watts Water Technologies company.

2. Description: Factory-fabricated equipment with thermostatic mixing valve.
 a. Thermostatic Mixing Valve: Designed to provide 85 deg F tepid, potable water at emergency plumbing fixtures, to maintain temperature at plus or minus 5 deg F throughout required 15-minute test period, and in case of unit failure to continue cold-water flow, with union connections, controls, metal piping, and corrosion-resistant enclosure.
 b. Supply Connections: For hot and cold water.

2.4 SOURCE QUALITY CONTROL
 A. Certify performance of emergency plumbing fixtures by independent testing organization acceptable to authorities having jurisdiction.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for water and waste piping systems to verify actual locations of piping connections before plumbed emergency plumbing fixture installation.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EMERGENCY PLUMBING FIXTURE INSTALLATION
 A. Assemble emergency plumbing fixture piping, fittings, control valves, and other components.
 B. Install fixtures level and plumb.
 C. Fasten fixtures to substrate.
 D. Install shutoff valves in water-supply piping to fixtures. Use ball or gate valve if specific type valve is not indicated. Install valves chained or locked in open position if permitted. Install valves in locations where they can easily be reached for operation. Comply with requirements for valves specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping."
 1. Exception: Omit shutoff valve on supply to group of plumbing fixtures that includes emergency equipment.
 2. Exception: Omit shutoff valve on supply to emergency equipment if prohibited by authorities having jurisdiction.
E. Install shutoff valve and strainer in steam piping and shutoff valve in condensate return piping. Comply with requirements for steam and condensate piping specified in Section 23 22 13 "Steam and Condensate Heating Piping" and Section 23 22 16 "Steam and Condensate Piping Specialties."

F. Install dielectric fitting in supply piping to emergency equipment if piping and equipment connections are made of different metals. Comply with requirements for dielectric fittings specified in Section 22 11 16 "Domestic Water Piping."

G. Install thermometers in supply and outlet piping connections to water-tempering equipment. Comply with requirements for thermometers specified in Section 22 05 19 "Meters and Gages for Plumbing Piping."

H. Install trap and waste piping on drain outlet of emergency equipment receptors that are indicated to be directly connected to drainage system. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

I. Install indirect waste piping on drain outlet of emergency equipment receptors that are indicated to be indirectly connected to drainage system. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

J. Install escutcheons on piping wall and ceiling penetrations in exposed, finished locations.

K. Fill self-contained fixtures with flushing fluid.

3.3 CONNECTIONS

A. Connect hot- and cold-water-supply piping to hot- and cold-water, water-tempering equipment. Connect output from water-tempering equipment to emergency plumbing fixtures. Comply with requirements for hot- and cold-water piping specified in Section 22 11 16 "Domestic Water Piping."

B. Connect cold water and electrical power to electric heating water-tempering equipment. Comply with requirements for cold-water piping specified in Section 22 11 16 "Domestic Water Piping."

C. Directly connect emergency plumbing fixture receptors with trapped drain outlet to sanitary waste and vent piping. Comply with requirements for waste piping specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

D. Indirectly connect emergency plumbing fixture receptors without trapped drain outlet to sanitary waste or storm drainage piping.

E. Where installing piping adjacent to emergency plumbing fixtures, allow space for service and maintenance of fixtures.
3.4 IDENTIFICATION

A. Install equipment nameplates or equipment markers on emergency plumbing fixtures and equipment and equipment signs on water-tempering equipment. Comply with requirements for identification materials specified in Section 22 05 53 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

A. Mechanical-Component Testing: After plumbing connections have been made, test for compliance with requirements. Verify ability to achieve indicated capacities.

B. Tests and Inspections:
 1. Perform each visual and mechanical inspection.
 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Emergency plumbing fixtures and water-tempering equipment will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust or replace fixture flow regulators for proper flow.

B. Adjust equipment temperature settings.

END OF SECTION 22 45 00
SECTION 22 47 16 - PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes pressure water coolers and related components.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of pressure water cooler.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Sustainable Design Submittals:
 1. Product Data: For water consumption.
 C. Shop Drawings: Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS
 A. Pressure Water Coolers: Wall mounted, wheelchair accessible.
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Elkay Manufacturing Co.
 b. Halsey Taylor.
 c. Haws Corporation.
 2. Cabinet: Bi-level with two attached cabinets and with a bi-level skirt kit, vinyl-covered steel with stainless-steel top.
 3. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
5. Drain: Grid with NPS 1-1/4 tailpiece.
8. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
9. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SUPPORTS

A. Type I Water Cooler Carrier:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Josam Company.
 c. MIFAB, Inc.
 d. Watts; a Watts Water Technologies company.
 e. Zurn Industries, LLC.
 2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
B. Examine walls and floors for suitable conditions where fixtures will be installed.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install fixtures level and plumb.
B. Install mounting frames, affixed to building construction, and attach recessed, pressure water coolers to mounting frames.
C. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball or gate valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 22 05 23.12 "Ball Valves for Plumbing Piping".

D. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.

E. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings.

F. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color.

3.3 CONNECTIONS

A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.

B. Comply with water piping requirements specified in Section 22 11 16 "Domestic Water Piping."

C. Install shutoff valve on water supply to each fixture.

D. Comply with soil and waste piping requirements specified in Section 22 13 16 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Adjust fixture flow regulators for proper flow and stream height.

B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.

B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.

C. Provide protective covering for installed fixtures.

D. Do not allow use of fixtures for temporary facilities unless approved in writing by Government.

END OF SECTION 22 47 16
SECTION 23 05 13 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.2 COORDINATION

A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:

1. Motor controllers.
2. Torque, speed, and horsepower requirements of the load.
3. Ratings and characteristics of supply circuit and required control sequence.
4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

A. Comply with NEMA MG 1 unless otherwise indicated.

B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.

B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

A. Description: NEMA MG 1, Design B, medium induction motor.
B. Efficiency: Energy efficient, as defined in NEMA MG 1.

C. Service Factor: 1.15.

D. Multispeed Motors: Variable torque.
 1. For motors with other than 2:1 speed ratio, separate winding for each speed.

E. Multispeed Motors: Separate winding for each speed.

F. Rotor: Random-wound, squirrel cage.

G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

H. Temperature Rise: Match insulation rating.

I. Insulation: Class F.

J. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

C. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.
2.5 SINGLE-PHASE MOTORS

A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:

1. Permanent-split capacitor.
2. Split phase.
3. Capacitor start, inductor run.
4. Capacitor start, capacitor run.

B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.

C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

D. Motors 1/20 HP and Smaller: Shaded-pole type.

E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 23 05 13
SECTION 23 05 19 - METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Liquid-in-glass thermometers.
2. Thermowells.
3. Dial-type pressure gages.
4. Gage attachments.
5. Test plugs.
6. Thermal-energy meters.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:

1. Include diagrams for power, signal, and control wiring.

1.3 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

3. Case: Cast aluminum; 7-inch nominal size unless otherwise indicated.

4. Case Form: Adjustable angle unless otherwise indicated.

5. Tube: Glass with magnifying lens and blue or red organic liquid.

6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F and deg C.

7. Window: Glass.

8. Stem: Aluminum and of length to suit installation.
 b. Design for Thermowell Installation: Bare stem.

10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:
 2. Description: Pressure-tight, socket-type fitting made for insertion in piping tee fitting.
 3. Material for Use with Copper Tubing: CNR.
 4. Material for Use with Steel Piping: CRES.
 5. Type: Stepped shank unless straight or tapered shank is indicated.
 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 8. Bore: Diameter required to match thermometer bulb or stem.
 9. Insertion Length: Length required to match thermometer bulb or stem.
 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 11. Bushings: For converting size of thermowell’s internal screw thread to size of thermometer connection.

B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 DIAL-TYPE PRESSURE GAGES

A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
b. Trerice, H. O. Co.
c. Watts; a Watts Water Technologies company.
d. Weiss Instruments, Inc.

3. Case: Sealed, solid-front, pressure relief type; stainless steel; 4-1/2-inch nominal diameter.

4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.

5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.

6. Movement: Mechanical, with link to pressure element and connection to pointer.

7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi and kPa.

11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.

B. Siphons: Loop-shaped section of stainless-steel pipe with NPS 1/4 pipe threads.

C. Valves: Brass ball, with NPS 1/4, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Trerice, H. O. Co.
 2. Watts; a Watts Water Technologies company.
 3. Weiss Instruments, Inc.

B. Description: Test-station fitting made for insertion in piping tee fitting.

C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.

D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.

E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

F. Core Inserts: EPDM self-sealing rubber.
2.6 THERMAL-ENERGY METERS

A. Ultrasonic, Thermal-Energy Meters:

1. Description: Meter with flow sensor, temperature sensors, transmitter, indicator, and connecting wiring.
3. Temperature Sensors: Insertion-type or strap-on transducer.
4. Indicator: Solid-state, integrating-type meter.
 a. Data Output: Six-digit electromechanical counter with readout in kilowatts per hour or British thermal units.
 b. Battery Pack: Five-year lithium battery.

5. Accuracy: Plus or minus 1 percent.
6. Display: Visually indicates total fluid volume in gallons and thermal-energy flow in kilowatts per hour or British thermal units.
7. Operating Instructions: Include complete instructions with each thermal-energy meter system.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending one-third of pipe diameter and in vertical position in piping tees.

B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.

C. Install thermowells with extension on insulated piping.

D. Fill thermowells with heat-transfer medium.

E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.

G. Install valve and snubber in piping for each pressure gage for fluids (except steam).

H. Install valve and syphon fitting in piping for each pressure gage for steam.

I. Install test plugs in piping tees.

J. Install flow indicators in piping systems in accessible positions for easy viewing.
K. Assemble and install connections, tubing, and accessories between flow-measuring elements and flowmeters according to manufacturer's written instructions.

L. Install permanent indicators on walls or brackets in accessible and readable positions.

M. Install connection fittings in accessible locations for attachment to portable indicators.

N. Mount thermal-energy meters on wall if accessible; if not, provide brackets to support meters.

O. Install thermometers in the following locations:
 1. Inlet and outlet of each hydronic zone.
 2. Inlet and outlet of each hydronic coil in air-handling units.
 3. Inlet and outlet of each thermal-storage tank.
 4. Outside-, return-, supply-, and mixed-air ducts.

P. Install pressure gages in the following locations:
 1. Discharge of each pressure-reducing valve.
 2. Inlet and outlet of each chiller chilled-water and condenser-water connection.
 3. Suction and discharge of each pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow space for service and maintenance of meters, gages, machines, and equipment.

B. Connect flowmeter-system elements to meters.

C. Connect flowmeter transmitters to meters.

D. Connect thermal-energy meter transmitters to meters.

3.3 ADJUSTING

A. After installation, calibrate meters according to manufacturer's written instructions.

B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Chilled-Water Piping: 30 to 120 deg F and 0 to plus 40 deg C.

B. Scale Range for Air Ducts: 0 to 100 deg F and minus 20 to plus 50 deg C.
3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Chilled-Water Piping: 0 to 100 psi and 0 to 600 kPa.

3.6 THERMAL-ENERGY METER SCHEDULE

SECTION 23 05 23.12 - BALL VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY
A. Section Includes:
 1. Bronze ball valves.
 2. Iron ball valves.

1.2 DEFINITIONS
A. CWP: Cold working pressure.
B. SWP: Steam working pressure.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING
A. Prepare valves for shipping as follows:
 1. Protect internal parts against rust and corrosion.
 2. Protect threads, flange faces, and weld ends.
B. Use the following precautions during storage:
 1. Maintain valve end protection.
 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.5 for flanges on steel valves.
 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 6. ASME B31.9 for building services piping valves.

C. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

D. Refer to HVAC valve schedule articles for applications of valves.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Actuator Types:
 1. Gear Actuator: For quarter-turn valves NPS 4 and larger.
 2. Handlever: For quarter-turn valves smaller than NPS 4.

H. Valves in Insulated Piping:
 1. Include 2-inch stem extensions.
 2. Extended operating handle of nonthermal-conductive material, and protective sleeves that allow operation of valves without breaking the vapor seals or disturbing insulation.
 3. Memory stops that are fully adjustable after insulation is applied.

I. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE BALL VALVES

A. Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
a. Conbraco Industries, Inc.
b. Crane; Crane Energy Flow Solutions.
c. Hammond Valve.
d. Lance Valves.
e. Milwaukee Valve Company.
f. NIBCO INC.

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Two piece.
e. Body Material: Bronze.
f. Ends: Threaded.
g. Seats: PTFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Full.

B. Bronze Ball Valves, Three-Piece with Full Port Stainless-Steel Trim:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Conbraco Industries, Inc.
b. Hammond Valve.
c. Milwaukee Valve Company.
d. NIBCO INC.

2. Description:

b. SWP Rating: 150 psig.
c. CWP Rating: 600 psig.
d. Body Design: Three piece.
e. Body Material: Bronze.
f. Ends: Threaded.
g. Seats: PTFE.
h. Stem: Stainless steel.
i. Ball: Stainless steel, vented.
j. Port: Full.

2.3 IRON BALL VALVES

A. Iron Ball Valves, Class 125:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. American Valve, Inc.
 b. Conbraco Industries, Inc.
 c. KITZ Corporation.
 d. Sure Flow Equipment Inc.

2. Description:
 b. CWP Rating: 200 psig.
 d. Body Material: ASTM A 126, gray iron.
 e. Ends: Flanged.
 f. Seats: PTFE.
 g. Stem: Stainless steel.
 h. Ball: Stainless steel.
 i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.
C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install valve tags. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.

B. Select valves with the following end connections:

 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.
 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 3. For Copper Tubing, NPS 5 and Larger: Flanged ends.
 4. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 5. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.
 6. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.4 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller: Bronze ball valves, two piece, with stainless-steel trim, and full port.
 1. Valves may be provided with solder-joint ends instead of threaded ends.

B. Pipe NPS 2-1/2 and Larger:

 1. Iron ball valves, Class 125.
 a. Iron Valves, NPS 2-1/2 to NPS 4: May be provided with threaded ends instead of flanged ends.

END OF SECTION 23 05 23.12
SECTION 23 05 23.14 - CHECK VALVES FOR HVAC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Bronze swing check valves.
2. Iron swing check valves.
3. Iron swing check valves with closure control.

1.2 DEFINITIONS

A. CWP: Cold working pressure.
B. EPDM: Ethylene propylene copolymer rubber.
C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
D. SWP: Steam working pressure.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of valve.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Prepare valves for shipping as follows:

1. Protect internal parts against rust and corrosion.
2. Protect threads, flange faces, grooves, and weld ends.
3. Block check valves in either closed or open position.

B. Use the following precautions during storage:

1. Maintain valve end protection.
2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:
 1. ASME B1.20.1 for threads for threaded-end valves.
 2. ASME B16.1 for flanges on iron valves.
 3. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 4. ASME B16.18 for solder joint.
 5. ASME B31.9 for building services piping valves.

C. AWWA Compliance: Comply with AWWA C606 for grooved-end connections.

D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.

E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

F. Valve Sizes: Same as upstream piping unless otherwise indicated.

G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

A. Bronze Swing Check Valves with Bronze Disc, Class 125:

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. American Valve, Inc.
 b. Crane; Crane Energy Flow Solutions.
 c. Hammond Valve.
 d. Jenkins Valves; Crane Energy Flow Solutions.
 e. Jomar Valve.
 f. KITZ Corporation.
 g. Macomb Groups (The).
 h. Milwaukee Valve Company.
 i. NIBCO INC.
 j. Powell Valves.
 k. Red-White Valve Corporation.
 l. Stockham; Crane Energy Flow Solutions.
2. Description:
 a. Standard: MSS SP-80, Type 3.
 b. CWP Rating: 200 psig.
 c. Body Design: Horizontal flow.
 e. Ends: Threaded.
 f. Disc: Bronze.

2.3 IRON SWING CHECK VALVES

A. Iron Swing Check Valves with Metal Seats, Class 125:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Crane; Crane Energy Flow Solutions.
 b. Hammond Valve.
 c. Jenkins Valves; Crane Energy Flow Solutions.
 d. KITZ Corporation.
 e. Legend Valve & Fitting, Inc.
 f. Macomb Groups (The).
 g. Milwaukee Valve Company.
 h. NIBCO INC.
 i. Powell Valves.
 j. Red-White Valve Corporation.
 k. Stockham; Crane Energy Flow Solutions.
 l. Sure Flow Equipment Inc.

2. Description:

 a. Standard: MSS SP-71, Type I.
 b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 c. NPS 14 to NPS 24, CWP Rating: 150 psig.
 d. Body Design: Clear or full waterway.
 e. Body Material: ASTM A 126, gray iron with bolted bonnet.
 f. Ends: Flanged.
 g. Trim: Bronze.
 h. Gasket: Asbestos free.

2.4 IRON SWING CHECK VALVES WITH CLOSURE CONTROL

A. Iron Swing Check Valves with Lever- and Spring-Closure Control, Class 125:

1. Description:

 a. Standard: MSS SP-71, Type I.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

C. Examine threads on valve and mating pipe for form and cleanliness.

D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

B. Locate valves for easy access and provide separate support where necessary.

C. Install valves in horizontal piping with stem at or above center of pipe.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow and as follows:

1. Swing Check Valves: In horizontal position with hinge pin level.

F. Install valve tags. Comply with requirements for valve tags and schedules in Section 23 05 53 "Identification for HVAC Piping and Equipment."

b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.

c. NPS 14 to NPS 24, CWP Rating: 150 psig.

d. Body Design: Clear or full waterway.

e. Body Material: ASTM A 126, gray iron with bolted bonnet.

f. Ends: Flanged.

g. Trim: Bronze.

h. Gasket: Asbestos free.

i. Closure Control: Factory-installed, exterior lever and spring.
3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:

1. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze swing check valves with bronze disc.
 b. NPS 2-1/2 and Larger: Iron swing check valves with lever and weight, metal seat check valves.

B. If valves with specified SWP classes or CWP ratings are unavailable, the same types of valves with higher SWP classes or CWP ratings may be substituted.

C. Select valves, except wafer types, with the following end connections:

1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules.
2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
3. For Steel Piping, NPS 2 and Smaller: Threaded ends.
4. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules.
5. For Steel Piping, NPS 5 and Larger: Flanged ends.

3.5 CHILLED-WATER VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
2. Bronze swing check valves with bronze disc, Class 125.

B. Pipe NPS 2-1/2 and Larger:

1. NPS 2-1/2 to NPS 4: Iron valves may be provided with threaded ends instead of flanged ends.
2. NPS 2-1/2 to NPS 12: Iron swing check valves with lever and spring closure control, Class 125.

END OF SECTION 23 05 23.14
SECTION 23 05 29 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Metal framing systems.
 4. Thermal-hanger shield inserts.
 5. Fastener systems.
 6. Equipment supports Including but not limited to:
 a. HVAC units.
 b. Air distribution equipment.
 c. Fans, coil units or exhaust fans.

B. Related Requirements:
 1. Section 055000 "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
 3. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.
1. Trapeze pipe hangers.
2. Metal framing systems.
3. Equipment supports.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design trapeze pipe hangers and equipment supports.

B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
3. Design seismic-restraint hangers and supports for piping and equipment.

2.2 METAL PIPE HANGERS AND SUPPORTS

A. Carbon-Steel Pipe Hangers and Supports:

1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

B. Stainless-Steel Pipe Hangers and Supports:
1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.

2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Copper Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.

2.3 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.4 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. Flex-Strut Inc.
 d. Thomas & Betts Corporation; A Member of the ABB Group.
 e. Unistrut; Part of Atkore International.

2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.

4. Channels: Continuous slotted steel channel with inturned lips.

5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.

2.5 THERMAL-HANGER SHIELD INSERTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Carpenter & Paterson, Inc.

3. ERICO International Corporation.
5. PHS Industries, Inc.
6. Pipe Shields Inc.
7. Piping Technology & Products, Inc.
8. Rilco Manufacturing Co., Inc.

B. Insulation-Insert Material for Cold Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength and vapor barrier.

C. Insulation-Insert Material for Hot Piping: ASTM C 552, Type II cellular glass with 100-psig minimum compressive strength.

D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.

E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.

F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.6 FASTENER SYSTEMS

A. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated or stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.7 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.8 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 2. Design Mix: 5000-psi, 28-day compressive strength.
PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

E. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

F. Fastener System Installation:
 1. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

J. Install lateral bracing with pipe hangers and supports to prevent swaying.

K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

N. Insulated Piping:

1. Attach clamps and spacers to piping.
 a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.

2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make bearing surface smooth.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.

C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 09 91 13 “Exterior Painting” and Section 09 91 23 “Interior Painting”

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports and attachments for general service applications.

F. Use stainless-steel pipe hangers and corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.

I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.

17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.

18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.

19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.

21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.

2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.

2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.

4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.

5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.

2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.

3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.

4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.

6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:

 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Elastomeric isolation pads.
2. Elastomeric isolation mounts.
3. Restrained elastomeric isolation mounts.
4. Open-spring isolators.
5. Housed-spring isolators.
6. Restrained-spring isolators.
8. Pipe-riser resilient supports.
9. Resilient pipe guides.
10. Elastomeric hangers.
11. Spring hangers.
12. Snubbers.
13. Restraint channel bracings.
15. Seismic-restraint accessories.
16. Mechanical anchor bolts.
17. Adhesive anchor bolts.
18. Vibration isolation equipment bases.

B. Related Requirements:

1. Section 21 05 48 "Vibration and Seismic Controls for Fire Suppression" for devices for fire-suppression equipment and systems.
2. Section 22 05 48 "Vibration and Seismic Controls for Plumbing" for devices for plumbing equipment and systems.

1.2 DEFINITIONS

C. OSHPD: Office of Statewide Health Planning & Development (for the State of California).
1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device and seismic-restraint component required.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 b. Annotate to indicate application of each product submitted and compliance with requirements.
 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads.

B. Shop Drawings:
 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For each vibration isolation and seismic-restraint device.
 1. Include design calculations and details for selecting vibration isolators, seismic restraints, and vibration isolation bases complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic and wind forces required to select vibration isolators and seismic and wind restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
 3. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system was examined for excessive stress and that none exists.
 4. Seismic and Wind-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and
spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show coordination of vibration isolation device installation and seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and restraints, if any.

B. Qualification Data: For professional engineer.

C. Welding certificates.

D. Air-Mounting System Performance Certification: Include natural frequency, load, and damping test data performed by an independent agency.

E. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are unavailable, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

1. Basic Wind Speed Nominal: 89 mph.
2. Building Classification Category: II.
3. Minimum 10 lb/sq. ft. multiplied by maximum area of HVAC component projected on vertical plane normal to wind direction, and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II.
 a. Component Importance Factor: 1.0.
 b. Component Response Modification Factor: Reference Table 13.6-1 of ASCE 7-10 Chapter 13 for specific component factors.
 c. Component Amplification Factor: 2.5.
3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 0.256.
4. Design Spectral Response Acceleration at 1.0-Second Period: 0.164.
5. Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of ICC-ES.
 a. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they are subjected.

2.2 ELASTOMERIC ISOLATION PADS

A. Elastomeric Isolation Pads:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.
2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
3. Size: Factory or field cut to match requirements of supported equipment.
4. Pad Material: Oil and water resistant with elastomeric properties.
5. Surface Pattern: Waffle pattern.

2.3 ELASTOMERIC ISOLATION MOUNTS

A. Double-Deflection, Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Mounting Plates:

 a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.

3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.4 RESTRAINED ELASTOMERIC ISOLATION MOUNTS

A. Restrained Elastomeric Isolation Mounts:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Description: All-directional isolator with seismic restraints containing two separate and opposing elastomeric elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.

 a. Housing: Cast-ductile iron or welded steel.
 b. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.5 OPEN-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.6 HOUSED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators in Two-Part Telescoping Housing:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

3. Minimum Additional Travel: 50 percent of the required deflection at rated load.

4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

6. Two-Part Telescoping Housing: A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators.
 a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
 b. Top housing with attachment and leveling bolt.
2.7 RESTRAINED-SPRING ISOLATORS

A. Freestanding, Laterally Stable, Open-Spring Isolators with Vertical-Limit Stop Restraint:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Ace Mountings Co., Inc.
b. Kinetics Noise Control, Inc.
c. Mason Industries, Inc.
d. Vibration Mountings & Controls, Inc.

2. **Housing:** Steel housing with vertical-limit stops to prevent spring extension due to weight being removed.

a. Base with holes for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
b. Top plate with threaded mounting holes.
c. Internal leveling bolt that acts as blocking during installation.

3. **Restraint:** Limit stop as required for equipment and authorities having jurisdiction.
4. **Outside Spring Diameter:** Not less than 80 percent of the compressed height of the spring at rated load.
5. **Minimum Additional Travel:** 50 percent of the required deflection at rated load.
6. **Lateral Stiffness:** More than 80 percent of rated vertical stiffness.
7. **Overload Capacity:** Support 200 percent of rated load, fully compressed, without deformation or failure.

2.8 HOUSED-RESTRAINED-SPRING ISOLATORS

A. Freestanding, Steel, Open-Spring Isolators with Vertical-Limit Stop Restraint in Two-Part Telescoping Housing:

1. **Manufacturers:** Subject to compliance with requirements, provide products by one of the following:

a. Ace Mountings Co., Inc.
b. Kinetics Noise Control, Inc.
c. Mason Industries, Inc.
d. Vibration Mountings & Controls, Inc.

2. **Two-Part Telescoping Housing:** A steel top and bottom frame separated by an elastomeric material and enclosing the spring isolators. Housings are equipped with adjustable snubbers to limit vertical movement.

a. Drilled base housing for bolting to structure with an elastomeric isolator pad attached to the underside. Bases shall limit floor load to 500 psig.
b. Threaded top housing with adjustment bolt and cap screw to fasten and level equipment.
3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

2.9 PIPE-RISER RESILIENT SUPPORT

A. Description: All-directional, acoustical pipe anchor consisting of two steel tubes separated by a minimum 1/2-inch thick neoprene.
 1. Vertical-Limit Stops: Steel and neoprene vertical-limit stops arranged to prevent vertical travel in both directions.
 2. Maximum Load Per Support: 500 psig on isolation material providing equal isolation in all directions.

2.10 RESILIENT PIPE GUIDES

A. Description: Telescopic arrangement of two steel tubes or post and sleeve arrangement separated by a minimum 1/2-inch thick neoprene.
 1. Factory-Set Height Guide with Shear Pin: Shear pin shall be removable and reinsertable to allow for selection of pipe movement. Guides shall be capable of motion to meet location requirements.

2.11 ELASTOMERIC HANGERS

A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.
 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.
2.12 SPRING HANGERS

A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Ace Mountings Co., Inc.
 b. Kinetics Noise Control, Inc.
 c. Mason Industries, Inc.
 d. Vibration Mountings & Controls, Inc.

2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.

3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.

4. Minimum Additional Travel: 50 percent of the required deflection at rated load.

5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.

6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.

7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.

8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.

9. Self-centering hanger-rod cap to ensure concentricity between hanger rod and support spring coil.

2.13 SNUBBERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.

2. Mason Industries, Inc.

3. Vibration Mountings & Controls, Inc.

B. Description: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings.

1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and stud-wedge or female-wedge type.

2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene.

3. Maximum 1/4-inch air gap, and minimum 1/4-inch thick resilient cushion.
2.14 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.
4. Unistrut; Part of Atkore International.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.15 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Vibration Mountings & Controls, Inc.

B. Restraint Cables: ASTM A 492 stainless-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.16 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.

D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs.
E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.17 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
4. Mason Industries, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.18 ADHESIVE ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Hilti, Inc.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.19 VIBRATION ISOLATION EQUIPMENT BASES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Kinetics Noise Control, Inc.
2. Mason Industries, Inc.
3. Vibration Mountings & Controls, Inc.

B. Steel Rails: Factory-fabricated, welded, structural-steel rails.
1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Rails shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

C. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

D. Concrete Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.

1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 a. Include supports for suction and discharge elbows for pumps.

2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.

3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.

2.20 RESTRAINED ISOLATION ROOF-CURB RAILS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Ace Mountings Co., Inc.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.
B. Description: Factory-assembled, fully enclosed, insulated, air- and watertight curb rail designed to resiliently support equipment and to withstand seismic and wind forces.

C. Upper Frame: The upper frame shall provide continuous support for equipment and shall be captive to resiliently resist seismic and wind forces.

D. Lower Support Assembly: The lower support assembly shall be formed sheet metal section containing adjustable and removable steel springs that support the upper frame. The lower support assembly shall have a means for attaching to building structure and a wood nailer for attaching roof materials, and shall be insulated with a minimum of 2 inches of rigid, glass-fiber insulation on inside of assembly. Adjustable, restrained-spring isolators shall be mounted on elastomeric vibration isolation pads and shall have access ports, for level adjustment, with removable waterproof covers at all isolator locations. Isolators shall be located so they are accessible for adjustment at any time during the life of the installation without interfering with the integrity of the roof.

E. Snubber Bushings: All-directional, elastomeric snubber bushings at least 1/4 inch thick.

F. Water Seal: Galvanized sheet metal with EPDM seals at corners, attached to upper support frame, extending down past wood nailer of lower support assembly, and counterflashed over roof materials.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic and wind-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength is adequate to carry present and future static and seismic loads within specified loading limits.
3.3 VIBRATION CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."

B. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.

C. Comply with requirements in Section 07 72 00 "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations.

D. Equipment Restraints:
 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure.
 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

E. Piping Restraints:
 1. Comply with requirements in MSS SP-127.
 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 3. Brace a change of direction longer than 12 feet.

F. Install cables so they do not bend across edges of adjacent equipment or building structure.

G. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES that provides required submittals for component.

H. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

I. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

J. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

K. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.
5. Set anchors to manufacturer's recommended torque, using a torque wrench.
6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Section 232113 "Hydronic Piping" for piping flexible connections.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Perform tests and inspections.
C. Tests and Inspections:
 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.
 2. Schedule test with Government, through Contracting Officer, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice.
 3. Obtain Contracting Officer's approval before transmitting test loads to structure. Provide temporary load-spreading members.
 4. Test at least four of each type and size of installed anchors and fasteners selected by Contracting Officer.
 5. Test to 90 percent of rated proof load of device.
 7. Measure isolator deflection.
 8. Verify snubber minimum clearances.
 9. Test and adjust restrained-air-spring isolator controls and safeties.
D. Remove and replace malfunctioning units and retest as specified above.
E. Prepare test and inspection reports.
3.6 ADJUSTING

A. Adjust isolators after piping system is at operating weight.

B. Adjust limit stops on restrained-spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.

3.7 VIBRATION ISOLATION EQUIPMENT BASES INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."

END OF SECTION 23 05 48
SECTION 23 05 53 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Equipment labels.
2. Warning signs and labels.
3. Pipe labels.
4. Duct labels.
5. Valve tags.
6. Warning tags.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples: For color, letter style, and graphic representation required for each identification material and device.

C. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.

D. Valve numbering scheme.

E. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Brady Corporation.
 b. Brimar Industries, Inc.
 c. Carlton Industries, LP.
 d. Champion America.
 e. Craftmark Pipe Markers.
2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
4. Background Color: Black.
5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.

C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
7. LEM Products Inc.
8. Marking Services Inc.
10. Seton Identification Products.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

D. Background Color: Red.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation
4. Carlton Industries, LP.
5. Champion America.
7. Emedco.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.

B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.

C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 DUCT LABELS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
8. LEM Products Inc.
9. Marking Services Inc.

B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.

D. Background Color: Black.

E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

H. Fasteners: Stainless-steel rivets or self-tapping screws.

I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

J. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.
2.5 VALVE TAGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Actioncraft Products, Inc.; a division of Industrial Test Equipment Co., Inc.
2. Brady Corporation.
4. Carlton Industries, LP.
5. Champion America.
7. Emedco.
8. Kolbi Pipe Marker Co.
9. LEM Products Inc.
10. Marking Services Inc.

B. Description: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.

1. Tag Material: Stainless steel, 0.025-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain.

C. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Brady Corporation.
2. Brimar Industries, Inc.
3. Carlton Industries, LP.
5. Craftmark Pipe Markers.
8. LEM Products Inc.
9. Marking Services Inc.

B. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: Approximately 4 by 7 inches.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
B. Coordinate installation of identifying devices with locations of access panels and doors.
C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.
B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

A. Piping Color Coding: Painting of piping is specified in Section 09 91 23 "Interior Painting."
B. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 1. Near each valve and control device.
 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

3.5 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 1. Blue: For cold-air supply ducts.
 2. Yellow: For hot-air supply ducts.

B. Stenciled Duct Label Option: Stenciled labels showing service and flow direction may be provided instead of plastic-laminated duct labels, at Installer's option.

C. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.6 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:

1. Valve-Tag Size and Shape:

2. Valve-Tag Colors:
 b. Compressed Air: White letters on a safety-blue background.
3.7 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 23 05 53
SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Balancing Air Systems:
 a. Constant-volume air systems.
 b. Variable-air-volume systems.
 c. Multizone systems

2. Balancing Hydronic Piping Systems:
 a. Variable-flow hydronic systems.

3. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Chillers.

4. Testing, adjusting, and balancing existing systems and equipment.
5. Sound tests.
6. Vibration tests.
7. Duct leakage tests.
8. Control system verification.

1.2 DEFINITIONS

B. BAS: Building automation systems.

D. TAB: Testing, adjusting, and balancing.

F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.

G. TDH: Total dynamic head.
1.3 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Government, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.

1.4 ACTION SUBMITTALS

A. LEED Submittals:

1. Air-Balance Report for Prerequisite IEQ 1: Documentation indicating that work complies with ASHRAE 62.1, Section 7.2.2 - "Air Balancing."
2. TAB Report for Prerequisite EA 2: Documentation indicating that work complies with ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 45 days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 90 days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
2. Serial number.
3. Application.
4. Dates of use.
5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Specialists Qualifications: Certified by AABC or TABB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC or TABB.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC or TABB as a TAB technician.

B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 - "Air Balancing."

D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Full Government Occupancy: Government will occupy the site and existing building during entire TAB period. Cooperate with Government during TAB operations to minimize conflicts with Government's operations.

B. Partial Government Occupancy: Government may occupy completed areas of building before Substantial Completion. Cooperate with Government during TAB operations to minimize conflicts with Government's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.
C. Examine the approved submittals for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine equipment performance data including fan and pump curves.
 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

F. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

G. Examine test reports specified in individual system and equipment Sections.

H. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

I. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

J. Examine strainers. Verify that startup screens have been replaced by permanent screens with indicated perforations.

K. Examine control valves for proper installation for their intended function of throttling, diverting, or mixing fluid flows.

L. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

M. Examine system pumps to ensure absence of entrained air in the suction piping.

N. Examine operating safety interlocks and controls on HVAC equipment.

O. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

A. Prepare a TAB plan that includes the following:
 1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Clean filters are installed.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' startup is complete and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed.
 i. Windows and doors are installed.
 j. Suitable access to balancing devices and equipment is provided.

2. Hydronics:
 a. Verify leakage and pressure tests on water distribution systems have been satisfactorily completed.
 b. Piping is complete with terminals installed.
 c. Water treatment is complete.
 d. Systems are flushed, filled, and air purged.
 e. Strainers are pulled and cleaned.
 f. Control valves are functioning per the sequence of operation.
 g. Shutoff and balance valves have been verified to be 100 percent open.
 h. Pumps are started and proper rotation is verified.
 i. Pump gage connections are installed directly at pump inlet and outlet flanges or in discharge and suction pipe prior to valves or strainers.
 j. Variable-frequency controllers' startup is complete and safeties are verified.
 k. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.

1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 23 33 00 "Air Duct Accessories."
3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," Section 23 07 16 "HVAC Equipment Insulation," and Section 23 07 19 "HVAC Piping Insulation."

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components.

L. Verify that air duct system is sealed as specified in Section 23 31 13 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.

 1. Measure total airflow.
a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Government for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.

 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

C. Adjust air inlets and outlets for each space to indicated airflows.

 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

D. Verify final system conditions.

 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 2. Re-measure and confirm that total airflow is within design.
3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
4. Mark all final settings.
5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:

1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
2. Verify that the system is under static pressure control.
3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.

5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report any artificial loading of filters at the time static pressures are measured.

7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 PROCEDURES FOR MULTIZONE SYSTEMS

A. Position the unit's automatic zone dampers for maximum flow through the cooling coil.

B. The procedures for multizone systems will utilize the zone balancing dampers to achieve the indicated airflow within the zone.

C. After balancing, place the unit's automatic zone dampers for maximum heating flow. Retest zone airflows and record any variances.

D. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
1. Measure total airflow.
 a. Set outside-air, return-air and relief-air dampers for proper position that simulates minimum outdoor air conditions.
 b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.

2. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan inlet or through the flexible connection.
 b. Measure static pressure across each component that makes up the air-handling system.
 c. Report artificial loading of filters at the time static pressures are measured.

3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.

4. Obtain approval from Owner for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.

5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

E. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 1. Measure airflow of submain and branch ducts.
 2. Adjust submain and branch duct volume dampers for specified airflow.
 3. Re-measure each submain and branch duct after all have been adjusted.

F. Adjust air inlets and outlets for each space to indicated airflows.
 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 2. Measure inlets and outlets airflow.
 3. Adjust each inlet and outlet for specified airflow.
 4. Re-measure each inlet and outlet after they have been adjusted.

G. Verify final system conditions.
1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
2. Re-measure and confirm that total airflow is within design.
3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
4. Mark all final settings.
5. Test system in economizer mode. Verify proper operation and adjust if necessary.
6. Measure and record all operating data.
7. Record final fan-performance data.

3.8 GENERAL PROCEDURES FOR HYDRAULIC SYSTEMS

A. Prepare test reports for pumps, coils, and heat exchangers. Obtain approved submittals and manufacturer-recommended testing procedures. Crosscheck the summation of required coil and heat exchanger flow rates with pump design flow rate.

B. Prepare schematic diagrams of systems' "as-built" piping layouts.

C. In addition to requirements in "Preparation" Article, prepare hydronic systems for testing and balancing as follows:
 1. Check liquid level in expansion tank.
 2. Check highest vent for adequate pressure.
 3. Check flow-control valves for proper position.
 4. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
 5. Verify that motor starters are equipped with properly sized thermal protection.
 6. Check that air has been purged from the system.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRAULIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals, and proceed as specified above for hydronic systems.

B. Adjust the variable-flow hydronic system as follows:
 1. Verify that the differential-pressure sensor is located as indicated.
 2. Determine whether there is diversity in the system.

C. For systems with no diversity:
 1. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.

2. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.

3. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
 c. Re-measure each terminal after it is adjusted.
 d. Position control valves to bypass the coil and adjust the bypass valve to maintain design flow.
 e. Perform temperature tests after flows have been balanced.

4. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

5. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

6. Prior to verifying final system conditions, determine the system differential-pressure set point.

7. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.
8. Mark final settings and verify that all memory stops have been set.
9. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

10. Verify that memory stops have been set.

D. For systems with diversity:
1. Determine diversity factor.
2. Simulate system diversity by closing required number of control valves, as approved by the design engineer.
3. Adjust pumps to deliver total design gpm.
 a. Measure total water flow.
 1) Position valves for full flow through coils.
 2) Measure flow by main flow meter, if installed.
 3) If main flow meter is not installed, determine flow by pump TDH or exchanger pressure drop.
 b. Measure pump TDH as follows:
 1) Measure discharge pressure directly at the pump outlet flange or in discharge pipe prior to any valves.
 2) Measure inlet pressure directly at the pump inlet flange or in suction pipe prior to any valves or strainers.
 3) Convert pressure to head and correct for differences in gage heights.
 4) Verify pump impeller size by measuring the TDH with the discharge valve closed. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 5) With valves open, read pump TDH. Adjust pump discharge valve until design water flow is achieved.
4. Adjust flow-measuring devices installed in mains and branches to design water flows.
 a. Measure flow in main and branch pipes.
 b. Adjust main and branch balance valves for design flow.
 c. Re-measure each main and branch after all have been adjusted.
5. Adjust flow-measuring devices installed at terminals for each space to design water flows.
 a. Measure flow at terminals.
 b. Adjust each terminal to design flow.
c. Re-measure each terminal after it is adjusted.
d. Position control valves to bypass the coil, and adjust the bypass valve to maintain design flow.
e. Perform temperature tests after flows have been balanced.

6. For systems with pressure-independent valves at terminals:
 a. Measure differential pressure, and verify that it is within manufacturer's specified range.
 b. Perform temperature tests after flows have been verified.

7. For systems without pressure-independent valves or flow-measuring devices at terminals:
 a. Measure and balance coils by either coil pressure drop or temperature method.
 b. If balanced by coil pressure drop, perform temperature tests after flows have been verified.

8. Open control valves that were shut. Close a sufficient number of control valves that were previously open to maintain diversity, and balance terminals that were just opened.

9. Prior to verifying final system conditions, determine system differential-pressure set point.

10. If the pump discharge valve was used to set total system flow with variable-frequency controller at 60 Hz, at completion open discharge valve 100 percent and allow variable-frequency controller to control system differential-pressure set point. Record pump data under both conditions.

11. Mark final settings and verify that memory stops have been set.

12. Verify final system conditions as follows:
 a. Re-measure and confirm that total water flow is within design.
 b. Re-measure final pumps' operating data, TDH, volts, amps, and static profile.
 c. Mark final settings.

13. Verify that memory stops have been set.

3.10 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Phase and hertz.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter size and thermal-protection-element rating.
 8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.
3.11 PROCEDURES FOR CHILLERS

A. Balance water flow through each evaporator to within specified tolerances of indicated flow with all pumps operating. With only one chiller operating in a multiple chiller installation, do not exceed the flow for the maximum tube velocity recommended by the chiller manufacturer. Measure and record the following data with each chiller operating at design conditions:

1. Evaporator-water entering and leaving temperatures, pressure drop, and water flow.
2. Evaporator and condenser refrigerant temperatures and pressures, using instruments furnished by chiller manufacturer.
3. Power factor if factory-installed instrumentation is furnished for measuring kilowatts.
4. Kilowatt input if factory-installed instrumentation is furnished for measuring kilowatts.
5. Capacity: Calculate in tons of cooling.
6. For air-cooled chillers, verify condenser-fan rotation and record fan and motor data including number of fans and entering- and leaving-air temperatures.

3.12 PROCEDURES FOR CONDENSING UNITS

A. Verify proper rotation of fans.
B. Measure entering- and leaving-air temperatures.
C. Record fan and motor operating data.

3.13 PROCEDURES FOR HEAT-TRANSFER COILS

A. Measure, adjust, and record the following data for each water coil:

1. Entering- and leaving-water temperature.
2. Water flow rate.
3. Water pressure drop for major (more than 20 gpm) equipment coils, excluding unitary equipment such as reheat coils, unit heaters, and fan-coil units.
4. Dry-bulb temperature of entering and leaving air.
5. Wet-bulb temperature of entering and leaving air for cooling coils.
6. Airflow.

B. Measure, adjust, and record the following data for each electric heating coil:

1. Nameplate data.
2. Airflow.
3. Entering- and leaving-air temperature at full load.
4. Voltage and amperage input of each phase at full load.
5. Calculated kilowatt at full load.
6. Fuse or circuit-breaker rating for overload protection.

C. Measure, adjust, and record the following data for each refrigerant coil:

1. Dry-bulb temperature of entering and leaving air.
2. Wet-bulb temperature of entering and leaving air.
3. Airflow.

3.14 SOUND TESTS

A. After the systems are balanced and construction is Substantially Complete, measure and record sound levels at 10 locations as designated by the Contracting Officer.

B. Instrumentation:
 1. The sound-testing meter shall be a portable, general-purpose testing meter consisting of a microphone, processing unit, and readout.
 2. The sound-testing meter shall be capable of showing fluctuations at minimum and maximum levels, and measuring the equivalent continuous sound pressure level (LEQ).
 3. The sound-testing meter must be capable of using 1/3 octave band filters to measure mid-frequencies from 31.5 Hz to 8000 Hz.
 4. The accuracy of the sound-testing meter shall be plus or minus one decibel.

C. Test Procedures:
 1. Perform test at quietest background noise period. Note cause of unpreventable sound that affects test outcome.
 2. Equipment should be operating at design values.
 3. Calibrate the sound-testing meter prior to taking measurements.
 4. Use a microphone suitable for the type of noise levels measured that is compatible with meter. Provide a windshield for outside or in-duct measurements.
 5. Record a set of background measurements in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment off.
 6. Take sound readings in dBA and sound pressure levels in the eight un-weighted octave bands 63 Hz to 8000 Hz (NC) with the equipment operating.
 7. Take readings no closer than 36 inches from a wall or from the operating equipment and approximately 60 inches from the floor, with the meter held or mounted on a tripod.
 8. For outdoor measurements, move sound-testing meter slowly and scan area that has the most exposure to noise source being tested. Use A-weighted scale for this type of reading.

D. Reporting:
 1. Report shall record the following:
 a. Location.
 b. System tested.
 c. dBA reading.
 d. Sound pressure level in each octave band with equipment on and off.
 2. Plot sound pressure levels on NC worksheet with equipment on and off.
3.15 VIBRATION TESTS

A. After systems are balanced and construction is Substantially Complete, measure and record vibration levels on equipment having motor horsepower equal to or greater than 10.

B. Instrumentation:

1. Use portable, battery-operated, and microprocessor-controlled vibration meter with or without a built-in printer.
2. The meter shall automatically identify engineering units, filter bandwidth, amplitude, and frequency scale values.
3. The meter shall be able to measure machine vibration displacement in mils of deflection, velocity in inches per second, and acceleration in inches per second squared.
4. Verify calibration date is current for vibration meter before taking readings.

C. Test Procedures:

1. To ensure accurate readings, verify that accelerometer has a clean, flat surface and is mounted properly.
2. With the unit running, set up vibration meter in a safe, secure location. Connect transducer to meter with proper cables. Hold magnetic tip of transducer on top of the bearing, and measure unit in mils of deflection. Record measurement, then move transducer to the side of the bearing and record in mils of deflection. Record an axial reading in mils of deflection by holding nonmagnetic, pointed transducer tip on end of shaft.
3. Change vibration meter to velocity (inches per second) measurements. Repeat and record above measurements.
4. Record CPM or rpm.
5. Read each bearing on motor, fan, and pump as required. Track and record vibration levels from rotating component through casing to base.

D. Reporting:

1. Report shall record location and the system tested.
2. Include horizontal-vertical-axial measurements for tests.
3. Verify that vibration limits follow Specifications, or, if not specified, follow the General Machinery Vibration Severity Chart or Vibration Acceleration General Severity Chart from the AABC National Standards. Acceptable levels of vibration are normally "smooth" to "good."
4. Include in report General Machinery Vibration Severity Chart, with conditions plotted.

3.16 DUCT LEAKAGE TESTS

A. Witness the duct pressure testing performed by Installer.

B. Verify that proper test methods are used and that leakage rates are within specified tolerances.

C. Report deficiencies observed.
3.17 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:

1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.18 TOLERANCES

A. Set HVAC system's airflow rates and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
2. Air Outlets and Inlets: Plus or minus 10 percent.
3. Cooling-Water Flow Rate: Plus or minus 10 percent.

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.19 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare monthly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.
3.20 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Pump curves.
2. Fan curves.
3. Manufacturers’ test data.
4. Field test reports prepared by system and equipment installers.
5. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.

12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
f. Inlet vane settings for variable-air-volume systems.
g. Settings for supply-air, static-pressure controller.
h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:

1. Quantities of outdoor, supply, return, and exhaust airflows.
2. Water and steam flow rates.
3. Duct, outlet, and inlet sizes.
4. Pipe and valve sizes and locations.
5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:

1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches, and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 j. Number, make, and size of belts.
 k. Number, type, and size of filters.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave and amount of adjustments in inches.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Filter static-pressure differential in inches wg.
 f. Preheat-coil static-pressure differential in inches wg.
 g. Cooling-coil static-pressure differential in inches wg.
h. Heating-coil static-pressure differential in inches wg.
i. Outdoor airflow in cfm.
j. Return airflow in cfm.
k. Outdoor-air damper position.
l. Return-air damper position.
m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:

 a. System identification.
b. Location.
c. Coil type.
d. Number of rows.
e. Fin spacing in fins per inch o.c.
f. Make and model number.
g. Face area in sq. ft.
h. Tube size in NPS.
i. Tube and fin materials.
j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

 a. Airflow rate in cfm.
b. Average face velocity in fpm.
c. Air pressure drop in inches wg.
d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
e. Return-air, wet- and dry-bulb temperatures in deg F.
f. Entering-air, wet- and dry-bulb temperatures in deg F.
g. Leaving-air, wet- and dry-bulb temperatures in deg F.
h. Water flow rate in gpm.
i. Water pressure differential in feet of head or psig.
j. Entering-water temperature in deg F.
k. Leaving-water temperature in deg F.
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig.
n. Refrigerant suction temperature in deg F.
o. Inlet steam pressure in psig.

G. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:

 a. System identification.
b. Location.
c. Make and type.
d. Model number and unit size.
2. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Entering-air temperature in deg F.
 c. Leaving-air temperature in deg F.
 d. Air temperature differential in deg F.
 e. Entering-air static pressure in inches wg.
 f. Leaving-air static pressure in inches wg.
 g. Air static-pressure differential in inches wg.
 h. Low-fire fuel input in Btu/h.
 i. High-fire fuel input in Btu/h.
 j. Manifold pressure in psig.
 k. High-temperature-limit setting in deg F.
 l. Operating set point in Btu/h.
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h.

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
 a. System identification.
 b. Location.
 c. Coil identification.
 d. Capacity in Btu/h.
 e. Number of stages.
 f. Connected volts, phase, and hertz.
 g. Rated amperage.
 h. Airflow rate in cfm.
 i. Face area in sq. ft.
 j. Minimum face velocity in fpm.

2. Test Data (Indicated and Actual Values):
 a. Heat output in Btu/h.
 b. Airflow rate in cfm.
c. Air velocity in fpm.
d. Entering-air temperature in deg F.
e. Leaving-air temperature in deg F.
f. Voltage at each connection.
g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:
 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and size.
 e. Manufacturer's serial number.
 f. Arrangement and class.
 g. Sheave make, size in inches, and bore.
 h. Center-to-center dimensions of sheave and amount of adjustments in inches.

2. Motor Data:
 a. Motor make, and frame type and size.
 b. Horsepower and rpm.
 c. Volts, phase, and hertz.
 d. Full-load amperage and service factor.
 e. Sheave make, size in inches, and bore.
 f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):
 a. Total airflow rate in cfm.
 b. Total system static pressure in inches wg.
 c. Fan rpm.
 d. Discharge static pressure in inches wg.
 e. Suction static pressure in inches wg.

J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F.
 d. Duct static pressure in inches wg.
 e. Duct size in inches.
 f. Duct area in sq. ft..
 g. Indicated airflow rate in cfm.
 h. Indicated velocity in fpm.
K. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Air velocity in fpm.
 c. Preliminary airflow rate as needed in cfm.
 d. Preliminary velocity as needed in fpm.
 e. Final airflow rate in cfm.
 f. Final velocity in fpm.
 g. Space temperature in deg F.

L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm.
 b. Entering-water temperature in deg F.
 c. Leaving-water temperature in deg F.
 d. Water pressure drop in feet of head or psig.
 e. Entering-air temperature in deg F.
 f. Leaving-air temperature in deg F.

M. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Service.
 d. Make and size.
 e. Model number and serial number.
 f. Water flow rate in gpm.
 g. Water pressure differential in feet of head or psig.
 h. Required net positive suction head in feet of head or psig.
 i. Pump rpm.
 j. Impeller diameter in inches.
 k. Motor make and frame size.
 l. Motor horsepower and rpm.
 m. Voltage at each connection.
 n. Amperage for each phase.
 o. Full-load amperage and service factor.
 p. Seal type.

2. Test Data (Indicated and Actual Values):
 a. Static head in feet of head or psig.
 b. Pump shutoff pressure in feet of head or psig.
 c. Actual impeller size in inches.
 d. Full-open flow rate in gpm.
 e. Full-open pressure in feet of head or psig.
 f. Final discharge pressure in feet of head or psig.
 g. Final suction pressure in feet of head or psig.
 h. Final total pressure in feet of head or psig.
 i. Final water flow rate in gpm.
 j. Voltage at each connection.
 k. Amperage for each phase.

N. Instrument Calibration Reports:

1. Report Data:
 a. Instrument type and make.
 b. Serial number.
 c. Application.
 d. Dates of use.
 e. Dates of calibration.

3.21 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Government.
B. Government shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

C. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."

D. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.

E. If TAB work fails, proceed as follows:
 1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 2. If the second final inspection also fails, Government may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.
 3. If the second verification also fails, Government may contact AABC Headquarters regarding the AABC National Performance Guaranty.

F. Prepare test and inspection reports.

3.22 ADDITIONAL TESTS

A. Within 90 days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions.

B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional TAB during near-peak summer and winter conditions.

END OF SECTION 23 05 93
SECTION 23 07 13 - DUCT INSULATION

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes insulating the following duct services:
 1. Indoor, concealed supply, return, exhaust and outdoor air.
 2. Indoor, exposed supply, return, exhaust and outdoor air.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, indicating VOC content.
 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
 3. Product Data: For coatings, indicating VOC content.
 4. Laboratory Test Reports: For coatings, indicating compliance with requirements for low-emitting materials.
 5. Product Data: For sealants, indicating VOC content.
 6. Laboratory Test Reports: For sealants, indicating compliance with requirements for low-emitting materials.

1.3 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified Installer.

B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.

C. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame spread index of 25 or less, and smoke-developed index of 50 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. CertainTeed Corporation.
 b. Johns Manville; a Berkshire Hathaway company.
 c. Knauf Insulation.
 d. Owens Corning.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.
2. Fiberglass adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. VOC Content: 300 g/L or less.
2. Low-Emitting Materials: Mastic coatings shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.

1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Breather Mastic: Water based; suitable for indoor and outdoor use on above ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: 60 percent by volume and 66 percent by weight.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. Adhesives shall have a VOC content of 50 g/L or less.
2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct insulation.
3. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Sealant shall have a VOC content of 420 g/L or less.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 6 oz./sq. yd. with a thread count of 5 strands by 5 strands/sq. in. for covering ducts.
B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for ducts.

2.8 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd..

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
B. Metal Jacket:
 a. Finish and thickness are indicated in field-applied jacket schedules.

2.10 TAPES

A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 6.5 mils.
4. Elongation: 2 percent.
5. Tensile Strength: 40 lbf/inch in width.
6. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Width: 2 inches.
 2. Thickness: 3.7 mils.
 3. Adhesion: 100 ounces force/inch in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch in width.

2.11 SECUREMENTS

A. Bands:
 1. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.

B. Insulation Pins and Hangers:
 1. Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 2. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 3. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 b. Spindle: Copper- or zinc-coated, low-carbon steel, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 4. Nonmetal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate fastened to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 a. Baseplate: Perforated, nylon sheet, 0.030 inch thick by 1-1/2 inches in diameter.
b. Spindle: Nylon, 0.106-inch-diameter shank, length to suit depth of insulation indicated, up to 2-1/2 inches.

c. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.

5. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, galvanized-steel sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

a. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.

6. Nonmetal Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick nylon sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

D. Wire: 0.062-inch soft-annealed, stainless steel.

2.12 CORNER ANGLES

A. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.

B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Keep insulation materials dry during application and finishing.

G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

H. Install insulation with least number of joints practical.

I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

K. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 a. For below ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.

L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.

1. Seal penetrations with flashing sealant.
2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
4. Seal jacket to wall flashing with flashing sealant.

C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

D. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

E. Insulation Installation at Floor Penetrations:
1. Duct: For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.

2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.

2. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:

 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Impale insulation over pins and attach speed washers.
 f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

3. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

4. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of duct and plenum surfaces.
2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 d. Do not overcompress insulation during installation.
 e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.

5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
3.6 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as selected by Contracting Officer. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect ductwork, randomly selected by Contracting Officer, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.

C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.9 DUCT INSULATION SCHEDULE, GENERAL

A. Plenums and Ducts Requiring Insulation:

1. Indoor, concealed supply and outdoor air.
2. Indoor, exposed supply and outdoor air.
3. Indoor, concealed return located in unconditioned space.
4. Indoor, exposed return located in unconditioned space.
5. Indoor, concealed oven and warewash exhaust.
6. Indoor, exposed oven and warewash exhaust.
7. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
8. Indoor, exposed exhaust between isolation damper and penetration of building exterior.

B. Items Not Insulated:

1. Factory-insulated flexible ducts.
2. Factory-insulated plenums and casings.
3. Flexible connectors.
5. Factory-insulated access panels and doors.

3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Concealed, round and flat-oval, supply, return, exhaust and outside-air duct insulation shall be the following:

1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.

B. Concealed, rectangular, supply, return, exhaust and outside-air duct insulation shall be the following:

1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.

C. Exposed, round and flat-oval, supply, return, exhaust and outside air duct insulation shall be the following:

1. Double wall insulated ductwork in compliance with section 23 31 13.

D. Exposed, rectangular, supply, return, exhaust and outside-air duct insulation shall be the following:

1. Mineral-Fiber Board: 2 inches thick and 2-lb/cu. ft. nominal density.

3.11 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Ducts and Plenums, Exposed:

1. Painted Aluminum, Smooth: 0.020 inch thick.

END OF SECTION 23 07 13
SECTION 23 07 19 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes insulating the following HVAC piping systems:
 1. Condensate drain piping, indoors and outdoors.
 2. Chilled-water and brine piping, indoors.
 3. Refrigerant piping, indoors and outdoors.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).
 B. Sustainable Design Submittals.
 C. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Detail attachment and covering of heat tracing inside insulation.
 3. Detail insulation application at pipe expansion joints for each type of insulation.
 4. Detail insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 5. Detail removable insulation at piping specialties.
 6. Detail application of field-applied jackets.
 7. Detail application at linkages of control devices.

1.3 INFORMATIONAL SUBMITTALS
 A. Qualification Data: For qualified Installer.
 B. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed.
 C. Field quality-control reports.
1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.
PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

1. Block Insulation: ASTM C 552, Type I.
2. Special-Shaped Insulation: ASTM C 552, Type III.
3. Board Insulation: ASTM C 552, Type IV.
4. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
5. Preformed Pipe Insulation with Factory-Applied ASJ-SSL: Comply with ASTM C 552, Type II, Class 2.
6. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F.

1. Adhesives shall have a VOC content of 50 g/L or less.

C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Aeroflex USA, Inc.
 b. Armacell LLC.
 c. Foster Brand; H. B. Fuller Construction Products.

2. Adhesives shall have a VOC content of 50 g/L or less.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. VOC Content: 300 g/L or less.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Foster Brand; H. B. Fuller Construction Products.
 b. Knauf Insulation.
 c. C. Childers Product; CP-35

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Childers Brand; H. B. Fuller Construction Products.
b. Eagle Bridges - Marathon Industries.
c. Foster Brand; H. B. Fuller Construction Products.
2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
3. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Childers Brand; H. B. Fuller Construction Products.
b. Eagle Bridges - Marathon Industries.
c. Foster Brand; Specialty Construction Brands, Inc; 60-95/60-96
2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F.
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

a. Childers Brand; H. B. Fuller Construction Products.
b. Eagle Bridges - Marathon Industries.
c. Foster Brand; H. B. Fuller Construction Products.
d. Knauf Insulation.
e. Mon-Eco Industries, Inc.
2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F.
4. Solids Content: 60 percent by volume and 66 percent by weight.
2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Foster Brand; H. B. Fuller Construction Products.
 c. Vimasco Corporation

2. Adhesives shall have a VOC content of 50 g/L or less.
3. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
4. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. Cellular-Glass, Joint Sealants:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.
 d. Mon-Eco Industries, Inc.

B. FSK and Metal Jacket Flashing Sealants:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Childers Brand; H. B. Fuller Construction Products.
 b. Eagle Bridges - Marathon Industries.
 c. Foster Brand; H. B. Fuller Construction Products.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Fire- and water-resistant, flexible, elastomeric sealant.
4. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Color: Aluminum.
6. Sealant shall have a VOC content of 420 g/L or less.

C. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.
5. Sealant shall have a VOC content of 420 g/L or less.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 1. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:
 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Prefomed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
 2. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Factory cut and rolled to size.
 b. Material, finish, and thickness are indicated in field-applied jacket schedules.
d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 3) Tee covers.
 4) Flange and union covers.
 5) End caps.
 6) Beveled collars.
 7) Valve covers.
 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.8 TAPES

A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 1. Width: 3 inches.
 2. Thickness: 11.5 mils.
 4. Elongation: 2 percent.
 5. Tensile Strength: 40 lbf/inch in width.
 6. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 1. Width: 2 inches.
 2. Thickness: 3.7 mils.
 3. Adhesion: 100 ounces force/inch in width.
 4. Elongation: 5 percent.
 5. Tensile Strength: 34 lbf/inch in width.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.

2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.

4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

L. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

P. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
HVAC PIPING INSULATION

3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in Section 07 84 13 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

3.6 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

1. Secure each layer of insulation to pipe with wire or bands and tighten bands without deforming insulation materials.

2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.

3. For insulation with factory-applied jackets on above-ambient services, secure laps with outward-clinched staples at 6 inches o.c.
4. For insulation with factory-applied jackets on below-ambient services, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

1. Install preformed pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of cellular-glass block insulation of same thickness as pipe insulation.
4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install preformed sections of same material as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
2. When preformed sections of insulation are not available, install mitered sections of cellular-glass insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed sections of cellular-glass insulation to valve body.
2. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.

3.7 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:
 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 3. Install insulation to flanges as specified for flange insulation application.
 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.8 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.
 1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
 3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.9 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."
 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.

C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

D. Do not field paint aluminum or stainless-steel jackets.
3.10 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location of straight pipe, one location of threaded fittings, one location of welded fittings, one location of threaded strainers, one location of welded strainers, one location of threaded valves, and one location of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.11 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.

3.12 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F:

 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch thick.

B. Chilled Water and Brine, above 40 Deg F:

 1. NPS 12 and Smaller: Insulation shall be the following:
 a. Cellular Glass: 2 inches thick.

C. Refrigerant Suction and Hot-Gas Piping:

 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch thick.

3.13 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Refrigerant Piping:

 1. All Pipe Sizes: Insulation shall be the following:
a. Flexible Elastomeric: 2 inches thick.

B. Chilled Water and Brine, above 40 deg F
 1. All Pipe Sizes: Insulation shall be the following:

C. Cellular Glass: 2 inches thick.

3.14 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Exposed:
 1. Aluminum, Smooth: 0.024 inch thick.
SECTION 23 09 23 – DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 SUMMARY

A. The local Building Automation System (BAS) provided for this project shall be an addition to the existing base-wide BAS installed in the base. The local BAS in the facility shall be fully integrated into the existing BAS workstation, based on Ascent Compass by Alerton, in Building 43. The contractor shall be responsible for making any modifications to the existing base-wide BAS workstation, which will be necessary to facilitate communications between the server and local BAS. The contractor shall be responsible for configuration, programming and necessary graphical displays for existing BAS workstation for remote control and monitoring of local BAS. Local BAS shall be connected to the existing base-wide BAS via the base network backbone using VLAN and BACnet/IP. Coordinate with COTR and NC ANG IT Department for network connection, system access, security and other requirements.

B. Furnish a BACnet-based BAS, which shall be based on a distributed control system in accordance with this specification. Provide all necessary hardware, software and control devices to execute the sequence of operation and comply with the control diagrams and BAS point function schedule shown on the mechanical drawings. The Building Controllers (BC), Advanced Application Controllers (AAC), Application Specific Controllers (ASC) and all input/output devices shall communicate using the protocols and network standards as defined by ANSI/ASHRAE Standard 135–2012, BACnet. In other words, all controllers, including unitary controllers, shall be BACnet devices. The building controller shall communicate with the existing base-wide BAS workstation in Building 43. This Section includes building controllers and application controllers capable of monitoring and controlling all HVAC equipment indicated.

1. Provide BC, AAC and ASC for control of HVAC equipment, including but not limited to, make-up air units, air handling units, terminal units, exhaust fans and heating hot water system. When more than one HVAC unit is controlled from a single panel, provide separate power fuses for each controller within the panel. Also, provide a separate fuse for the power supply to each unit’s control and sensing points not powered through the controller, so a blown fuse will only affect the operation of a single HVAC unit.

2. Each BC and network hardware such as Ethernet switch and router provided for the BAS shall be provided with an Uninterruptible Power Supply (UPS) that can supply electrical power for at least four hours to the attached load.

3. Any software provided shall be of the latest available version for the BAS installed in the building.

4. BC, AAC and ASC shall be capable of accepting analog and digital inputs and shall provide analog and digital outputs in accordance with the control diagrams and the “BAS Point Function Schedule.”

5. The controllers shall be distributed in such a manner that no more than one major mechanical system component, including but not limited to MAU, AHU and VAV box, shall be controlled and monitored using a single controller. Loss of one controller shall not cause the loss of another mechanical system component.
6. Provide BAS control wiring and conduit for this system as described in Part 3, “3.2 Electrical Installation” of this Section. 120 VAC power circuits are provided for BCs and AACs under Division 26 as shown on the electrical plans. In addition, power circuits are provided for multiple ASCs under Division 26 as shown on the electrical plans. ASCs for the Fan Powered VAV Boxes to be powered from fan power circuit. Provide additional 120 VAC control power circuits when required for proper operation of the BAS. The control system installer shall make connections as necessary to complete the system.

C. Related Sections include the following:
 1. Division 01, "General Requirements" contains requirements that relate to this Section.
 2. Division 23, "Mechanical", specifications contain requirements that relate to this Section.
 3. Division 26, “Electrical”, specifications contain requirements that relate to this Section.
 4. Division 28, “Electronic Safety and Security”, specifications contain requirements that relate to this Section.

1.2 REFERENCE STANDARDS: Compliance with the following standards is required. Work, which does not meet the requirements of these standards, will be rejected and shall be redone at the contractor’s expense.

A. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
 1. 135-2012: BACnet Data Communication Protocol for Building Automation and Control Networks, including all published addenda.

B. Electronic Industries Association/Telecommunications Industry Association (EIA/TIA)
 1. EIA/TIA-568: Commercial Building Telecommunications Cabling Standard - All parts and Addendums.

C. National Fire Protection Association (NFPA)
 4. 262: Standard Method of Test for Fire and Smoke Characteristics of Wires and Cables.

D. Federal Communications Commission (FCC)

E. Underwriters Laboratories (UL)
 2. 268A: Smoke Detectors for Duct Applications.
 3. 468A: Wire Connectors and Soldering Lugs for Use with Copper Conductors.
F. National Electrical Manufacturer's Association (NEMA)
 1. ICS6: Enclosures for Industrial Control Systems.

G. Institute of Electrical and Electronic Engineers (IEEE)
 1. 802.3: Information technology - Telecommunications and information exchange between systems-Local and metropolitan area networks.

1.3 DEFINITIONS

A. Modulating Control: Direct digital closed loop Proportional + Integral (PI) control which maintains the controlled variable (temperature, humidity, etc.) at a set point by adjusting the position of a valve, damper or similar controlled device in small increments and decrements between fully open and fully closed positions. PI loop shall include an adjustable dead band, which is a range of the controlled variable around the set point in which no change in output to the controlled device is made. Dead bands shall be initially set at plus or minus 0.5 °F for temperature control loops and plus or minus 2 percent RH for humidity control loops.

B. 2-Position Control: On/off control in which the controlled device is either fully open or fully closed with no intermediate operating positions available.

C. Advanced Application Controller (AAC): A fully programmable control module. This control module may be capable of some of the advanced features found in Building Controllers (storing trends, initiating read and write requests, etc.) but it does not serve as a master controller. Advanced Application Controllers may reside on either the Ethernet/IP backbone or on a subnet.

D. Application Specific Controller (ASC): A pre-programmed control module which is intended for use in a specific application. ASCs may be configurable, in that the user can choose between various pre-programmed options, but it does not support full custom programming. ASCs are often used on terminal equipment such as VAV boxes or fan coil units. In many vendors' architectures ASCs do not store trends or schedules but instead rely upon a Building Controller to provide those functions.

E. BACnet/IP: An approved BACnet network type, which uses an Ethernet carrier and Internet Protocol (IP) addressing.

F. BACnet MS/TP: An approved BACnet network type, which uses a Master-Slave Token Passing configuration. MS/TP networks are unique to BACnet and utilize EIA485 twisted pair topology running at 9600 to 76,800 bps.

G. BACnet over ARCNET: An approved BACnet network type, which uses an ARCNET (attached resource computer network) carrier. ARCNET is an industry standard that can utilize several speeds and wiring standards. The most common configuration used by BACnet controllers is an EIA485 twisted pair topology running at 156,000 bps.

H. Building Controller (BC): A fully programmable control module, which is capable of storing trends and schedules, serving as a router to devices on a subnet, and initiating read and write
requests to other controllers. Typically this controller is located on the Ethernet/IP backbone of the BAS. In many vendors' architectures a Building Controller will serve as a master controller, storing schedules and trends for controllers on a subnet underneath the Building Controller.

I. Operator’s Workstation (OWS): A data processing system loaded with necessary hardware and software, which is intended to use as a primary access point for control and monitoring of BAS. The OWS shall directly communicate with BAS controllers via BACnet network types as a BACnet device. It shall comply with the requirements of a BACnet device profile and shall support all BACnet services and functional groups.

J. PICS - Protocol Implementation Conformance Statement: A written document, created by the manufacturer of a device, which identifies the particular options specified by BACnet that are implemented in the device.

1.4 SYSTEM DESCRIPTION

A. Provide and install a distributed logic Building Automation System complete with software and hardware functions required. Provide a complete control system including BACnet controllers, raceways, wiring, temperature and humidity sensing elements, flow and pressure sensing elements, element wells and relays. Non-BACnet-compliant or proprietary equipment or systems (including gateways) shall not be acceptable and are specifically prohibited.

B. The BAS application program shall be written to communicate specifically utilizing BACnet protocols. Software shall include password protection, scheduling (including optimum start), alarming, logging of historical data, full graphics including: animation, after-hours billing program, demand limiting, full suite of field engineering tools including graphical programming and applications. Systems, which do not utilize BACnet protocols, are strictly prohibited.

C. Control system hardware consists of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, and accessories connected to controllers to operate mechanical systems according to sequences of operation specified.

D. Control system software consists of control software, communication software, alarm reporting software, and graphical operator interface software, programmed to operate mechanical systems according to Sequences of Operation specified.

1.5 SEQUENCE OF OPERATIONS

A. Point List: See the “BAS Point Function Schedule” shown on the drawings for a list of required hardware points and associated software functions. Points (physical, software, calculated, etc.) required to perform the specified Sequence of Operation, but not listed, shall be provided.

B. Set Point Adjustment: The set points listed in the Sequence of Operation are initial settings, which shall be adjustable. BAS software data for the system, including but not limited to set points, differentials, alarm limits, and PID control parameters shall be adjustable through the OWS by operators who have received the Operator Training described in Part 3 of this Section. Control set points shall be included on the graphical displays for each system, along with the analog value of each controlled variable. An operator with the proper password shall be able to
raise or lower these control set points through a pull-down menu while the system graphic is displayed on the OWS monitor. It shall not be necessary to revise the system control programs to adjust the control set points.

C. Alarm Limits: Alarm limits shall be programmed into the system when required by the “BAS Point Function Schedule” on the mechanical plans. The control system installer shall initially set alarm limits, so that alarms will be activated when the sensed variable is 10% above or below the control set point. The alarm limits may be changed during start-up, if required, to meet actual operating conditions.

D. Alarm monitoring: Alarms identified on the “BAS Point Function Schedule” shall be enunciated on the displays of the OWS and on the alarm printer. In addition, specific critical alarms, to be identified by the NC ANG, shall initiate automated paging of maintenance personnel by the OWS. Coordinate alarms which shall be paged to maintenance personnel with the NC ANG.

E. VAV Air Handling Unit (RTU-01 and RTU-02)

1. Supply Fan Hand-Off-Auto Operation: Hand-Off-Auto settings shall be provided as part of the variable frequency drive (VFD) through the drive's keypad. In the Off mode, the fan shall be stopped. In the Hand mode, the fan shall run continuously. In the Auto mode, the BAS will start/stop the unit through the unit controller as described below. Program a time delay into the VFD, in both the Hand and Auto modes, to stagger the restart of each unit after a power failure to prevent creating a spike in the facility electrical demand. Upon activation, safeties shall be hard wired to the VFD to stop the unit supply fan in the Hand and Auto modes.

2. Supply Fan Local-Remote Speed Control: Local-Remote settings shall be provided as part of the VFD through the drive's keypad. In the Local mode, the fan speed shall be controlled through a manual speed control located at the respective drive control panel. In the Remote mode, the fan speed shall be controlled by the BAS through the unit controller.

3. Automatic Mode Start/Stop Control: The BAS shall start and stop the air handler. To start the unit, the BAS shall send a start signal to the unit controller, which will start the supply fan. If the fan does not start after a 60 second (adjustable) time delay, a unit failure alarm shall be issued and the start command shall be canceled. To stop the unit, the BAS shall send a stop command to the unit controller, which will de-energize the supply fan. The unit shall be placed on a time schedule.

a. Optimal Start: The BAS shall start the unit according to an optimal start routine. Cool down mode shall be used if the space temperature, as sensed by any one of the associated VAV box room temperature sensors, is above the occupied set point. At the scheduled occupancy time, the unit shall start if not already started by the optimal start routine, and the unit shall be switched to the occupied mode.

b. Optimal Stop: The BAS shall stop the unit according to an optimal stop routine. The routine shall monitor the warmest and coolest room temperatures as sensed by the associated VAV box room temperature sensors, and stop the unit up to 30 minutes early if the temperatures are within acceptable limits.

c. Unoccupied Start/Stop: In the unoccupied mode, the BAS shall start the unit and the unit controller will operate the system in the unoccupied cooling mode if any space temperature as sensed by any one of the associated VAV box space temperature sensors rises above 90°F (adjustable). The unit shall operate until all
space temperatures have dropped below 85°F (adjustable). The unit controller will operate the system in the unoccupied heating mode if any space temperature as sensed by any one of the associated VAV box space temperature sensors drops below 55°F (adjustable). The unit shall operate until all space temperatures are at least 60°F (adjustable).

4. Supply Fan Automatic Speed Control: When the supply fan VFD is started, the unit controller shall control the speed of the VFD to maintain the supply duct static pressure as sensed by static pressure sensors PD-1 at the supply duct static pressure set point. When the supply duct static pressure is below the set point at any one of the static pressure sensors, the speed shall increase and when the supply duct static pressure is above the set point at all of the static pressure sensors, the speed shall decrease. When the VFD is stopped, the unit controller shall return the VFD to a speed of zero.

5. Supply Duct Static Pressure Set Point: The set point shall be reset based on the VAV box requiring the most static pressure. The BAS shall monitor the positions of the dampers in the VAV boxes and send a reset signal to the unit controller. The supply air static pressure set point shall be lowered until one of the VAV box dampers has modulated completely open. This set point shall be increased should more than one VAV box damper completely open. The static pressure set point shall not be allowed to rise above 1.5 inches w.c. or fall below 0.25 inches w.c.

6. Supply Air Temperature Set Point Reset Control: The BAS shall monitor the VAV Box controllers and send a supply air temperature set point reset signal to the unit controller to reset the supply air temperature based on the VAV box with the highest demand for cooling. The supply air temperature set point shall be reset between 53 °F and 60°F, to the highest possible value while maintaining all VAV zone temperatures at the required set point.

7. Cooling Control: When there is a demand for cooling, the BAS shall cycle on and off the cooling stage to maintain the supply air temperature, as sensed by TS-1, at the supply air temperature cooling set point. When the supply fan is off, the cooling shall be off.

8. Fire alarm shutdown: When particles of combustion are sensed by the supply air duct smoke detector S-1, or the return air duct smoke detector S-2, a duct smoke alarm signal shall be sent to the fire alarm system. Upon receiving an alarm signal from duct smoke detector S-1 or S-2, the fire alarm system shall activate a Control Module (CM) to stop the fan. When the fire alarm condition has been cleared, and the fire alarm system has been reset, the unit shall be returned to normal operation.

9. High Duct Static Pressure Shutdown: The supply fan shall stop and an alarm shall be signaled when static pressure rises above excessive-static-pressure set point. When the high static condition has been cleared, and the device has been manually reset, the air handling unit shall be returned to operation.

10. Dirty Filter Alarm: Differential pressure switch DP-1 shall monitor the pressure drop at the filters. When the pressure exceeds an adjustable limit, an alarm signal will be sent to the unit controller and the BAS. Pressure difference indicator (PDI-1) located at the filters shall indicate the differential pressure across the filters.

11. Fan Status: The fan VFD status contact shall be used to monitor the status of the unit supply and relief fans. If the status indicated does not match the commanded output for the fan an alarm shall be generated at the unit controller and the BAS.

12. Failure Mode: Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Function Schedule" on the mechanical sheets.
13. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the "BAS Point Function Schedule."

F. VAV Air Handling Unit (AHU-01S)

1. Supply Fan Hand-Off-Auto Operation: Hand-Off-Auto settings shall be provided as part of the variable frequency drive (VFD) through the drive's keypad. In the Off mode, the fan shall be stopped. In the Hand mode, the fan shall run continuously. In the Auto mode, the BAS will start/stop the unit through the unit controller as described below. Program a time delay into the VFD, in both the Hand and Auto modes, to stagger the restart of each unit after a power failure to prevent creating a spike in the facility electrical demand. Upon activation, safeties shall be hard wired to the VFD to stop the unit supply fan in the Hand and Auto modes.

2. Supply Fan Local-Remote Speed Control: Local-Remote settings shall be provided as part of the VFD through the drive's keypad. In the Local mode, the fan speed shall be controlled through a manual speed control located at the respective drive control panel. In the Remote mode, the fan speed shall be controlled by the BAS through the unit controller.

3. Automatic Mode Start/Stop Control: The BAS shall start and stop the air handler. To start the unit, the BAS shall send a start signal to the unit controller, which will start the supply fan. If the fan does not start after a 60 second (adjustable) time delay, a unit failure alarm shall be issued and the start command shall be canceled. To stop the unit, the BAS shall send a stop command to the unit controller, which will de-energize the supply fan. The unit shall be placed on a time schedule.

a. Optimal Start: The BAS shall start the unit according to an optimal start routine. Cool down mode shall be used if the space temperature, as sensed by any one of the associated VAV box room temperature sensors, is above the occupied set point. At the scheduled occupancy time, the unit shall start if not already started by the optimal start routine, and the unit shall be switched to the occupied mode.

b. Optimal Stop: The BAS shall stop the unit according to an optimal stop routine. The routine shall monitor the warmest and coolest room temperatures as sensed by the associated VAV box room temperature sensors, and stop the unit up to 30 minutes early if the temperatures are within acceptable limits.

c. Unoccupied Start/Stop: In the unoccupied mode, the BAS shall start the unit and the unit controller will operate the system in the unoccupied cooling mode if any space temperature as sensed by any one of the associated VAV box space temperature sensors rises above 90°F (adjustable). The unit shall operate until all space temperatures have dropped below 85°F (adjustable). The unit controller will operate the system in the unoccupied heating mode if any space temperature as sensed by any one of the associated VAV box space temperature sensors drops below 55°F (adjustable). The unit shall operate until all space temperatures are at least 60°F (adjustable).

4. Supply Fan Automatic Speed Control: When the supply fan VFD is started, the unit controller shall control the speed of the VFD to maintain the supply duct static pressure as sensed by static pressure sensors PD-1 at the supply duct static pressure set point. When the supply duct static pressure is below the set point at any one of the static pressure sensors, the speed shall increase and when the supply duct static pressure is
above the set point at all of the static pressure sensors, the speed shall decrease. When the VFD is stopped, the unit controller shall return the VFD to a speed of zero.

5. **Supply Duct Static Pressure Set Point:** The set point shall be reset based on the VAV box requiring the most static pressure. The BAS shall monitor the positions of the dampers in the VAV boxes and send a reset signal to the unit controller. The supply air static pressure set point shall be lowered until one of the VAV box dampers has modulated completely open. This set point shall be increased should more than one VAV box damper completely open. The static pressure set point shall not be allowed to rise above 1.5 inches W.C. or fall below 0.25 inches W.C.

6. **Supply Air Temperature Set Point Reset Control:** The BAS shall monitor the VAV Box controllers and send a supply air temperature set point reset signal to the unit controller to reset the supply air temperature based on the VAV box with the highest demand for cooling. The supply air temperature set point shall be reset between 53 °F and 60°F, to the highest possible value while maintaining all VAV zone temperatures at the required set point.

7. **Cooling Control:** When there is a demand for cooling, the BAS shall cycle on and off the cooling stage to maintain the supply air temperature, as sensed by TS-1, at the supply air temperature cooling set point. When the supply fan is off, the cooling shall be off. Cooling control shall be activated in coordination with heating control so both cooling and heating control do not operate simultaneously.

8. **Heating Control:** When there is a demand for heating, the BAS shall enable and modulate the electric heater to maintain the supply air temperature, as sensed by TS-1, at the supply air temperature heating set point. When the supply fan is off, the heating shall be off. Heating control shall be activated in coordination with cooling control so both cooling and heating control do not operate simultaneously.

9. **Minimum Outdoor Air Damper Control:** When the unit is started in the occupied mode, the unit controller shall modulate outdoor air damper CD-1 to maintain the minimum outdoor air flow, as sensed by air flow measuring station PD-1. During unoccupied and cool down modes of unit operation, the outdoor air damper CD-1 shall be closed.

10. **Fire alarm shutdown:** When particles of combustion are sensed by the supply air duct smoke detector S-1, or the return air duct smoke detector S-2, a duct smoke alarm signal shall be sent to the fire alarm system. Upon receiving an alarm signal from duct smoke detector S-1 or S-2, the fire alarm system shall activate a Control Module (CM) to stop the fan. When the fire alarm condition has been cleared, and the fire alarm system has been reset, the unit shall be returned to normal operation.

11. **High Duct Static Pressure Shutdown:** The supply fan shall stop and an alarm shall be signaled when static pressure rises above excessive-static-pressure set point. When the high static condition has been cleared, and the device has been manually reset, the air handling unit shall be returned to operation.

12. **Dirty Filter Alarm:** Differential pressure switch DP-1 shall monitor the pressure drop at the filters. When the pressure exceeds an adjustable limit, an alarm signal will be sent to the unit controller and the BAS. Pressure difference indicator (PDI-1) located at the filters shall indicate the differential pressure across the filters.

13. **Fan Status:** The fan VFD status contact shall be used to monitor the status of the unit supply and relief fans. If the status indicated does not match the commanded output for the fan an alarm shall be generated at the unit controller and the BAS.

14. **Failure Mode:** Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Function Schedule" on the mechanical sheets.
15. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the "BAS Point Function Schedule."

G. CAV Air Handling Unit (AHU-02S)

1. Supply Fan Hand-Off-Auto Operation: Hand-Off-Auto operation switch on motor starter shall control the fan. In the Off mode, the fan shall be stopped. In the Hand mode, the fan shall be energized. In the Auto position the BAS will start/stop the unit through the unit controller as described below. Program a time delay into the unit controller to stagger the restart of unit, after a power failure, to prevent creating a spike in the facility electrical demand. Safeties shall be hard wired to stop the supply fan.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the unit. To start the unit, the BAS shall send a start signal to the unit controller, which will start the supply. If the fan does not start after a 60 second (adjustable) time delay, a unit failure alarm shall be issued and the start command shall be canceled. To stop the unit, the BAS shall send a stop command to unit controller, which will de-energize the supply. The unit shall be placed on a time schedule.

 a. Optimal Start: The BAS shall start the unit according to an optimal start routine. Cool down mode shall be used if the space temperature is above the occupied set point. Warm up mode shall be used if the space temperature is below the occupied set point. At the scheduled occupancy time, the unit shall start if not already started by the optimal start routine, and the unit shall be switched to the occupied mode.

 b. Scheduled Stop: The BAS shall stop the unit when the occupancy schedule indicates that the occupied period has ended.

 c. Unoccupied Start/Stop: In the unoccupied mode, the BAS shall start the unit and the unit controller will operate the system in the unoccupied heating mode if the space temperature drops below 55°F (adjustable). The unit shall operate until the space temperature has dropped below 85°F (adjustable).

3. Space Temperature Set Point: The space temperature cooling set point shall be initially set at 76°F (adjustable) and the space temperature heating set point shall be initially set at 70°F (adjustable).

4. Cooling Control: When there is a demand for cooling, the BAS shall cycle on and off the cooling stage to maintain the space temperature, as sensed by TS-S127, at the space temperature cooling set point. When the supply fan is off, the cooling shall be off. Cooling control shall be activated in coordination with heating control so both cooling and heating control do not operate simultaneously.

5. Heating Control: When there is a demand for heating, the BAS shall enable and modulate the electric heater to maintain the space temperature, as sensed by TS-S127, at the space temperature heating set point. When the supply fan is off, the heating shall be off. Heating control shall be activated in coordination with cooling control so both cooling and heating control do not operate simultaneously.

6. Minimum Outdoor Air Damper Control: When the unit is started in the occupied mode, the unit controller shall modulate outdoor air damper CD-1 to maintain the minimum
outdoor air flow, as sensed by air flow measuring station PD-1. During unoccupied and cool down modes of unit operation, the outdoor air damper CD-1 shall be closed.

7. Fire alarm shutdown: When particles of combustion are sensed by the supply air duct smoke detector S-1, or the return air duct smoke detector S-2, a duct smoke alarm signal shall be sent to the fire alarm system. Upon receiving an alarm signal from duct smoke detector S-1 or S-2, the fire alarm system shall activate a Control Module (CM) to stop the fan. When the fire alarm condition has been cleared, and the fire alarm system has been reset, the unit shall be returned to normal operation.

8. Dirty Filter Alarm: Differential pressure switch DP-1 shall monitor the pressure drop at the filters. When the pressure exceeds an adjustable limit, an alarm signal will be sent to the unit controller and the BAS. Pressure difference indicator (PDI-1) located at the filters shall indicate the differential pressure across the filters.

9. Fan Status: Current switches shall be used to monitor the status of the unit supply fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated at the unit controller and the BAS.

10. Failure Mode: Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Function Schedule" on the mechanical sheets.

11. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the "BAS Point Function Schedule."

H. Air Handling Unit (AHU-03S)

1. Supply Fan Hand-Off-Auto Operation: Hand-Off-Auto operation switch on motor starter shall control the fan. In the Off mode, the fan shall be stopped. In the Hand mode, the fan shall be energized. In the Auto position the BAS will start/stop the unit through the unit controller as described below. Program a time delay into the unit controller to stagger the restart of unit, after a power failure, to prevent creating a spike in the facility electrical demand. Safeties shall be hard wired to stop the supply fan.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the unit. To start the unit, the BAS shall send a start signal to the unit controller, which will start the supply. If the fan does not start after a 60 second (adjustable) time delay, a unit failure alarm shall be issued and the start command shall be canceled. To stop the unit, the BAS shall send a stop command to unit controller, which will de-energize the supply. Normal operation shall be for the fan to operate continuously, 24 hours a day, year round.

3. Cooling Control: When there is a demand for cooling, the BAS shall cycle on and off the cooling stage to maintain the space temperature, as sensed by TS-S124, at the space temperature cooling set point. When the supply fan is off, the cooling shall be off.

4. Fire alarm shutdown: When particles of combustion are sensed by the supply air duct smoke detector S-1, a duct smoke alarm signal shall be sent to the fire alarm system. Upon receiving an alarm signal from duct smoke detector S-1, the fire alarm system shall activate a Control Module (CM) to stop the fan. When the fire alarm condition has been cleared, and the fire alarm system has been reset, the unit shall be returned to normal operation.

5. Dirty Filter Alarm: Differential pressure switch DP-1 shall monitor the pressure drop at the filters. When the pressure exceeds an adjustable limit, an alarm signal will be sent to the unit controller and the BAS. Pressure difference indicator (PDI-1) located at the filters shall indicate the differential pressure across the filters.
6. Fan Status: Current switches shall be used to monitor the status of the unit supply fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated at the unit controller and the BAS.

7. Failure Mode: Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Function Schedule" on the mechanical sheets.

8. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the "BAS Point Function Schedule.”

I. Energy Recovery Ventilation Unit (DOAS-01):

1. The Energy Recovery Ventilation Unit shall be controlled by a BACnet-compatible unit controller provided by the unit manufacturer, as specified in Division 23. The unit shall be directly connected to the BAS network using BACnet MS/TP and communicate with the BAS. The controls contractor shall coordinate with unit provider and provide necessary control point mapping and software modification to the BAS for remote control and monitoring of the unit. Refer to "BAS Point Function Schedule" on the mechanical sheets for a list of control and monitoring points that shall be incorporated into the BAS.

J. Make-up Air Unit & Exhaust Fan (MAU-01/EF-01 & MAU-02/EF-02):

1. Supply/Exhaust Fan Hand-Off-Auto Operation: Hand-Off-Auto settings shall be provided as part of the variable frequency drive (VFD) through the drive's keypad. In the Off mode, the fan shall be stopped and outdoor air damper CD-1 shall be closed. In the Hand mode, the isolation damper CD-1 shall open, and the associated damper position switch DI-1 shall start the fan when the damper is fully open. In the Auto position the BAS will start/stop the unit through the unit controller as described below. Program a time delay into the VFD, in both the Hand and Auto modes, to stagger the restart of each unit after a power failure to prevent creating a spike in the facility electrical demand. Upon activation, safeties shall be hard wired to the VFD to stop the unit supply fan in the Hand and Auto modes.

2. Supply/Exhaust Fan Local-Remote Speed Control: Local-Remote settings shall be provided as part of the VFD through the drive's keypad. In the Local mode, the fan speed shall be controlled through a manual speed control located at the respective drive control panel. In the Remote mode, the fan speed shall be controlled by the BAS through the unit controller.

3. Automatic Mode Start/Stop Control: The BAS shall start and stop the unit. To start the unit, the BAS shall send a start signal to the unit controller, which will open the outdoor air damper CD-1. When the damper is fully open, as sensed by damper position switch DI-1, the fan shall start. If the fan does not start after a 60 second (adjustable) time delay, a unit failure alarm shall be issued and the start command shall be canceled. To stop the unit, the BAS shall send a stop command to unit controller, which will close the outdoor air damper and stop the supply fan. Normal operation shall be for the fan to operate continuously, 24 hours a day, year round. Provide the 2-position (Normal and Maintenance) manual selector switch for each unit:

a. Normal Mode: When the manual selector switch is in Normal position, the unit shall run at a reduced air flow rate and the unit controller shall control the speed of the VFD to maintain the supply/exhaust air flow rate at 10,000 cfm (adjustable).
The speed of the VFD set point shall be determined in consulting with the air balancing contractor during the TAB process.

b. Maintenance Mode: When the manual selector switch is in Maintenance position, the unit shall run at a full air flow rate and the unit controller shall control the speed of the VFD to maintain the supply/exhaust air flow rate at 30,000 cfm (adjustable). The speed of the VFD set point shall be determined in consulting with the air balancing contractor during the TAB process.

4. Supply Air Temperature Set Point: The supply air temperature heating set point shall be initially set at 70°F (adjustable).

5. Heating Control: When there is a demand for heating as sensed by supply air temperature sensor TS-1, the BAS shall enable the gas heater and send a heating demand signal to the unit controller. The unit controller shall modulate the gas burner to maintain the supply air temperature as sensed by TS-1 at the supply air temperature heating set point. Gas fired heating shall be hard wire interlocked with an airflow switch, which shall disable heating if no airflow is present. The airflow switch is provided with the gas fired heater. When the supply fan is off, the heating shall be off.

6. Fire alarm shutdown: When particles of combustion are sensed by the supply air duct smoke detector S-1, a duct smoke alarm signal shall be sent to the unit controller and fire alarm system. Upon receiving an alarm signal from supply air duct smoke detector S-1, the fire alarm system shall activate a Control Module (CM) to stop the fan. When the fire alarm condition has been cleared, and the fire alarm system has been reset, the unit shall be returned to operation.

7. Dirty Filter Alarm: Differential pressure switch DP-1 shall monitor the pressure drop at the filters. When the pressure exceeds an adjustable limit, an alarm signal will be sent to the unit controller and the BAS. Pressure difference indicator (PDI-1) located at the filters shall indicate the differential pressure across the filters.

8. Fan Status: A current relay shall be used to monitor the status of the unit supply fan and exhaust fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated at the unit controller and the BAS.

9. Failure Mode: Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Function Schedule" on the mechanical sheets.

10. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the "BAS Point Function Schedule."

K. Make-up Air Unit & Exhaust Fan (MAU-03/EF-03 & MAU-04/EF-04):

1. Supply Fan Hand-Off-Auto Operation: Hand-Off-Auto operation switch on motor starter shall control the fan. In the Off mode, the fan shall be stopped and outdoor air damper CD-1 shall be closed. In the Hand mode, the outdoor air damper CD-1 shall open, and the associated damper position switch DI-1 shall start the fan when the damper is fully open. In the Auto position the BAS will start/stop the unit through the unit controller as described below. Program a time delay, initially set at 2 minutes (adjustable), into the unit controller to stagger the restart of unit, after a power failure, to prevent creating a spike in the facility electrical demand. Safeties shall be hard wired to stop the supply fan.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the unit. To start the unit, the BAS shall send a start signal to the unit controller, which will open the outdoor air damper CD-1. When the damper is fully open, as sensed by damper position switch...
DI-1, the fan shall start. If the fan does not start after a 60 second (adjustable) time delay, a unit failure alarm shall be issued and the start command shall be canceled. To stop the unit, the BAS shall send a stop command to unit controller, which will close the outdoor air damper and stop the supply fan. Each unit shall be manually started and stopped by the manual On/Off switch. Provide 2-position (On and Off) manual selector switch for each unit.

3. Exhaust Fan Automatic Start/Stop Control: The exhaust fan motor starter shall be software interlocked with the associated make-up air unit. When the status of make-up unit supply fan is on as sensed by a current switch, the exhaust fan shall start automatically. When the status of supply fan is off as sensed by a current switch, the exhaust fan shall stop.

4. Space Temperature Set Point: The supply air temperature cooling set point shall be initially set at 60°F (adjustable) and the supply air temperature heating set point shall be initially set at 50°F (adjustable).

5. Cooling Control: When there is a demand for cooling, the BAS shall cycle on and off the cooling stage to maintain the supply air temperature, as sensed by TS-1, at the supply air temperature cooling set point. When the supply fan is off, the cooling shall be off. Cooling control shall be activated in coordination with heating control so both cooling and heating control do not operate simultaneously.

6. Heating Control: When there is a demand for heating, the BAS shall enable and modulate the electric heater to maintain the supply air temperature, as sensed by TS-1, at the supply air temperature heating set point. When the supply fan is off, the heating shall be off. Heating control shall be activated in coordination with cooling control so both cooling and heating control do not operate simultaneously.

7. Fire alarm shutdown: When particles of combustion are sensed by the supply air duct smoke detector S-1, a duct smoke alarm signal shall be sent to the unit controller and fire alarm system. Upon receiving an alarm signal from supply air duct smoke detector S-1, the fire alarm system shall activate a Control Module (CM) to stop the fan. When the fire alarm condition has been cleared, and the fire alarm system has been reset, the unit shall be returned to operation.

8. Dirty Filter Alarm: Differential pressure switch DP-1 shall monitor the pressure drop at the filters. When the pressure exceeds an adjustable limit, an alarm signal will be sent to the unit controller and the BAS. Pressure difference indicator (PDI-1) located at the filters shall indicate the differential pressure across the filters.

9. Fan Status: A current relay shall be used to monitor the status of the unit supply fan and exhaust fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated at the unit controller and the BAS.

10. Failure Mode: Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Schedule" on the mechanical sheets.

11. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the "BAS Point Schedule.”

L. Single Duct VAV Box with Hot Water Reheat (Typical):

1. VAV Box Damper Control: The VAV box Application Specific Controller (ASC) shall modulate the VAV box damper CD-1 to maintain the amount of air supplied to the space, as sensed by PD-1, at the space airflow set point. The space airflow set point shall be reset by the space temperature between the box minimum airflow and box maximum airflow. As the space temperature increases above the space temperature set point, the
VAV box shall increase airflow set point. As the space temperature decreases below the space temperature set point, the VAV box shall decrease airflow set point. See VAV terminal schedule on the mechanical sheets for VAV box minimum and maximum airflow set points.

2. VAV Box Electric Reheat Control: Upon a further drop in space temperature, as sensed by the local space temperature sensor, after the VAV box is delivering the minimum airflow, the VAV box ASC shall modulate the VAV box electric reheat coil to maintain the space temperature at set point. When the air handling unit is off, the electric reheat coil shall be off.

3. VAV Box Set Point Control: The ASC shall automatically switch the VAV box temperature set point according to the following (all set point shall be adjustable):
 a. Occupied heating set point - 70 F.
 b. Occupied cooling set point - 76 F.
 c. Unoccupied heating set point - 60 F.
 d. Unoccupied cooling set point - 85 F.

4. Damper Manual Override: Provide the capability, through a single operator command at the OWS, to override all VAV box dampers, CD-1, associated with a specific unit to the fully open or to the fully closed position.

5. Unoccupied Mode Override: During the unoccupied mode, it shall be possible to return the VAV Box and the associated air handling unit to the occupied mode by activating a switch on the space temperature sensor. Once the after-hour override switch is activated, the system shall run for a predetermined time period (adjustable) and automatically return to the unoccupied mode.

6. Failure Mode: Upon loss of control signal or electrical power the control devices shall fail in the manner indicated in the "BAS Point Function Schedule" on the mechanical sheets.

7. Additional Monitoring: In addition to the points mentioned in these sequences provide the additional monitoring points listed in the “BAS Point Function Schedule.”

M. Exhaust Fans – Emergency Ventilation (EF-05, 06 and 07):

1. Exhaust Fan Hand-Off-Auto Operation: A Hand-Off-Auto switch shall be provided as part of the motor starter for the exhaust fan. In the Off mode, the isolation damper shall be closed and the exhaust fan shall be stopped. In the Hand mode, the isolation damper shall be opened and the exhaust fan shall start. In the Auto mode, the exhaust fan and isolation damper shall be controlled by the BAS as described below.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the fan by the manual switch or based on the space volatile organic compounds (VOC) level. When the manual switch is activated by the occupants or the space VOC level, as sensed by PID-X (PID-1 through PID-4), rises above the set point, initially set at 14 ppm (adjustable), the BAS shall start the fan. When the fan is started with high VOC level, an alarm shall be generated at the BAS and OWS. To start the fan, the BAS shall send a start signal to the fan motor starter. This shall enable the hard wire interlock that opens the isolation damper. To stop a fan, the BAS shall send a stop command to the fan motor starter which will de-energizes the fan and close the isolation damper.

3. Fan Status: A current switch shall be used to monitor the status of the fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated and sent to the BAS and the fan start command shall be canceled.
N. Exhaust Fans – Trench Ventilation (EF-08, 09, 10, 11 and 12):

1. Exhaust Fan Hand-Off-Auto Operation: A Hand-Off-Auto switch shall be provided as part of the motor starter for the exhaust fan. In the Off mode, the isolation damper shall be closed and the exhaust fan shall be stopped. In the Hand mode, the isolation damper shall be opened and the exhaust fan shall start. In the Auto mode, the exhaust fan and isolation damper shall be controlled by the BAS as described below.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the fan based on a time schedule. To start the fan, the BAS shall send a start signal to the motor starter. This shall enable the hard wire interlock that opens the isolation damper. To stop a fan, the BAS shall send a stop command to the motor starter which will de-energizes the fan and close the isolation damper. Normal operation shall be for the fan to operate continuously, 24 hours a day, year round. Provide the 2-position (Auto and On) manual selector switch for each unit.

 a. Auto Mode: When the manual selector switch is in Auto position, the BAS shall start and stop the fan based on a time schedule (user programmable).
 b. On Mode: When the manual selector switch is in On position, the BAS shall start and run the fan continuously, regardless of time schedule.

3. Fan Status: A current switch shall be used to monitor the status of the fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated and sent to the BAS and the fan start command shall be canceled.

O. Destratification Fans (Typical)

1. Destratification fans will be tied together and controlled by the BAS. All destratification fans will be powered by a single circuit. Coordinate with unit supplier and Div. 26, and provide necessary relay and control wiring for fan control from the BAS.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the fans. To start the fans, the BAS controller shall send a start signal, which will start the fans in each bay. To stop the fans, the BAS controller shall send a stop command, which will de-energize the fans. The BAS shall cycle the fans on and off to maintain the differential temperature between floor level and ceiling level, as sensed by TS-160A and TS-160B, at set point, initially set at 5 °F (adjustable). If the differential temperature rises above the set point, the fan shall be energized. If the differential temperature drops below the set point minus 2 °F (adjustable), the fan shall be de-energized. The fan shall cycle on and off to maintain the differential temperature year around, regardless of season.

P. Exhaust Fan (EF-01S):

1. Exhaust Fan Hand-Off-Auto Operation: A Hand-Off-Auto switch shall be provided as part of the motor starter for the exhaust fan. In the Off mode, the exhaust fan shall be stopped. In the Hand mode, the exhaust fan shall start. In the Auto mode, the exhaust fan and isolation damper shall be controlled by the BAS as described below.

2. Automatic Mode Start/Stop Control: The BAS shall start and stop the fan based on a time schedule. To start the fan, the BAS shall send a start signal to the motor starter, which will start the fan. To stop a fan, the BAS shall send a stop command to the motor starter which will de-energizes the fan.
3. Fan Status: A current switch shall be used to monitor the status of the fan. If the status indicated does not match the commanded output for the fan an alarm shall be generated and sent to the BAS and the fan start command shall be canceled.

Q. Exhaust Fans:
 1. Exhaust Fan (EF-02S): The exhaust fan shall be started and stopped by a light switch. When the light switch is placed in the On position, the exhaust fan shall run. When the switch is placed in the off position, the fan shall stop.
 2. Exhaust Fans (EF-13 and EF-FP): When the space temperature exceeds space thermostat set point, the exhaust fan shall be started and associated damper(s) shall open. The space temperature set point shall be set at 85°F (adjustable). When the space temperature drops below set point, the exhaust fan shall be stopped and damper(s) shall be closed. The exhaust fan and associated damper shall be controlled by local space thermostat, not through the BAS.

R. Split System Heat Pump Units (Typical):
 1. The Split System Heat Pump Units shall be controlled by a wall mounted space thermostat provided by the unit manufacturer as specified in Division 23. Each unit shall be controlled by a unit mounted thermostat, not through the BAS.

S. Electric Unit Heater (Typical)
 1. When the temperature drops below the set point, initially set at 55°F (adjustable), the electric heater shall be enabled and the fan shall operate. When the temperature rises above the set point, the electric heater shall be disabled and the fan shall stop. The electric unit heater shall be controlled by a unit mounted thermostat, not through the BAS.

T. Emergency Air Distribution Shut Down
 1. Emergency Air Distribution Shut Down Switch: Provide Emergency Air Distribution Shut Down Switches where indicated in the mechanical floor plans. When the switch is activated, all mechanical equipment controlled by the BAS within the building shall be shut down. When the emergency condition has been cleared, and the manual switch has been reset, the mechanical equipment shall be returned to normal operation. Program a time delay sequence into the BAS to stagger the restart of mechanical equipment after an emergency shutdown to prevent creating a spike in the facility electrical demand.

1.6 SUBMITTALS

A. General: Submit each item in this Section according to the Conditions of the Contract and Division 1 specification sections. Drawings shall be prepared using a Computer Aided Design (CAD) system. Submittal shall be provided on half size 11” by 17” drawings. Upon successful installation, as-built drawings shall be delivered to the NC ANG on CD ROM in DXF or VSD compatible electronic format, as well as on 22” by 34” reproducible drawings. Drawings prepared for or used for this work shall become the property of the North Carolina Air National
Guard (NC ANG). The NC ANG reserves the right to reproduce, in part or whole, the delivered drawings for internal purposes.

B. Control diagrams: Submit a control diagram as part of pre-construction submittal data for each system on an individual and separate sheet complete with a bill of material, a sequence of operation in a text format, and tagging information. The diagram shall consist of a system flow diagram showing the location of each control device, a control schematic drawing showing the function of each item, scale drawings of the panel layouts of both inside and face plate, and a complete terminal drawing for electrical devices connected with the system controls. Submit “BAS Point Function Schedule” with the control diagram. In addition to the above requirements, submittals shall include:

1. Control diagram with required variables, air flow diagrams, ladder diagrams, and wiring diagrams. Control diagrams shall include at least the following: set points, reset ranges, throttling ranges, differentials, operating ranges, normal positions, controller action, dial ranges, voltage, currents, mounting locations, indicators, and terminal strip points.

2. Composite wiring diagrams: Submit complete, detailed control and interlock wiring diagrams. Show mechanical and electrical equipment furnished and all electrical interlocks, indicating terminal designation for all equipment. Respective equipment manufacturers shall furnish, through the supplier, approved drawings of equipment to be incorporated in this diagram. Clearly differentiate between factory-installed and field-installed wiring (Coordinate with Division 26).

3. Communication cable installation plans showing OWS locations, controller locations, hub locations, switch locations, router locations, and communication cable conductors and routing, distinguishing between different forms of media (i.e. Fiber, Category 5e, shielded twisted pair, coaxial cable, etc.). Various types of LANs shall be identified and distinguished from each other. Each LAN shall be labeled according to its designated LAN address.

4. Damper Schedule: Provide damper schedule indicating duct size, damper size, damper type, damper model number, damper torque requirements, loaded damper operator full rotation time, damper actuator type, quantity of actuators per damper, damper actuator model number and damper failure position.

5. Valve Schedule: Provide valve schedule indicating valve model number, body type, calculated required Cv, valve Cv factor, actual pressure drop, actuator model number, and valve pressure shutoff rating.

6. Sequence of Operation: As a minimum, all control processes that are controlled by a digital signal shall be clearly shown in a text narrative form. Sequences shall be written in the contractor’s own words in order to demonstrate a clear understanding of how the system is to operate and be specific to the control system equipment used. Copying or duplication of the sequences presented in this specification is not acceptable.

7. Device Tag Schedule and Point List: Provide device tag schedule that at a minimum indicates device type, tag identifier, terminal connection points for wiring on the controller, BAS software point name, complete BAS point address and BAS expanded point descriptor. A separate listing shall be provided for each BC, AAC and ASC. Device tags used shall be the same as those used in the contract documents as shown on the associated flow control diagrams and the “BAS Point Function Schedule”. BAS software point names and associated BAS expanded point descriptors shall incorporate the device tags used. Coordinate point-naming conventions with NC ANG facility personnel.
8. Bill of Materials: Provide a complete listing of all parts and materials utilized. List shall include part name, original manufacturer of part and original manufacturer’s part number.
9. Provide complete description and documentation of any proprietary (non-BACnet) services and/or objects used in the system.

C. Technical Specification Data Sheets: Submit the data sheets as part of pre-construction submittal data supplied by the original manufacturer of the item. These documents include salient characteristics and shall be included in a special section of the instruction book titled Manufacturer's Literature:

1. Technical specification data for each type of product specified: Include manufacturers technical product data for each control device furnished, indicating dimensions, capacities, performance characteristics, electrical characteristics, finishes of materials, installation instructions, startup instructions, and maintenance instructions.
2. Technical specification data sheets for raceway, wire, cable and installation materials.
3. Technical specification data sheets for each software module, including the system theory.

D. Installer qualifications: Submit resume listing installer’s qualifications as part of pre-construction submittal data including manufacturer’s certification as an approved system installer and a list of recently completed projects demonstrating 2 years of system installation experience. Provide name(s), address, and telephone numbers for installer supervisory personnel.

E. Startup personnel qualifications: Submit resume listing startup personnel qualifications as part of pre-construction submittal data including manufacturer’s certification as an approved system technician and a list of recently completed projects demonstrating 2 years of system startup experience. Provide name(s), address, and telephone numbers for supervisory personnel.

F. Graphical Displays: Prior to the commissioning of this project, submit printed copies of all graphical displays that will be installed at the OWS for approval. Provide a separate graphic display for each system and each logical group of points, as indicated in the “Graphics” column of the “BAS Point Function Schedule”. The graphical displays shall be schematic representations of the as-built systems and shall include, as a minimum, a dynamic reading for each point listed in the “BAS Point Function Schedule”. Where floor plan graphics are indicated on the schedule include, as a minimum, a dynamic reading for each space sensor, at the location on the floor plan that represents the actual location of the sensor. Each piece of equipment shall be linked to the appropriate floor plan. For the terminal units, the space temperature sensor display and point description shall indicate both terminal unit number and room number. Complete floor plans for the entire building shall be provided. Provide a main menu display with page navigation tools for easy access of each floor or a group of equipment, and a summary page of equipment that is found in a quantity of 3 or more in the building.

G. Submit software documentation as part of as built data including descriptive data and sequence of operation, flow charts, and machine listings of operating, user, and application software including complete Programmer’s Manual tailored to the project. Control process and control loop documentation shall be provided in logical, graphical flow diagram format to allow control sequence to be easily interpreted and modified at any time in the future.
H. Operation and Maintenance Manual: Prepare and distribute six (6) copies of the operations and maintenance data as part of as built data. The Operation and Maintenance Manual must include all information required during the submittal process, updated to reflect the final conditions at the end of construction. In addition, provide the following:

1. General troubleshooting and repair instructions.
2. Specific, explicit installation, troubleshooting, calibration, and repair instructions for each sensor, controller, interface device and controlled device.
3. Specific, explicit instructions for operation of each sensor, controller, interface device and controlled device.
4. Maintenance instructions and spare parts lists for each type of control device.
5. Interconnection wiring diagrams with identified and numbered system components and devices.
7. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
8. Calibration records, list of set points, differentials, alarm limits, alarm instructions, and time schedules.
9. Sequence of operation in computer flow chart format. The flow chart shall show how each control action is derived.

I. Test plans and inspection reports specified in Part 3, “Execution”, in this Section.

J. As built drawing requirements located in Part 3, “Execution”, in this Section.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Engage an Installer specializing in control system installations with a minimum of 2 years of experience installing systems of similar type, size and complexity. Control system manufacturer shall certify that installer has been trained on the proper installation of this type of system and is an approved system installer.

B. Startup Personnel Qualifications: Engage specially trained personnel in direct employ of manufacturer of primary temperature control system with a minimum of 2 years of experience programming, testing and commissioning systems of similar size and complexity. Control system manufacturer shall certify that the startup personnel have been trained on the proper installation, programming, testing, and commissioning of the system.

1.8 DELIVERY, STORAGE AND HANDLING

A. Store equipment and materials inside and protected from weather.

B. Factory-Mounted Components: Where control devices specified in this Section are factory mounted on equipment, arrange for shipping control devices to unit manufacturer.
1.9 EXTRA MATERIALS

A. Line Replaceable Unit (LRU) and spares: Provide a complete list of spare parts, which will be turned over at the completion of this project. List shall include part name, original manufacturer of part, original manufacturer’s part number and quantity being provided. An LRU is defined as the lowest unit to be replaced within the system during site corrective maintenance. It is a separate, replaceable, physical package, performing a single function or a group of closely related functions. An example of an LRU is a plug-in printed circuit card. These units shall be identified as parts readily available from several commercial sources in addition to the manufacturer and parts available only from the manufacturer and shall indicate the exact source of each including price and lead time of each. Submit a unit price list for line replaceable units.

B. Re-procurement package: Submit a re-procurement package at the completion of this project, which includes documentation required to re-procure parts available only from the manufacturer from alternate sources. This list shall identify:

1. Actual manufacturer of the part;
2. Unit cost;
3. Parts that are electrostatic sensitive;
4. Total usage for each unit LRU; and
5. Schematics and board drawings

C. At the completion of this project, furnish extra (except as noted) LRUs of each type installed, packaged with protective covering for storage, and identified with labels clearly describing contents, as described below. Quantity shall be determined by taking 2% of the total quantity of the devices used on the job and rounding up to the next highest whole number.

1. Space Temperature Sensor
2. Duct Temperature Sensor
3. Air Differential Pressure Sensor
4. Filed Mounted Relay
5. Damper Actuator (Each Type Used)
6. Damper Position Switch
7. Control Panel power supply
8. BC (One of each type)
9. AAC (One of each type)
10. ASC (One of each type)
11. Control Relays
12. Current Switches

PART 2 - PRODUCTS

2.1 MANUFACTURER

A. Acceptable Manufacturer: The Building Automation System (BAS) shall be an Alerton, or approved equal, that is fully compatible with and integrated into the existing BAS workstation loaded with Ascent Compass by Alerton.
2.2 SYSTEM PERFORMANCE

A. Performance Standards. At the completion of the project with all panels and system operational, the BAS shall conform to the following:

1. Graphic Display: The BAS shall display a graphic with 20 dynamic points/objects with all current data within 10 seconds.
2. Graphic Refresh: The BAS shall update a graphic with 20 dynamic points/objects with all current data within 8 seconds.
3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be less than 10 seconds. Analog objects should start to adjust within 10 seconds.
4. Object Scan: All changes of state and change of analog values will be transmitted over the high-speed BACnet Ethernet network such that any data used or displayed at a controller or workstation will have been current within the previous 10 seconds.
5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at OWS shall not exceed 45 seconds.
6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every 1 second. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
7. Performance: BC, AAC and ASC shall be able to execute PID control loops at a frequency of at least once per second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
8. Spare I/O Points: As a minimum, the contractor shall provide 15% of spare I/O points, or at least one of each type of spare point, analog input, analog output, digital input and digital output, for each system controller(s).
9. The BAS shall be capable of being expanded through either the use of additional controllers or expansion cards to provide complete control of future HVAC equipment.

2.3 BUILDING CONTROLLER (BC)

A. General: Each BC shall be classified as a BACnet and conform to the BACnet Building Controller (B-BC) device profile.

B. System Operation: The BC shall operate the equipment as described in the sequence of operation. The system shall include the following:

1. Software: The BC complete with software shall be capable of controlling and monitoring electrical equipment; heating, ventilating and air conditioning equipment; and energy management systems. The BC shall route communications between the BACnet/IP network and BACnet MS/TP field network. The BC shall be specifically designed to be monitored by and communicate with the OWS.
2. Controllers: Microprocessor based processors, with one or more microprocessor based input/output (I/O) modules interfacing controllers to the sensors and output devices. The system shall utilize EPROM or RAM memory. RAM and the clock for EPROM/RAM systems shall be provided with power backup of 4-hour instant recharge capacitor or 12-hours trickle recharge batteries. The battery backup shall protect the memory for a minimum of 72 hours. Controllers shall have memory error checking. Upon detection of
a memory error, the controller processor shall correct the error or halt the unit to prevent erroneous operation. The BC shall be listed in UL 916 PAZX.

3. Optional Inputs and outputs: The BC may support inputs and outputs as follows.

 a. Analog Input: Analog inputs shall be compatible with temperature sensors, 0-20 mA, 0-5 V DC, 0-10 V DC or potentiometer inputs with 12 bit A/D conversion resolution minimum. Match inputs types to sensors provided.

 b. Analog Output: Analog output or pulse width modulated outputs shall be provided for control of end actuator devices. Overall analog output range of 0 to 10 volts or 4-20 mA with 8 bit D/A resolution minimum shall be provided.

 c. Digital Inputs: Digital inputs shall be processed for change of status. Alarm monitor points shall be assignable to normally open or to normally closed contacts.

 d. Digital Outputs: Digital outputs shall be assigned a priority with higher priorities able to override lower priorities. Controller digital, two positions signals may operate the positioning device directly or have an interposing relay to give the proper signal level. All digital outputs shall include Hand-Off-Auto override switches built into the controller.

 e. I/O Point Distribution: All I/O points specified for a piece of equipment shall be integral to a single controller. The contractor shall submit an approval request to the NC ANG when more than one piece of equipment is controlled by a single controller.

 f. Controller Capacity: Each BC shall have the ability to monitor, control and address the required data points. The mix of addressable points shall include analog inputs, analog outputs, digital inputs and outputs required to perform the functions indicated.

4. Communication:

 a. BACnet routing shall be performed by BCs or other BACnet device routers as necessary to connect BC(s) to networks of AACs and ASCs.

 b. Service Port: Each controller shall be provided with a service communication port, which is BACnet Data Link/Physical layer compatible, for connection to a Portable Operator’s Terminal.

 c. Signal Management: BC operating systems shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and to allow for central monitoring and alarms.

 d. Data Sharing: Each BC shall share data as required with each networked BC, AAC and ASC. All points on the BC shall be communicated to the local OWS.

5. BC Configuration: It shall be possible to configure the BC over the network. This configuration shall include application program assignments; group and point assignments; data point modifications (additions and deletions); alarm parameter assignments; and peripheral assignments.

6. Software: The BC, complete with software, shall provide a real time control language for HVAC system applications designed to accomplish easy transition from hardware control system design to local loop based control system design. The system software shall allow the user to provide control sequences directly into the controller and operators terminal memory.
7. Alarms: Whenever a field point status exceeds preset limits, or there are other indications of system exceptions, alarms, error or failure, there shall be at least the following indications:

 a. The OWS shall sound an integral audible tone. The audible tone shall be capable of being enabled or disabled on operator command.
 b. The alarm point identification, along with individual point alarm messages, shall appear at the OWS. Upon operator command, a list of alarm points programmed into the BAS, along with their alarm messages, shall be listed on the OWS.
 c. Alarm prioritization shall be configured in accordance to the applicable categories as specified in ANSI/ASHRAE 135-2004, BACnet. The contractor shall consult with the NC ANG during the commissioning and configure in a manner that distinguishes between the facilities involved and to meet other operational needs requested by the NC ANG.

8. Memory, processing and functional capability: Specifically, a BC shall contain memory, processing and functional capability to perform the following in a stand-alone mode:

 a. Scheduled start/stop; based on time of day, calendar, holiday, lead/lag schedule and temporary schedules;
 b. Adaptive start/stop;
 c. Duty cycling;
 d. Automatic temperature and humidity control;
 e. Demand control using a sliding window, predictive algorithm;
 f. Event initiated control;
 g. Calculated point including energy calculations;
 h. Scanning and alarm processing;
 i. Full direct digital control;
 j. Trend logging;
 k. Global communications;
 l. Maintenance scheduling;
 m. BACnet communications with the OWS and other controllers;
 n. Night setback control;
 o. Variable frequency drive/air flow control;
 p. Enthalpy or dry bulb switch-over (economizer); and
 q. Temperature compensated load reset.

9. BC global communications: Global data values required by the installation shall be updated using change-of-value notifications.

10. BC upload and download capability: Each BC shall support backup and restore functionality.

11. Communications Loss - Stand-Alone Operation: The BC shall continue, without interruption, to operate peripheral equipment if communications with the network bus is interrupted. Provide stable and reliable stand-alone control using default values or other method for values normally read over the network. Alarms shall be stored for up to 48 hours, or until memory is filled, and then when communications are restored, the alarms and abnormal operating conditions shall be transmitted to the OWS.

12. Fail Safe Operation - BC power loss or component failure: When the BC is disabled or in the event of a power failure to the BC, outputs shall fail as indicated in the sequence of
operation and the “BAS Point Function Schedule”. For such items as remote temperature adjustment, the reset signal shall maintain its last setting. Upon the resumption of normal power, the BC shall analyze the status of controlled equipment, compare it with normal occupancy scheduling, and turn equipment on or off as necessary to resume normal operation.

13. Real time clock. Routines shall be provided to maintain time of day, date and interval timers.

2.4 ADVANCED APPLICATION CONTROLLER (AAC)

A. Advanced Application Controller: A limited capacity microprocessor based controller that is custom programmable. Each AAC shall be classified as a BACnet and conform to the BACnet Advanced Application Controller (B-AAC) or Application Specific Controller (ASC) device profile. The controllers shall be EPROM based with sufficient I/O point capacity for controlling the units in accordance with the control drawings and the sequence of operation. The controllers shall be capable of processing the signals of the specified sensors, and shall have the capability to drive the outputs required. The AAC shall be listed in UL 916 PAZX.

1. Memory: The controller shall have sufficient memory to support its own operating system and database. All set points, proportional bands, control algorithms, custom programming, and any other programmable parameters shall be stored for a minimum of 72 hours without requiring reprogramming, in the event of the loss of power.

2. Operator Interface: The controller shall have the capability of receiving configuration and program loading from the OWS.

3. Communications: Each AAC shall reside on a BACnet network using BACnet MS/TP. In the event of a network failure, the controller shall be capable of operating in a stand alone mode.

4. Service Port: Each controller shall provide a service communication port for connection to a Portable Operator’s Terminal.

5. Signal Management: AAC operating systems shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and to allow for central monitoring and alarms.

6. Data Sharing: Each AAC shall share data as required with each networked BC, AAC and ASC. All points on the AAC shall be communicated to the local OWS.

7. Memory, processing and functional capability: Specifically, a BC shall contain memory, processing and functional capability to perform the following in a stand-alone mode:

a. Analog Input: Analog temperature inputs shall be compatible with temperature sensors. Analog inputs shall also accept 4-20 mA or 0-10 VDC. Match inputs types to sensors provided.

b. Analog Output: Analog output or pulse width modulated outputs shall be provided for control of end actuator devices. Overall analog output range of 0 to 10 volts or 4-20 mA with 8 bit D/A resolution minimum shall be provided.

c. Digital Inputs: Digital inputs shall be processed for change of status. Alarm monitor points shall be assignable to normally open or to normally closed contacts.

d. Digital Outputs: Digital outputs shall be assigned a priority with higher priorities able to override lower priorities. Controller digital, two position signals may operate the positioning device directly or have an interposing relay to give the
proper signal level. All digital outputs shall include Hand-Off-Auto override switches built into the controller.

e. I/O Point Distribution: All I/O points specified for a piece of equipment shall be integral to a single controller. The contractor shall submit an approval request to the NC ANG when more than one piece of equipment is controlled by a single controller.

f. Controller Capacity: Each AAC shall have the ability to monitor, control and address the required data points. The mix of points shall include analog inputs, analog outputs, digital inputs and outputs in sufficient quantities to perform the function indicated.

8. AAC Configuration: It shall be possible to configure the AAC over the network. This configuration shall include application program assignments; group and point assignments; data point modifications (additions and deletions); alarm parameter assignments; and peripheral assignments.

9. Software: The AAC, complete with software, shall provide a real time control language for HVAC system applications designed to accomplish easy transition from hardware control system design to local loop based control system design. The system software shall allow the user to provide control sequences directly into the controller and operators terminal memory.

10. Alarms: Whenever a field point status exceeds preset limits, or there are other indications of system exceptions, alarms, error or failure, there shall be at least the following indications:

 a. The OWS shall sound an integral audible tone. The audible tone shall be capable of being enabled or disabled on operator command.
 b. The alarm point identification, along with individual point alarm messages, shall appear at the OWS. Upon operator command, a list of alarm points programmed into the BAS, along with their alarm messages, shall be listed on the OWS.
 c. Alarm prioritization shall be configured in accordance to the applicable categories as specified in ANSI/ASHRAE 135-2004, BACnet. The contractor shall consult with the NC ANG during the commissioning and configure in a manner that distinguishes between the facilities involved and to meet other operational needs requested by the NC ANG.

11. Memory, processing and functional capability: Specifically, a BC shall contain memory, processing and functional capability to perform the following in a stand-alone mode:

 a. Scheduled start/stop; based on time of day, calendar, holiday, lead/lag schedule and temporary schedules;
 b. Adaptive start/stop;
 c. Duty cycling;
 d. Automatic temperature and humidity control;
 e. Demand control using a sliding window, predictive algorithm;
 f. Event initiated control;
 g. Calculated point including energy calculations;
 h. Scanning and alarm processing;
 i. Full direct digital control;
 j. Global communications;
k. BACnet communications with the OWS and other controllers;
l. Night setback control;
m. Variable frequency drive/air flow control;
n. Enthalpy or dry bulb switch-over (economizer); and
o. Temperature compensated load reset.

12. AAC global communications: Global data values required by the installation shall be updated using change-of-value notifications.
13. AAC Variable Execution Timer: It shall be possible to independently set the execution speed for each point in the AAC to an operator selected time from 1 to 60 seconds.
14. AAC upload and download capability: Each AAC shall support backup and restore functionality.
15. Communications Loss - Stand-Alone Operation: The AAC shall continue, without interruption, to operate peripheral equipment if communications with the network bus is interrupted. Provide stable and reliable stand-alone control using default values or other method for values normally read over the network. Alarms shall be stored for up to 48 hours, or until memory is filled, and then when communications are restored, the alarms and abnormal operating conditions shall be transmitted to the WEBS and the OWS.
16. Fail Safe Operation - AAC power loss or component failure: When the AAC is disabled or in the event of a power failure to the AAC, outputs shall fail as indicated in the sequence of operation and the “BAS Point Function Schedule”. For such items as remote temperature adjustment, the reset signal shall maintain its last setting. Upon the resumption of normal power, the AAC shall analyze the status of controlled equipment, compare it with normal occupancy scheduling, and turn equipment on or off as necessary to resume normal operation.
17. Real time clock. Routines shall be provided to maintain time of day, date and interval timers

2.5 APPLICATION SPECIFIC CONTROLLER (ASC)

A. Application Specific Controller: A limited capacity microprocessor based controller with limited adjustability. Each ASC shall be classified as a BACnet and conform to BACnet Application Specific Controller (B-ASC) device profile. The controllers shall be EPROM based with sufficient I/O point capacity for controlling the units in accordance with the control drawings and the sequence of operation. The controllers shall be capable of processing the signals of the specified sensors, and shall have the capability to drive the outputs required. The ASC shall be listed in UL 916 PAZX.

1. Memory: The controller shall have sufficient memory to support its own operating system and database. All set points, proportional bands, control algorithms, and any other programmable parameters shall be stored such that a power failure up to 72 hours long will not necessitate reprogramming the controller.
2. Operator Interface: The controller shall have the capability of receiving configuration and program loading from the OWS.
3. Communications: Each ASC shall reside on a BACnet network using the BACnet MS/TP. In the event of a network failure, the controller shall be capable of operating in a stand alone mode.
4. Service Port: Each controller shall provide a service communication port for connection to a Portable Operator's Terminal. For VAV Box ASC, the connection shall be extended to space temperature sensor ports shown on drawings.

5. Signal Management: ASC operating systems shall manage input and output communication signals to allow distributed controllers to share real and virtual object information and to allow for central monitoring and alarms.

6. Data Sharing: Each ASC shall share data as required with each networked BC, AAC and ASC. All points on the ASC shall be communicated to the local OWS.

7. Controller local loops: Controllers shall be totally stand alone and independent of the OWS, for indicated control applications. Failure of the OWS shall in no way inhibit the operation or program execution of the controllers. Controllers software shall include a complete operating system, application packages as indicated, standard control algorithm application packages, and a user control and calculation application package and the following:

 a. Analog Input: Analog temperature inputs shall be compatible with RTD temperature sensors. Analog inputs shall also accept 4-20 mA or 0-10 V DC. Match inputs types to sensors provided.
 b. Analog Output: Analog output values shall be provided for control of end actuator devices.
 c. Digital Inputs: Digital inputs shall be processed for change of status. Alarm monitor points shall be assignable to normally open or to normally closed contacts.
 d. Digital Outputs: Digital outputs shall be assigned a priority with higher priorities able to override lower priorities. Controller digital, two position signals may operate the positioning device directly or have an interposing relay to give the proper signal level. All digital outputs, with exception of VAV terminal unit ASC, shall include Hand-Off-Auto override switches built into the controller.
 e. Fail Safe Operation: Outputs shall be designed to interface with the equipment being monitored to fail as indicated in the sequence of operation or the “BAS Point Function Schedule”. For such items as remote temperature adjustment, the reset signal shall maintain its last setting.
 f. Controller Capacity: Each ASC shall have the ability to monitor, control and address the required data points. The mix of points shall include analog inputs, analog outputs, digital inputs and outputs in sufficient quantities to perform the function indicated.

B. VAV Box Accessories - Provide the following additional hardware for VAV terminal unit applications.

 1. The ASC shall operate totally stand-alone and independent of the OWS and other controllers, for all specified control applications. Software shall include a complete operating system, communications handler, point processing, standard control algorithms and control sequences.
 2. ASC upload and download capability: Each ASC shall support backup and restore functionality.
 3. All modifications to set-points, parameters, etc., shall be made electronically via an OWS.
 4. VAV Box ASC shall be capable of step-by-step air balancing procedure. The air distribution system balance contractor shall be able to balance all VAV boxes with ASCs by the use of a portable operator’s terminal and specific menu-prompted balancing
The contractor shall provide the software and/or applicable graphical display for air balancing prior to the commissioning.

2.6 OPERATOR WORK STATION (OWS)

A. Utilize the existing BAS workstation in Building 43 for control and monitoring of new HVAC equipment provided as part of this project.

2.7 OPERATOR WORK STATION (OWS) USER INTERFACE

A. The existing front-end software, Ascent Compass by Alerton on the existing OWS will be the primary operator interface for new BAS. New BAS provided as part of this project shall have functionality described below.

B. The OWS shall conform to the BACnet Operator Workstation (B-OWS) device profile.

C. The OWS shall be loaded with the BAS manufacturer’s front-end interface software with required license and other utilities to permit operation as the primary operator interface for the building.

D. Communications: The OWS shall communicate using BACnet/IP and use Ethernet to connect to the IP network, while using the same Ethernet LAN for non-IP communications to other BACnet devices on the LAN. Interoperability on wide area networks (WANs) must be supported. The OWS shall reside on a high-speed network with the building controllers. The OWS shall be able to access all system information.

E. The OWS interface shall allow each authorized operator to execute the following functions as a minimum:

1. Log In and Log Out: System shall require user name and password to log in to operator interface.
2. Point-and-click Navigation: Operator interface shall be graphically based and shall allow operators to access graphics for equipment and geographic areas using point-and-click navigation.
3. View and Adjust Equipment Properties: Operators shall be able to view controlled equipment status and to adjust operating parameters such as set points, PID gains, on and off controls, and sensor calibration.
4. View and Adjust Operating Schedules: Operators shall be able to view scheduled operating hours of each schedulable piece of equipment on a weekly or monthly calendar-based graphical schedule display, to select and adjust each schedule and time period, and to simultaneously schedule related equipment. System shall clearly show exception schedules and holidays on the schedule display.
5. Time Clock: Operators shall be able to set the date and time in any device on the network that supports time-of-day functionality. This capability shall be provided for individual devices, groups of devices, or all devices simultaneously. The workstation shall be able to synchronize time. The workstation shall be able to perform as a BACnet network “time master.”
6. View and Respond to Alarms: Operators shall be able to view a list of currently active system alarms, to acknowledge each alarm, and to clear (delete) unneeded alarms.

7. View and Configure Trends: Operators shall be able to view a trend graph of each trended point and to edit graph configuration to display a specific time period or data range. Operator shall be able to create custom trend graphs to display on the same page data from multiple trended points.

8. View and Configure Reports: Operators shall be able to run pre-configured reports, to view report results, and to customize report configuration to show data of interest.

9. Manage Control System Hardware: Operators shall be able to view controller status, to restart (reboot) each controller, and to download new control software to each controller.

10. Manage Operator Access: Typically, only a few operators are authorized to manage operator access. Authorized operators shall be able to view a list of operators with system access and of functions they can perform while logged in. Operators shall be able to add operators, to delete operators, and to edit operator function authorization. Operator shall be able to authorize each operator function separately.

11. Manage Demand Limiting Control Strategies: Operator shall be able to configure and adjust demand limiting control strategies for the building to reduce peak demand and consumption. Demand limiting control strategies shall adjust a building’s operations when a predetermined demand threshold is met to keep demand below the threshold during critical peak load periods of the day.

F. Dynamic Color Graphic Displays

1. Provide graphical screen displays of each system and each system component in color as indicated in the “BAS Point Function Schedule”. Provide individual, unique symbols for valves, fans, dampers, filters, and other mechanical and control system components. Arrange the symbols for each component so that the entire system is graphically represented. Graphical screen shall include dynamic display of associated temperature, pressure, flow, and humidity readings as well as status indication of each associated digital point. Graphical screens shall include a dynamic display of set points for each controller variable, to allow an authorized operator to adjust the set point. Include the following:

 a. Temperature and flow control diagram for each RTU, ERV, VAV Box, Exhaust Fan, etc.;
 b. Temperature and flow control diagram for hot water system;
 c. Temperature and flow control diagram for chilled water system
 d. Building Controller diagrams;
 e. Advanced Application Controller diagrams;
 f. Application Specific Controller diagrams;
 g. Floor Plans;
 h. Incorporate space sensor locations into floor plans;
 i. Incorporate BC, AAC and ASC locations into floor plans; and
 j. Incorporate BC, AAC and ASC loops into flow charts for critical loops.

2. The interface shall allow users to access the various system schematics and floor plans via a graphical penetration scheme using a mouse, menu selection or text-based commands.
3. Dynamic airflow values, temperature values, humidity values and status indication shall be shown in their actual respective locations and shall automatically update to represent current conditions without operator intervention.

4. For the terminal units, the space temperature sensor display and point description shall indicate both terminal unit number and room number.

5. Point groupings: Points for each system shall be grouped together to provide a complete listing of all information associated with that system on a single display screen. As a minimum, this shall include input points, output points, and set points.

6. Where calculated points such as airflow are indicated, they shall appear in their respective logical groups. The respective unconditioned real data, such as the logarithmic differential pressure points, shall also be grouped in a special group for display and observation, independent of the logical groups.

7. Graphics shall be saved in an industry-standard format such as BMP, JPEG, PNG, or GIF. Web-based system graphics shall be viewable on browsers compatible with World Wide Web Consortium browser standards. Web graphic format shall require no plug-in (such as HTML and JavaScript) or shall only require widely available no-cost plug-ins (such as Active-X and Macromedia Flash).

8. Group Command Display: Provide the capability, through an operator’s command display at the OWS, to add a certain number of mechanical equipment as a group and change the set points and unit modes using a single command for all units within the group. The following points shall be available for the group command; occupied heating/cooling set points, unoccupied heating/cooling set points and unit on/off override.

G. System Tools: System shall provide the following functionality to authorized operators as an integral part of the operator interface or as stand-alone software programs.

1. Automatic System Database Configuration: The OWS shall store on its hard disk a copy of the current system database, including controller firmware and software. Stored database shall be automatically updated with each system configuration or controller firmware or software change.

2. Controller Memory Download: Operators shall be able to download memory from the system database to each controller.

3. System Configuration: Operators shall be able to configure the system.

4. Online Help: Context-sensitive online help for each tool shall assist operators in operating and editing the system.

5. Security: System shall require a user name and password to view, edit, add, or delete data.

 a. Operator Access: Each user name and password combination shall define accessible viewing, editing, adding, and deleting functions in each system application, editor, and object. Authorized operators shall be able to vary and deny each operator's accessible functions based on equipment or geographic location.

 b. Automatic Log Out: Automatically log out each operator if no keyboard or mouse activity is detected. Operators shall be able to adjust automatic log out delay.

 c. Encrypted Security Data: Store system security data including operator passwords in an encrypted format. System shall not display operator passwords.

6. System Diagnostics: System shall automatically monitor controller and I/O point operation. System shall annunciate controller failure and I/O point locking (manual overriding to a fixed value).
7. **Alarm Processing:** System input and status objects shall be configurable to alarm on departing from and on returning to normal state. Operator shall be able to enable or disable each alarm and to configure alarm limits, alarm limit differentials, alarm states, and alarm reactions for each system object. Configure and enable alarm points as noted in the “BAS Point Function Schedule”. Alarms shall be BACnet alarm objects and shall use BACnet alarm services.

8. **Alarm Messages:** Alarm messages shall use an English language descriptor without acronyms or mnemonics to describe alarm source, location, and nature.

9. **Alarm Reactions:** Operator shall be able to configure (by object) actions the OWS shall initiate on receipt of each alarm. As a minimum, the OWS shall be able to log, print, start programs, display messages, send e-mail, text message, and audibly annunciate.

10. **Alarm Maintenance.** Operators shall be able to view system alarms and changes of state chronologically, to acknowledge and delete alarms, and to archive closed alarms to the workstation.

11. **Trend Configuration:** Operator shall be able to configure trend sample or change of value (COV) interval, start time, and stop time for each system data object and shall be able to retrieve data for use in spreadsheets and standard database programs. Controller shall sample and store trend data and shall be able to archive data to the hard disk. Coordinate items to be trended and trend configurations with NC ANG maintenance personnel. Trends shall be BACnet trend objects. At a minimum, the operator shall be able to configure a 15 minute interval logging/trending for all essential BAS/DDC points (inputs, outputs and software numerics) for a two week period.

12. **Object and Property Status and Control:** Operator shall be able to view, and to edit if applicable, the status of each system object and property by menu, on graphics, or through custom programs.

13. **Reports and Logs:** Operator shall be able to select, to modify, to create, and to print reports and logs. Operator shall be able to store report data in a format accessible by standard spreadsheet and word processing programs.

14. **Application Software:**
 a. **Objects:** System objects and current values filtered by object type, by status (in alarm, locked, normal), by equipment, by geographic location, or by combination of filter criteria.
 b. **Alarm Summary:** Current alarms and closed alarms. System shall retain closed alarms for an adjustable period.
 c. **Logs:** System shall log the following to a database or text file and shall retain data for an adjustable period:
 1) **Alarm History.**
 2) **Trend Data:** Operator shall be able to select trends to be logged.
 3) **Operator Activity:** At a minimum, system shall log operator log in and log out, control parameter changes, schedule changes, and alarm acknowledgment and deletion. System shall date and time stamp logged activity.

15. **Graphics Generation:** Graphically based tools and documentation shall allow Operator to edit system graphics, to create graphics, and to integrate graphics into the system. Operator shall be able to add analog and binary values, dynamic text, static text, and animation files to a background graphic using a mouse.
16. Graphics Library: Complete library of standard HVAC equipment graphics shall include equipment such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. Library shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. Library graphic file format shall be compatible with graphics generation tools.

17. Custom Application Programming: Operator shall be able to create, edit, debug, and download custom programs. The system shall be fully operable while custom programs are edited, compiled, and downloaded.

2.8 NETWORK AND COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, switches and routers provided for this project shall comprise a BACnet network.

B. The Contractor shall provide and install communication cable, connectors, repeaters, bridges, routers, switches and hubs necessary for the BAS network. The Ethernet backbone and connection drop point for the major equipment controllers and OWS shall be provided by others. However, the contractor shall provide additional network hardware such as Ethernet routers and switches for the extension of BAS network or connection.

C. The time clocks in controllers shall be automatically synchronized daily. Time synchronization shall be implemented via BACnet time synchronization services. The BAS shall automatically adjust for daylight savings time.

D. Network operator interface and value passing shall be transparent to network architecture.

 1. An operator interface connected to a controller shall allow the operator to interface with each network controller as if directly connected. Controller information such as data, status, and control algorithms shall be viewable and editable from each network controller.

 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the network. Program and test all cross-controller links required to execute control strategies specified. An authorized operator shall be able to edit cross-controller links by typing a standard object address or by using a point-and-click interface.

E. A break in the communication path of the network shall be announced as an alarm and shall automatically initiate a network reconfiguration such that the resulting sections of the bus continue to function as separate networks. No loss of control shall result from such a break in the bus.

F. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring.
2.9 CONTROL PANELS

A. Local Control Panels: Unitized cabinet with suitable brackets for wall or floor mounting, located as indicated on drawings or adjacent to each system under automatic control if not indicated on drawings. Provide common keying for all panels.

1. Construction: NEMA 1 as defined in ICS-6 "Enclosures for Industrial Control Systems", totally enclosed, with hinged doors and keyed lock, with manufacturer's standard shop-painted finish and color.
4. Tags: Panels shall have an identification label on the front of the door, and labels shall identify components in the panel. Panels shall be permanently labeled with laminated plastic nameplates, black with white lettering, with minimum 1/4 inch lettering. Fasten nameplates to enclosures with a minimum of two sheet-metal screws or two rivets. Tag shall include device ID’s as shown on as-built documentation and BAS software identification. Internal and external wires shall also be labeled.
5. Panel Components: Enclosures shall include following:
 a. BC, AAC, ASC, hubs, switches, repeaters or routers.
 b. Provide pre-wired control cabinets containing:
 1) 120V power outlet;
 2) Terminal strips; and
 3) Electrical relays - latching or magnetically held.
 c. Provide electronic equipment in accordance with the requirements of FCC Regulation, 47 CFR Part 15, Subpart B Unintentional Radiators, governing radio frequency electromagnetic interference and be so labeled.
 d. Provide UL listed equipment.
 e. Raceway, wiring, terminations and mounting of equipment to present a fully functional integrated system.

2.10 CONTROL TRANSFORMERS

A. General: Provide high capacity step-down transformers where required to power control system components. The transformers shall have a secondary output rating that is at least 150 percent of the total load of the connected devices. Transformers shall be installed in a NEMA 1 rated enclosure. Transformers shall be UL Listed. The secondary output of the transformer shall be protected by an appropriately sized fuse.

2.11 INPUT AND OUTPUT SENSOR AND DEVICES

A. General: Input and output sensors and devices shall be closely matched to the requirements of the controller for accurate, responsive, noise free signal input and output. Control input
sensitivity shall be matched to the control loop gain requirements for precise and responsive control. In no case shall computer inputs be derived from pneumatic sensors nor shall thermocouples be used.

1. Temperature Sensors: Temperature sensors shall be Thermistor or Resistance Temperature Detector (RTD) type.
 a. Space Temperature Sensors: Provide with blank institutional type locking white and/or beige covers to best match installed location and after-hours manual override push button or switch where required by application. Accuracy shall be plus or minus 0.5°F over range of 50 to 100°F.
 b. Space Temperature Sensors (VAV Box Application): Provide with blank institutional type locking white and/or beige covers to best match installed location and after-hours manual override push button or switch. Accuracy shall be plus or minus 0.5°F.
 c. Duct Temperature Sensors: Rigid stem or averaging type as specified in the sequence of operation or as shown on the control drawings. Accuracy shall be plus or minus 0.5°F over range of 30 to 130°F.
 d. Outside air wall mounted sensors: Provide with a sun shield and mount where effects of sun and mass of the building are minimized. Coordinate location with the NC ANG. Accuracy shall be plus or minus 0.5°F over a range of minus 30 to 130°F.

2. Differential pressure transmitter (Air): The differential pressure transmitter shall be calibrated for the appropriate operating range based on set point. The output signal shall be transmitted in an analog 4-20 mA format with an accuracy of plus or minus 1 percent of the calibrated span. The transmitter shall have a local span and zero. Transmitter shall be capable of withstanding pressures of up to 8 times the calibrated range without damage or re-calibration.

3. Photoionization Detector (PID): Provide wall mounted, fixed photoionization detector that measures a range of volatile organic compounds (VOCs) required for the application. The PID shall operate on 10 to 28 VDC and provide an analog (4-20mA) output signal for continuous monitoring of space VOC level by the BAS and a programmable alarm relay output for alarm notification to fire alarm system. It shall have local LCD display with an alarm indicator. Accuracy shall be of plus or minus 2 percent of the calibrated span. Operating temperature shall be -4°F to 131°F.

4. Equipment Operation Sensors;
 a. Current Switches: Current switches shall be sized for a current range appropriate to the fan, pump or compressor motor being monitored. The trip point shall be adjustable and set to 75 percent of rated motor current. The current switch shall be capable of withstanding a maximum continuous current of 150 Amps. Operating temperature shall be -58°F to 149°F. The current relay shall meet UL 94V-0 for flammability. A LED indicator shall be included which distinguishes between the following three conditions: tripped relay switch, current present but relay switch not tripped and no current present. The monitored frequency shall be 6 Hz minimum, allowing for accurate monitoring of variable frequency drives. The relay switch shall be rated for 1 to 135 VAC/DC at 0.3 Amps and shall not be polarity sensitive.
b. Filter Alarm: Differential pressure switch piped across filter with adjustable set point and a range of 0 to 5 inches wg, with maximum pressure rating of at least 10 inches wg.

2.12 MANUAL SWITCHES

A. General: Provide oil tight two or three position knob type switches as required by the application. Switches shall include screw terminals and contacts rated for the application, but not less than 10 amps at 120 VAC. Switches shall be rated both mechanically and electrically for minimum 500,000 operations. Include legend plate, which matches the application.

2.13 RELAYS

A. Relays: Provide relays with LED relay coil status indicator. Rated coil voltage shall match the application. Contacts shall be minimum DPDT rated for 10 amps resistive at 120 VAC. Panel mounted relays shall be plug-in blade type, with surface or snap track mounted relay bases and screw terminals. Field mounted relays shall be installed in an enclosure and provided with either screw terminals or pigtailed. Provide relay with Hand-Off-Auto switch where controlled equipment does not already include a Hand-Off-Auto switch. Provide latching type relays for unit start/stop’s to fail in last commanded state

B. Time delay relay: Provide delay-on-make relay, with 0-60 second adjustable time delay, and separable relay base with screw terminals. Time adjustment shall be through a knob mounted on the relay. DPDT relay contacts shall be rated for a minimum of 5 amperes at 120 VAC. Time shall be adjusted as required to minimize spikes in facility power demand after a power failure.

2.14 DAMEPRS

A. Motorized Control Dampers:

1. Type: Opposed blade dampers for both modulating service and 2-position service.
2. Frames: Construct Frames of five inch by one inch extruded aluminum hat channel with a minimum of 0.125-inch wall thickness.
3. Blades: Blades not exceeding eight inches wide, and of heavy gage extruded aluminum airfoil shape to minimize pressure loss across the damper.
4. Bearings, shafts, and linkage: Bearings shall be of nylon or oil impregnated sintered bronze. Shafts made of heavy-duty steel shall be extended six inches beyond frame and is marked for damper blade position. Provide linkage of 1/8 inch by 1/2-inch aluminum tie bars located out of the airstream, concealed in the frame.
5. Seals: Provide replaceable resilient seals along top, bottom and sides of frame and along edge. Damper and seals shall comply with UL flame and smoke rating of 25/50.
6. Ratings: Rate damper for minimum 2000 fpm air velocity at 2.5 inches static pressure; damper leakage not exceeding 0.5 percent of total airflow (4.00 CFM/sq. ft.) based on 2000 fpm and one inch static pressure when tested per AMCA Publication 500. Damper shall be rated for a temperature range of minus 70 to 200 deg F. Submit leakage and flow characteristics data with shop drawings.
7. Maximum System Pressure: Dampers shall be rated for no less than a maximum system pressure of 8.5" w.g. for a 36" blade length.

8. Torque requirements: Dampers shall require maximum 8 in-lb/square foot operating torque, based on 1 inch static pressure and 1000 FPM velocity. Submit actuator torque requirement with shop drawings.

9. Known Acceptable Source: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the work include, but are not limited to, the following:

 a. Greenheck
 b. Nailor Industries Inc.
 c. Ruskin Company

B. Damper Actuator: Provide electric type, direct shaft mount damper actuators with bracket arrangement for location outside of the air stream. Actuators shall provide at least 125 percent of the required torque to effectively operate the damper. Actuator drive time for 90 deg rotation shall be 120 seconds maximum. Actuators shall be normally open, normally closed, or fail in position as required, to obtain the operation as described in the Sequence of Operation or as shown on the “BAS Point Function Schedule”. Normally open and normally closed dampers shall return to their normal position in the event of a power failure to the actuator. Provide auxiliary switches or damper position switches, rated as required, to provide specified Sequence of Operation. Provide transformers and accessories as required. Actuators requiring linkages, crank arms, connecting rods, or ball joints are not acceptable.

1. Damper actuator shall be securely attached to the damper shaft with a set screw or some other fastener to minimize slippage. When a U-Bolt is used to attach the actuator to the damper shaft, the shaft shall be modified with a file or a grinder to provide a flat side or a notch where the U-bolt is fastened to the shaft to minimize slippage.

C. Damper Position Switch: When required by the sequence of operation and the “BAS Point Function Schedule”, provide damper position switches. Switch may be part of the damper actuator.

2.15 AIR FLOW MEASUREMENT

A. Air Flow Measuring Station (AFMS) and differential pressure transmitter shall be provided under Division 23. AFMS sensing elements, which are provided by unit supplier but not installed at the factory, shall be field installed and wired to the AFMS transmitter by the controls contractor. Coordinate with unit supplier for installation and proper location of AFMS.

B. If air flow measuring station is not provided by unit manufacturer, provide high performance, thermal dispersion type air flow measuring station (AFMS). Pitot tubes, arrays, Piezo rings and other differential pressure based devices are not acceptable. AFMS shall contain an airflow straightener if required by the AFMS manufacturer's published installation instructions.

C. Resistance to airflow: The resistance to air flow through the AFMS, including the airflow straightener shall not exceed 0.08 inch water gauge at an air flow of 2,000 fpm. AFMS construction shall be suitable for operation at airflows of up to 5,000 fpm.
D. Outside air temperature: In outside air measurement or in low-temperature air delivery applications, the AFMS shall be certified by the manufacturer to be accurate as specified over a temperature range of -20°F to 120°F.

E. Sensing probe shall be constructed of extruded aluminum or of stainless steel tubes. The operating humidity range shall be 0 to 99% RH and direct exposure to water shall not damage the sensing elements. The sensing elements shall be distributed across the duct cross section in the quantity and pattern specified by the published application data of the AFMS manufacturer.

F. AFMS shall have an accuracy of +/- 2% of reading with air velocity range of 0 to 5,000 fpm.

G. The transmitter shall have local LCD display, continuously displaying airflow and temperature and be calibrated for the appropriate operating range based on the required operating range. The output signal shall be transmitted in an analog 4-20 mA, 0-10 VDC or 0-5 VDC format. The transmitter shall have a local span and zero with field configurable low and high limits and operating temperature range of -20°F to 120°F.

2.16 FILTER GAGES

A. General: Provide differential pressure switch/gage to sense the pressure drop across each air handling unit filter bank and separate filter banks as scheduled. Furnish gages with 0 to 4 inch w.c. range, 0.1 inch minor divisions, plus or minus 2 percent accuracy, and 5 inch diameter case. Switch shall include dry contacts rated for 0.5 amps at 125 VAC resistive, switch set point indicator on the gage, knob adjustment on the front of the unit. Surface mount gages on unit or ductwork near filter bank with high and low pressure connections installed according to manufacturer’s recommendations

2.17 DUCT SMOKE DETECTORS

A. Duct smoke detectors are specified in Division 28, “Fire Alarm.” Coordinate installation of duct smoke detectors with fire alarm and detection system work to provide the specified sequence of operation.

2.18 TAGS

A. Tags: All devices, control panels, input & output devices, control dampers, control valves relays, filter gages, duct smoke detectors, water leak detection devices and all other devices and sensors installed and not mentioned here shall be permanently labeled with laminated plastic nameplates, black with white lettering, with minimum 1/4 inch lettering. Tag shall include device ID's as shown on as-built documentation and BAS software identification. Internal and external wires shall also be labeled with wire identification labels. Fasten nameplates to enclosures with a minimum of two sheet-metal screws or two rivets. Fasten nameplates to other devices with suitable adhesive.
2.19 UNINTERRUPTIBLE POWER SUPPLY (UPS)

A. Uninterruptible Power Supply: Provide UPS backup for each communication switch, router, repeater and OWS installed under this section. A battery backup UPS system shall have a nominal input/output voltage of 120 VAC sine wave and be rated for a minimum output of 420 VA and capacity of 260 Watts. The battery shall be maintenance-free, sealed, leak proof and lead-acid type. The battery shall be hot-swappable without disconnecting or disrupting the power to the attached load. The surge protection rating shall be at least 320 Joules, with zero clamping response time, full time multi-pole noise filtering and 0.7% IEEE surge let-through meeting UL 1449. The UPS shall have LED status displays with on line, on battery, replace battery, overload indicators and audible alarm. Each UPS shall be sized to provide a minimum of 4 hour of backup time to the equipment served.

2.20 CATEGORY 5E CABLE

A. General: Products listed in this section represent the minimum required features and level of quality to meet system operational requirements. Where BAS manufacturer’s recommendations exceed the specified minimum requirement, provide the cable recommended by the manufacturer.

B. Category 5e cables shall conform to or exceed EIA/TIA 568-B.2. Other standards supported shall include IEEE 802.3, 10BASE-T; and 100BASE-T. In addition, cables shall be capable of supporting evolving high-end applications. The cable shall be Underwriter’s Laboratories (UL) listed type CMP.

C. Nonplenum Category 5e Unshielded Twisted Pair cables shall be composed of 24 AWG solid copper conductors, dual insulated with high density polyethylene (HDPE). The insulated conductors shall be twisted into pairs and jacketed with Polyvinyl Chloride (PVC) and shall meet or exceed the specifications listed below:

1. Maximum DC Resistance: 9.38A/100 m
2. Mutual Capacitance: @ 1.0 KHz – 4.59 nF/100 m
3. Mutual Capacitance Unbalance: 131.2 pF/100 m
4. Attenuation (db/305 m): @ 1.0 Mhz – 6.3 db; @ 4.0 Mhz – 13.0 db; @ 10.0 Mhz – 20.0 db; @ 16.0 Mhz – 25.0 db; @ 25.0 Mhz – 32.0 db; @ 100.0 Mhz – 67.0 db
5. Characteristic Impedance: @ 1.0 Mhz – 100.0 ± 15 ohm; @ 25.0 Mhz – 100.0 ± 15 ohm
6. Worst Pair Near-End Crosstalk (db/305 m): @ 1.0 Mhz – 68.0 db; @ 4.0 Mhz – 59.0 db; @ 10.0 Mhz – 53.0 db; @ 16.0 Mhz – 50.0 db; @ 25.0 MHz – 47.0 db; @ 100.0 MHz – 38.0 db

D. Plenum Category 5e Unshielded Twisted Pair cables shall be composed of 24 AWG bare solid-copper conductors, insulated with TEFLOM. The insulated conductors shall be twisted into pairs and sheathed with a low smoke PVC jacket and shall meet or exceed the specifications listed below:

1. Maximum DC Resistance: 9.38A/100 m
2. Mutual Capacitance: @ 1.0 KHz – 4.59 nF/100 m
3. Mutual Capacitance Unbalance (pair to ground): 131.2 pF/100 m
4. Attenuation (dB/305 m): @1.0 Mhz – 6.3 db; @4.0 Mhz – 13.0 db; @10.0 Mhz – 20.0 db; @16.0 Mhz – 25.0 db; @25.0 Mhz – 32.0 db; @100.0 Mhz – 67.0 db
5. Characteristic Impedance: @1.0 Mhz – 100.0 ± 15 ohm; @25.0 Mhz – 100.0 ± 15 ohm
6. Worst Pair Near-End Crosstalk (db/305 m): @1.0 Mhz – 68.0 db; @4.0 Mhz – 59.0 db; @10.0 Mhz – 53.0 db; @16.0 Mhz – 50.0 db; @25.0 MHz – 47.0 db; @100.0 MHz – 38.0 db

E. Category 5e cables shall be run using a star topology format. The length of each individual run of horizontal copper cable shall not exceed 328 feet (100 meters).

2.21 CABLE AND WIRE

A. For Class 1 circuits, and power wiring provide 14 AWG minimum, Type THHN/THWN, solid wire in separate raceway.

B. For Class 2 and 3 circuits, provide 18 AWG minimum, power limited 300V, 140°F, type CM cable, which is so labeled. When recommended by the equipment manufacturer, or when required to comply with 47 CFR Part 15, Subpart B, “Unintentional Radiators,” provide shielded cables.

C. Cable and wire shall be non-halogenated low smoke producing cable tested in accordance with NFPA 262, “Standard Method of Test for Fire and Smoke Characteristics of Wires and Cables.” When burned, the cable shall produce a maximum peak optical smoke density of 0.5 and a maximum average optical smoke density of 0.15.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Install equipment as indicated to comply with manufacturer's written instructions.

B. Connect and configure equipment and software to achieve the Sequence of Operation specified.

C. Verify location of temperature sensors, humidity sensors, and other exposed control sensors with plans and room details before installation.

D. Install damper actuators on outside of duct.

1. When a U-Bolt is used to attach the actuator to the damper shaft, modify the shaft to provide a flat side or a notch with a file or a grinder, where the U-bolt is fastened to the shaft to minimize slippage.

E. Install labels and nameplates to identify control components according to Division 23, “Identification for HVAC Piping and Equipment.” Devices shall be permanently labeled with laminated plastic nameplates, black with white lettering, with minimum 1/4-inch lettering. Tag shall include device ID’s as shown on as built documentation and BAS software identification. Internal and external wires shall also be labeled with wire identification labels. Fasten
nameplates to enclosures with a minimum of two sheet-metal screws or two rivets. Fasten nameplates to other devices with suitable adhesive.

F. Install software in control units and OWS. Implement all features of programs to specified requirements and appropriate to sequence of operation. Provide English listing of analog and digital points and alarm messages.

G. Provide a ¼ inch diameter hole in the duct adjacent to each duct temperature sensor to allow the insertion of a test probe for sensor calibration. Provide a removable plug to seal the hole.

H. Install hydronic instrument wells, valves, and other accessories according to Division 23, “Hydronic Piping.”

I. Color coding of Category 5e cable shall conform to requirements of EIA/TIA Standards.

J. Components of the network cabling system shall be labeled in accordance with EIA/TIA Standards.

3.2 ELECTRICAL INSTALLATION

A. Install raceways, boxes, and cabinets in accordance with Division 26 requirements.

B. Install building wire and cable in accordance with Division 26 requirements and those requirements described below.

1. Install wire and cable in raceways. EMT Conduit shall be at a minimum 3/4 inch in size.
2. Install communication LAN wiring and fiber between BC, AAC, ASC, and OWS in dedicated raceway separate from all other types of wire and cable.
3. For each sensor, input or output device, provide a single cable from the sensor or device directly to the BC, AAC or ASC. Each cable shall include the quantity of conductors required for the specific sensor or device. Sharing of conductors for multiple sensors shall not be permitted. Splices in the cable between the sensor or device and the BC, AAC or ASC shall not be allowed. Cables associated with analog signals shall be shielded. Drain wires from shielded cables (not including communication LAN cables) shall be grounded to the BC, AAC or ASC enclosure as close as possible to the point of entry.
4. Any wiring or communications LAN to be run on the roof or exterior of the building shall be run in Rigid Metal Conduit (RMC).
5. Install wire connectors and soldering lugs for use with copper conductors.
6. Fasten flexible conductors, which bridge cabinets and doors, neatly along the hinge side of the cabinet to protect against abrasion. Tie and support conductors neatly.
7. Number-code or color-code conductors, except local individual room controls, for future identification and servicing of control system.
8. Panels, junction boxes and raceway/conduit associated with the BAS shall be clearly identified as part of the BAS. Covers to BAS junction boxes shall be painted blue. Conduit and raceway shall be labeled with blue lettering.

C. Provide Hand-Off-Auto selector switches only for the equipment that does not have H-O-A switch to override automatic interlock controls when switch is in Hand position, except for safety interlocks such as freeze protection, smoke detectors or fire alarm interlocks. Manual
equipment start and stop control capabilities, such as motor starter hand-off-auto switches, shall remain fully operational. Do not provide Hand-Off-Auto selector switches for equipment operated through variable frequency drives.

3.3 COORDINATION

A. Install building wire and cable in accordance with Division 26 requirements and those requirements described below.

1. Provide Test and Balance Contractor a single set of necessary tools to interface to control system for testing and balancing.
2. Train Test and Balance Contractor to use control system interface tools.
3. Provide a qualified technician to assist with testing and balancing the first 10 terminal units.
4. Test and Balance Contractor shall return tools undamaged and in working condition at completion of testing and balancing.

3.4 COMMISSIONING

A. Manufacturer's Field Services: Provide the services of a factory-authorized service representative to start control systems and provide the commissioning coordination/support required under Division 1, Sections "General Commissioning Requirements” and “HVAC Commissioning Requirements”.

1. Verify that equipment installation complies with contract documents, NEC, and manufacturer’s written installation requirements. Correct deficiencies before proceeding.
2. Install DDCP, software and data for new equipment.
3. Test and adjust controls and safeties.
4. Replace damaged or malfunctioning controls and equipment.
5. Start, test, and adjust control systems.
6. Adjust, calibrate, and fine tune circuits and equipment to achieve sequence of operation specified and to provide safe, efficient operation.

3.5 CONNECTIONS

A. Ground equipment in accordance with Division 26 requirements.

1. Connect electrical components to wiring systems and to ground as indicated and instructed by manufacturer. Tighten electrical connectors and terminals according to manufacturer’s published torque-tightening values. If manufacturer’s torque values are not indicated, use those specified in UL 486A and UL 486B.

3.6 TRAINING

A. General: Skilled and efficient use of the system requires operators trained to a level of proficiency that allows the facility to be independent from the BAS supplier and assures the
facility that the capabilities of the BAS can be used to operate the facility safely and efficiently. Facility support personnel shall be trained on the system software after the completion of this project. Submit factory course description with outline, and conduct the sessions with factory instructors and training material after commissioning is complete and before acceptance of the system. Equipment installers are not acceptable instructors. Provide the following training:

B. BAS Training: The BAS training course shall be conducted at the project site and the NC ANG reserves the right to require the contractor to videotape the training sessions for later use. Emphasis shall be on maintenance training, which shall provide in-depth knowledge on how to conduct complete troubleshooting, maintenance and repair of the installed equipment. Training shall include both diagnostics software and hardware maintenance. Provide review of menu driven operator's training of data display, alarm and status descriptors, data requesting, execution of commands, insertion and deletion of a point and development of software maintenance. Preventive maintenance training shall also be provided to determine software, firmware, or hardware failures. Training shall include local OWS functionality, OWS functionality through the BAS server and functionality of the BAS server itself.

1. Operator Training: Provide 20 hours of operator training on site, for two shifts of maintenance staff, with a total of six (6) students. Training shall encompass:
 a. Installation, wiring, calibration and troubleshooting of sensors, BC, AAC, ASC, and control devices;
 b. Repair and replacement of sensors, BC, AAC, ASC, and control devices;
 c. Preventative maintenance;
 d. Sequence of operation review;
 e. Sign on - Sign off;
 f. Selection of all displays and reports;
 g. Commanding of points, keyboard and mouse mode;
 h. Modifying English text;
 i. Use of all dialogue boxes and menus;
 j. Modifying warning limits, alarm limits and start and stop times;
 k. System initialization;
 l. Download and initialization of remote panels;
 m. Purge and dump of historical data;
 n. Use of OWS;
 o. Password assignment and modification;
 p. Operator assignment and modification;
 q. Operator authority assignment and modification;
 r. Point disable and enable;
 s. Terminal and data segregation and modification; and
 t. Use of spreadsheet package with system data.

2. Programming Training: Provide 20 hours of programming training at a sanctioned training facility, owned and operated by the control system manufacturer, for a total of four (4) students. Programmer training shall be scheduled by the NC ANG with two weeks advance notice anytime during the warranty period. Training shall encompass:
 a. Software review of Sequence of Operation and flowcharts;
 b. Modification of control programs;
 c. Add-Delete-Modify data points;
d. Use of diagnostics;

e. System maintenance procedures;

f. Review of initialization;

g. Upload and download and off line archiving of all system software; and

h. Graphic creation.

3. Training Aids: Provide all training aids, equipment and training manuals. Provide one copy of the training manual for each student. Submit materials for NC ANG approval.

4. Student Education Level: The training for the various courses shall be structured for electrical/electronic technicians with experience in operating computers, but little experience in programming. The students’ education level shall be high school plus approximately two years technical training in math, sciences, and electrical and mechanical equipment.

3.7 START-UP

A. Manufacturers Field Services: Provide the services of a factory-authorized service representative to start the control systems.

1. Verify that equipment installation complies with the contract documents, NEC, and manufacturers written installation requirements and that equipment is functional. Correct deficiencies before proceeding.

2. Install BC, AAC, ASC and OWS with the latest software revision available. Confirm proper operation before proceeding.

3. Calibrate devices, make final settings, and thoroughly test control system and safeties under actual operating conditions for satisfactory performance before notifying the NC ANG that the BAS is operational.

4. Replace damaged or malfunctioning controls and equipment.

5. Start, test, and adjust control systems in accordance with the detailed requirements of the “Field Quality Control” section of this specification. This section details the following tasks, which shall be performed by the contractor.

a. Test Plan

b. Display demonstration

c. Functional Demonstration

d. Operator Programming Demonstration

e. Validation

f. Testing

g. Installation Inspection Report

6. Adjust, calibrate, and fine tune circuits and equipment to achieve Sequence of Operation specified and to provide safe, efficient operation. Provide “Installation Inspection Report” to the NC ANG as described below under “Field Quality Control.”

7. Commissioning: Provide “Contractor Commissioning Document” to the commissioning agent prior to the commissioning. Refer to Section 019113 “General Commissioning Requirements” for “Contractor Commissioning Document” and requirements of the commissioning process.
3.8 FIELD QUALITY CONTROL

A. Test Plan: Submit test plan at least 30 calendar days prior to conducting the acceptance tests. Develop a detailed testing plan, which consists of step-by-step procedures for entering nominal values into the system to simulate environmental conditions to be expected. Each test shall fully demonstrate the system operation capability as required by this specification section and as described below. Testing shall include local OWS functionality, OWS functionality through the BAS server and functionality of the BAS server itself.

1. Display demonstration: Perform a complete demonstration and readout of the capabilities of monitoring and control system in both textual and graphical format. This demonstration shall include an all points log to validate operation of 100 percent of the data points. Successful demonstration, including installation and training, constitutes a partial acceptance of the delivered system for online operation. The demonstration shall include the basic operation of 100 percent of the connected points and shall show, in accordance with the I/O summary:

 a. Analog display;
 b. Digital display;
 c. Start/Stop display;
 d. Command of selected start/stop points; and
 e. Selected Set Point Adjustment (SPA) action, both automatically and manually initiated.

2. Functional Demonstration: The following functions shall be demonstrated:

 a. Analog alarm and return to normal;
 b. Digital alarm and return to normal;
 c. Start/Stop alarm and return to normal;
 d. Off line memory access, including modification of at least two addressable memory locations;
 e. Software driven functions, including energy management application programs, event initiated programs, alarm limits and analog alarm lockout;
 f. That OWS and BAS server are capable of full system control;
 g. That single points and groups of points can be added or deleted in the program through keyboard entry;
 h. Sequential start up after simulated power interruption;
 i. Fail safe operation;
 j. Alarms and other functions;
 k. Simulated failure of all main equipment and auto transfer to standby;
 l. Simulated power failure and automatic restarting of main equipment;
 m. Simulated failure of BACnet transmission bus; and
 n. BC, AAC and ASC failure (enunciate at BAS server and OWS)

3. Operator Programming Demonstration: The following programming capabilities shall be demonstrated:

 a. Assigning of high and low analog alarm limits;
 b. Modifying analog alarm value;
c. Displaying group condition showing group detected, point within group off
 normal, ground fault and AC power off;

d. Modifying time based program by setting and resetting time assignment;

e. Dumping and reloading data;

f. Adding a point (the point type shall be selected by the NC ANG at time of
 acceptance);

g. Deleting a point, and

h. Adding a new group of points.

4. Validation: Completely check out, calibrate and test connected hardware and software to
 insure that the system performs in accordance with the specified requirements and
 approved sequences of operation. Validation shall be witnessed by the NC ANG.

 a. Running each specified report;

 b. Displaying and demonstrating each data entry to show site specific customizing
 capability and demonstrating parameter changes;

 c. Step through penetration tree, displaying graphics, demonstrating dynamic update
 and direct access to graphics;

 d. Executing digital and analog commands in graphic mode;

 e. Demonstrating BC, AAC and ASC loop precision and stability through trend logs
 of inputs and outputs (6 loops minimum) by continuous operation of 7 days
 testing;

 f. Demonstrating BAS performance through trend logs and command trace;

 g. Demonstrating scan, update, and alarm responsiveness;

 h. Demonstrating spreadsheet and curve plot software and its integration with the
 database;

 i. Demonstrating on line user guide and help function and mail facility;

 j. Demonstrating digital system configuration graphics with interactive up-line and
 down-line load, and demonstrating specified diagnostics;

 k. Demonstrating multitasking by showing dynamic curve plot and graphic
 construction operating simultaneously through split screen;

 l. Demonstrating class programming with point options of beep duration, beep rate,
 alarm archiving and color banding;

 m. Demonstrate BC, AAC and ASC stand alone execution, remote control interface,
 upload and download data from remote controller, and Microsoft Windows
 compatibility;

 n. Time and Event Application Control: Demonstrate that the system is capable of
 start/stop of controlled devices based on time and date setting, occupancy
 schedules, holiday schedules, activity defined schedules, lead/lag time and
 schedules changes, and rotational schedules; and

 o. Network Strategies: A trend on one panel shall be set up for a point from another
 panel. This point shall also be trended in its own panel for the same intervals.
 Comparison of the two trends shall indicate if communication problems occurred
 during the 7 days testing period. Provide a historical communication error
 summary for the 7-day period as an alternative.

B. Testing: Perform complete tests, as indicated. Confirm test date in writing at least ten working
 days prior to test. The written test date confirmation shall identify changed conditions, which
may affect the test results. Provide equipment and personnel required to perform the test. Perform tests of the BAS, in accordance with the approved test plan, in presence of the NC ANG. The test shall not cause interruption of building activities in any manner.

C. Installation Inspection Report: Upon completion of tests, a list shall be provided by the NC ANG, showing each outstanding item. The Contractor shall provide a schedule detailing items to be corrected and date for completion. As each item is approved, an appropriate notation shall be entered at the time of correction on the inspection report, with counter signature of the NC ANG and date. A copy of this report shall be provided to the NC ANG.

3.9 ACCEPTANCE

A. As Built documentation: Submit complete set of as built data which shall identify the equipment supplied and the interconnecting wiring along with identification of components by part number or by ordering number. Record actual locations of control components, including control units, thermostats, and sensors. Revise Shop Drawings to reflect actual installation and operating sequences. Shop Drawings shall include floor plan drawings that show the actual location and complete identification of all sensors and control devices that are not mounted directly on the HVAC equipment. Data shall also include final set points, alarm limits, time schedules, and other BAS software information specific to this installation.

1. BAS Database: Maintain diskette copies of data files and application software for reload use in the event of a system crash or memory failure. Deliver one copy to the NC ANG during training session, and archive one copy in a local software vault to be provided by the control manufacturer.
2. Design drawings: Deliver one copy of CAD generated system design drawings in DXF format to the COTR during training session, and archive one copy in a local software vault to be provided by the control manufacturer.
3. Revised Control Drawings: Laminated version of As-built control drawings for each system shall be placed in a respective control panel.

B. Software, Firmware and Hardware Documentation Rights: The NC ANG shall have the right to reproduce (for internal use), copy, alter, use (within the scope of this project) data and software submitted. In return for this right the NC ANG agrees to maintain this data in a reasonably secure manner and agrees not to divulge the data to competitors or use the data for alternate purposes.

C. Warranty: The Warranty shall include a service and parts guarantee for two years from the date of acceptance of the installation, without charge to the NC ANG. After completion of the original installation, provide service incidental to the proper performance of the control system under the warranty for the period of two years. Calibrate and adjust the control system, including controllers, sensors, relays, control valves, motors, and other equipment provided under this contract. Place them in complete operating condition subject to the approval of the NC ANG.

D. Acceptance: The contractor shall be responsible for the system until acceptance of the BAS by the NC ANG and will be required to respond to BAS trouble calls within less than one day. The acceptance date of the system shall be that date the NC ANG and the Contractor jointly agree that the system meets the requirements of this specification. This date shall be the effective date.
of the start of the two year maintenance contract and shall constitute formal acceptance by the NC ANG.

3.10 MAINTENANCE SERVICE

A. Provide maintenance service for a two year period after the acceptance. A single source at the contractor’s facility shall be identified for maintenance type items during this time period. Failures under two year maintenance period shall be corrected by the contractor at his expense. Such occurrences shall not void acceptance. Appropriate logs, schedules, and reports shall be maintained to reflect those items and their redress. Service shall extend for a period of two years after system acceptance and shall include the following provisions:

1. Establish and maintain a telephone line, which may be used by field facilities to obtain factory support of the installed system. The telephone number shall be made available to the facility at the time of installation. The telephone shall be staffed by an on-call factory trained equipment specialist and programmer. The telephone shall be answered during normal plant hours. During nights, weekends, and holidays, an answering machine shall be provided to receive trouble calls. The factory shall return trouble calls within 14 hours of receipt of the call on night, weekend, and holiday calls, and within two hours if the call is received during normal plant hours.

2. Ship LRUs and requested parts upon request by the facility requiring maintenance parts and assistance, within three hours during normal plant hours and within 15 hours during nights, holidays, and weekends. Shipping costs to the facility shall be borne by the contractor. Shipping shall be UPS or similar fast door-to-door service.

3. Repair all returned parts at the contractor’s expense. The only exception is for neglect or abuse such as damage by liquids, breakage or power anomalies.

4. Contractor maintenance support applies to software as well as equipment.

5. Facility personnel shall perform required preventative maintenance tasks in accordance with periodic maintenance tasks and procedures specified in the Contractors periodic maintenance requirements handbook.

6. Provide to the NC ANG a local existing commercial source (within the local metropolitan commuting area) where parts, LRUs and circuit boards, and trained technical support can be obtained. The NC ANG at its discretion has the right to procure parts and service on a local basis to restore the system to an operating configuration on an emergency basis and such action shall not void the guarantees. Costs for local support shall be borne by the NC ANG.

END OF SECTION 23 09 23
SECTION 23 11 23 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipes, tubes, and fittings.
 2. Piping specialties.
 3. Piping and tubing joining materials.
 4. Valves.
 5. Pressure regulators.
 7. Concrete bases.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.3 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:
 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 2. Service Regulators: 65 psig minimum unless otherwise indicated.
 3. Minimum Operating Pressure of Service Meter: 5 psig.

B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

C. Delegated Design: Design restraints and anchors for natural-gas piping and equipment, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Piping specialties.
 2. Corrugated, stainless-steel tubing with associated components.
 3. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 4. Pressure regulators. Indicate pressure ratings and capacities.
 5. Service meters. Indicate pressure ratings and capacities. Include meter bars and supports.
 6. Dielectric fittings.

B. Delegated-Design Submittal: For natural-gas piping and equipment indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Detail fabrication and assembly of seismic restraints.
 2. Design Calculations: Calculate requirements for selecting seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified professional engineer.
B. Welding certificates.
C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For motorized gas valves pressure regulators and service meters to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
1.8 DELIVERY, STORAGE, AND HANDLING

A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.

B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.

C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.9 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

 1. Notify Government no fewer than two days in advance of proposed interruption of natural-gas service.
 2. Do not proceed with interruption of natural-gas service without Government's written permission.

1.10 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 08 31 13 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

2.2 PIPING SPECIALTIES

A. Y-Pattern Strainers:
 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

2.3 JOINING MATERIALS

A. Joint Compound and Tape: Suitable for natural gas.

C. Brazing Filler Metals: Alloy with melting point greater than 1000 deg F complying with AWS A5.8/A5.8M. Brazing alloys containing more than 0.05 percent phosphorus are prohibited.

2.4 MANUAL GAS SHUTOFF VALVES

A. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig.
 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.

5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.

6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.

B. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.

1. CWP Rating: 125 psig.

2. Flanged Ends: Comply with ASME B16.5 for steel flanges.

4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. A.Y. MacDonald Mfg. Co.
 b. BrassCraft Manufacturing Co.; a Masco company.
 c. Conbraco Industries, Inc.
 d. Lyall, R. W. & Company, Inc.

3. Ball: Chrome-plated bronze.

4. Stem: Bronze; blowout proof.

5. Seats: Reinforced TFE; blowout proof.

6. Packing: Threaded-body packnut design with adjustable-stem packing.

8. CWP Rating: 600 psig.

9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.

10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 EARTHQUAKE VALVES

A. Earthquake Valves: Comply with ASCE 25.

1. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction.

2. Maximum Operating Pressure: 5 psig.

3. Cast-aluminum body with nickel-plated chrome steel internal parts.

5. Sight windows for visual indication of valve position.
7. Wall mounting bracket with bubble level indicator.

2.6 PRESSURE REGULATORS

A. General Requirements:
 1. Single stage and suitable for natural gas.
 2. Steel jacket and corrosion-resistant components.
 3. Elevation compensator.
 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Actaris.
 b. American Meter Company.
 c. Fisher Control Valves & Instruments; a brand of Emerson Process Management.
 d. Invensys.
 e. Itron Gas.
 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
 6. Orifice: Aluminum; interchangeable.
 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
 12. Maximum Inlet Pressure: 100 psig.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Canadian Meter Company Inc.
 b. Eaton.
2.7 SERVICE METERS

A. Rotary-Type Service Meters: Comply with ANSI B109.3.
 2. Connection: Flange.
 5. Meter Index: Cubic feet.
 6. Tamper resistant.
 8. Maximum Inlet Pressure: 100 psig.
 9. Accuracy: Maximum plus or minus 2.0 percent.

B. Turbine Meters: Comply with ASME MFC-4M.
 1. Housing: Cast iron or welded steel.
 2. Connection Threads or Flanges: Steel.
 3. Turbine: Aluminum or plastic.
 5. Meter Index: Cubic feet.
 6. Tamper resistant.
 8. Maximum Inlet Pressure: 100 psig.
 9. Accuracy: Maximum plus or minus 2.0 percent.

C. Service-Meter Bars:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. A.Y. McDonald Mfg. Co.
 b. Actaris.
 c. American Meter Company.
 d. Itron Gas.
2. Malleable- or cast-iron frame for supporting service meter.
3. Include offset swivel pipes, meter nuts with o-ring seal, and factory- or field-installed
dielectric unions.
4. Omit meter offset swivel pipes if service-meter bar dimensions match service-meter
connections.

2.8 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating
nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, available manufacturers
offering products that may be incorporated into the Work include, but are not limited to
the following:
 a. A.Y. McDonald Mfg. Co.
 b. Capitol Manufacturing Company.
 c. Central Plastics Company.
 d. HART Industrial Unions, LLC.
 e. Jomar Valve.
 f. Matco-Norca.
 g. Watts; a Watts Water Technologies company.
 h. Wilkins.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, available manufacturers
offering products that may be incorporated into the Work include, but are not limited to
the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts; a Watts Water Technologies company.

2. Description:
b. Factory-fabricated, bolted, companion-flange assembly.
c. Pressure Rating: 125 psig minimum at 180 deg F.
d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

2.9 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Comply with NFPA 54 and the International Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

B. Install underground, natural-gas piping buried at least 36 inches below finished grade. Comply with requirements in Section 31 20 00 "Earth Moving" for excavating, trenching, and backfilling.

1. If natural-gas piping is installed less than 36 inches below finished grade, install it in containment conduit.

C. Steel Piping with Protective Coating:

1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
3. Replace pipe having damaged PE coating with new pipe.
D. Install fittings for changes in direction and branch connections.
E. Install pressure gage downstream from each service regulator.

3.4 INDOOR PIPING INSTALLATION
B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
G. Locate valves for easy access.
H. Install piping free of sags and bends.
I. Install fittings for changes in direction and branch connections.
J. Verify final equipment locations for roughing-in.
K. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
L. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
M. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
N. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

O. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.

 a. Exception: Tubing passing through partitions or walls does not require striker barriers.

3. Prohibited Locations:

 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.

 b. Do not install natural-gas piping in solid walls or partitions.

P. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

Q. Connect branch piping from top or side of horizontal piping.

R. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

S. Do not use natural-gas piping as grounding electrode.

T. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.

U. Install sleeves for piping penetrations of walls, ceilings, and floors.

V. Install sleeve seals for piping penetrations of concrete walls and slabs.

W. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.5 SERVICE-METER ASSEMBLY INSTALLATION

A. Install service-meter assemblies aboveground, on concrete bases.

B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.
C. Install strainer on inlet of service-pressure regulator and meter set.

D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.

E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.

F. Install service meters downstream from pressure regulators.

G. Install metal bollards to protect meter assemblies. Comply with requirements in Section 05 50 00 "Metal Fabrications" for pipe bollards.

3.6 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install underground valves with valve boxes.

C. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

D. Install earthquake valves aboveground outside buildings according to listing.

E. Install anode for metallic valves in underground PE piping.

3.7 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:

1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
2. Cut threads full and clean using sharp dies.
3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:

2. Bevel plain ends of steel pipe.
3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

E. Flanged Joints: Install gasket material, size, type, and thickness appropriate for natural-gas service. Install gasket concentrically positioned.

3.8 HANGER AND SUPPORT INSTALLATION

A. Install seismic restraints on piping. Comply with requirements for seismic-restraint devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

B. Comply with requirements for pipe hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.9 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.10 LABELING AND IDENTIFYING

A. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.
3.11 PAINTING

A. Comply with requirements in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting" for painting interior and exterior natural-gas piping.

B. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI EXT 5.1D.
 d. Color: Gray.

C. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.

1. Alkyd System: MPI INT 5.1E.
 c. Topcoat: Interior alkyd (flat).
 d. Color: Gray.

D. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.12 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to seismic codes at Project.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to supported equipment.
6. Use 3000-psig, 28-day, compressive-strength concrete and reinforcement as specified in Section 03 30 00 "Cast-in-Place Concrete."
3.13 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Test, inspect, and purge natural gas according to NFPA 54 and the International Fuel Gas Code and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.14 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government’s maintenance personnel to adjust, operate, and maintain earthquake valves.

3.15 OUTDOOR PIPING SCHEDULE

A. Underground natural-gas piping shall be the following:
 1. Steel pipe with wrought-steel fittings and welded joints, or mechanical couplings. Coat pipe and fittings with protective coating for steel piping.

B. Aboveground natural-gas piping shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

3.16 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

A. Aboveground, branch piping 2-inches and smaller shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

3.17 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 and smaller at service meter shall be the following:
 1. One-Two-piece, full-port, bronze ball valves with bronze trim.

B. Valves for pipe sizes NPS 2-1/2 and larger at service meter shall be the following:
1. Two-piece, full-port, bronze ball valves with bronze trim.

C. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 and larger shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

E. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 23 11 23
SECTION 23 13 13 - FACILITY UNDERGROUND STORAGE TANKS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Composite, steel, USTs.

1.2 DEFINITIONS

A. FPM: Vinylidene fluoride-hexafluoropropylene copolymer rubber.

B. UST: Underground storage tank.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, and dimensions of individual components and profiles.
 2. Include, where applicable, rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For underground storage tanks.
 1. Include plans, elevations, sections, and ballast pads and anchors, and lifting or supporting points.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Shop Drawing Scale: 1/4 inch per foot.

1.4 INFORMATIONAL SUBMITTALS

A. Site Survey: Plans, drawn to scale, on which underground storage tanks are shown and coordinated with other services and utilities.

B. Field quality-control reports.

C. Sample Warranty: For special warranty.
1.5 QUALITY ASSURANCE

 A. Underground Storage Tanks: Comply with requirements of the EPA and of state and local authorities having jurisdiction, including recording storage tanks.

1.6 DELIVERY, STORAGE, AND HANDLING

 A. Lift and support storage tanks only at designated lifting or supporting points, as shown on Shop Drawings. Do not move or lift tanks unless empty.

1.7 WARRANTY

 A. Special Warranty: Manufacturer agrees to repair or replace components of storage tanks that fail in materials or workmanship within specified warranty period.

 1. Storage Tanks:

 a. Failures include, but are not limited to, the following:

 1) Structural failures including cracking, breakup, and collapse.
 2) Corrosion failure including external and internal corrosion of steel tanks.

 b. Warranty Period: 30 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 COMPOSITE, STEEL, UST

 A. Description: UL 58, double-wall, horizontal, composite tank; with coating complying with UL 1746 and STI F894.

 1. Containment Method: STI F894, Type I, with primary and secondary walls in contact.

 B. Construction: Fabricated with welded steel and factory coating according to UL 1746 and STI F894; suitable for operation at atmospheric pressure and for storing liquids with specific gravity up to 1.1; fabricated for the following loads:

 1. Depth of Bury: 36 inches from top of tank to finished surface.
 2. External Hydrostatic Pressure: To withstand general buckling with safety factor of 2:1 if hole is fully flooded.

 C. Capacities and Characteristics:

 1. Capacity: 5,000 gal.
2. Diameter: 8 feet.
3. Length: 24 feet.
4. Connection Sizes:
 a. Fill Line: 8 NPS.
 b. Vent Line: 2 NPS.
 c. Outlet: 2 NPS.
5. Manholes:
 a. Number Required: 2.
 b. Diameter: 22 inches.

2.2 UST ACCESSORIES

A. Tank Manholes: 22-inch-minimum diameter; bolted, flanged, and gasketed, with extension collar; for access to inside of tank.

B. Threaded pipe connection fittings on top of tank for fill, supply, return, vent, sounding, and gaging; in locations and of sizes indicated. Include cast-iron plugs for shipping.

C. Striker Plates: Inside tank, on bottom below fill, vent, sounding, gage, and other tube openings.

D. Lifting Lugs: For handling and installation.

E. Ladders: Carbon-steel ladder inside tank, anchored to top and bottom. Include reinforcement of tank at bottom of ladder.

F. Supply Tube: Extension of supply piping fitting into tank, terminating 6 inches above tank bottom and cut at a 45-degree angle.

G. Anchor Straps: Storage tank manufacturer's standard anchoring system, with straps, strap-insulating material, cables, and turnbuckles; of strength at least one and one-half times maximum uplift force of empty tank without backfill in place.

2.3 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

2.4 SOURCE QUALITY CONTROL

A. Pressure test and inspect storage tanks, after fabrication and before shipment, according to ASME and the following:
1. Composite, Steel USTs: UL 58.
 B. Affix standards organization's code stamp.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine roughing-in for underground storage tanks to verify actual locations.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EARTHWORK
 A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.
 B. Excavate to sufficient depth for a minimum of 36 inches of earth cover from top of tank to finished grade. Allow for cast-in-place, concrete-ballast base plus 6 inches of sand or pea gravel between ballast base and tank. Extend excavation at least 12 inches around perimeter of tank.
 C. Backfill excavation with clean sand or pea gravel in 12-inch lifts and tamp backfill lift to consolidate.
 D. Install filter mat between top of backfill material and earth fill.

3.3 UST INSTALLATION
 A. Set tie-down eyelets for hold-down straps in concrete-ballast base and tie to reinforcing steel.
 B. Place 6 inches of clean sand or pea gravel on top of concrete-ballast base.
 C. Set tank on fill materials and install hold-down straps.
 D. Connect piping.
 E. Install composite, steel USTs according to STI R913 and STI R891.

3.4 LABELING AND IDENTIFYING
 A. Nameplates, pipe identification, and signs are specified in Section 230553 "Identification for HVAC Piping and Equipment."
 B. Install detectable warning tape directly above UST, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.
1. Terminate tracer wire in an accessible area, and identify as "tracer wire" for future use with plastic-laminate sign.
2. Install over edges of each UST.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Tanks: Minimum hydrostatic or compressed-air test pressures for storage tanks that have not been factory tested and do not bear the ASME code stamp or a listing mark acceptable to authorities having jurisdiction:
 a. Double-Wall Tanks:
 1) Inner Tanks: Minimum 3 psig and maximum 5 psig.
 2) Interstitial Space: Minimum 3 psig and maximum 5 psig, or 5.3-in. Hg vacuum.
 b. Where vertical height of fill and vent pipes is such that the static head imposed on the bottom of the tank is greater than 10 psig, hydrostatically test the tank and fill and vent pipes to a pressure equal to the static head thus imposed.
 c. Maintain the test pressure for one hour.

B. USTs will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 23 13 13
SECTION 23 21 13 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 1. Chilled-water piping.
 2. Makeup-water piping.
 3. Condensate-drain piping.
 5. Safety-valve-inlet and -outlet piping.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of the following:

B. Delegated-Design Submittal:
 1. Design calculations and detailed fabrication and assembly of pipe anchors and alignment guides, hangers and supports for multiple pipes, expansion joints and loops, and attachments of the same to the building structure.
 2. Locations of pipe anchors and alignment guides and expansion joints and loops.
 3. Locations of and details for penetrations, including sleeves and sleeve seals for exterior walls, floors, basement, and foundation walls.
 4. Locations of and details for penetration and firestopping for fire- and smoke-rated wall and floor and ceiling assemblies.

1.3 INFORMATIONAL SUBMITTALS

A. Welding certificates.

B. Field quality-control reports.

C. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.4 QUALITY ASSURANCE

A. Installer Qualifications:
1. **Installers of Pressure-Sealed Joints:** Installers shall be certified by pressure-seal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings.

2. **Fiberglass Pipe and Fitting Installers:** Installers of RTRF and RTRP shall be certified by manufacturer of pipes and fittings as having been trained and qualified to join fiberglass piping with manufacturer-recommended adhesive.

B. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

C. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:

1. **Chilled-Water Piping:** 150 psig at 200 deg F.
2. **Makeup-Water Piping:** 80 psig at 150 deg F.
3. **Condensate-Drain Piping:** 150 deg F.
4. **Air-Vent Piping:** 200 deg F.
5. **Safety-Valve-Inlet and -Outlet Piping:** Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

A. **Drawn-Temper Copper Tubing:** ASTM B 88, Type L.

B. **Wrought-Copper Unions:** ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

A. **Steel Pipe:** ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

B. **Cast-Iron Threaded Fittings:** ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.

D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.

F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

2. End Connections: Butt welding.
3. Facings: Raised face.

H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.4 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.

E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.
2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.

2. Description:
 b. Pressure Rating: 125 psig minimum at 180 deg F.
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric Flanges:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 b. Central Plastics Company.
 c. Matco-Norca.
 d. Watts; a Watts Water Technologies company.
 e. Wilkins.

2. Description:
 b. Factory-fabricated, bolted, companion-flange assembly.
 c. Pressure Rating: 125 psig minimum at 180 deg F.
 d. End Connections: Solder-joint copper alloy and threaded ferrous; threaded solder-joint copper alloy and threaded ferrous.

D. Dielectric-Flange Insulating Kits:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Advance Products & Systems, Inc.
 b. Calpico, Inc.
c. Central Plastics Company.

2. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig.
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

2.6 BYPASS CHEMICAL FEEDER

A. Description: Welded steel construction; 125-psig working pressure; 5-gal. capacity; with fill funnel and inlet, outlet, and drain valves.
 1. Chemicals: Specially formulated, based on analysis of makeup water, to prevent accumulation of scale and corrosion in piping and connected equipment.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Chilled-water piping, aboveground, NPS 2 and smaller, shall be any of the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.
 2. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints.

B. Chilled-water piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

C. Makeup-water piping installed aboveground shall be the following:
 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and brazed joints.

D. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

E. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer’s written instructions.
 2. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.

F. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-
plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.

3.2 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

P. Install valves according to Section 23 05 23.12 "Ball Valves for HVAC Piping," and Section 23 05 23.14 "Check Valves for HVAC Piping."
Q. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

S. Install shutoff valve immediately upstream of each dielectric fitting.

T. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for identifying piping.

U. Install sleeves for piping penetrations of walls, ceilings, and floors.

V. Install sleeve seals for piping penetrations of concrete walls and slabs.

W. Install escutcheons for piping penetrations of walls, ceilings, and floors.

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.

D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

A. Comply with requirements in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Comply with requirements in Section 23 05 48 "Vibration and Seismic Controls for HVAC" for seismic restraints.

C. Install the following pipe attachments:

1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
4. Spring hangers to support vertical runs.
5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 7 feet.
2. NPS 1: Maximum span, 7 feet.
3. NPS 1-1/2: Maximum span, 9 feet.
4. NPS 2: Maximum span, 10 feet.
5. NPS 2-1/2: Maximum span, 11 feet.
6. NPS 3 and Larger: Maximum span, 12 feet.

E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.

F. Plastic Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.

G. Fiberglass Piping Hanger Spacing: Space hangers according to pipe manufacturer's written instructions for service conditions. Avoid point loading. Space and install hangers with the fewest practical rigid anchor points.

H. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.

E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

F. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.6 TERMINAL EQUIPMENT CONNECTIONS

A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.

B. Install control valves in accessible locations close to connected equipment.

C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required.

D. Install ports for pressure gages and thermometers at coil inlet and outlet connections. Comply with requirements in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.7 CHEMICAL TREATMENT

A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling, and to sustain the following water characteristics:

1. pH: 9.0 to 10.5.
2. "P" Alkalinity: 100 to 500 ppm.
3. Boron: 100 to 200 ppm.
4. Chemical Oxygen Demand: Maximum of 100 ppm. Revise this value if closed system contains glycol.
5. Corrosion Inhibitor:
 a. Sodium Nitrate: 1000 to 1500 ppm.
 b. Molybdate: 200 to 300 ppm.
 c. Chromate: 200 to 300 ppm.
 d. Sodium Nitrate Plus Molybdate: 100 to 200 ppm each.
 e. Chromate Plus Molybdate: 50 to 100 ppm each.
6. Soluble Copper: Maximum of 0.20 ppm.
7. Tolytriazole Copper and Yellow Metal Corrosion Inhibitor: Minimum of 10 ppm.
8. Total Suspended Solids: Maximum of 10 ppm.
11. Microbiological Limits:
 a. Total Aerobic Plate Count: Maximum of 1000 organisms/mL.
 b. Total Anaerobic Plate Count: Maximum of 100 organisms/mL.
 c. Nitrate Reducers: 100 organisms/mL.
 d. Sulfate Reducers: Maximum of zero organisms/mL.
 e. Iron Bacteria: Maximum of zero organisms/mL.

B. Install bypass chemical feeders in each hydronic system where indicated.
 1. Install in upright position with top of funnel not more than 48 inches above the floor.
 2. Install feeder in minimum NPS 3/4 bypass line, from main with full-size, full-port, ball valve in the main between bypass connections.
 3. Install NPS 3/4 pipe from chemical feeder drain to nearest equipment drain and include a full-size, full-port, ball valve.

C. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

D. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

3.8 FIELD QUALITY CONTROL

A. Prepare hydronic piping according to ASME B31.9 and as follows:
 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:
 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 3. Isolate expansion tanks and determine that hydronic system is full of water.
 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum
yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.

6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 23 21 13
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes special-duty valves and specialties for the following:

1. Chilled-water piping.
2. Makeup-water piping.
3. Condensate-drain piping.
5. Safety-valve-inlet and -outlet piping.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
2. Air-control devices.
3. Hydronic specialties.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.5 QUALITY ASSURANCE

A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:

1. Chilled-Water Piping: 150 psig at 200 deg F.
2. Makeup-Water Piping: 80 psig at 150 deg F.
3. Condensate-Drain Piping: 150 deg F.
4. Air-Vent Piping: 200 deg F.
5. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

A. Check and Ball: Comply with requirements specified in Section 230523.12 "Ball Valves for HVAC Piping," and Section 230523.14 "Check Valves for HVAC Piping."

B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 230923.11 "Control Valves."

C. Bronze, Calibrated-Orifice, Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett; a Xylem brand.
 c. Taco.

2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
4. Plug: Resin.
5. Seat: PTFE.
6. End Connections: Threaded or socket.
8. Handle Style: Lever, with memory stop to retain set position.
10. Maximum Operating Temperature: 250 deg F.

D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong Pumps, Inc.
 b. Bell & Gossett; a Xylem brand.
c. Taco.

2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
3. Ball: Brass or stainless steel.
5. Disc: Glass and carbon-filled PTFE.
6. Seat: PTFE.
7. End Connections: Flanged or grooved.
9. Handle Style: Lever, with memory stop to retain set position.
11. Maximum Operating Temperature: 250 deg F.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Watts; a Watts Water Technologies company.

2. Body: Bronze or brass.
3. Disc: Glass and carbon-filled PTFE.
5. Stem Seals: EPDM O-rings.
6. Diaphragm: EPT.
8. Inlet Strainer: Stainless steel, removable without system shutdown.
10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

F. Automatic Flow-Control Valves:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 b. Flowcon Americas LLC.
 c. Griswold Controls.
 d. Nexus Valve, Inc.
 e. NuTech Hydronic Specialty Products.

2. Body: Brass or ferrous metal.
3. Piston and Spring Assembly: Corrosion resistant, tamper proof, self-cleaning, and removable.
4. Combination Assemblies: Include bronze or brass-alloy ball valve.
5. Identification Tag: Marked with zone identification, valve number, and flow rate.
6. Size: Same as pipe in which installed.
7. Performance: Maintain constant flow, plus or minus 5 percent over system pressure fluctuations.
9. Maximum Operating Temperature: 200 deg F.

2.3 AIR-CONTROL DEVICES

A. Manual Air Vents:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Taco, Inc.

2. Body: Bronze.
3. Internal Parts: Nonferrous.
4. Operator: Screwdriver or thumbscrew.
5. Inlet Connection: NPS 1/2 .
7. CWP Rating: 150 psig .

B. Automatic Air Vents:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Taco, Inc.

2. Body: Bronze or cast iron.
3. Internal Parts: Nonferrous.
5. Inlet Connection: NPS 1/2 .
7. CWP Rating: 150 psig .

C. Bladder-Type Expansion Tanks:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Taco, Inc.

2. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

3. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

D. Tangential-Type Air Separators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AMTROL, Inc.
 b. Armstrong Pumps, Inc.
 c. Bell & Gossett; a Xylem brand.
 d. Taco, Inc.

2. Tank: Welded steel; ASME constructed and labeled for 125-psig minimum working pressure and 375 deg F maximum operating temperature.

3. Air Collector Tube: Perforated stainless steel, constructed to direct released air into expansion tank.

4. Tangential Inlet and Outlet Connections: Threaded for NPS 2 and smaller; flanged connections for NPS 2-1/2 and larger.

5. Blowdown Connection: Threaded.

2.4 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.

2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.

B. Basket Strainers:

1. Body: ASTM A 126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.

C. Stainless-Steel Bellow, Flexible Connectors:
 2. End Connections: Threaded or flanged to match equipment connected.
 4. CWP Rating: 150 psig.
 5. Maximum Operating Temperature: 250 deg F.

D. Expansion Fittings: Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS
 A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
 B. Install calibrated-orifice, balancing valves at each branch connection to return main.
 C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.
 D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
 E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.
 F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

3.2 HYDRONIC SPECIALTIES INSTALLATION
 A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
 B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.
C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.

D. Install tangential air separator in pump suction. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.

E. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure that tank is properly charged with air to suit system Project requirements.

END OF SECTION 23 21 16
SECTION 23 25 13 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes the following water treatment for closed-loop hydronic systems:
 2. Chemicals.

1.2 DEFINITIONS
A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
B. RO: Reverse osmosis.
C. TSS: Total suspended solids are solid materials, including organic and inorganic, that are suspended in the water. These solids may include silt, plankton, and industrial wastes.

1.3 ACTION SUBMITTALS
A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 1. Bypass feeders.
 2. Water meters.
 3. Inhibitor injection timers.
 4. pH controllers.
 5. TSS controllers.
 6. Chemical solution tanks.
 7. Injection pumps.
 8. Chemical test equipment.
 9. Chemical material safety data sheets.
B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to hydronic systems.
 1. Include plans, elevations, sections, and attachment details.
 2. Include diagrams for power, signal, and control wiring.
1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Water Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.

C. Field quality-control reports.

D. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sensors, injection pumps, and controllers to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

1.7 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:
 1. Initial water analysis and HVAC water-treatment recommendations.
 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 3. Periodic field service and consultation.
 5. Laboratory technical analysis.
6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.

C. Closed hydronic systems, including chilled water and glycol cooling, shall have the following water qualities:

1. pH: Maintain a value within 9.0 to 10.5.
2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
3. Boron: Maintain a value within 100 to 200 ppm.
4. Soluble Copper: Maintain a maximum value of 0.20 ppm.
5. TSS: Maintain a maximum value of 10 ppm.
6. Ammonia: Maintain a maximum value of 20 ppm.
7. Free Caustic Alkalinity: Maintain a maximum value of 20 ppm.
8. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
 b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
 c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
 d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
 e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.

2.2 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch fill opening in the top, and NPS 3/4 bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.

2.3 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in "Performance Requirements" Article.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

B. Install seismic restraints for equipment and floor-mounting accessories and anchor to building structure. Comply with requirements in Section 23 05 48 "Vibration and Seismic Controls for HVAC" for seismic restraints.

C. Install water testing equipment on wall near water chemical application equipment.

D. Install interconnecting control wiring for chemical treatment controls and sensors.

E. Mount sensors and injectors in piping circuits.

F. Bypass Feeders: Install in closed hydronic systems, including chilled water and glycol cooling, and equipped with the following:
 1. Install bypass feeder in a bypass circuit around circulating pumps unless otherwise indicated on Drawings.
 2. Install water meter in makeup-water supply.
 3. Install a full-port ball isolation valves on inlet, outlet, and drain below the feeder inlet.
 4. Install a swing check on the inlet after the isolation valve.

3.3 CONNECTIONS

A. Where installing piping adjacent to equipment, allow space for service and maintenance.

B. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Comply with requirements in Section 232116 "Hydronic Piping Specialties."

C. Install shutoff valves on HVAC water-treatment equipment inlet and outlet.
D. Comply with requirements in Section 22 11 19 "Domestic Water Piping Specialties" for backflow preventers required in makeup-water connections to potable-water systems.

E. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.

F. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections:

1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of hydronic systems' startup procedures.
4. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
8. Repair leaks and defects with new materials and retest piping until no leaks exist.

C. Equipment will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Comply with ASTM D 3370 and with the following standards:

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 23 25 13
SECTION 23 31 13 - METAL DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Single-wall round ducts and fittings.
 3. Double-wall round ducts and fittings.
 4. Sheet metal materials.
 5. Sealant and gaskets.
 6. Hangers and supports.
 7. Seismic-restraint devices.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and ASCE/SEI 7. SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."
 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48.
 2. Antiterrorism and force protection required force to weight ratio, 0.50.

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
 2. Sealants and gaskets.

B. LEED Submittals:
1. Product Data for Prerequisite IEQ 1: Documentation indicating that duct systems comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."
2. Product Data for Prerequisite EA 2: Documentation indicating that duct systems comply with ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."
3. Leakage Test Report for Prerequisite EA 2: Documentation of work performed for compliance with ASHRAE/IESNA 90.1, Section 6.4.4.2.2 - "Duct Leakage Tests."
4. Duct-Cleaning Test Report for Prerequisite IEQ 1: Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 - "Ventilation System Start-up."
5. Product Data for Credit IEQ 4.1: For adhesives and sealants, documentation including printed statement of VOC content.

C. Shop Drawings:

1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
2. Factory- and shop-fabricated ducts and fittings.
3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
4. Elevation of top of ducts.
5. Dimensions of main duct runs from building grid lines.
6. Fittings.
7. Reinforcement and spacing.
8. Seam and joint construction.
9. Penetrations through fire-rated and other partitions.
10. Equipment installation based on equipment being used on Project.
11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.

D. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.
5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
2. Suspended ceiling components.
3. Structural members to which duct will be attached.
4. Size and location of initial access modules for acoustical tile.
5. Penetrations of smoke barriers and fire-rated construction.
6. Items penetrating finished ceiling including the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.
 c. Speakers.
 d. Sprinklers.
 e. Access panels.
 f. Perimeter moldings.

B. Welding certificates.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).

C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL ROUND DUCTS AND FITTINGS

A. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.

B. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

2. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Inner Duct: Minimum 0.028-inch perforated galvanized sheet steel having 3/32-inch-diameter perforations, with overall open area of 23 percent.

D. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.

1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
 2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60.
2. **Minimum Thickness for Factory-Applied PVC Coating:** 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.

3. **Coating Materials:** Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.

D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.

E. Factory- or Shop-Applied Antimicrobial Coating:

1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.

2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.

4. **Surface-Burning Characteristics:** Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

5. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.

B. Two-Part Tape Sealing System:

1. **Tape:** Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.

2. **Tape Width:** 4 inches.

3. **Sealant:** Modified styrene acrylic.

4. **Water resistant.**

5. **Mold and mildew resistant.**

6. **Maximum Static-Pressure Class:** 10-inch wg, positive and negative.

7. **Service:** Indoor and outdoor.

8. **Service Temperature:** Minus 40 to plus 200 deg F.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
10. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

C. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

D. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

E. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

F. Round Duct Joint O-Ring Seals:

1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.

F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.7 SEISMIC-RESTRAINT DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. B-line, an Eaton business.
 2. Ductmate Industries, Inc.
 3. Hilti, Inc.
 5. Mason Industries, Inc.
 6. Unistrut; Part of Atkore International.

B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.

C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.

D. Restraint Cables: ASTM A 492, stainless-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.

E. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

F. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.
PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

B. Seal ducts to the following seal classes according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

1. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
2. Outdoor, Supply-Air Ducts: Seal Class A.
3. Outdoor, Exhaust Ducts: Seal Class C.
4. Outdoor, Return-Air Ducts: Seal Class C.
5. Unconditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class B.
6. Unconditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class A.
7. Unconditioned Space, Exhaust Ducts: Seal Class C.
8. Unconditioned Space, Return-Air Ducts: Seal Class B.
9. Conditioned Space, Supply-Air Ducts in Pressure Classes 2-Inch wg and Lower: Seal Class C.
10. Conditioned Space, Supply-Air Ducts in Pressure Classes Higher Than 2-Inch wg: Seal Class B.
11. Conditioned Space, Exhaust Ducts: Seal Class B.
12. Conditioned Space, Return-Air Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems."

1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
2. Brace a change of direction longer than 12 feet.

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on ducts that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. Drilling for and Setting Anchors:

1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Contracting Officer if reinforcing steel or other embedded items are
encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Set anchors to manufacturer’s recommended torque, using a torque wrench.

5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 23 33 00 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

3. Test for leaks before applying external insulation.

4. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

5. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.
2. Test sections of metal duct system, chosen randomly by Government, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."

 a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.

D. Duct system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.9 DUCT CLEANING

A. Clean duct system(s) before testing, adjusting, and balancing.

B. Use service openings for entry and inspection.

1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 23 33 00 "Air Duct Accessories" for access panels and doors.

2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.

3. Remove and reinstall ceiling to gain access during the cleaning process.

C. Particulate Collection and Odor Control:

1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.

D. Clean the following components by removing surface contaminants and deposits:

1. Air outlets and inlets (registers, grilles, and diffusers).

2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.

3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.

5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.

7. Dedicated exhaust and ventilation components and makeup air systems.

E. Mechanical Cleaning Methodology:
1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.

2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.

3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.

4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.

5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.

6. Provide drainage and cleanup for wash-down procedures.

7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC."

3.11 DUCT SCHEDULE

A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.

1. Underground Ducts:
 a. High-density polyethylene material listed for protection against corrosion, mold and mildew, radon, dust, water and air leaks.
 b. Self-insulated for R-10 equivalent performance.
 c. No PVC coating or potential for corrosion
 d. Pressure Class: Positive or negative 3-inch wg.
 e. Minimum SMACNA Seal Class: B.

B. Supply Ducts:

1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg.
 b. Minimum SMACNA Seal Class: A.
 c. SMACNA Leakage Class for Rectangular: 6.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

C. Return Ducts:

1. Ducts Connected to Air-Handling Units:
a. Pressure Class: Positive or negative 3-inch wg.
b. Minimum SMACNA Seal Class: B.
c. SMACNA Leakage Class for Rectangular: 12.
d. SMACNA Leakage Class for Round and Flat Oval: 6.

D. Exhaust Ducts:

1. Ducts Connected to Systems Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B if negative pressure, and A if positive pressure.
 c. SMACNA Leakage Class for Rectangular: 12.
 d. SMACNA Leakage Class for Round and Flat Oval: 6.

E. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

1. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 3-inch wg.
 b. Minimum SMACNA Seal Class: B.
 c. SMACNA Leakage Class for Rectangular: 6.

F. Intermediate Reinforcement:

G. Double-Wall Duct Interstitial Insulation:

1. Supply Air Ducts: 2 inches thick.
2. Return Air Ducts: 2 inches thick.
3. Exhaust Air Ducts: 2 inches thick.

H. Elbow Configuration:

1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Velocity 1000 fpm or Lower:
 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 2) Mitered Type RE 4 without vanes.
 b. Velocity 1000 to 1500 fpm:
 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

c. Velocity 1500 fpm or Higher:
 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."

 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 4) Radius-to-Diameter Ratio: 1.5.

 b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.

I. Branch Configuration:

 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: Spin in.

 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 a. Velocity 1000 fpm or Lower: 90-degree tap.
 b. Velocity 1000 to 1500 fpm: Conical tap.
 c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13
SECTION 23 33 00 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Backdraft and pressure relief dampers.
3. Control dampers.
4. Fire dampers.
5. Flange connectors.
6. Turning vanes.
7. Remote damper operators.
8. Duct-mounted access doors.
10. Duct accessory hardware.
11. Air duct hose reels.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

B. Sustainable Design Submittals:

1. Product data showing compliance with ASHRAE 62.1.

C. Shop Drawings: For duct accessories. Include plans, elevations, sections, details and attachments to other work.

1. Detail duct accessories fabrication and installation in ducts and other construction. Include dimensions, weights, loads, and required clearances; and method of field assembly into duct systems and other construction. Include the following:

 a. Special fittings.
 c. Control-damper installations.
 d. Fire-damper, smoke-damper, combination fire- and smoke-damper, ceiling, and corridor damper installations, including sleeves; and duct-mounted access doors and remote damper operators.
 e. Duct security bars.
 f. Wiring Diagrams: For power, signal, and control wiring.
1.3 INFORMATIONAL SUBMITTALS
 A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted access panels and access doors required for access to duct accessories are shown and coordinated with each other, using input from Installers of the items involved.
 B. Source quality-control reports.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fusible Links: Furnish quantity equal to 10 percent of amount installed.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION
 B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS
 A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60,
 2. Exposed-Surface Finish: Mill phosphatized.
 B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish.
 C. Aluminum Sheets: Comply with ASTM B 209. Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Nailor Industries Inc.
 3. Ruskin Company.

B. Description: Gravity balanced.

C. Maximum Air Velocity: 1000 fpm.

D. Maximum System Pressure: 1-inch wg.

E. Frame: Hat-shaped, 0.05-inch-thick, galvanized sheet steel, with welded corners or mechanically attached and mounting flange.

F. Blades: Multiple single-piece blades, off-center pivoted, maximum 6-inch width, 0.025-inch-thick, roll-formed aluminum with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Neoprene, mechanically locked.

I. Blade Axles:
 1. Material: Nonferrous metal.
 2. Diameter: 0.20 inch.

J. Tie Bars and Brackets: Aluminum.

K. Return Spring: Adjustable tension.

L. Bearings: synthetic pivot bushings.

M. Accessories:
 1. Adjustment device to permit setting for varying differential static pressure.
 2. Counterweights and spring-assist kits for vertical airflow installations.
 3. Electric actuators.
4. Chain pulls.
5. Screen Mounting: Front mounted in sleeve.
 a. Sleeve Thickness: 20 gage minimum.
 b. Sleeve Length: 6 inches minimum.
6. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS
A. Low-Leakage, Steel, Manual Volume Dampers:
 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. McGill AirFlow LLC.
 b. Nailor Industries Inc.
 c. Ruskin Company.
 2. Comply with AMCA 500-D testing for damper rating.
 3. Low-leakage rating and bearing AMCA’s Certified Ratings Seal for both air performance and air leakage.
 4. Suitable for horizontal or vertical applications.
 5. Frames:
 a. Hat shaped.
 b. 0.094-inch-thick, galvanized sheet steel.
 c. Mitered and welded corners.
 d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 6. Blades:
 a. Multiple or single blade.
 b. Parallel- or opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized, roll-formed steel, 0.064 inch thick.
 8. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
11. Tie Bars and Brackets: Galvanized steel.
12. Accessories:
a. Include locking device to hold single-blade dampers in a fixed position without vibration.

B. Jackshaft:
 1. Size: 0.5-inch diameter.
 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. McGill AirFlow LLC.
 3. Nailor Industries Inc.
 4. Ruskin Company.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. 0.094-inch-thick, galvanized sheet steel.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 6 inches.
 2. Parallel-blade design.
 4. 0.064 inch thick single skin.

E. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 1. Operating Temperature Range: From minus 40 to plus 200 deg F.
F. Bearings:
 1. Molded synthetic.
 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. Nailor Industries Inc.
 3. Ruskin Company.
 B. Type: Static; rated and labeled according to UL 555 by an NRTL.
 C. Fire Rating: 3 hours.
 D. Frame: Curtain type with blades outside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
 E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 1. Minimum Thickness: 0.05 thick, as indicated, and of length to suit application.
 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
 F. Mounting Orientation: Vertical or horizontal as indicated.
 G. Blades: Roll-formed, interlocking, 0.024-inch-thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
 H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

2.7 FLANGE CONNECTORS
 A. Description: Roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
 B. Material: Galvanized steel.
 C. Gage and Shape: Match connecting ductwork.
2.8 TURNING VANES

A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

B. Manufactured Turning Vanes for Nonmetal Ducts: Fabricate curved blades of resin-bonded fiberglass with acrylic polymer coating; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.

C. General Requirements: Comply with SMACNA’s "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."

D. Vane Construction: Double wall.

E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.9 REMOTE DAMPER OPERATORS

A. Description: Cable system designed for remote manual damper adjustment.

B. Tubing: Brass.

C. Cable: Stainless steel.

D. Wall-Box Mounting: Recessed.

E. Wall-Box Cover-Plate Material: Stainless steel.

2.10 DUCT-MOUNTED ACCESS DOORS

 1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Vision panel.
 d. Hinges and Latches: 1-by-1-inch butt or piano hinge and cam latches.
 e. Fabricate doors airtight and suitable for duct pressure class.
 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches: Three hinges and two compression
 latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches: Four hinges and two compression
 latches with outside and inside handles.

2.11 DUCT ACCESS PANEL ASSEMBLIES

A. Labeled according to UL 1978 by an NRTL.

B. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.

C. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

D. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for
 minimum 2000 deg F.

E. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.12 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:

 1. Ductmate Industries, Inc.
 2. Duro Dyne Inc.
 3. Ward Industries; a brand of Hart & Cooley, Inc.

B. Materials: Flame-retardant or noncombustible fabrics.

C. Coatings and Adhesives: Comply with UL 181, Class 1.

D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to
 two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick
 aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd.
 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F.

F. High-Corrosive-Environment System, Flexible Connectors: Glass fabric with chemical-resistant
 coating.
1. Minimum Weight: 14 oz./sq. yd.
2. Tensile Strength: 450 lbf/inch in the warp and 340 lbf/inch in the filling.
3. Service Temperature: Minus 67 to plus 500 deg F.

G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.

1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.13 AIR DUCT HOSE REELS

A. Description: Factory-fabricated, supply/exhaust system composed of overhead mounted exhaust fan with wall-mounted controls, retractable duct, and necessary accessories. When in operation, hose shall be extended to connect to the aircraft connection point at its intended location. Basis of Design – Monoxivent ALU Hose Reel or approved equal.

B. Configuration:

1. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
2. Hose Length: 60 feet (field verify exact length based on unit installation location).
3. Hose Diameter: 10 inches.
4. Controller: Wall-mounted, with fan or makeup air unit on/off and hose retraction operation up/down.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.
PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 - "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.

1. Install steel volume dampers in steel ducts.
2. Install aluminum volume dampers in aluminum ducts.

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers according to UL listing.

H. Install duct security bars. Construct duct security bars from 0.164-inch steel sleeve, continuously welded at all joints and 1/2-inch-diameter steel bars, 6 inches o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch hinged access panel with cam lock in duct in each side of sleeve.

I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

1. On both sides of duct coils.
2. Upstream from duct filters.
3. At outdoor-air intakes and mixed-air plenums.
4. At drain pans and seals.
5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure
relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.

7. Control devices requiring inspection.
8. Elsewhere as indicated.

J. Install access doors with swing against duct static pressure.

K. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches.
 2. Two-Hand Access: 12 by 6 inches.

L. Label access doors according to Section 23 05 53 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

M. Install flexible connectors to connect ducts to equipment.

N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.

O. Connect flexible ducts to metal ducts with adhesive plus sheet metal screws.

P. Install duct test holes where required for testing and balancing purposes.

Q. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Operate fire dampers to verify full range of movement and verify that proper heat-response device is installed.
 4. Inspect turning vanes for proper and secure installation.
 5. Operate remote damper operators to verify full range of movement of operator and damper.

END OF SECTION 23 33 00
SECTION 23 33 46 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Non-insulated flexible ducts.
2. Insulated flexible ducts.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Sustainable Design Submittals:

1. Product data showing compliance with ASHRAE 62.1.
2. Product Data: For insulation, indicating that R-values comply with tables in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air Conditioning."

C. Shop Drawings: For flexible ducts.

1. Include plans showing locations and mounting and attachment details.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."

2.2 INSULATED FLEXIBLE DUCTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Flexmaster U.S.A., Inc.
2. McGill AirFlow LLC.
3. Ward Industries; a brand of Hart & Cooley, Inc.

B. Insulated, Flexible Duct: UL 181, Class 1, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film.

 1. Pressure Rating: 10-inch wg positive and 1-inch wg negative.
 3. Temperature Range: Minus 10 to plus 160 deg F.
 4. Insulation R-Value: Comply with ASHRAE/IES 90.1.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.

C. Connect diffusers to ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place.

D. Install duct test holes where required for testing and balancing purposes.

E. Installation:

 1. Install ducts fully extended.
 2. Do not bend ducts across sharp corners.
 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
 5. Install flexible ducts in a direct line, without sags, twists, or turns.

F. Supporting Flexible Ducts:
1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION 23 33 46
SECTION 23 34 23 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. In-line centrifugal fans.
2. Propeller fans.
3. Centrifugal roof ventilators.

1.2 PERFORMANCE REQUIREMENTS

A. Operating Limits: Classify according to AMCA 99.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:

1. Certified fan performance curves with system operating conditions indicated.
2. Certified fan sound-power ratings.
3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
4. Material thickness and finishes, including color charts.
5. Dampers, including housings, linkages, and operators.
6. Fan speed controllers.

B. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set for each belt-driven unit.

1.7 QUALITY ASSURANCE
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
 C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.8 COORDINATION
 A. Coordinate size and location of structural-steel support members.
 B. Coordinate sizes and locations of concrete bases with actual equipment provided.
 C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 IN-LINE CENTRIFUGAL FANS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Carnes Company.
 2. Greenheck Fan Corporation.
 3. Loren Cook Company.
 4. PennBarry.
HVAC POWER VENTILATORS

2.2 CENTRIFUGAL ROOF VENTILATORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Carnes Company.
2. Greenheck Fan Corporation.
3. Hartzell Fan Incorporated.
4. Loren Cook Company.
5. PennBarry.

B. Housing: Removable, galvanized steel, mushroom-domed top; square, one-piece, aluminum base with venturi inlet cone.
1. **Upblast Units:** Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
2. **Hinged Subbase:** Galvanized-steel hinged arrangement permitting service and maintenance.

C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Belt Drives:
1. Resiliently mounted to housing.
2. **Fan Shaft:** Turned, ground, and polished steel; keyed to wheel hub.
3. **Shaft Bearings:** Permanently lubricated, permanently sealed, self-aligning ball bearings.
4. **Pulleys:** Cast-iron, adjustable-pitch motor pulley.
5. Fan and motor isolated from exhaust airstream.

E. Accessories:
1. **Variable-Speed Controller:** Solid-state control to reduce speed from 100 to less than 50 percent.
2. **Disconnect Switch:** Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
3. **Bird Screens:** Removable, 1/2-inch mesh, aluminum or brass wire.
4. Dampers: Counterbalanced, parallel-blade, backdraft dampers mounted in curb base; factory set to close when fan stops.
5. Motorized Dampers: Parallel-blade dampers mounted in curb base with electric actuator; wired to close when fan stops.

F. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
1. Configuration: Self-flashing without a cant strip, with mounting flange.
2. Overall Height: 16 inches.
3. Sound Curb: Curb with sound-absorbing insulation.
5. Metal Liner: Galvanized steel.
6. Mounting Pedestal: Galvanized steel with removable access panel.
7. Vented Curb: Unlined with louvered vents in vertical sides.

2.3 PROPELLER FANS
A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Carnes Company.
2. Greenheck Fan Corporation.
3. Loren Cook Company.
4. PennBarry.

B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.

C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.

D. Fan Wheel: Replaceable, aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.

E. Fan Drive: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.

F. Accessories:
1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
3. Wall Sleeve: Galvanized steel to match fan and accessory size.
4. Weathershield Hood: Galvanized steel to match fan and accessory size.
5. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
2.4 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Enclosure Type: Totally enclosed, fan cooled.

2.5 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install power ventilators level and plumb.

B. Equipment Mounting:

1. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

C. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Section 07 72 00 "Roof Accessories" for installation of roof curbs.

D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.

E. Support suspended units from structure using threaded steel rods and spring hangers with vertical-limit stops having a static deflection of 1 inch. Vibration-control devices are specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

F. Install units with clearances for service and maintenance.

G. Label units according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."
3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 23 33 00 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

 1. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 10. Shut unit down and reconnect automatic temperature-control operators.
 11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.
3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 23 34 23
SECTION 23 36 00 - AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Shutoff, single-duct air terminal units.
2. Diffuser-type air terminal units.
3. Casing liner.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of air terminal unit.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:

1. Product Data: For adhesives, indicating VOC content.

C. Delegated-Design Submittal:

1. Materials, fabrication, assembly, and spacing of hangers and supports.
2. Include design calculations for selecting hangers and supports and seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.
2. Size and location of initial access modules for acoustic tile.
3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.
1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.
 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 a. Instructions for resetting minimum and maximum air volumes.
 b. Instructions for adjusting software set points.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan-Powered-Unit Filters: Furnish one spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."
 C. ASHRAE Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 - Heating, Ventilating, and Air Conditioning."

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Anemostat Products; a Mestek company.
 2. Carnes Company.
 3. ENVIRO-TEC; by Johnson Controls, Inc.
 4. METALAIRE, Inc.
 5. Nailor Industries Inc.
 7. Titus.
 8. Trane.
B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

C. Casing: 0.034-inch-thick galvanized steel, single wall.
 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 3. Air Outlet: S-slip and drive connections, size matching inlet size.
 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Regulator Assembly: System-air-powered bellows section incorporating polypropylene bellows for volume regulation and thermostatic control. Bellows shall operate at temperatures from zero to 140 deg F, shall be impervious to moisture and fungus, shall be suitable for 10-inch wg static pressure, and shall be factory tested for leaks.

E. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 1. Maximum Damper Leakage: AHRI 880 rated, 3 percent of nominal airflow at 3-inch wg inlet static pressure.

 1. SCR controlled.
 2. Access door interlocked disconnect switch.
 3. Downstream air temperature sensor with local connection to override discharge-air temperature to not exceed a maximum temperature set point (adjustable).
 5. Airflow switch for proof of airflow.
 6. Fuses in terminal box for overcurrent protection (for coils more than 48 A).
 7. Mercury contactors.
 8. Pneumatic-electric switches and relays.
 9. Magnetic contactor for each step of control (for three-phase coils).

G. Controls:
 1. Suitable for operation with duct pressures between 0.25- and 3.0-inch wg inlet static pressure.
 2. System-powered, wall-mounted thermostat.
2.3 DIFFUSER-TYPE AIR TERMINAL UNITS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Acutherm.
2. Carnes Company.
3. Warren Technology.

B. Configuration: Volume-damper, diffuser, controller assembly and wall-mounted thermostat.

C. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.

D. Diffuser: Galvanized steel with white baked-enamel finish.

E. Control Sequence: Diffusion dampers open and close to regulate airflow into the room in response to room temperature. The dampers are mechanically actuated by internal, factory-set thermal element thermostats with limited field adjustment.

2.4 CASING LINER

A. Casing Liner: Fibrous-glass duct liner, complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Minimum Thickness: 1/2 inch.
 a. Maximum Thermal Conductivity:
 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.

2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.

3. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 a. Adhesive shall have a VOC content of 80 g/L or less.

2.5 SOURCE QUALITY CONTROL

A. Factory Tests: Test assembled air terminal units according to AHRI 880.

1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, coil type, and AHRI certification seal.
3.1 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.2 SEISMIC-RESTRAINT-DEVICE INSTALLATION

A. Install hangers and braces designed to support the air terminal units and to restrain against seismic forces required by applicable building codes. Comply with SMACNA’s "Seismic Restraint Manual: Guidelines for Mechanical Systems." Comply with requirements for seismic-restraint devices in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install cable restraints on air terminal units that are suspended with vibration isolators.

E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.

F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.

G. Drilling for and Setting Anchors:

1. Identify position of reinforcing steel and other embedded items before drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling.
Notify Contracting Officer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.

2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.

3. Wedge Anchors: Protect threads from damage during anchor installation. Install heavy-duty sleeve anchors with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Set anchors to manufacturer's recommended torque, using a torque wrench.

5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.3 TERMINAL UNIT INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.4 CONNECTIONS

A. Where installing piping adjacent to air terminal unit, allow space for service and maintenance.

B. Comply with requirements in Section 23 31 13 "Metal Ducts" for connecting ducts to air terminal units.

C. Make connections to air terminal units with flexible connectors complying with requirements in Section 23 33 00 "Air Duct Accessories."

3.5 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflow. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.

2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Air terminal unit will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.7 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.

3. Verify that controls and control enclosure are accessible.

4. Verify that control connections are complete.

5. Verify that nameplate and identification tag are visible.

6. Verify that controls respond to inputs as specified.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 23 36 00
SECTION 23 37 13.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and
 performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser Schedule: Indicate drawing, model number, size, and accessories furnished.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items
 are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers,
 access panels, and special moldings.
 5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 RECTANGULAR AND SQUARE CEILING DIFFUSERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering
 products that may be incorporated into the Work include, but are not limited to the following:
 1. Anemostat Products; a Mestek company.
 2. Carnes Company.
 3. METALAIRE, Inc.
 4. Nailor Industries Inc.
5. Price Industries.
6. Titus.
7. Tuttle & Bailey.

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Aluminum.

D. Finish: Baked enamel, white.

E. Dampers: Radial opposed blade.

F. Accessories:
 1. Equalizing grid.
 2. Plaster ring.
 4. Wire guard.
 5. Sectorizing baffles.
 6. Operating rod extension.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers level and plumb.

B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Contracting Officer for a determination of final location.
C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13.13
SECTION 23 37 13.23 - AIR REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fixed face registers and grilles.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.

2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Ceiling suspension assembly members.

2. Method of attaching hangers to building structure.

3. Size and location of initial access modules for acoustical tile.

4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

5. Duct access panels.

B. Source quality-control reports.

PART 2 - PRODUCTS

2.1 REGISTERS

A. Fixed Face Register:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

a. Anemostat Products; a Mestek company.
b. Carnes Company.
c. Nailor Industries Inc.
d. Price Industries.
e. Titus.
f. Tuttle & Bailey.

3. Finish: Baked enamel, white.
6. Damper Type: Adjustable opposed blade.

2.2 GRILLES

A. Fixed Face Grille:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Anemostat Products; a Mestek company.
b. Carnes Company.
c. Nailor Industries Inc.
d. Price Industries.
e. Titus.
f. Tuttle & Bailey.

3. Finish: Baked enamel, white.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Install registers and grilles level and plumb.

B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Contracting Officer for a determination of final location.

C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13.23
SECTION 23 73 13 - MODULAR INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Variable-air-volume, single-zone air-handling units.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design vibration isolation and seismic-restraint details, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Casing panels shall be self-supporting and capable of withstanding 133 percent of internal static pressures indicated, without panel joints exceeding a deflection of L/200 where "L" is the unsupported span length within completed casings.

C. Seismic Performance: Air-handling units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.3 ACTION SUBMITTALS

A. Product Data: For each air-handling unit indicated.

1. Unit dimensions and weight.
2. Cabinet material, metal thickness, finishes, insulation, and accessories.
3. Fans:
 a. Certified fan-performance curves with system operating conditions indicated.
 b. Certified fan-sound power ratings.
 c. Fan construction and accessories.
 d. Motor ratings, electrical characteristics, and motor accessories.
4. Certified coil-performance ratings with system operating conditions indicated.
5. Dampers, including housings, linkages, and operators.
6. Filters with performance characteristics.

B. LEED Submittals:
1. Product Data for Prerequisite IEQ 1: Documentation indicating that units comply with ASHRAE 62.1, Section 5 - "Systems and Equipment."

C. Delegated-Design Submittal: For vibration isolation and seismic restraints indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
2. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Mechanical-room layout and relationships between components and adjacent structural and mechanical elements.
2. Support location, type, and weight.
3. Field measurements.

B. Seismic Qualification Certificates: For air-handling units, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-handling units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set for each air-handling unit.
2. Gaskets: One set for each access door.
3. Fan Belts: One set for each air-handling unit fan.
1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of air-handling units and components.

C. ARI Certification: Air-handling units and their components shall be factory tested according to ARI 430, "Central-Station Air-Handling Units," and shall be listed and labeled by ARI.

D. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

E. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

F. Comply with NFPA 70.

1.8 COORDINATION

A. Coordinate sizes and locations of structural-steel support members, if any, with actual equipment provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carrier Corporation; a unit of United Technologies Corp.
2. Daikin Applied.
3. YORK; a Johnson Controls company.

2.2 UNIT CASINGS

A. General Fabrication Requirements for Casings:

1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Casing Joints: Sheet metal screws or pop rivets.
3. Sealing: Seal all joints with water-resistant sealant.
4. Factory Finish for Galvanized-Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Casing Insulation and Adhesive:

1. Materials: ASTM C 1071, Type II.

2. Location and Application: Encased between outside and inside casing.

C. Inspection and Access Panels and Access Doors:

1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.

2. Inspection and Access Panels:
 a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Size: At least 18 inches wide by full height of unit casing up to a maximum height of 60 inches.

4. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panel.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.

D. Condensate Drain Pans:

1. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches deep.
2. Formed sections.
3. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
4. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on both ends of pan.
5. Seismic Fabrication Requirements: Fabricate mounting base and attachment to air-handling unit sections, accessories, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when air-handling unit frame is anchored to building structure.

2.3 FAN, DRIVE, AND MOTOR SECTION

A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
 1. Shafts: Designed for continuous operation at maximum-rated fan speed and motor horsepower, and with field-adjustable alignment.
 a. Turned, ground, and polished hot-rolled steel with keyway. Ship with a protective coating of lubricating oil.
 b. Designed to operate at no more than 70 percent of first critical speed at top of fan's speed range.

B. Centrifugal Fan Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 1. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 2. Horizontal-Flanged, Split Housing: Bolted construction.
 3. Housing for Supply Fan: Attach housing to fan-section casing with metal-edged flexible duct connector.
 4. Flexible Connector: Factory fabricated with a fabric strip 3-1/2 inches wide attached to 2 strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized-steel sheet or 0.032-inch-thick aluminum sheets; select metal compatible with casing.
 1) Fabric Minimum Weight: 26 oz./sq. yd..
 2) Fabric Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 3) Fabric Service Temperature: Minus 40 to plus 200 deg F.

C. Plenum Fan Housings: Steel frame and panel; fabricated without fan scroll and volute housing.
D. Airfoil, Centrifugal Fan Wheels: Smooth-rounded inlet flange, backplate, and hollow die-formed airfoil-shaped blades continuously welded at tip flange and backplate; cast-iron or cast-steel hub riveted to backplate and fastened to shaft with set screws.

E. Fan Shaft Bearings:
 1. Prelubricated and Sealed, Ball Bearings: Self-aligning, pillow-block type with a rated life of 50,000 hours according to ABMA 9.
 2. Grease-Lubricated, Tapered-Roller Bearings: Self-aligning, pillow-block type with double-locking collars and 2-piece, cast-iron housing and a rated life of 50,000 hours according to ABMA 11.

F. Belt Drives: Factory mounted, with adjustable alignment and belt tensioning, and with 1.5 service factor based on fan motor.
 1. Pulleys: Cast iron or cast steel with split, tapered bushing; dynamically balanced at factory.
 2. Motor Pulleys: Adjustable pitch for use with 5-hp motors and smaller; fixed pitch for use with motors larger than 5 hp. Select pulley size so pitch adjustment is at the middle of adjustment range at fan design conditions.
 3. Belts: Oil resistant, nonsparking, and nonstatic; in matched sets for multiple-belt drives.

G. Internal Vibration Isolation and Seismic Control: Fans shall be factory mounted with manufacturer's standard restrained vibration isolation mounting devices having a minimum static deflection of 1 inch.
 1. Seismic Fabrication Requirements: Fabricate fan section, internal mounting frame and attachment to fans, fan housings, motors, casings, accessories, and other fan section components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when fan-mounting frame and air-handling-unit mounting frame are anchored to building structure.

H. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 1. Enclosure Type: Totally enclosed, fan cooled.
 2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

I. Variable Frequency Controllers:
 1. Description: NEMA ICS 2, IGBT, PWM, VFC; listed and labeled as a complete unit and arranged to provide variable speed of an NEMA MG 1, Design B, 3-phase induction motor by adjusting output voltage and frequency.
2. Output Rating: 3-phase; 6 to 60 Hz, with voltage proportional to frequency throughout voltage range.

3. Unit Operating Requirements:
 a. Input ac voltage tolerance of 208 V, plus or minus 5 percent.
 b. Input frequency tolerance of 06/11 Hz, plus or minus 6 percent.
 c. Minimum Efficiency: 96 percent at 60 Hz, full load.
 d. Minimum Displacement Primary-Side Power Factor: 96 percent.
 e. Overload Capability: 1.1 times the base load current for 60 seconds; 2.0 times the base load current for 3 seconds.
 f. Starting Torque: 100 percent of rated torque or as indicated.
 g. Speed Regulation: Plus or minus 1 percent.

4. Isolated control interface to allow controller to follow control signal over an 11:1 speed range.

5. Internal Adjustability Capabilities:
 a. Minimum Speed: 5 to 25 percent of maximum rpm.
 b. Maximum Speed: 80 to 100 percent of maximum rpm.
 c. Acceleration: 2 to a minimum of 22 seconds.
 d. Deceleration: 2 to a minimum of 22 seconds.
 e. Current Limit: 50 to a minimum of 110 percent of maximum rating.

6. Self-Protection and Reliability Features:
 a. Input transient protection by means of surge protection device (SPD).
 b. Undervoltage and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
 c. Adjustable motor overload relays capable of NEMA ICS 2, Class 10 performance.
 d. Notch filter to prevent operation of the controller-motor-load combination at a natural frequency of the combination.
 e. Instantaneous line-to-line and line-to-ground overcurrent trips.
 f. Loss-of-phase protection.
 g. Reverse-phase protection.
 h. Short-circuit protection.
 i. Motor overtemperature fault.

7. Automatic Reset/Restart: Attempts three restarts after controller fault or on return of power after an interruption and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load.

8. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped.

9. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

11. Door-mounted LED status lights shall indicate the following conditions:
 a. Power on.
 b. Run.
 c. Overvoltage.
 d. Line fault.
 e. Overcurrent.
 f. External fault.

13. Meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate the following controller parameters:
 a. Output frequency (Hertz).
 b. Motor speed (rpm).
 c. Motor status (running, stop, fault).
 d. Motor current (amperes).
 e. Motor torque (percent).
 f. Fault or alarming status (code).
 g. Proportional-integral-derivative (PID) feedback signal (percent).
 h. DC-link voltage (volts direct current).
 i. Set-point frequency (Hertz).
 j. Motor output voltage (volts).

14. Control Signal Interface:
 a. Electric Input Signal Interface: A minimum of 2 analog inputs (0 to 10 V or 0/4-20 mA) and 6 programmable digital inputs.
 b. Remote signal inputs capable of accepting any of the following speed-setting input signals from the control system:
 1) 0 to 10-V dc.
 2) 0-20 or 4-20 mA.
 3) Potentiometer using up/down digital inputs.
 4) Fixed frequencies using digital inputs.
 5) RS485.
 6) Keypad display for local hand operation.
 c. Output signal interface with a minimum of 1 analog output signal (0/4-20 mA), which can be programmed to any of the following:
 1) Output frequency (Hertz).
 2) Output current (load).
 3) DC-link voltage (volts direct current).
 4) Motor torque (percent).
 5) Motor speed (rpm).
 6) Set-point frequency (Hertz).
d. Remote indication interface with a minimum of 2 dry circuit relay outputs (120-V ac, 1 A) for remote indication of the following:

1) Motor running.
2) Set-point speed reached.
3) Fault and warning indication (overtemperature or overcurrent).
4) High- or low-speed limits reached.

15. Communications: RS485 interface allows VFC to be used with an external system within a multidrop LAN configuration. Interface shall allow all parameter settings of VFC to be programmed via BMS control. Provide capability for VFC to retain these settings within the nonvolatile memory.

16. Integral Disconnecting Means: NEMA KS 1, nonfusible switch with lockable handle.

17. Accessories:

a. Devices shall be factory installed in controller enclosure unless otherwise indicated.

c. Standard Displays:

1) Output frequency (Hertz).
2) Set-point frequency (Hertz).
3) Motor current (amperes).
4) DC-link voltage (volts direct current).
5) Motor torque (percent).
6) Motor speed (rpm).
7) Motor output voltage (volts).

2.4 COIL SECTION

A. General Requirements for Coil Section:

1. Comply with ARI 410.
2. Fabricate coil section to allow removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
3. For multizone units, provide air deflectors and air baffles to balance airflow across coils.
4. Coils shall not act as structural component of unit.
5. Seismic Fabrication Requirements: Fabricate coil section, internal mounting frame and attachment to coils, and other coil section components with reinforcement strong enough to withstand seismic forces defined in Section 23 0548 "Vibration and Seismic Controls for HVAC" when coil-mounting frame and air-handling-unit mounting frame are anchored to building structure.

2.5 AIR FILTRATION SECTION

A. General Requirements for Air Filtration Section:
1. Comply with NFPA 90A.
2. Provide minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
3. Provide filter holding frames arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.

B. Disposable Panel Filters:
 1. Factory-fabricated, viscous-coated, flat-panel type.
 2. Thickness: 2 inches.
 3. Arrestance (ASHRAE 52.1): 80.
 5. Media: Interlaced glass fibers sprayed with nonflammable adhesive and antimicrobial agent.
 6. Frame: Galvanized steel, with metal grid on outlet side, steel rod grid on inlet side, hinged, and with pull and retaining handles.

C. Extended-Surface, Nonsupported-Media Filters:
 1. Factory-fabricated, dry, extended-surface, self-supporting type.
 4. Media: Fibrous material with antimicrobial agent constructed so individual pleats are maintained in tapered form by flexible internal supports under rated-airflow conditions.
 6. Mounting Frames: Welded, galvanized steel, with gaskets and fasteners, suitable for bolting together into built-up filter banks with space for prefilter.

D. Filter Gage:
 1. 2-inch diameter, diaphragm-actuated dial in metal case.
 2. Vent valves.
 3. Black figures on white background.
 4. Front recalibration adjustment.
 5. 2 percent of full-scale accuracy.
 6. Range: 0- to 2.0-inch wg.
 7. Accessories: Static-pressure tips with integral compression fittings, 1/4-inch aluminum tubing, and 2- or 3-way vent valves.

2.6 DAMPERS

A. General Requirements for Dampers: Leakage rate, according to AMCA 500, "Laboratory Methods for Testing Dampers for Rating," shall not exceed 2 percent of air quantity at 2000-fpm face velocity through damper and 4-inch wg pressure differential.

B. Electronic Damper Operators:
 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

3. Operator Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.

4. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.

5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.

6. Size dampers for running torque calculated as follows:
 b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft. of damper.
 d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
 f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.

8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.

11. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.

12. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.

13. Temperature Rating: Minus 22 to plus 122 deg F.

C. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, aluminum dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed-blade arrangement with cadmium-plated steel operating rods rotating in stainless-steel sleeve bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 5 cfm/sq. ft. at 1-inch wg and 9 cfm/sq. ft. at 4-inch wg.

D. Mixing Section: Multiple-blade, air-mixer assembly located immediately downstream of mixing section.
E. Combination Filter and Mixing Section:
 1. Cabinet support members shall hold 2-inch- thick, pleated, flat, permanent or throwaway filters.
 2. Multiple-blade, air-mixer assembly shall mix air to prevent stratification, located immediately downstream of mixing box.

2.7 SOURCE QUALITY CONTROL

A. Fan Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Fans shall bear AMCA-certified sound ratings seal.

B. Fan Performance Rating: Factory test fan performance for airflow, pressure, power, air density, rotation speed, and efficiency. Rate performance according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating."

C. Water Coils: Factory tested to 300 psig according to ARI 410 and ASHRAE 33.

D. Steam Coils: Factory tested to 300 psig and to 200 psig underwater according to ARI 410 and ASHRAE 33.

E. Refrigerant Coils: Factory tested to 450 psig according to ARI 410 and ASHRAE 33.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine casing insulation materials and filter media before air-handling unit installation. Reject insulation materials and filter media that are wet, moisture damaged, or mold damaged.

C. Examine roughing-in for steam, hydronic, and condensate drainage piping systems and electrical services to verify actual locations of connections before installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 2. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing, with new, clean filters.

D. Install filter-gage, static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in accessible position. Provide filter gages on filter banks, installed with separate static-pressure taps upstream and downstream of filters.

3.3 CONNECTIONS

A. Comply with requirements for piping specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to air-handling unit to allow service and maintenance.

C. Connect piping to air-handling units mounted on vibration isolators with flexible connectors.

D. Connect condensate drain pans using NPS 1-1/4, ASTM B 88, Type M copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.

E. Hot- and Chilled-Water Piping: Comply with applicable requirements in Section 23 21 13 "Hydronic Piping" and Section 232116 Hydronic Piping Specialties.” Install shutoff valve and union or flange at each coil supply connection. Install balancing valve and union or flange at each coil return connection.

F. Connect duct to air-handling units with flexible connections. Comply with requirements in Section 23 33 00 "Air Duct Accessories."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

1. Leak Test: After installation, fill water and steam coils with water, and test coils and connections for leaks.

2. Charge refrigerant coils with refrigerant and test for leaks.
3. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Automatic-Roll-Filter Operational Test: Operate filters to demonstrate compliance with requirements. Test for leakage of unfiltered air while system is operating.
5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Air-handling unit or components will be considered defective if unit or components do not pass tests and inspections.

E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Verify that shipping, blocking, and bracing are removed.
3. Verify that unit is secure on mountings and supporting devices and that connections to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
4. Verify proper motor rotation direction, free fan wheel rotation, and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
5. Verify that bearings, pulleys, belts, and other moving parts are lubricated with factory-recommended lubricants.
6. Verify that zone dampers fully open and close for each zone.
7. Verify that face-and-bypass dampers provide full face flow.
8. Verify that outdoor- and return-air mixing dampers open and close, and maintain minimum outdoor-air setting.
10. Verify that proper thermal-overload protection is installed for electric coils.
11. Install new, clean filters.
12. Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.

B. Starting procedures for air-handling units include the following:

1. Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace fan and motor pulleys as required to achieve design conditions.
2. Measure and record motor electrical values for voltage and amperage.
3. Manually operate dampers from fully closed to fully open position and record fan performance.

3.6 ADJUSTING

A. Adjust damper linkages for proper damper operation.
B. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.7 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling unit and air-distribution systems and after completing startup service, clean air-handling units internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.8 DEMONSTRATION

A. Train Government maintenance personnel to adjust, operate, and maintain air-handling units.

END OF SECTION 23 73 13
SECTION 23 73 33.16 - INDOOR, INDIRECT, GAS-FIRED HEATING AND VENTILATING UNITS

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes indirect, gas-fired heating and ventilating units.

1.2 DEFINITIONS
 A. DDC: Direct digital control.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type and configuration of indoor, indirect, gas-fired heating and ventilating unit.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 B. Sustainable Design Submittals:
 1. Product Data: For ventilation equipment, indicating compliance with ASHRAE 62.1, Section 5 - "Systems and Equipment."
 C. Shop Drawings: For each type and configuration of indoor, indirect, gas-fired heating and ventilating unit.
 1. Signed, sealed, and prepared by or under the supervision of a qualified professional engineer.
 2. Include plans, elevations, sections, and mounting details.
 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 4. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 5. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 6. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
 7. Include diagrams for power, signal, and control wiring.
1.4 INFORMATIONAL SUBMITTALS

A. Startup service reports.

B. Sample Warranty: For manufacturer's special warranty.

C. Seismic Qualification Data: Certificates, for indoor, indirect, gas-fired heating and ventilating units, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For indirect-fired heating and ventilating units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set(s) for each unit.
 2. Fan Belts: One set(s) for each unit.

1.7 QUALITY ASSURANCE

A. Comply with NFPA 70.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of indirect, gas-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Applied Air.
2. Engineered Air.
3. Trane.
4. Carrier.
5. Daikin.

2.2 SYSTEM DESCRIPTION

A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, controls, filters, and indirect-fired gas burner to be installed inside the building.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 UNIT CASINGS

A. General Fabrication Requirements for Casings:

1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with water-resistant sealant.
4. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
 a. Seismic Fabrication Requirements: Fabricate mounting base and attachment to air-handling-unit sections, accessories, and components with reinforcement strong enough to withstand seismic forces defined in Section 230548 "Vibration and Seismic Controls for HVAC" when air-handling-unit frame is anchored to building structure.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

B. Configuration: Horizontal unit with top discharge for floor-mounted installation.

C. Cabinet: Galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet.

D. Outer Casing: 0.0598-inch thick steel with heat-resistant, baked-enamel finish over corrosion-resistant-treated surface in color to match fan section.
E. Inner Casing:

1. Burner Section Inner Casing: 0.0299-inch steel.
2. Double-wall casing with inner wall of solid steel, for the following sections:
 a. Blower section.
 b. Filter section.
 c. Mixing box.
 d. Inlet plenum.
 e. Discharge plenum.
 f. Access Doors: Hinged with handles for burner and fan motor assemblies on both sides of unit.

3. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on burner and fan sections only.
 a. Thickness: 2 inches.
 b. Insulation Adhesive: Comply with ASTM C 916, Type I.
 c. Density: 2.0 lb/cu. ft.
 d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.

F. Discharge Section: Galvanized-steel assembly with two-position, motorized, parallel-blade dampers with nylon bushings.

1. Pattern: Double deflection.
2. Leakage: Low leakage.

G. Casing Internal Insulation and Adhesive:

1. Materials: ASTM C 1071, Type I.
2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the heating-coil section.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, mechanical, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric, depending on service-air velocity.

H. Inspection and Access Panels and Access Doors:

1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
2. Inspection and Access Panels:
a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
b. Gasket: Neoprene, applied around entire perimeters of panel frames.
c. Size: Large enough to allow inspection and maintenance of air-handling unit’s internal components.

3. Access Doors:
 a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 c. Fabricate windows in fan section doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 d. Size: At least 18 inches wide by full height of unit casing up to a maximum height of 72 inches.

4. Locations and Applications:
 a. Fan Section: Doors.
 b. Access Section: Doors.
 c. Coil Section: Inspection and access panels.
 d. Damper Section: Doors.
 e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 f. Mixing Section: Doors.
 g. Humidifier Section: Doors.

5. Service Light: 100-W vaporproof fixture with switched junction box located inside adjacent to door.
 a. Locations: Each section accessed with door.

I. Condensate Drain Pans:
 1. Fabricated with one percent slope in at least two planes to collect condensate from condensate-producing heat exchangers and from humidifiers and to direct water toward drain connection.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches deep.
 2. Double-wall, stainless-steel sheet with space between walls filled with foam insulation and moisture-tight seal.
 3. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
2.4 SUPPLY-AIR FAN

A. Fan Type: Centrifugal, rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, self-aligning, permanently lubricated ball bearings.

B. Drive: V-belt drive with matching fan pulley and adjustable motor sheaves and belt assembly.

C. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with spring isolators.

D. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.

2.5 AIR FILTERS

A. Comply with NFPA 90A.

B. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a MERV 6 according to ASHRAE 52.2.

 1. Thickness: 2 inches.
 3. Frame: Galvanized steel.

2.6 DAMPERS

A. Outdoor-AirDamper: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.

B. Damper Operator: Direct coupled, electronic with spring return or fully modulating as required by the control sequence.

2.7 INDIRECT-FIRED GAS BURNER

 1. CSA Approval: Designed and certified by and bearing label of CSA.

 a. Gas Control Valve: Modulating.
 b. Fuel: Natural gas.
 c. Minimum Combustion Efficiency: 90 percent.
 d. Ignition: Electronically controlled electric spark with flame sensor.

B. Venting: Power vented, with integral, motorized centrifugal fan interlocked with gas valve.
C. Combustion-Air Intake: Separate combustion-air intake and vent terminal assembly.

D. Heat Exchanger: Stainless steel.

E. Heat-Exchanger Drain Pan: Stainless steel.

F. Safety Controls:
 2. Control Transformer: 24-V ac.
 3. High Limit: Thermal switch or fuse to stop burner.
 5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
 8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if high-limit temperature is exceeded.
 9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.

2.8 UNIT CONTROL PANEL

A. Factory-wired, fuse-protected control transformer, connection for power supply and field-wired unit to remote control panel.

B. Control Panel: Surface-mounted remote panel, with engraved plastic cover, and the following lights and switches:
 1. On-off-auto fan switch.
 4. Heating operation indicating light.
 5. Thermostat.
 6. Damper position potentiometer.
 7. Dirty-filter indicating light operated by unit-mounted differential pressure switch.
 8. Safety-lockout indicating light.

2.9 CONTROLS

A. Comply with requirements in Section 230923 "Direct Digital Control (DDC) System for HVAC" and Section 230993.11 "Sequence of Operations for HVAC DDC" for control equipment and sequence of operation.
B. Fan Control: Interlock fan to start with exhaust fan(s) to which this heating and ventilating unit is associated for makeup air.

C. Outdoor-Air Damper Control, 100 Percent Outdoor-Air Units: Outdoor-air damper shall open when supply fan starts, and close when fan stops.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of indirect-fired heating and ventilating units.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Equipment Mounting:

1. Install heating and ventilating units on cast-in-place concrete equipment bases.
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

B. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."

C. Install controls and equipment shipped by manufacturer for field installation with indirect-fired heating and ventilating units.

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties.

1. Gas Piping: Comply with requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.
B. Drain: Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for traps and accessories on piping connections to condensate drain pans under condensing heat exchangers.

C. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.

D. Duct Connections: Connect supply and outside air ducts to indirect-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 233300 "Air Duct Accessories" for flexible duct connectors.

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections with the assistance of a factory-authorized service representative.

C. Units will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:

 a. Inspect for visible damage to burner combustion chamber.
 b. Inspect casing insulation for integrity, moisture content, and adhesion.
 c. Verify that clearances have been provided for servicing.
 d. Verify that controls are connected and operable.
 e. Verify that filters are installed.
 f. Purge gas line.
 g. Inspect and adjust vibration isolators and seismic restraints.
 h. Verify bearing lubrication.
 i. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 j. Adjust fan belts to proper alignment and tension.
 k. Start unit according to manufacturer's written instructions.
2. Complete startup sheets and attach copy with Contractor's startup report.
3. Inspect and record performance of interlocks and protective devices; verify sequences.
4. Operate unit for run-in period recommended by manufacturer.
5. Perform the following operations for both minimum and maximum firing and adjust burner for peak efficiency:
 a. Measure gas pressure at manifold.
 b. Measure combustion-air temperature at inlet to combustion chamber.
 c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
6. Calibrate thermostats.
7. Adjust and inspect high-temperature limits.
8. Inspect dampers, if any, for proper stroke and interlock with return-air dampers.
9. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
10. Measure and record airflow. Plot fan volumes on fan curve.
11. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 a. High-limit heat.
 b. Alarms.
12. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension.
14. Verify outdoor-air damper operation.

3.6 ADJUSTING

A. Adjust initial temperature set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 23 73 33.16
SECTION 23 74 16.13 - PACKAGED, LARGE-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes packaged, large-capacity, rooftop air conditioning units (RTUs) with the following components and accessories:

1. Casings.
2. Fans.
3. Motors.
5. Refrigerant circuit components.
6. Air filtration.
7. Dampers.
8. Electrical power connections.
9. Controls.
10. Accessories
11. Roof curbs.

1.2 DEFINITIONS

A. DDC: Direct-digital controls.

B. ECM: Electronically commutated motor.

C. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.

D. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, large-capacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

E. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

F. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
1.3 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories.

B. Sustainable Design Submittals:
 1. Product Data: For adhesives, mastics, and sealants, indicating VOC content.

C. Shop Drawings:
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.

D. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 3. Wind- and Seismic-Restraint Details: Detail fabrication and attachment of wind and seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Structural members to which RTUs will be attached.
 2. Roof openings.
 3. Roof curbs and flashing.

B. Product Certificates: Submit certification that specified equipment will withstand wind forces identified in "Performance Requirements" Article and in Section 23 05 48 "Vibration and Seismic Controls for HVAC."
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculations.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of wind force and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
C. Seismic Qualification Certificates: For RTUs, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Restraint of internal components, including fans, coils, and refrigeration components.

D. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.6 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of RTUs that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion.
3. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. AHRI Compliance:
 1. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 2. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 3. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.

B. AMCA Compliance:
 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
 2. Damper leakage tested in accordance with AMCA 500-D.
 3. Operating Limits: Classify according to AMCA 99.
C. ASHRAE Compliance:
 1. Comply with ASHRAE 15 for refrigeration system safety.
 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and Startup."

D. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

E. NFPA Compliance: Comply with NFPA 90A or NFPA 90B.

G. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Carrier Corporation; a unit of United Technologies Corp.
 2. Daikin Applied.
 4. YORK; a Johnson Controls company.

2.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design mounting and restraints for RTUs, including comprehensive engineering analysis.
 1. Design RTU supports to comply with wind and seismic performance requirements.

B. Wind-Restraint Performance:
 1. Basic Wind Speed: 180 MPH.
 2. Building Classification Category: III.
 3. Minimum 10 lb/sq. ft multiplied by the maximum area of the mechanical component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal.

C. Seismic Performance: RTUs shall withstand the effects of earthquake motions determined according to ASCE 7.
1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified" and the unit will be fully operational after the seismic event.

2.4 CASINGS

A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.

B. Double-Wall Construction: Fill space between walls with 1 inch foam insulation and seal moisture tight for R-7 performance.

C. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.

1. Corrosion Protection: 2500 hours salt spray test in accordance with ASTM B117.

D. Inner Casing Fabrication Requirements:

1. Inside Casing: G-90-coated galvanized steel, 0.034 inch thick, perforated 40 percent free area.

E. Plastic Condensate Drain Pans: Fabricated using rigid heavy plastic polymer complying with ASTM G21, a minimum of 2 inches deep, and complying with ASHRAE 62.1 for design and construction of drain pans.

F. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.5 FANS

A. Supply-Air Fans: Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.

1. Direct-Driven Supply-Air Fans: Motor shall be resiliently mounted in the fan inlet.
2. Belt-Driven Supply-Air Fans: Motors shall be installed on an adjustable fan base resiliently mounted in the casing.

B. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated multispeed motors.

C. Seismic Fabrication Requirements: Fabricate fan section, internal mounting frame and attachment to fans, fan housings, motors, casings, accessories, and other fan section components with reinforcement strong enough to withstand seismic forces defined in Section 23 05 48 "Vibration and Seismic Controls for HVAC" when fan-mounted frame and RTU-mounted frame are anchored to building structure.
2.6 MOTORS

A. Comply with NEMA MG 1, Design B, medium induction motor, unless otherwise indicated.

B. Comply with IEEE 841 for severe-duty motors.

C. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

D. Duty: Continuous duty at ambient temperature of 104 deg F and at altitude of 3300 feet above sea level.

E. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

F. Efficiency: Energy efficient, as defined in NEMA MG 1.

G. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements.

H. Multispeed Motors: Variable torque.
 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 2. For motors with other than 2:1 speed ratio, separate winding for each speed.

I. Multispeed Motors: Separate winding for each speed.

J. Rotor: Random-wound, squirrel cage.

K. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.

L. Temperature Rise: Match insulation rating.

M. Insulation: Class F.

N. Code Letter Designation:
 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

O. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

P. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.

Q. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.

2.7 COILS

A. Supply-Air Refrigerant Coil:

1. Copper-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
4. Baked phenolic coating.

B. Hot-Gas Reheat Refrigerant Coil:

1. Copper-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
3. Baked phenolic coating.

2.8 REFRIGERANT CIRCUIT COMPONENTS

A. Compressor: Hermetic, variable speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief.

B. Refrigeration Specialties:

1. Refrigerant: R-410A.
2. Expansion valve with replaceable thermostatic element.
3. Refrigerant filter/dryer.
5. Automatic-reset low-pressure safety switch.
8. Brass service valves installed in compressor suction and liquid lines.
9. Low-ambient kit high-pressure sensor.
10. Hot-gas reheat solenoid valve single stage with a replaceable magnetic coil.
11. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.

2.9 DAMPERS

A. Outdoor-Air Damper: Linked damper blades, for 0 to 25 percent outdoor air, with motorized damper filter.

B. Outdoor- and Return-Air Mixing Dampers: Galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage or gears and interconnect so dampers operate simultaneously.

1. Leakage Rate: As required by ASHRAE/IES 90.1.
2. Damper Motor: Modulating with adjustable minimum position.
3. Relief-Air Damper: Gravity actuated or motorized, as required by ASHRAE/IES 90.1, with bird screen and hood.

C. Barometric relief dampers.

2.10 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection. Unit disconnect shall not cover nameplate information.

2.11 ACCESSORIES

A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.

B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

C. Factory- or field-installed demand-controlled ventilation.

D. Safeties:

1. Smoke detector.
2. Condensate overflow switch.
3. Phase-loss protection.
4. High and low pressure control.

E. Coil guards of painted, galvanized-steel wire.

F. Concentric diffuser with white louvers and polished aluminum return grilles, insulated diffuser box with mounting flanges, and interior transition.
G. Door switches to disable heating or reset setpoint when open.
H. Outdoor air intake weather hood with moisture eliminator.

2.12 ROOF CURBS
A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

B. Wind and Seismic Restraints: Metal brackets compatible with the curb and casing, painted to match RTU, used to anchor unit to the curb, and designed for loads at Project site. Comply with requirements in Section 23 05 48 "Vibration and Seismic Controls for HVAC" for wind-load requirements.

C. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 a. Materials: ASTM C 1071, Type I or II.
 b. Thickness: 2 inches.
 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 a. Liner Adhesive: Comply with ASTM C 916, Type I.
 b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 d. Liner Adhesive: Comply with ASTM C 916, Type I.

D. Curb Dimensions: Height of 14 inches.

PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.
B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.
C. Examine roofs for suitable conditions where RTUs will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Roof Curb: Install on roof structure or concrete base, level and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00 "Roof Accessories." Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.

B. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

3.3 CONNECTIONS

A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.

B. Install piping adjacent to RTUs to allow service and maintenance.

C. Duct installation requirements are specified in other HVAC Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements:
 1. Install ducts to termination at top of roof curb.
 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 23 33 00 "Air Duct Accessories."
 4. Install return-air duct continuously through roof structure.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. RTU will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

B. Complete installation and startup checks according to manufacturer's written instructions.

1. Inspect for visible damage to unit casing.
2. Inspect for visible damage to furnace combustion chamber.
3. Inspect for visible damage to compressor, coils, and fans.
4. Inspect internal insulation.
5. Verify that labels are clearly visible.
6. Verify that clearances have been provided for servicing.
7. Verify that controls are connected and operable.
8. Verify that filters are installed.
9. Clean condenser coil and inspect for construction debris.
10. Remove packing from vibration isolators.
11. Verify lubrication on fan and motor bearings.
12. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
13. Adjust fan belts to proper alignment and tension.
14. Start unit according to manufacturer's written instructions.

 a. Start refrigeration system.
 b. Do not operate below recommended low-ambient temperature.
 c. Complete startup sheets and attach copy with Contractor's startup report.

15. Inspect and record performance of interlocks and protective devices; verify sequences.
16. Operate unit for an initial period as recommended or required by manufacturer.

17. Calibrate thermostats.
18. Adjust and inspect high-temperature limits.
19. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
20. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:

 a. Coil leaving-air, dry- and wet-bulb temperatures.
 b. Coil entering-air, dry- and wet-bulb temperatures.
 c. Outdoor-air, dry-bulb temperature.
 d. Outdoor-air-coil, discharge-air, dry-bulb temperature.

21. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
22. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air volume.
 c. Outdoor-air intake volume.

23. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.

24. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.6 CLEANING AND ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

B. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 23 74 16.13
SECTION 23 74 33 - DEDICATED OUTDOOR-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes factory-packaged units capable of supplying up to 100 percent outdoor air and providing cooling and heating.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rated capacities, operating characteristics, and furnished specialties and accessories.

B. Shop Drawings:

1. Include plans, elevations, sections, and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Prepare the following by or under the supervision of a qualified professional engineer:
 a. Mounting Details: For securing and flashing roof curb to roof structure. Indicate coordinating requirements with roof membrane system.
 b. Include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For design of vibration isolation and wind restraints, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Unit fabrication and assembly details.
2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
3. Design Calculations:
 a. Calculate requirements for selecting vibration isolators and wind restraints and for designing vibration isolation bases.
 b. Indicate compliance with "Performance Requirements" article.
1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Roof-curb mounting details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

1. Size and location of unit-mounted rails and anchor points and methods for anchoring units to roof curb.
2. Required roof penetrations for ducts, pipes, and electrical raceways, including size and location of each penetration.

B. Seismic Qualification Certificates: For dedicated outdoor-air units, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Startup service reports.

D. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fan Belts: One set for each belt-driven fan.
2. Filters: One set for each unit.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to replace components of units that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Five years from date of Substantial Completion.
2. Warranty Period for Heat Exchangers: Five years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the work include the following:

1. AAON
2. Desert Aire
3. Munters
4. Greenheck

2.2 PERFORMANCE REQUIREMENTS

A. General Fabrication Requirements: Comply with requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment," and Section 7 - "Construction and System Start-up."

B. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design vibration isolation and wind restraints.

C. Seismic Performance: Units shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."

D. Wind-Restraint Performance:

1. Basic Wind Speed: 120 mph.
2. Building Classification Category: III.
3. Minimum 10 lb/sq. ft. multiplied by the maximum area of unit projected on a vertical plane that is normal to the wind direction and 45 degrees either side of normal.

E. Cabinet Thermal Performance:

1. Maximum Overall U-Value: Comply with requirements in ASHRAE/IESNA 90.1.
2. Maximum Overall U-Value: 0.10 Btu/h x sq. ft. x deg F.
3. Include effects of metal-to-metal contact and thermal bridges in the calculations.

F. Cabinet Surface Condensation:

1. Cabinet shall have additional insulation and vapor seals if required to prevent condensation on the interior and exterior of the cabinet.
2. Portions of cabinet located downstream from the cooling coil shall have a thermal break at each thermal bridge between the exterior and interior casing to prevent condensation from occurring on the interior and exterior surfaces. The thermal break shall not compromise the structural integrity of the cabinet.
G. Maximum Cabinet Leakage: 1 percent of the total supply-air flow at a pressure rating equal to the fan shut-off pressure.

H. Cabinet Deflection Performance:
 1. Walls and roof deflection shall be within 1/240 of the span at the design working pressure equal to the fan shut-off pressure. Deflection limits shall be measured at any point on the surface.
 2. Floor deflections shall be within 1/240 of the span considering the worst-case condition caused by the following:
 a. Service personnel.
 b. Internal components.
 c. Design working pressure defined for the walls and roof.

I. Electrical components, devices, and accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

J. Capacities and Characteristics:
 1. As indicated on HVAC Schedule.

2.3 CABINET

A. Construction: Double wall.

B. Exterior Casing Material: Galvanized steel with paint finish.

C. Interior Casing Material: Galvanized steel.

 1. Service Doors: Hinged access doors with gaskets. Material and construction of doors shall match material and construction of cabinet in which doors are installed.

F. Roof: Standing seam or membrane; sloped to drain water.

G. Floor: Reinforced, metal surface; reinforced to limit deflection when walked on by service personnel. Insulation shall be below metal walking surface.

H. Cabinet Insulation:
 1. Type: Fibrous-glass duct lining complying with ASTM C 1071, Type II.
 2. Thickness: 2 inches.
 3. Insulation Adhesive: Comply with ASTM C 916, Type I.
4. Mechanical Fasteners: Suitable for adhesive, mechanical, or welding attachment to casing without damaging liner and without causing air leakage when applied as recommended by manufacturer.

I. Condensate Drain Pans:

1. Shape: Rectangular, with 2 percent slope in at least two planes to direct water toward drain connection.
2. Size: Large enough to collect condensate from cooling coils including coil piping connections, coil headers, and return bends.
 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches deep.
4. Configuration: Double wall, with space between walls filled with foam insulation and moisture-tight seal.
7. Drain Connection:
 a. Located on one end of pan, at lowest point of pan.
 b. Terminated with threaded nipple.
8. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

J. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1 for resistance to mold and erosion.

K. Roof Curb: Full-perimeter curb of sheet metal, minimum 16 inches high, with wood nailer, neoprene sealing strip, and welded Z-bar flashing.

2.4 SUPPLY FAN

A. Forward-Curved Fan Type: Centrifugal; statically and dynamically balanced.
 1. Fan Wheel Material: Galvanized steel, mounted on solid-steel shaft.

B. Plenum Fan Type: Single width, non-overloading, with backward-inclined or airfoil blades.
 1. Fan Wheel Material: Aluminum; attached directly to motor shaft.
5. Fan Balance: Precision balance fan below 0.08 inch/s at design speed with filter in.

C. Motors:
1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

D. Mounting: Fan wheel, motor, and drives shall be mounted to fan casing with spring isolators.

2.5 COOLING COILS

A. Capacity Ratings: Comply with ASHRAE 33 and ARI 410 and coil bearing the ARI label.
B. Coil Casing Material: Manufacturer's standard material.
C. Tube Material: Copper.
D. Tube Header Material: Copper.
E. Fin Material: Aluminum.
F. Fin and Tube Joints: Mechanical bond.
G. Leak Test: Coils shall be leak tested with air underwater.
H. Refrigerant Coil Capacity Reduction: Circuit coils for interleaved control.
I. Refrigerant Coil Suction and Distributor Header Materials: Seamless copper tube with brazed joints.
J. Coating: Corrosion-resistant coating after assembly.

2.6 REFRIGERATION SYSTEM

B. Refrigerant Charge: Factory charged with refrigerant and filled with oil.
C. Compressors: Reciprocating or scroll compressors with integral vibration isolators, internal overcurrent and overtemperature protection, internal pressure relief.
D. Refrigerant: R-410A.
1. Classified as Safety Group A1 according to ASHRAE 34.
2. Provide unit with operating charge of refrigerant.
E. Refrigeration System Specialties:

1. Expansion valve with replaceable thermostatic element.
2. Refrigerant dryer.
3. High-pressure switch.
4. Low-pressure switch.
5. Thermostat for coil freeze-up protection during low ambient temperature operation or loss of air.
6. Brass service valves installed in discharge and liquid lines.

F. Capacity Control:

1. Control with zero to 100 percent modulating capacity control using digital compressors.

G. Refrigerant condenser and reheat condenser coils:

1. Capacity Ratings: Complying with ASHRAE 33 and ARI 410 and coil bearing the ARI label.
2. Tube Material: Copper.
3. Fin Material: Aluminum.
5. Leak Test: Coils shall be leak tested with air underwater.

H. Condenser Fan Assembly:

1. Fans: Direct-drive propeller type with statically and dynamically balanced fan blades.
2. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."

I. Safety Controls:

1. Compressor motor and condenser coil fan motor low ambient lockout.
2. Overcurrent protection for compressor motor.

2.7 ELECTRIC-RESISTANCE HEATING COIL

A. UL Compliance: Comply with requirements in UL 1995, "Heating and Cooling Equipment."

B. Electric-Resistance Heating Elements:

2. Tubular-Steel Sheath: Compacted magnesium oxide powder.
3. Fins: Spiral-wound, copper-plated, steel fins continuously brazed to sheath.
4. Heating Capacity: Low density 35 W per sq. in., factory wired for single-point wiring connection; with time delay for element staging and overcurrent- and overheat-protection devices.

5. Safety Controls:
 a. Blower-motor interlock, air-pressure switch.
 b. Quiet mercury contactors.
 c. Time delay between steps.
 d. Integral, nonfused power disconnect switch.

C. Electric-Resistance Heating Elements:
 1. Open-Coil Resistance Wire: 80 percent nickel and 20 percent chromium.
 2. Supports and Insulation: Floating ceramic bushings recessed into casing openings; fastened to supporting brackets and mounted in galvanized-steel frame.
 3. Heating Capacity: Low density 35 W per sq. in., factory wired for single-point wiring connection; with time delay for element staging and overcurrent- and overheat-protection devices.
 4. Safety Controls:
 a. Blower-motor interlock, air-pressure switch.
 b. Quiet mercury contactors.
 c. Time delay between steps.
 d. Integral, nonfused power disconnect switch.

2.8 OUTDOOR-AIR INTAKE HOOD

A. Type: Manufacturer's standard hood or louver.

B. Materials: Match cabinet.

C. Bird Screen: Comply with requirements in ASHRAE 62.1.

D. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

E. Location: Located a minimum of 10 ft. from Exhaust Air discharge associated with unit.

2.9 FILTERS

A. Cleanable Filters: 2-inch-thick, cleanable metal mesh.

B. Disposable Panel Filters:
 1. Comply with NFPA 90A.
 2. Factory-fabricated, viscous-coated, flat-panel type.
 3. Thickness: 2 inches.
 4. Minimum Arrestance: 80, according to ASHRAE 52.1.
 5. Minimum MERV: 8, according to ASHRAE 52.2.

C. Extended-Surface, Disposable Panel Filters:
 1. Comply with NFPA 90A.
 2. Factory-fabricated, dry, extended-surface type.
 3. Thickness: 2 inches.
 4. Minimum Arrestance: 90, according to ASHRAE 52.1.
 5. Minimum MERV: 7, according to ASHRAE 52.2.
 6. Media: Fibrous material formed into deep-V-shaped pleats with antimicrobial agent and held by self-supporting wire grid.

D. Mounting Frames:
 1. Panel filters arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or from access plenum.
 2. Extended surface filters arranged for flat orientation, removable from access plenum.
 3. Galvanized or stainless steel with gaskets and fasteners, suitable for bolting together into built-up filter banks with space for prefilter.

2.10 ELECTRICAL POWER CONNECTIONS

A. General Electrical Power Connection Requirements: Factory-installed and -wired switches, motor controllers, transformers, and other necessary electrical devices shall provide a field power connection to unit.

B. Enclosure: NEMA 250, Type 4, mounted in unit with hinged access door in unit cabinet having a lock and key or padlock and key.

C. Wiring: Numbered and color-coded to match wiring diagram.

D. Wiring Location: Install factory wiring outside an enclosure in a raceway.

E. Power Interface: Field power interface shall be to NEMA KS 1, heavy-duty, nonfused disconnect switch.

F. Factory Wiring: Branch power circuit to each motor and to controls with one of the following disconnecting means:
 1. NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 60947-4-1.
 2. NEMA KS 1, heavy-duty, nonfusible switch.
 3. UL 489, motor-circuit protector (circuit breaker) with field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.

G. Factory-Mounted, Overcurrent-Protection Service: For each motor.
H. Transformer: Factory mounted with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.

I. Controls: Factory wire unit-mounted controls where indicated.

J. Lights: Factory wire unit-mounted lights.

K. Receptacle: Factory wire unit-mounted, ground fault interrupt (GFI) duplex receptacle.

L. Control Relays: Auxiliary and adjustable time-delay relays.

2.11 CONTROLS

A. Control equipment and sequence of operation are specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC" and Section 23 09 93.11 "Sequence of Operations for HVAC DDC."

B. Control Valves: Comply with requirements in Section 23 09 23.11 "Control Valves."

C. Control Wiring: Factory wire connection for controls' power supply.

D. Control Devices: Sensors, transmitters, relays, switches, detectors, operators, actuators, and valves shall be manufacturer's standard items to accomplish indicated control functions.

E. Unit-Mounted Status Panel:

1. Cooling/Off/Heating Controls: Control operational mode.
2. Damper Position: Indicate position of outdoor-air dampers in terms of percentage of outdoor air.
3. Status Lights:
 a. Filter dirty.
 b. Fan operating.
 c. Cooling operating.
 d. Heating operating.
 e. Smoke alarm.
 f. General alarm.

4. Digital Numeric Display:
 a. Outdoor airflow.
 b. Supply airflow.
 c. Outdoor dry-bulb temperature.
 d. Outdoor dew point temperature.
 e. Space temperature.
 f. Supply temperature.
 g. Space relative humidity.
 h. Space carbon dioxide level.
F. Control Dampers:

1. Damper Location: Factory installed inside unit for ease of blade axle and bushing service. Arrange dampers located in a mixing box to achieve convergent airflow to minimize stratification.
2. Damper Leakage: Comply with requirements in AMCA 500-D. Leakage shall not exceed 6.5 cfm per sq. ft. at a static-pressure differential of 4.0 inches water column when a torque of 5 inch pounds per sq. ft. is applied to the damper jackshaft.
3. Damper Rating: Rated for close-off pressure equal to the fan shutoff pressure.
4. Damper Label: Bear the AMCA seal for both air leakage and performance.
5. Blade Configuration: Unless otherwise indicated, use parallel blade configuration for two-position control and equipment isolation service and use modulating control when mixing two airstreams. For other applications, use an opposed-blade configuration.
6. Damper Frame Material: Extruded aluminum or galvanized steel.
7. Blade Type: Single-thickness metal reinforced with multiple V-grooves or hollow-shaped airfoil.
13. Airflow Measurement:
 a. Monitoring System: Complete and functioning system of airflow monitoring as an integral part of the damper assembly where indicated.
 b. Remote Monitoring Signal: 0-10 volt or 4-20 mA scaled signal.
 c. Accuracy of flow measurement: Within 10 percent of the actual flow rate between the range of the scheduled minimum and maximum airflow. For units with a large range between minimum and maximum airflow, configure the damper sections and flow measurement assembly as necessary to comply with accuracy.
 d. Straightening Device: Integral to the flow measurement assembly if required to achieve the specified accuracy as installed.
 e. Flow measuring device: Suitable for operation in untreated and unfiltered outdoor air. If necessary, include temperature and altitude compensation and correction to maintain the accuracy.

G. Damper Operators:

1. Factory-installed electric operator for each damper assembly with one operator for each damper assembly mounted to the damper frame.
2. Operator capable of shutoff against fan pressure and able to operate the damper with sufficient reserve power to achieve smooth modulating action and proper speed of response at the velocity and pressure conditions to which the damper is subjected.
3. Maximum Operating Time: Open or close damper 90 degrees in 60 seconds.
4. Adjustable Stops: For both maximum and minimum positions.
5. Position Indicator and Graduated Scale: Factory installed on each actuator with words "OPEN" and "CLOSED," or similar identification, at travel limits.
6. Spring-return operator to fail-safe; either closed or open as required by application.
7. Operator Type: Direct coupled, designed for minimum 60,000 full-stroke cycles at rated torque.

H. Refrigeration System Controls:
 1. Outdoor-air sensor de-energizes dehumidifier operation when outdoor-air temperature is less than 55 deg F.

I. Electric-Resistance Heat Controls:
 1. Factory-mounted sensor in unit discharge with sensor adjustment located in control panel to control electric coil to maintain temperature.
 2. Capacity Controls: Modulating SCR.

J. Damper Controls: Space pressure sensor modulates outdoor- and return-air dampers to maintain a positive pressure in space at a minimum of 0.05 inch wg with respect to outdoor reference.

K. Integral Smoke Alarm: Smoke detector installed in supply air.

L. DDC Temperature Control: Standalone control module for link between unit controls and DDC temperature-control system. Control module shall be compatible with control system specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC." Links shall include the following:
 1. Start/stop interface relay, and relay to notify DDC temperature-control system alarm condition.
 2. Hardware interface or additional sensors for the following:
 a. Discharge-air temperature.
 b. Refrigeration system operating.
 c. Constant and variable motor loads.
 d. Variable-frequency-controller operation.
 e. Cooling load.
 f. Air-distribution static pressure.

M. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display unit status and alarms.
 1. Hardwired Points:
 b. Control: On-off operation.
 2. ASHRAE 135 (BACnet) communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the unit from an operator workstation. Control features and monitoring points displayed locally at unit control panel shall be available through the DDC system for HVAC.
2.12 ACCESSORIES

A. Service Lights and Switch: Factory installed in each accessible section with weatherproof cover. Factory wire lights to a single-point field connection.

B. Duplex Receptacle: Factory mounted in unit supply-fan section and refrigeration section, with 20 amp 120 V GFI duplex receptacle and weatherproof cover.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Examine roof curbs and equipment supports for suitable conditions where units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer's rigging and installation instructions for unloading units and moving to final locations.

B. Curb Support: Install roof curb on roof structure according to "The NRCA Roofing Manual."

1. Install and secure units on curbs and coordinate roof penetrations and flashing with roof construction.

2. Coordinate size, installation, and structural capacity of roof curbs, equipment supports, and roof penetrations. These items are specified in Section 07 72 00 "Roof Accessories."

3. Coordinate size, location, and installation of unit manufacturer's roof curbs and equipment supports with roof Installer.

C. Restrained Curb Support: Install restrained vibration isolation roof-curb rails on roof structure according to "The NRCA Roofing Manual."

D. Equipment Mounting:

1. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

2. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
E. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.

F. Install separate devices furnished by manufacturer and not factory installed.

G. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

H. Install drain pipes from unit drain pans to sanitary drain.
 1. Drain Piping: Drawn-temper copper water tubing complying with ASTM B 88, Type L, with soldered joints.
 2. Drain Piping: Schedule 40 PVC pipe complying with ASTM D 1785, with solvent-welded fittings.
 3. Pipe Size: Same size as condensate drain pan connection.

3.3 CONNECTIONS

A. Where installing piping adjacent to units, allow space for service and maintenance.

B. Duct Connections:
 1. Comply with requirements in Section 23 31 13 "Metal Ducts."
 2. Drawings indicate the general arrangement of ducts.
 3. Connect ducts to units with flexible duct connectors. Comply with requirements for flexible duct connectors in Section 23 33 00 "Air Duct Accessories."

C. Electrical Connections: Comply with requirements for power wiring, switches, and motor controls in electrical Sections.
 1. Install electrical devices furnished by unit manufacturer but not factory mounted.

3.4 STARTUP SERVICE

A. Perform startup service.
 1. Complete installation and startup checks according to manufacturer's written instructions.
 2. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.
 3. Start refrigeration system when outdoor-air temperature is within normal operating limits and measure and record the following:
 a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 c. Condenser coil entering-air dry-bulb temperature.
 d. Condenser coil leaving-air dry-bulb temperature.
4. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.

5. Inspect casing insulation for integrity, moisture content, and adhesion.
6. Verify that clearances have been provided for servicing.
7. Verify that controls are connected and operable.
8. Verify that filters are installed.
9. Clean coils and inspect for construction debris.
10. Clean furnace flue and inspect for construction debris.
11. Inspect operation of power vents.
12. Purge gas line.
13. Inspect and adjust vibration isolators and seismic restraints.
15. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.
16. Adjust fan belts to proper alignment and tension.
17. Start unit.
18. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.
19. Operate unit for run-in period.
20. Calibrate controls.
22. Inspect outdoor-air dampers for proper stroke.
23. Verify operational sequence of controls.
24. Measure and record the following airflows. Plot fan volumes on fan curve.
 a. Supply-air volume.
 b. Return-air flow.
 c. Outdoor-air flow.

B. After startup, change filters, verify bearing lubrication, and adjust belt tension.

C. Remove and replace components that do not properly operate and repeat startup procedures as specified above.

D. Prepare written report of the results of startup services.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 23 74 33
SECTION 23 81 23.11 – COMPUTER-ROOM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes floor-mounted, computer-room air conditioners of 6 tons and smaller.

1.2 DEFINITIONS

A. COP: Coefficient of performance.

B. EER: Energy efficiency ratio.

C. SCR: Silicon controlled rectifier.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include material descriptions, dimensions of individual components and profiles, and finishes for computer-room air-conditioning units.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Sustainable Design Submittals:
 1. Product Data: For ventilation equipment, indicating compliance with ASHRAE 62.1, Section 5 - "Systems and Equipment."
 2. Product Data: For refrigerants, indicating compliance with refrigerant management practices.

C. Shop Drawings: For computer-room air conditioners.
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Data: Certificates, for computer-room air conditioners, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For computer-room air conditioners to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) of filters for each unit.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of computer-room air conditioners that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
2. Warranty Period for Humidifiers: Manufacturer's standard, but not less than three years from date of Substantial Completion.
3. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Data Aire Inc.
2. Liebert; a brand of Emerson Electric Co.
3. Stulz-ATS.
2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Computer-room air conditioners shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Ventilation Rate Procedures," and Section 7 - "Construction and Startup."

D. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1.

E. ASME Compliance: Fabricate and label water-cooled condenser shell to comply with ASME Boiler and Pressure Vessel Code: Section VIII, "Pressure Vessels," Division 1.

2.3 MANUFACTURED UNITS

A. Description: Self-contained, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for vertical floor mounting in downflow configuration.

B. Cabinet and Frame: Welded tubular-steel frame with removable steel panels with baked-enamel finish, insulated with 1-inch-thick duct liner.
 1. Floor Stand: Welded tubular steel, height match raised floor, with adjustable legs and vibration isolation pads.
 2. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

C. Supply-Air Fan: Variable speed EC plug fan, under-floor air distribution.

D. Refrigeration System:
 1. Compressor: Digital Scroll, variable capacity, with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
 2. Refrigeration Circuit:
 a. Low-pressure switch.
 b. Manually reset, high-pressure switch.
 c. Thermal-expansion valve with external equalizer.
d. Sight glass with moisture indicator.
e. Service shutoff valves.
f. Charging valves.
g. Hot-gas bypass.
h. Refrigerant charge.

3. Refrigerant: R-410A.
4. Refrigerant Evaporator Coil: Direct-expansion coil of seamless copper tubes expanded into aluminum fins, with two circuits, each with solenoid valve.
5. Refrigerant line sets.
6. Refrigerant line-sweat-adapter kit to permit field brazing of refrigerant lines.
 a. Mount stainless-steel drain pan complying with ASHRAE 62.1 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir under coil assembly.

7. Remote Air-Cooled Refrigerant Condenser:
 a. Integral, copper-tube aluminum-fin coil.
 b. Condenser with surge protection device (SPD) and locking disconnect in the enclosed electrical panel section.

9. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.

E. Electric-Resistance Reheat Coil:
 1. Finned-tube electric elements with contactor and high-temperature-limit switches.
 2. SCR to proportionally control the reheat elements providing precise temperature control.

F. Filter: 2-inch-thick, disposable, pleated, glass-fiber media.
 1. MERV: 8 according to ASHRAE 52.2.

G. Infrared Humidifier: High-intensity quartz lamps mounted above stainless-steel evaporator pan, serviceable without disconnecting water, drain, or electrical connections; prepiped and located in bypass airstream; with flush-cycle timer and solenoid drain valve.

H. Disconnect Switch: Non-locking, non-automatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.

I. Control System:
 1. Microprocessor unit-mounted panel.
 2. Fan contactor.
 3. Compressor contactor.
 4. Compressor start capacitor.
 5. Control transformer with circuit breaker.
8. Time-delay relay.
10. Smoke sensor.
11. High-temperature thermostat.
12. Solid-state, wall-mounted control panel with start-stop switch, adjustable humidity set point, and adjustable temperature set point.
13. Remote panel to monitor and change temperature and humidity set points and sensitivities of the unit and unit alarms.

J. Fan Motors:

1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load does not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for hydronic piping systems to verify actual locations of piping connections before equipment installation.

C. Examine walls, floors, and roofs for suitable conditions where computer-room air conditioners will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install computer-room air conditioners coordinated with computer-room access flooring Installer.

B. Install computer-room air conditioners level and plumb, maintaining manufacturer's recommended clearances. Install according to AHRI Guideline B.

C. Computer-Room Air-Conditioner Mounting: Install using elastomeric pads. Comply with requirements for vibration isolation devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."

3.3 CONNECTIONS

A. Piping installation requirements are specified in other heating, ventilating, and air-conditioning Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to computer-room air conditioners, allow space for service and maintenance.

C. Water and Drainage Connections: Comply with applicable requirements in Section 22116 "Domestic Water Piping." Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.

3.4 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Computer-room air conditioners will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports.

F. After startup service and performance test, change filters and flush humidifier.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain computer-room air conditioners.

END OF SECTION 23 81 23.11
SECTION 23 81 26 - SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

B. LEED Submittals:
 1. Product Data for Credit EA 4: Documentation indicating that equipment and refrigerants comply.

C. Samples for Initial Selection: For units with factory-applied color finishes.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Warranty: Sample of special warranty.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:
 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
2. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - "Procedures," and Section 7 - "Construction and System Start-up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.6 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate sizes and locations of roof equipment supports, and roof penetrations with actual equipment provided.

1.7 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:

a. For Compressor: Five year(s) from date of Substantial Completion.

b. For Parts: One year(s) from date of Substantial Completion.

c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Carrier Corporation; a unit of United Technologies Corp.
3. Mitsubishi Electric & Electronics USA, Inc.
4. SANYO North America Corporation.
5. YORK; a Johnson Controls company.

2.2 INDOOR UNITS (5 TONS OR LESS)

A. Wall-Mounted, Evaporator-Fan Components:

1. Cabinet: Enameled steel with removable panels on front and ends in color selected by Contracting Officer, and discharge drain pans with drain connection.
2. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
3. Fan: Direct drive, centrifugal.
4. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
 d. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
6. Air Filtration Section:
 a. General Requirements for Air Filtration Section:
 1) Comply with NFPA 90A.
 2) Minimum Arrestance: According to ASHRAE 52.1 and MERV according to ASHRAE 52.2.
 3) Filter-Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lifted out from access plenum.
7. Integral condensate pump.

2.3 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:
1. Casing: Steel, finished with baked enamel in color selected by Contracting Officer, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Charge: R-410A.
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.
2.4 ACCESSORIES

A. Control equipment and sequence of operation are specified in Section 23 09 23 "Direct Digital Control (DDC) System for HVAC" and Section 23 09 93.11 "Sequence of Operations for HVAC DDC."

B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.

C. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install roof-mounted, compressor-condenser components on equipment supports specified in Section 07 72 00 "Roof Accessories." Anchor units to supports with removable, cadmium-plated fasteners.

D. Equipment Mounting:
 1. Comply with requirements for vibration isolation and seismic control devices specified in Section 23 05 48 "Vibration and Seismic Controls for HVAC."

E. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 CONNECTIONS

A. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Train Government's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 23 81 26
SECTION 26 05 13 - MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes cables and related cable splices, terminations, and accessories for medium-voltage (2001 to 35,000 V) electrical distribution systems.

B. Related Requirements:

 1. Section 26 13 29.10 "Medium-Voltage, Pad-Mounted Sectionalizer Enclosure" for cable terminating sectionalizing cabinets for medium voltage electrical distribution systems.

1.2 DEFINITIONS

A. Jacket: A continuous nonmetallic outer covering for conductors or cables.

C. Sheath: A continuous metallic covering for conductors or cables.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of cable. Include splices and terminations for cables and cable accessories.

B. Sustainable Design Submittals.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

B. Material Certificates: For each type of cable and accessory.

C. Source quality-control reports.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Installer: Engage a cable splicer, trained and certified by splice material manufacturer, to install, splice, and terminate medium-voltage cable.
B. Testing Agency Qualifications: Member Company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.6 FIELD CONDITIONS

A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 1. Notify Government no fewer than seven days in advance of proposed interruption of electric service.
 2. Do not proceed with interruption of electric service without Government's written permission.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with IEEE C2 and NFPA 70.

C. Source Limitations: Obtain cables and accessories from single source from single manufacturer.

2.2 CABLES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Aetna Insulated Wire, Inc.
 2. General Cable; General Cable Corporation.
 4. Okonite Company (The).
 5. Prysmian Power Cables and Systems USA, LLC.
 6. Rome Cable Corporation.
 7. Southwire Company.

B. Cable Type: Type MV 105.

C. Conductor Insulation: Ethylene-propylene rubber.
 1. Voltage Rating: 15 kV.
 2. Insulation Thickness: 133 percent insulation level.
D. Conductor: Copper.

E. Comply with UL 1072, AEIC CS8, ICEA S-93-639/NEMA WC 74, and ICEA S-97-682.

F. Conductor Stranding: Compact round, concentric lay, Class B.

G. Strand Filling: Conductor interstices are filled with impermeable compound.

H. Shielding: Solid copper wires, helically applied over semiconducting insulation shield.

I. Shielding and Jacket: Corrugated copper drain wires embedded in extruded, chlorinated, polyethylene jacket.

J. Cable Jacket: Sunlight-resistant PVC.

2.3 CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
2. Adalet.
4. Engineered Products Company.
5. G&W Electric Company.
6. MP Husky USA Cable Tray & Cable Bus.
7. Raychem; TE Connectivity.

B. Comply with ANSI C119.4 for connectors between aluminum conductors or for connections between aluminum to copper conductors.

C. Copper-Conductor Connectors: Copper barrel crimped or aluminum barrel crimped connectors.

2.4 SOLID TERMINATIONS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
2. Adalet.
4. Engineered Products Company.
5. G&W Electric Company.
6. MP Husky USA Cable Tray & Cable Bus.
7. Raychem; TE Connectivity.

B. Shielded-Cable Terminations: Comply with the following classes of IEEE 48. Insulation class shall be equivalent to that of cable. Include shield ground strap for shielded cable terminations.
1. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief tube; multiple, molded-silicone-rubber, insulator modules; shield ground strap; and compression-type connector.

2. Class 1 Terminations: Heat-shrink type with heat-shrink inner stress control and outer nontracking tubes; multiple, molded, nontracking skirt modules; and compression-type connector.

3. Class 1 Terminations: Modular type, furnished as a kit, with stress-relief shield terminator; multiple-wet-process, porcelain, insulator modules; shield ground strap; and compression-type connector.

4. Class 1 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, compression-type connector, and end seal.

5. Class 2 Terminations, Indoors: Kit with stress-relief tube, nontracking insulator tube, shield ground strap, and compression-type connector. Include silicone-rubber tape; cold-shrink-rubber sleeve; or heat-shrink, plastic-sleeve moisture seal for end of insulation whether or not supplied with kits.

6. Class 3 Terminations: Kit with stress cone and compression-type connector.

2.5 SEPARABLE INSULATED CONNECTORS

A. Description: Modular system, complying with IEEE 386, with disconnecting, single-pole, cable terminators and with matching, stationary, plug-in, dead-front terminals designed for cable voltage and for sealing against moisture.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
2. Adalet.
4. Engineered Products Company.
5. G&W Electric Company.
6. MP Husky USA Cable Tray & Cable Bus.
7. Raychem; TE Connectivity.

C. Terminations at Distribution Points: Modular type, consisting of terminators installed on cables and modular, dead-front, terminal junctions for interconnecting cables.

D. Load-Break Cable Terminators: Elbow-type units with 200-A-load make/break and continuous-current rating; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

E. Dead-Break Cable Terminators: Elbow-type unit with 200-A continuous-current rating; designed for de-energized disconnecting and connecting; coordinated with insulation diameter, conductor size, and material of cable being terminated. Include test point on terminator body that is capacitance coupled.

F. Dead-Front Terminal Junctions: Modular bracket-mounted groups of dead-front stationary terminals that mate and match with above cable terminators. Two-, three-, or four-terminal units
as indicated, with fully rated, insulated, watertight conductor connection between terminals and complete with grounding lug, manufacturer's standard accessory stands, stainless-steel mounting brackets, and attaching hardware.

1. Protective Cap: Insulating, electrostatic-shielding, water-sealing cap with drain wire.
2. Portable Feed-Through Accessory: Two-terminal, dead-front junction arranged for removable mounting on accessory stand of stationary terminal junction.
3. Grounding Kit: Jumpered elbows, portable feed-through accessory units, protective caps, test rods suitable for concurrently grounding three phases of feeders, and carrying case.

G. Test-Point Fault Indicators: Applicable current-trip ratings and arranged for installation in test points of load-break separable connectors, and complete with self-resetting indicators capable of being installed with shotgun hot stick and tested with test tool.

H. Tool Set: Shotgun hot stick with energized terminal indicator, fault-indicator test tool, and carrying case.

2.6 SPLICE KITS

A. Description: For connecting medium voltage cables; type as recommended by cable or splicing kit manufacturer for the application.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
2. Adalet.
4. Engineered Products Company.
5. G&W Electric Company.
6. MP Husky USA Cable Tray & Cable Bus.
7. Raychem; TE Connectivity.

C. Standard: Comply with IEEE 404.

D. Splicing Products: As recommended, in writing, by splicing kit manufacturer for specific sizes, materials, ratings, and configurations of cable conductors. Include all components required for complete splice, with detailed instructions.

1. Combination tape and cold-shrink-rubber sleeve kit with rejacketing by cast-epoxy-resin encasement or other waterproof, abrasion-resistant material.
4. Premolded, EPDM splicing body kit with cable joint sealed by interference fit of mating parts and cable.
5. Separable multiway splice system with all components for the required splice configuration.

2.7 MEDIUM-VOLTAGE TAPES

A. Description: Electrical grade, insulating tape rated for medium voltage application.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
2. Adalet.
4. Engineered Products Company.
5. G&W Electric Company.
6. MP Husky USA Cable Tray & Cable Bus.
7. Raychem; TE Connectivity.

C. Ethylene/propylene rubber-based, 30-mil splicing tape, rated for 130 deg C operation. Minimum 3/4 inch wide.

D. Silicone rubber-based, 12-mil self-fusing tape, rated for 130 deg C operation. Minimum 1-1/2 inches wide.

E. Insulating-putty, 125-mil elastic filler tape. Minimum 1-1/2 inches wide.

2.8 ARC-PROOFING MATERIALS

A. Description: Fire retardant, providing arc flash protection.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. 3M.
2. Adalet.
4. Engineered Products Company.
5. G&W Electric Company.
6. MP Husky USA Cable Tray & Cable Bus.
7. Raychem; TE Connectivity.

C. Tape for First Course on Metal Objects: 10-mil-thick, corrosion-protective, moisture-resistant, PVC pipe-wrapping tape.

D. Arc-Proofing Tape: Fireproof tape, flexible, conformable, intumescent to 0.3 inch thick, and compatible with cable jacket.

E. Glass-Cloth Tape: Pressure-sensitive adhesive type, 1 inch wide.
2.9 FAULT INDICATORS

A. Indicators: Automatically reset fault indicator with inrush restraint feature, arranged to clamp to cable sheath and provide a display after a fault has occurred in cable. Instrument shall not be affected by heat, moisture, and corrosive conditions and shall be recommended by manufacturer for installation conditions.

2.10 SOURCE QUALITY CONTROL

A. Test and inspect cables according to ICEA S-97-682 before shipping.

B. Test strand-filled cables for water-penetration resistance according to ICEA T-31-610, using a test pressure of 5 psig.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cables according to IEEE 576.

B. Proof conduits prior to conductor installation by passing a wire brush mandrel and then a rubber duct swab through the conduit. Separate the wire brush and the rubber swab by 48 to 72 inches on the pull rope.

1. Wire Brush Mandrel: Consists of a length of brush approximately the size of the conduit inner diameter with stiff steel bristles and an eye on each end for attaching the pull ropes. If an obstruction is felt, pull the brush back and forth repeatedly to break up the obstruction.

2. Rubber Duct Swab: Consists of a series of rubber discs approximately the size of the conduit inner diameter on a length of steel cable with an eye on each end for attaching the pull ropes. Pull the rubber duct swab through the duct to extract loose debris from the duct.

C. Pull Conductors: Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

1. Where necessary, use manufacturer-approved pulling compound or lubricant that does not deteriorate conductor or insulation.

2. Use pulling means, including fish tape, cable, rope, and basket-weave cable grips, that do not damage cables and raceways. Do not use rope hitches for pulling attachment to cable.

3. Use pull-in guides, cable feeders, and draw-in protectors as required to protect cables during installation.

4. Do not pull cables with ends unsealed. Seal cable ends with rubber tape.

D. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
E. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

F. Install direct-buried cables on leveled and tamped bed of 3-inch-thick, clean sand. Separate cables crossing other cables or piping by a minimum of 2 inches of tamped earth, plus an additional 2 inches of sand. Install permanent markers at ends of cable runs, changes in direction, and buried splices.

G. Install "buried-cable" warning tape 12 inches above cables.

H. In manholes, handholes, pull boxes, junction boxes, and cable vaults, train cables around walls by the longest route from entry to exit; support cables at intervals adequate to prevent sag.

I. Install sufficient cable length to remove cable ends under pulling grips. Remove length of conductor damaged during pulling.

J. Install cable splices at pull points and elsewhere as indicated; use standard kits. Use dead-front separable watertight connectors in manholes and other locations subject to water infiltration.

K. Install terminations at ends of conductors, and seal multiconductor cable ends with standard kits.

L. Install separable insulated-connector components as follows:

1. Protective Cap: At each terminal junction, with one on each terminal to which no feeder is indicated to be connected.
2. Portable Feed-Through Accessory: At each terminal junction, with one on each terminal.
3. Standoff Insulator: At each terminal junction, with one on each terminal.

M. Arc Proofing: Unless otherwise indicated, arc proof medium-voltage cable at locations not protected by conduit, cable tray, direct burial, or termination materials. In addition to arc-proofing tape manufacturer's written instructions, apply arc proofing as follows:

1. Clean cable sheath.
2. Wrap metallic cable components with 10-mil pipe-wrapping tape.
3. Smooth surface contours with electrical insulation putty.
4. Apply arc-proofing tape in one half-lapped layer with coated side toward cable.
5. Band arc-proofing tape with two layers of 1-inch-wide half-lapped, adhesive, glass-cloth tape at each end of the arc-proof tape.

N. Seal around cables passing through fire-rated elements.

O. Install fault indicators on each phase where indicated.

P. Ground shields of shielded cable at terminations, splices, and separable insulated connectors. Ground metal bodies of terminators, splices, cable and separable insulated-connector fittings, and hardware.

Q. Identify cables according to Section 26 05 53 "Identification for Electrical Systems." Identify phase and circuit number of each conductor at each splice, termination, pull point, and junction.
box. Arrange identification so that it is unnecessary to move the cable or conductor to read the identification.

3.2 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:

1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters.
2. After installing medium-voltage cables and before electrical circuitry has been energized, test for compliance with requirements.
3. Perform direct-current High Potential test of each new conductor according to NETA ATS, Ch. 7.3.3. Do not exceed cable manufacturer's recommended maximum test voltage.
4. Perform Partial Discharge test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer's recommendations.
5. Perform Dissipation Factor test of each new conductor according to NETA ATS, Ch. 7.3.3 and to test equipment manufacturer's recommendations.

C. Medium-voltage cables will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 26 05 13
SECTION 26 05 19 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Copper building wire rated 600 V or less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.2 DEFINITIONS
 A. RoHS: Restriction of Hazardous Substances.
 B. VFC: Variable-frequency controller.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Sustainable Design Submittals: Lead content and recycled content; VOC data for solvents and adhesives.
 C. Product Schedule: Indicate type, use, location, and termination locations.

1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of NETA.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE
 A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.
 B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Alpha Wire Company.
2. American Bare Conductor.
3. Belden Inc.
4. Cerro Wire LLC.
5. Encore Wire Corporation.
6. General Cable Technologies Corporation.
7. Okonite Company (The).
8. Service Wire Co.
10. WESCO.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
2. RoHS compliant.
3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

E. Conductor Insulation:

1. Type TC-ER: Comply with NEMA WC 70/ICEA S-95-658 and UL 1277.
2. Type THHN and Type THWN-2: Comply with UL 83.
3. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
4. Type XHHW-2: Comply with UL 44.

F. Shield:

1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket.

2.2 CONNECTORS AND SPLICES

A. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

1. 3M Electrical Products.
2. AFC Cable Systems; a part of Atkore International.
5. Ideal Industries, Inc.
PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

C. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway, Type XHHW-2, single conductors in raceway.

B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway, Type XHHW-2, single conductors in raceway.

C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.

D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway, Type XHHW-2, single conductors in raceway.

E. Feeders Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.

F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.

G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.

H. Branch Circuits Installed below Raised Flooring: Type THHN/THWN-2, single conductors in raceway.
I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.

J. VFC Output Circuits: Type XHHW-2 in metal conduit, Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 26 05 33 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 26 05 29 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

1. Use oxide inhibitor in each splice, termination, and tap for aluminum conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 26 05 53 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.
3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly.

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
2. Perform each of the following visual and electrical tests:
 a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 b. Test bolted connections for high resistance using one of the following:
 1) A low-resistance ohmmeter.
 2) Calibrated torque wrench.
 3) Thermographic survey.
 c. Inspect compression-applied connectors for correct cable match and indentation.
 d. Inspect for correct identification.
 e. Inspect cable jacket and condition.
 f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 g. Continuity test on each conductor and cable.
 h. Uniform resistance of parallel conductors.

3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.
 a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
4. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

B. Cables will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports to record the following:

1. Procedures used.
2. Results that comply with requirements.
3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 26 05 19
PART 1 - GENERAL

1.1 SUMMARY

A. Section includes grounding and bonding systems and equipment.

B. Section includes grounding and bonding systems and equipment, plus the following special applications:
 1. Underground distribution grounding.
 2. Ground bonding common with lightning protection system.
 3. Foundation steel electrodes.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Sustainable Design Submittals.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

 a. Plans showing as-built, dimensioned locations of grounding features specified in "Field Quality Control" Article, including the following:

 1) Test wells.
 2) Ground rods.
 3) Ground rings.
 4) Grounding arrangements and connections for separately derived systems.

 b. Instructions for periodic testing and inspection of grounding features at test wells and grounding connections for separately derived systems based on NFPA 70B.

 1) Tests shall determine if ground-resistance or impedance values remain within specified maximums, and instructions shall recommend corrective action if values do not.
 2) Include recommended testing intervals.
1.4 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Certified by NETA.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by
 a qualified testing agency, and marked for intended location and application.
 B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS
 A. Manufacturers: Subject to compliance with requirements, available manufacturers offering
 products that may be incorporated into the Work include, but are not limited to the following:
 1. Burndy; Part of Hubbell Electrical Systems.
 2. Dossert; AFL Telecommunications LLC.
 3. ERICO International Corporation.
 4. Fushi Copperweld Inc.
 5. Galvan Industries, Inc.; Electrical Products Division, LLC.
 6. Harger Lightning & Grounding.
 7. ILSCO.
 8. O-Z/Gedney; a brand of Emerson Industrial Automation.
 9. Robbins Lightning, Inc.
 10. Siemens Power Transmission & Distribution, Inc.

2.3 CONDUCTORS
 A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless
 otherwise required by applicable Code or authorities having jurisdiction.
 B. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8
 inches wide and 1/16 inch thick.
 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper
 ferrules; 1-5/8 inches wide and 1/16 inch thick.
C. Grounding Bus: Predrilled rectangular bars of annealed copper. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.

E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.

F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.

G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.

H. Conduit Hubs: Mechanical type, terminal with threaded hub.

I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.

J. Lay-in Lug Connector: Mechanical type, copper rated for direct burial terminal with set screw.

K. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.

L. Signal Reference Grid Clamp: Mechanical type, stamped-steel terminal with hex head screw.

M. Straps: Solid copper, copper lugs. Rated for 600 A.

N. U-Bolt Clamps: Mechanical type, copper or copper alloy, terminal listed for direct burial.

O. Water Pipe Clamps:

1. Mechanical type, two pieces with zinc-plated bolts.

 b. Listed for direct burial.

2. U-bolt type with malleable-iron clamp and copper ground connector rated for direct burial.
2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad, Zinc-coated steel, sectional type; 3/4 inch by 10 feet.

B. Ground Plates: 1/4 inch thick, hot-dip galvanized.

PART 3 - EXECUTION

3.1 APPLICATIONS

A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, size per plan.
 1. Bury at least 30 inches below grade, and ground loop 3'-0”-8'-0” from structure.
 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
 3. Comply with ANG AFI32-1065/A2.2.

C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.

D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.
3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

A. Comply with IEEE C2 grounding requirements.

B. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches will extend above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating sleeve from 2 inches above to 6 inches below concrete. Seal floor opening with waterproof, nonshrink grout.

C. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, stranded, hard-drawn copper bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.

D. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.5 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:

1. Feeders and branch circuits.
2. Lighting circuits.
3. Receptacle circuits.
5. Three-phase motor and appliance branch circuits.
6. Flexible raceway runs.

C. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
D. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.

E. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

F. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure, and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

G. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

H. Metallic Fences: Comply with requirements of IEEE C2.
 1. Grounding Conductor: Bare, tinned copper, not less than No. 8 AWG and as otherwise indicated.
 2. Gates: Shall be bonded to the grounding conductor with a flexible bonding jumper.
 3. Barbed Wire: Strands shall be bonded to the grounding conductor.

3.6 INSTALLATION

A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.

B. Ground Bonding Common with Lightning Protection System: Comply with NFPA 780 and UL 96 when interconnecting with lightning protection system. Bond electrical power system ground directly to lightning protection system grounding conductor at closest point to electrical service grounding electrode. Use bonding conductor sized same as system grounding electrode conductor, and install in conduit.

C. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.

D. Test Wells: Ground rod driven through drilled hole in bottom of handhole. Handholes are specified in Section 26 05 43 "Underground Ducts and Raceways for Electrical Systems," and shall be at least 12 inches deep, with cover.
1. Install at least one test well for each service unless otherwise indicated. Install at the ground rod electrically closest to service entrance. Set top of test well flush with finished grade or floor.

E. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.

1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

F. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building’s main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

G. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

H. Grounding for Steel Building Structure: Install a driven ground rod at base of each corner column and at intermediate exterior columns at distances not more than 60 feet apart.

I. Ground Ring: Install a grounding conductor, electrically connected to each building structure ground rod and to each steel column and indicated item, extending around the perimeter of building, area or item indicated.

1. Install tinned-copper conductor as shown on plans for ground ring and for taps to building steel.
2. Bury ground ring 30” deep and not less than 3’ to 8’ from building’s foundation.
 a. Reference ANG AFI32-1065/A2.2.

J. Concrete-Encased Grounding Electrode (Ufer Ground): Fabricate according to NFPA 70; use a minimum of 20 feet of bare copper conductor, size as indicated on plans.

1. If concrete foundation is less than 20 feet long, coil excess conductor within base of foundation.
2. Bond grounding conductor to reinforcing steel in at least four locations and to anchor bolts. Extend grounding conductor below grade and connect to building's grounding grid or to grounding electrode external to concrete.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.

2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at ground test wells, and at individual ground rods. Make tests at ground rods before any conductors are connected.

 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.

 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each test well, ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

C. Grounding system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

E. Report measured ground resistances that exceed the following values:

 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
 2. Power Distribution Units or Panelboards Serving Electronic Equipment: 1 ohm(s).

F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Contracting Officer promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 05 26
SECTION 26 05 29 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Hangers and supports for electrical equipment and systems.
3. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
4. Fabricated metal equipment support assemblies for equipment not mounted on walls including but not limited to:
 a. Transformers.
 b. Panels.
 c. Switches.
 d. Utility reels.
 e. Ground mounted free standing equipment frames.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:

 a. Hangers.
 b. Steel slotted support systems.
 c. Nonmetallic support systems.
 d. Trapeze hangers.
 e. Clamps.
 f. Turnbuckles.
 g. Sockets.
 h. Eye nuts.
 i. Saddles.
 j. Brackets.
 k. Fabricated metal equipment support assemblies.

2. Include rated capacities and furnished specialties and accessories.

B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
1. Trapeze hangers. Include product data for components.
2. Steel slotted-channel systems.
3. Nonmetallic slotted-channel systems.
4. Equipment supports.
5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

C. Delegated-Design Submittal: For hangers and supports for electrical systems.
 1. Include design calculations and details of trapeze hangers.
 2. Include design calculations for seismic restraints.

1.3 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Certificates: For hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Welding certificates.

1.4 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

B. Welding Qualifications: Qualify procedures and personnel according to the following:
 1. AWS D1.1/D1.1M.
 2. AWS D1.2/D1.2M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design hanger and support system.

B. Seismic Performance: Hangers and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
1. The term "withstand" means "the supported equipment and systems will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."

2. Seismic Importance Factor: 1.0.

3. Spectral Acceleration for Short Periods, S_s: 0.240.

4. Spectral Acceleration for 1 Sec Period, S_1: 0.103.

5. Site Class: D.

6. Design Spectral Response Acceleration Short Period, S_{DS}: 0.256.

7. Design Spectral Response Acceleration 1 Sec Period, S_{D1}: 0.164.

8. Seismic Design Category: C

 a. Response Modification Coefficient, R: 3.
 b. Deflection Amplification Factor, C_s: 3.
 c. Seismic Response Coefficient, C_s: 0.085.
 d. Design Base Shear, V: 296 Kips.

10. Analysis Procedure: Equivalent lateral force procedure.

C. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

 1. Flame Rating: Class 1.
 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. ERICO International Corporation.
 d. Flex-Strut Inc.
 e. GS Metals Corp.
 f. G-Strut.
 g. Haydon Corporation.
 h. Metal Ties Innovation.
 i. Thomas & Betts Corporation; A Member of the ABB Group.
 j. Unistrut; Part of Atkore International.

4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
6. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
7. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
8. Channel Dimensions: Selected for applicable load criteria.

B. Aluminum Slotted Support Systems: Comply with MFMA-4 factory-fabricated components for field assembly.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Cooper Industries, Inc.
 b. Flex-Strut Inc.
 c. Haydon Corporation.
 d. MKT Metal Manufacturing.
 e. Thomas & Betts Corporation; A Member of the ABB Group.

3. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
4. Painted Coatings: Manufacturer's standard painted coating applied according to MFMA-4.
5. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
6. Channel Dimensions: Selected for applicable load criteria.

C. Nonmetallic Slotted Support Systems: Structural-grade, factory-formed, glass-fiber-resin channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c., in at least one surface.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. B-line, an Eaton business.
 c. Fabco Plastics Wholesale Limited.
 d. G-Strut.
 e. Haydon Corporation.

3. Fittings and Accessories: Products provided by channel and angle manufacturer and designed for use with those items.
4. Fitting and Accessory Materials: Same as those for channels and angles, except metal items may be stainless steel.
5. Rated Strength: Selected to suit applicable load criteria.
6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

D. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

E. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

F. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

G. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:

1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Hilti, Inc.
 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 3) MKT Fastening, LLC.

2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) B-line, an Eaton business.
 2) Empire Tool and Manufacturing Co., Inc.
 3) Hilti, Inc.
 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.

3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
6. Toggle Bolts: All-steel springhead type.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
B. Materials: Comply with requirements in Section 05 50 00 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems unless requirements in this Section are stricter.
B. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMTs, IMCs, and RMCs as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted or other support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
B. Raceway Support Methods: In addition to methods described in NECA 1, EMTs, IMCs, and RMCs may be supported by openings through structure members, according to NFPA 70.
C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
6. To Steel: Welded threaded studs complying with AWS D1.1/D1.1M, with lock washers and nuts.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate by means that comply with seismic-restraint strength and anchorage requirements.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Comply with installation requirements in Section 05 50 00 "Metal Fabrications" for site-fabricated metal supports.

B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 30 00 "Cast-in-Place Concrete."
C. Anchor equipment to concrete base as follows:
 1. Place and secure anchorage devices. Use supported equipment manufacturer’s setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 3. Install anchor bolts according to anchor-bolt manufacturer’s written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Touchup: Comply with requirements in Section 09 91 13 "Exterior Painting" and Section 09 91 23 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 05 29
SECTION 26 05 33 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Nonmetal conduits, tubing, and fittings.
 3. Metal wireways and auxiliary gutters.
 4. Nonmetal wireways and auxiliary gutters.
 5. Surface raceways.

1.2 DEFINITIONS

A. ARC: Aluminum rigid conduit.
B. GRC: Galvanized rigid steel conduit.
C. IMC: Intermediate metal conduit.

1.3 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
B. Sustainable Design Submittals: VOC data for solvents and adhesives.
C. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. AFC Cable Systems; a part of Atkore International.
 2. Allied Tube & Conduit; a part of Atkore International.
 3. Anamet Electrical, Inc.
5. Electri-Flex Company.
6. FSR Inc.
11. Picoma Industries, Inc.
12. Plasti-Bond.
15. Thomas & Betts Corporation; A Member of the ABB Group.
16. Topaz Electric; a division of Topaz Lighting Corp.
17. Western Tube and Conduit Corporation.

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. ARC: Comply with ANSI C80.5 and UL 6A.

E. IMC: Comply with ANSI C80.6 and UL 1242.

F. EMT: Comply with ANSI C80.3 and UL 797.

G. FMC: Comply with UL 1; zinc-coated steel or aluminum.

H. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

I. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.

1. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 886 and NFPA 70.
2. Fittings for EMT:
 a. Material: Steel.
 b. Type: Compression.

3. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.

4. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

J. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
2.2 NONMETALLIC CONDUITS, TUBING, AND FITTINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AFC Cable Systems; a part of Atkore International.
2. Anamet Electrical, Inc.
3. Arnco Corporation.
4. CANTEX INC.
5. CertainTeed Corporation.
7. Electri-Flex Company.
8. Kraloy.
10. Niedax Inc.
11. RACO; Hubbell.

B. Listing and Labeling: Nonmetallic conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. ENT: Comply with NEMA TC 13 and UL 1653.

D. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.

E. LFNC: Comply with UL 1660.

F. Rigid HDPE: Comply with UL 651A.

G. Continuous HDPE: Comply with UL 651B.

H. Coilable HDPE: Preassembled with conductors or cables, and complying with ASTM D 3485.

I. RTRC: Comply with UL 1684A and NEMA TC 14.

J. Fittings for ENT and RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.

K. Fittings for LFNC: Comply with UL 514B.

L. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. B-line, an Eaton business.
2. Hoffman; a brand of Pentair Equipment Protection.
3. MonoSystems, Inc.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Hinged type unless otherwise indicated.

E. Finish: Manufacturer's standard enamel finish.

2.4 NONMETALLIC WIREFWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Allied Moulded Products, Inc.
2. Hoffman; a brand of Pentair Equipment Protection.
3. Lamson & Sessions.

B. Listing and Labeling: Nonmetallic wireways and auxiliary gutters shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Description: Fiberglass polyester, extruded and fabricated to required size and shape, without holes or knockouts. Cover shall be gasketed with oil-resistant gasket material and fastened with captive screws treated for corrosion resistance. Connections shall be flanged and have stainless-steel screws and oil-resistant gaskets.

D. Description: PVC, extruded and fabricated to required size and shape, and having snap-on cover, mechanically coupled connections, and plastic fasteners.

E. Fittings and Accessories: Couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings shall match and mate with wireways as required for complete system.

F. Solvents and Adhesives: As recommended by conduit manufacturer.
2.5 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. MonoSystems, Inc.
 c. Panduit Corp.

C. Surface Nonmetallic Raceways: Two- or three-piece construction, complying with UL 5A, and manufactured of rigid PVC with texture and color selected by Architect from manufacturer's standard colors. Product shall comply with UL 94 V-0 requirements for self-extinguishing characteristics.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Hubbell Incorporated.
 b. MonoSystems, Inc.
 c. Panduit Corp.

D. Tele-Power Poles:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. MonoSystems, Inc.
 b. Panduit Corp.

3. Fittings and Accessories: Dividers, end caps, covers, cutouts, wiring harnesses, devices, mounting materials, and other fittings shall match and mate with tele-power pole as required for complete system.

2.6 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Adalet.
3. EGS/Appleton Electric.
5. FSR Inc.
6. Hoffman; a brand of Pentair Equipment Protection.
8. Kraloy.
10. MonoSystems, Inc.
11. Oldcastle Enclosure Solutions.
13. Plasti-Bond.
14. RACO; Hubbell.
15. Spring City Electrical Manufacturing Company.
16. Thomas & Betts Corporation; A Member of the ABB Group.
17. Topaz Electric; a division of Topaz Lighting Corp.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.

F. Metal Floor Boxes:
 1. Material: Cast metal or sheet metal.
 2. Type: Fully adjustable.
 3. Shape: Rectangular.
 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

G. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.

H. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

I. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum or galvanized, cast iron with gasketed cover.

J. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
K. Device Box Dimensions: 4 inches square by 2-1/8 inches deep or 4 inches by 2-1/8 inches by 2-1/8 inches deep.

L. Gangable boxes are prohibited.

M. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

N. Cabinets:
 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.
 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC; IMC; RNC, Type EPC-40-PVC; RNC, Type EPC-80-PVC.
 2. Concealed Conduit, Aboveground: GRC; IMC; EMT; RNC, Type EPC-40-PVC.
 3. Underground Conduit: RNC, Type EPC-40-PVC, Type EPC-80-PVC.
 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC, LFNC.

B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT, RNC identified for such use.
 3. Exposed and Subject to Severe Physical Damage: GRC, IMC. Raceway locations include the following:
 a. Loading dock.
 b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 c. Mechanical rooms.
 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
6. Damp or Wet Locations: GRC, IMC.
7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel or nonmetallic in institutional and commercial kitchens and damp or wet locations.

C. Minimum Raceway Size: 3/4-inch trade size.

D. Raceway Fittings: Compatible with raceways and suitable for use and location.
1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
2. PVC Externally Coated, Rigid Steel Conduits: Use only fittings listed for use with this type of conduit. Patch and seal all joints, nicks, and scrapes in PVC coating after installing conduits and fittings. Use sealant recommended by fitting manufacturer and apply in thickness and number of coats recommended by manufacturer.
4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

E. Install nonferrous conduit or tubing for circuits operating above 60 Hz. Where aluminum raceways are installed for such circuits and pass through concrete, install in nonmetallic sleeve.

F. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.

G. Install surface raceways only where indicated on Drawings.

H. Do not install nonmetallic conduit where ambient temperature exceeds 120 deg F.

3.2 INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.
F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches of enclosures to which attached.

I. Raceways Embedded in Slabs:

1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-footintervals.
2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
3. Arrange raceways to keep a minimum of 2 inches of concrete cover in all directions.
4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.

J. Stub-ups to Above Recessed Ceilings:

1. Use EMT, IMC, or RMC for raceways.
2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

K. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

L. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

M. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

N. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

O. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

P. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

Q. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
R. Surface Raceways:

1. Install surface raceway with a minimum 2-inch radius control at bend points.
2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

S. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

T. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where an underground service raceway enters a building or structure.
3. Where otherwise required by NFPA 70.

U. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

V. Expansion-Joint Fittings:

1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 d. Attics: 135 deg F temperature change.
3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.

W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.
2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

AA. Locate boxes so that cover or plate will not span different building finishes.

BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

DD. Set metal floor boxes level and flush with finished floor surface.

EE. Set nonmetallic floor boxes level. Trim after installation to fit flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.5 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.
1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 26 05 33
1.1 SUMMARY

A. Section Includes:
 1. Metal conduits and fittings, including GRC and PVC-coated steel conduit.
 2. Rigid nonmetallic duct.
 3. Flexible nonmetallic duct.
 4. Duct accessories.
 5. Precast concrete handholes.
 6. Polymer concrete handholes and boxes with polymer concrete cover.
 7. Fiberglass handholes and boxes with polymer concrete cover.
 8. Fiberglass handholes and boxes.
 9. High-density plastic boxes.

1.2 DEFINITIONS

A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.

B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.

C. Duct Bank:
 1. Two or more ducts installed in parallel, with or without additional casing materials.
 2. Multiple duct banks.

D. GRC: Galvanized rigid (steel) conduit.

E. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include duct-bank materials, including spacers and miscellaneous components.
 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
3. Include accessories for manholes, handholes, boxes, and other utility structures.
4. Include underground-line warning tape.
5. Include warning planks.

B. Shop Drawings:

1. Precast or Factory-Fabricated Underground Utility Structures:
 a. Include plans, elevations, sections, details, attachments to other work, and accessories.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include reinforcement details.
 d. Include frame and cover design and manhole chimneys.
 e. Include ladder details.
 f. Include grounding details.
 g. Include dimensioned locations of cable rack inserts, pulling-in and lifting irons, and sumps.
 h. Include joint details.

2. Factory-Fabricated Handholes and Boxes Other Than Precast Concrete:
 a. Include dimensioned plans, sections, and elevations, and fabrication and installation details.
 b. Include duct entry provisions, including locations and duct sizes.
 c. Include cover design.
 d. Include grounding details.
 e. Include dimensioned locations of cable rack inserts, and pulling-in and lifting irons.

C. Sustainable Design Submittals: VOC data for adhesives and sealants.

1.4 MAINTENANCE MATERIALS SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Qualified according to ASTM E 329 for testing indicated.

1.6 FIELD CONDITIONS

A. Interruption of Existing Electrical Service: Do not interrupt electrical service to facilities occupied by Government or others unless permitted under the following conditions, and then only after arranging to provide temporary electrical service according to requirements indicated:
1. Notify Government no fewer than seven days in advance of proposed interruption of electrical service.
2. Do not proceed with interruption of electrical service without Government’s written permission.

B. Ground Water: Assume ground-water level is at grade level unless a lower water table is noted on Drawings.

PART 2 - PRODUCTS

2.1 METAL CONDUIT AND FITTINGS

A. GRC: Comply with ANSI C80.1 and UL 6.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. AFC Cable Systems; a part of Atkore International.
2. Allied Tube & Conduit; a part of Atkore International.
3. Anamet Electrical, Inc.
5. Electri-Flex Company.
6. FSR Inc.
11. Picoma Industries, Inc.
12. Plasti-Bond.

C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.2 RIGID NONMETALLIC DUCT

A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. ARNCO Corp.
2. Beck Manufacturing.
3. CANTEX INC.
7. ElecSys, Inc.
8. Electri-Flex Company.
9. Endot Industries Inc.
10. IPEX USA LLC.
11. Lamson & Sessions.
12. Manhattan/CDT.

C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 FLEXIBLE NONMETALLIC DUCTS

A. HDPE Duct: Type EPEC-40 HDPE, complying with NEMA TC 7 and UL 651A.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. ARNCO Corp.
 b. Carlon; a brand of Thomas & Betts Corporation.
 d. Opti-Com Manufacturing Network, Inc (OMNI).

2. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.

2.4 DUCT ACCESSORIES

A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Allied Tube & Conduit; a part of Atkore International.
 b. CANTEX INC.
 c. Carlon; a brand of Thomas & Betts Corporation.
 d. IPEX USA LLC.
 e. PenCell Plastics.
B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 26 05 53 "Identification for Electrical Systems."

2.5 PRECAST CONCRETE HANDBOLES AND BOXES

A. Description: Factory-fabricated, reinforced-concrete, monolithically poured walls and bottom unless open-bottom enclosures are indicated. Frame and cover shall form top of enclosure and shall have load rating consistent with that of handhole or box.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Christy Concrete Products.
2. Elmhurst-Chicago Stone Co.
3. Oldcastle Precast, Inc.
4. Rinker Group, Ltd.
5. Riverton Concrete Products.
6. Utility Concrete Products, LLC.

C. Comply with ASTM C 858 for design and manufacturing processes.

D. Frame and Cover: Weatherproof steel frame, with hinged steel access door assembly with tamper-resistant, captive, cover-securing bolts.

 1. Cover Hinges: Concealed, with hold-open ratchet assembly.
 2. Cover Handle: Recessed.

E. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

F. Cover Legend: Molded lettering, as indicated for each service.

G. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.

H. Extensions and Slabs: Designed to mate with bottom of enclosure. Same material as enclosure.

 1. Extension shall provide increased depth of 12 inches.
 2. Slab: Same dimensions as bottom of enclosure, and arranged to provide closure.

I. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

J. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.

 1. Center window location.
2. Knockout panels shall be located no less than 6 inches from interior surfaces of walls, floors, or frames and covers of handholes, but close enough to corners to facilitate racking of cables on walls.

3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.

4. Knockout panels shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.

5. Knockout panels shall be 1-1/2 to 2 inches thick.

K. Duct Entrances in Handhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.

1. Type and size shall match fittings to duct to be terminated.

2. Fittings shall align with elevations of approaching duct and be located near interior corners of handholes to facilitate racking of cable.

L. Handholes 12 inches wide by 24 inches long and larger shall have inserts for cable racks and pulling-in irons installed before concrete is poured.

2.6 POLYMER CONCRETE HANDHOLES AND BOXES WITH POLYMER CONCRETE COVER

A. Description: Molded of sand and aggregate, bound together with a polymer resin, and reinforced with steel or fiberglass or a combination of the two.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Armorcast Products Company.
2. Carson Industries LLC.
3. NewBasis.

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, as indicated for each service.
I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.7 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Armorcast Products Company.
2. Carson Industries LLC.
3. Christy Concrete Products.

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, as indicated for each service.

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.
2.8 FIBERGLASS HANDHOLES AND BOXES

A. Description: Molded of fiberglass-reinforced polyester resin, with covers made of polymer concrete.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Carson Industries LLC.
 2. Christy Concrete Products.
 3. Nordic Fiberglass, Inc.

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, as indicated for each service.

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.9 HIGH-DENSITY PLASTIC BOXES

A. Description: Injection molded of HDPE or copolymer-polypropylene. Cover shall be made of polymer concrete.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Carson Industries LLC.
 2. Nordic Fiberglass, Inc.

D. Color: Green.

E. Configuration: Units shall be designed for flush burial and have closed bottom unless otherwise indicated.

F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.

G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.

H. Cover Legend: Molded lettering, as indicated for each service.

I. Direct-Buried Wiring Entrance Provisions: Knockouts equipped with insulated bushings or end-bell fittings, selected to suit box material, sized for wiring indicated, and arranged for secure, fixed installation in enclosure wall.

J. Duct Entrance Provisions: Duct-terminating fittings shall mate with entering duct for secure, fixed installation in enclosure wall.

K. Handholes 12 inches wide by 24 inches long and larger shall have factory-installed inserts for cable racks and pulling-in irons.

2.10 PRECAST MANHOLES

A. Description: One-piece units and units with interlocking mating sections, complete with accessories, hardware, and features.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Carder Concrete Products.
2. Christy Concrete Products.
3. Elmhurst-Chicago Stone Co.
4. Oldcastle Precast, Inc.
5. Rinker Group, Ltd.
6. Riverton Concrete Products.
7. Utility Concrete Products, LLC.
8. Utility Vault Co.

C. Comply with ASTM C 858.

D. Structural Design Loading: Comply with requirements in "Underground Enclosure Application" Article.
E. Knockout Panels: Precast openings in walls, arranged to match dimensions and elevations of approaching duct, plus an additional 12 inches vertically and horizontally to accommodate alignment variations.

1. Center window location.
2. Knockout panels shall be located no less than 6 inches from interior surfaces of walls, floors, or roofs of manholes, but close enough to corners to facilitate racking of cables on walls.
3. Knockout panel opening shall have cast-in-place, welded-wire fabric reinforcement for field cutting and bending to tie in to concrete envelopes of duct.
4. Knockout panel shall be framed with at least two additional No. 3 steel reinforcing bars in concrete around each opening.
5. Knockout panels shall be 1-1/2 to 2 inches thick.

F. Duct Entrances in Manhole Walls: Cast end-bell or duct-terminating fitting in wall for each entering duct.

1. Type and size shall match fittings to duct to be terminated.
2. Fittings shall align with elevations of approaching duct and be located near interior corners of manholes to facilitate racking of cable.

G. Ground Rod Sleeve: Provide a 3-inch PVC sleeve in manhole floors 2 inches from the wall adjacent to, but not underneath, the duct entering the structure.

H. Joint Sealant: Asphaltic-butyl material with adhesion, cohesion, flexibility, and durability properties necessary to withstand maximum hydrostatic pressures at the installation location with the ground-water level at grade.

2.11 CAST-IN-PLACE MANHOLES

A. Description: Underground utility structures, constructed in place, complete with accessories, hardware, and features. Include concrete knockout panels for duct entrance and sleeve for ground rod.

B. Materials: Comply with ASTM C 858 and with Section 03 30 00 "Cast-in-Place Concrete."

2.12 UTILITY STRUCTURE ACCESSORIES

A. Accessories for Utility Structures: Utility equipment and accessory items used for utility structure access and utility support, listed and labeled for intended use and application.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Bilco Company (The).
2. Campbell Foundry Company.
3. Carder Concrete Products.
4. Christy Concrete Products.
5. EJ.
7. McKinley Iron Works, Inc.
10. Oldcastle Precast, Inc.
14. Rinker Group, Ltd.
15. Riverton Concrete Products.
17. Utility Concrete Products, LLC.
18. Utility Vault Co.

C. Manhole Frames, Covers, and Chimney Components: Comply with structural design loading specified for manhole.

1. Frame and Cover: Weatherproof, gray cast iron complying with ASTM A 48/A 48M, Class 30B with milled cover-to-frame bearing surfaces; diameter, 29 inches.
 a. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
 b. Special Covers: Recess in face of cover designed to accept finish material in paved areas.
 c. Cover shall be lockable.

2. Cover Legend: Cast in. Selected to suit system.
 a. Legend: "ELECTRIC-LV" for duct systems with power wires and cables for systems operating at 600 V and less.
 b. Legend: "ELECTRIC-HV" for duct systems with medium-voltage cables.

3. Manhole Chimney Components: Precast concrete rings with dimensions matched to those of roof opening.
 a. Seal joints watertight using preformed plastic or rubber complying with ASTM C 990. Install sealing material according to sealant manufacturers’ written instructions.

E. Pulling Eyes in Concrete Walls: Eyebolt with reinforcing-bar fastening insert, 2-inch-diameter eye, and 1-by-4-inch bolt.

1. Working Load Embedded in 6-Inch, 4000-psi Concrete: 13,000-lbf minimum tension.

F. Pulling Eyes in Nonconcrete Walls: Eyebolt with reinforced fastening, 1-1/4-inch-diameter eye, rated 2500-lbf minimum tension.
G. Pulling-in and Lifting Irons in Concrete Floors: 7/8-inch-diameter, hot-dip galvanized, bent steel rod; stress relieved after forming; and fastened to reinforcing rod. Exposed triangular opening.

1. Ultimate Yield Strength: 40,000-lbf shear and 60,000-lbf tension.

H. Bolting Inserts for Concrete Utility Structure Cable Racks and Other Attachments: Flared, threaded inserts of noncorrosive, chemical-resistant, nonconductive thermoplastic material; 1/2-inch ID by 2-3/4 inches deep, flared to 1-1/4 inches minimum at base.

1. Tested Ultimate Pullout Strength: 12,000 lbf minimum.

I. Ground Rod Sleeve: 3-inch PVC sleeve in manhole floors 2 inches from the wall adjacent to, but not underneath, the ducts routed from the facility.

J. Expansion Anchors for Installation after Concrete Is Cast: Zinc-plated, carbon-steel-wedge type with stainless-steel expander clip with 1/2-inch bolt, 5300-lbf rated pullout strength, and minimum 6800-lbf rated shear strength.

K. Cable Rack Assembly: Steel, hot-dip galvanized, except insulators.

1. Stanchions: T-section or channel; 2-1/4-inch nominal size; punched with 14 holes on 1-1/2-inch centers for cable-arm attachment.

2. Arms: 1-1/2 inches wide, lengths ranging from 3 inches with 450-lb minimum capacity to 18 inches with 250-lb minimum capacity. Arms shall have slots along full length for cable ties and be arranged for secure mounting in horizontal position at any vertical location on stanchions.

L. Cable Rack Assembly: Nonmetallic. Components fabricated from nonconductive, fiberglass-reinforced polymer.

1. Stanchions: Nominal 36 inches high by 4 inches wide, with minimum of nine holes for arm attachment.

2. Arms: Arranged for secure, drop-in attachment in horizontal position at any location on cable stanchions, and capable of being locked in position. Arms shall be available in lengths ranging from 3 inches with 450-lb minimum capacity to 20 inches with 250-lb minimum capacity. Top of arm shall be nominally 4 inches wide, and arm shall have slots along full length for cable ties.

M. Duct-Sealing Compound: Nonhardening, safe for contact with human skin, not deleterious to cable insulation, and workable at temperatures as low as 35 deg F. Capable of withstanding temperature of 300 deg F without slump and adhering to clean surfaces of plastic ducts, metallic conduit, conduit and duct coatings, concrete, masonry, lead, cable sheaths, cable jackets, insulation materials, and common metals.

N. Fixed Manhole Ladders: Arranged for attachment to roof or wall and floor of manhole. Ladder and mounting brackets and braces shall be fabricated from nonconductive, structural-grade, fiberglass-reinforced resin.
O. Portable Manhole Ladders: UL-listed, heavy-duty fiberglass specifically designed for portable use for access to electrical manholes. Minimum length equal to distance from deepest manhole floor to grade plus 36 inches. One required.

P. Cover Hooks: Heavy duty, designed for lifts 60 lbf and greater. Two required.

2.13 SOURCE QUALITY CONTROL

A. Test and inspect precast concrete utility structures according to ASTM C 1037.

B. Nonconcrete Handhole and Pull-Box Prototype Test: Test prototypes of manholes and boxes for compliance with SCTE 77. Strength tests shall be for specified tier ratings of products supplied.
 1. Strength tests of complete boxes and covers shall be by an independent testing agency or manufacturer. A qualified registered professional engineer shall certify tests by manufacturer.
 2. Testing machine pressure gages shall have current calibration certification, complying with ISO 9000 and ISO 10012, and traceable to NIST standards.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate layout and installation of duct, duct bank, manholes, handholes, and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Contracting Officer if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.

B. Coordinate elevations of duct and duct-bank entrances into manholes, handholes, and boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Contracting Officer.

C. Clear and grub vegetation to be removed, and protect vegetation to remain. Remove and stockpile topsoil for reapplication.

3.2 UNDERGROUND DUCT APPLICATION

A. Duct for Electrical Cables More Than 600 V: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.

B. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, concrete-encased unless otherwise indicated.
C. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

D. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

E. Bored Underground Duct: Type EPEC-40-HDPE unless otherwise indicated.

F. Underground Ducts Crossing Paved Paths, Walks, and Driveways, Roadways, and Railroads: Type EPC-40 PVC RNC, encased in reinforced concrete.

G. Stub-ups: Concrete-encased GRC.

3.3 UNDERGROUND ENCLOSURE APPLICATION

A. Handholes and Boxes for 600 V and Less:
 1. Units Located in Aircraft Traffic Paths: Aircraft structural load rating of 100,000 pound wheel load with 250 psi tire pressures.
 2. Units in Roadways and Other Deliberate Traffic Paths: Precast concrete. AASHTO HB 17, H-20 structural load rating.
 3. Units in Driveway, Parking Lot, and Off-Roadway Locations, Subject to Occasional, Nondeliberate Loading by Heavy Vehicles: Precast concrete, AASHTO HB 17, H-20 structural load rating.
 4. Units in Sidewalk and Similar Applications with a Safety Factor for Nondeliberate Loading by Vehicles: Polymer concrete units, SCTE 77, Tier 8; High-density plastic, SCTE 77, Tier 8 structural load rating.
 5. Units Subject to Light-Duty Pedestrian Traffic Only: Fiberglass-reinforced polyester resin, High-density plastic, structurally tested according to SCTE 77 with 3000-lbf vertical loading.
 6. Cover design load shall not exceed the design load of the handhole or box.

B. Manholes: Precast or cast-in-place concrete.
 1. Units Located in Aircraft Traffic Paths: Aircraft structural load rating of 100,000 pound wheel load with 250 psi tire pressures.
 2. Units Located in Roadways and Other Deliberate Traffic Paths by Heavy or Medium Vehicles: H-20 structural load rating according to AASHTO HB 17.
 3. Units Not Located in Deliberate Traffic Paths by Heavy or Medium Vehicles: H-10 load rating according to AASHTO HB 17.

3.4 EARTHWORK

A. Excavation and Backfill: Do not use heavy-duty, hydraulic-operated, compaction equipment.

B. Restoration: Replace area immediately after backfilling is completed or after construction vehicle traffic in immediate area is complete.
C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.

D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.

E. Cut and patch existing pavement in the path of underground duct, duct bank, and underground structures according to "Cutting and Patching" Article in Section 01 73 00 "Execution."

3.5 DUCT AND DUCT-BANK INSTALLATION

A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.

B. Install duct according to NEMA TCB 2.

C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.

D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.

1. Duct shall have maximum of two 90 degree bends or the total of all bends shall be no more 180 degrees between pull points.

E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

F. Installation Adjacent to High-Temperature Steam Lines: Where duct is installed parallel to underground steam lines, perform calculations showing the duct will not be subject to environmental temperatures above 40 deg C. Where environmental temperatures are calculated to rise above 40 deg C, and anywhere the duct crosses above an underground steam line, install insulation blankets listed for direct burial to isolate the duct bank from the steam line.

G. End Bell Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use end bells, spaced approximately 10 inches o.c. for 5-inch duct, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to end-bell spacing 10 feet from the end bell, without reducing duct slope and without forming a trap in the line.

2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line direct-buried duct with calculated expansion of more than 3/4 inch.

3. Grout end bells into structure walls from both sides to provide watertight entrances.
H. Terminator Entrances to Manholes and Concrete and Polymer Concrete Handholes: Use manufactured, cast-in-place duct terminators, with entrances into structure spaced approximately 6 inches o.c. for 4-inch duct, and vary proportionately for other duct sizes.

1. Begin change from regular spacing to terminator spacing 10 feet from the terminator, without reducing duct line slope and without forming a trap in the line.
2. Expansion and Deflection Fittings: Install an expansion and deflection fitting in each duct in the area of disturbed earth adjacent to manhole or handhole. Install an expansion fitting near the center of all straight line duct with calculated expansion of more than 3/4 inch.

I. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition. Install GRC penetrations of building walls as specified in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

J. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.

L. Concrete-Encased Ducts and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct.
2. Width: Excavate trench 12 inches wider than duct on each side.
3. Width: Excavate trench 3 inches wider than duct on each side.
4. Depth: Install so top of duct envelope is at least 24 inches below finished grade in areas not subject to deliberate traffic, and at least 30 inches below finished grade in deliberate traffic paths for vehicles unless otherwise indicated.
5. Support duct on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to duct to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
7. Minimum Space between Duct: 3 inches between edge of duct and exterior envelope wall, 2 inches between ducts for like services, and 4 inches between power and communications ducts.
8. Elbows: Use manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct run.

a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab

c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.

1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab

9. Reinforcement: Reinforce concrete-encased duct where crossing disturbed earth and where indicated. Arrange reinforcing rods and ties without forming conductive or magnetic loops around ducts or duct groups.

10. Forms: Use walls of trench to form side walls of duct bank where soil is self-supporting and concrete envelope can be poured without soil inclusions; otherwise, use forms.

11. Concrete Cover: Install a minimum of 3 inches of concrete cover between edge of duct to exterior envelope wall, 2 inches between duct of like services, and 4 inches between power and communications ducts.

12. Concreting Sequence: Pour each run of envelope between manholes or other terminations in one continuous operation.

a. Start at one end and finish at the other, allowing for expansion and contraction of duct as its temperature changes during and after the pour. Use expansion fittings installed according to manufacturer's written instructions, or use other specific measures to prevent expansion-contraction damage.

b. If more than one pour is necessary, terminate each pour in a vertical plane and install 3/4-inch reinforcing-rod dowels extending a minimum of 18 inches into concrete on both sides of joint near corners of envelope.

13. Pouring Concrete: Comply with requirements in "Concrete Placement" Article in Section 03 30 00 "Cast-in-Place Concrete." Place concrete carefully during pours to prevent voids under and between duct and at exterior surface of envelope. Do not allow a heavy mass of concrete to fall directly onto ducts. Allow concrete to flow around duct and rise up in middle, uniformly filling all open spaces. Do not use power-driven agitating equipment unless specifically designed for duct-installation application.

M. Direct-Buried Duct and Duct Bank:

1. Excavate trench bottom to provide firm and uniform support for duct.
2. Width: Excavate trench 12 inches wider than duct on each side.
3. Width: Excavate trench 3 inches wider than duct on each side.
4. Depth: Install top of duct at least 36 inches below finished grade unless otherwise indicated.
5. Set elevation of bottom of duct bank below frost line.
6. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
7. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than five spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and
to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.

8. Install duct with a minimum of 3 inches between ducts for like services and 6 inches between power and communications duct.

9. Install manufactured GRC elbows for stub-ups, at building entrances, and at changes of direction in duct.

 a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.

 b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab

 c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.

 1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab

10. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction.

 a. Place minimum 3 inches of sand as a bed for duct. Place sand to a minimum of 6 inches above top level of duct.

 b. Place minimum 6 inches of engineered fill above concrete encasement of duct.

N. Warning Planks: Bury warning planks approximately 12 inches above direct-buried duct, placing them 24 inches o.c. Align planks along the width and along the centerline of duct or duct bank. Provide an additional plank for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional planks 12 inches apart, horizontally.

O. Underground-Line Warning Tape: Bury conducting underground line specified in Section 26 05 53 "Identification for Electrical Systems" no less than 12 inches above all concrete-encased duct and duct banks and approximately 12 inches below grade. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.
3.6 INSTALLATION OF CONCRETE MANHOLES, HANDHOLES, AND BOXES

A. Cast-in-Place Manhole Installation:
 1. Finish interior surfaces with a smooth-troweled finish.
 2. Knockouts for Future Duct Connections: Form and pour concrete knockout panels 1-1/2 to 2 inches thick, arranged as indicated.
 3. Comply with requirements in Section 03 30 00 "Cast-in-Place Concrete" for cast-in-place concrete, formwork, and reinforcement.

B. Precast Concrete Handhole and Manhole Installation:
 1. Comply with ASTM C 891 unless otherwise indicated.
 2. Install units level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances.
 3. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevations:
 1. Manhole Roof: Install with rooftop at least 15 inches below finished grade.
 2. Manhole Frame: In paved areas and trafficways, set frames flush with finished grade. Set other manhole frames 1 inch above finished grade.
 3. Install handholes with bottom below frost line.
 4. Handhole Covers: In paved areas and trafficways, set surface flush with finished grade. Set covers of other handholes 1 inch above finished grade.
 5. Where indicated, cast handhole cover frame integrally with handhole structure.

D. Drainage: Install drains in bottom of manholes where indicated. Coordinate with drainage provisions indicated.

E. Manhole Access: Circular opening in manhole roof; sized to match cover size.
 1. Manholes with Fixed Ladders: Offset access opening from manhole centerlines to align with ladder.
 2. Install chimney, constructed of precast concrete collars and rings, to support cast-iron frame to connect cover with manhole roof opening. Provide moisture-tight masonry joints and waterproof grouting for frame to chimney.

F. Waterproofing: Apply waterproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. After duct has been connected and grouted, and before backfilling, waterproof joints and connections, and touch up abrasions and scars. Waterproof exterior of manhole chimneys after mortar has cured at least three days.

G. Dampproofing: Apply dampproofing to exterior surfaces of manholes and handholes after concrete has cured at least three days. After ducts are connected and grouted, and before backfilling, dampproof joints and connections, and touch up abrasions and scars. Dampproof exterior of manhole chimneys after mortar has cured at least three days.
H. Hardware: Install removable hardware, including pulling eyes, cable stanchions, and cable arms, and insulators, as required for installation and support of cables and conductors and as indicated.

I. Fixed Manhole Ladders: Arrange to provide for safe entry with maximum clearance from cables and other items in manholes.

J. Field-Installed Bolting Anchors in Manholes and Concrete Handholes: Do not drill deeper than 3-7/8 inches for manholes and 2 inches for handholes, for anchor bolts installed in the field. Use a minimum of two anchors for each cable stanchion.

3.7 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.

B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.

C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.

D. Install handholes and boxes with bottom below frost line.

E. Install removable hardware, including pulling eyes, cable stanchions, cable arms, and insulators, as required for installation and support of cables and conductors and as indicated. Select arm lengths to be long enough to provide spare space for future cables, but short enough to preserve adequate working clearances in enclosure.

F. Field cut openings for duct according to enclosure manufacturer's written instructions. Cut wall of enclosure with a tool designed for material to be cut. Size holes for terminating fittings to be used, and seal around penetrations after fittings are installed.

G. For enclosures installed in asphalt paving and subject to occasional, nondeliberate, heavy-vehicle loading, form and pour a concrete ring encircling, and in contact with, enclosure and with top surface screeded to top of box cover frame. Bottom of ring shall rest on compacted earth.

1. Concrete: 3000 psi, 28-day strength, complying with Section 03 30 00 "Cast-in-Place Concrete," with a troweled finish.
2. Dimensions: 10 inches wide by 12 inches deep.

3.8 GROUNDING

A. Ground underground ducts and utility structures according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
3.9 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch-long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.
3. Test manhole and handhole grounding to ensure electrical continuity of grounding and bonding connections. Measure and report ground resistance as specified in Section 26 05 26 "Grounding and Bonding for Electrical Systems."

B. Correct deficiencies and retest as specified above to demonstrate compliance.

C. Prepare test and inspection reports.

3.10 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

B. Clean internal surfaces of manholes, including sump.

1. Sweep floor, removing dirt and debris.
2. Remove foreign material.

END OF SECTION 26 05 43
SECTION 26 05 44 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Sustainable Design Submittals.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.

2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
3. Pressure Plates: Carbon steel.
4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.

2.4 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.
2.5 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:

 a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 92 00 "Joint Sealants."

 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.

4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:

1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 26 05 44
SECTION 26 05 48.16 - SEISMIC CONTROLS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Restraint channel bracings.
2. Restraint cables.
4. Mechanical anchor bolts.
5. Adhesive anchor bolts.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of seismic-restraint component used.
 a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES.
 b. Annotate to indicate application of each product submitted and compliance with requirements.

B. Delegated-Design Submittal: For each seismic-restraint device.

1. Include design calculations and details for selecting seismic restraints complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
2. Design Calculations: Calculate static and dynamic loading caused by equipment weight, operation, and seismic and wind forces required to select seismic and wind restraints and for designing vibration isolation bases.
 a. Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.
3. Seismic- and Wind-Restraint Details:
 a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads.
 b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and
spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices.

c. Coordinate seismic-restraint and vibration isolation details with wind-restraint details required for equipment mounted outdoors. Comply with requirements in other Sections for equipment mounted outdoors.

d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES, showing maximum ratings of restraint items and the basis for approval (tests or calculations).

1.3 QUALITY ASSURANCE

A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory as defined by OSHA in 29 CFR 1910.7 and that is acceptable to authorities having jurisdiction.

B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent.

C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis. They shall bear anchorage preapproval from OSHPD in addition to preapproval, showing maximum seismic-restraint ratings, by ICC-ES or another agency acceptable to authorities having jurisdiction. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) that support seismic-restraint designs must be signed and sealed by a qualified professional engineer.

E. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Wind-Restraint Loading:

1. Basic Wind Speed Normal: 89 MPH.
2. Building Classification Category: II.
3. Minimum 10 lb/sq. ft. multiplied by maximum area of component projected on vertical plane normal to wind direction and 45 degrees either side of normal.

B. Seismic-Restraint Loading:

1. Site Class as Defined in the IBC: D.
2. Assigned Seismic Use Group or Building Category as Defined in the IBC: II.
a. Component Importance Factor: 1.0.
b. Component Response Modification Factor: 3.
c. Component Amplification Factor: 3.

3. Design Spectral Response Acceleration at Short Periods (0.2 Second): 0.256.
4. Design Spectral Response Acceleration at 1.0-Second Period: 0.164.

2.2 RESTRAINT CHANNEL BRACINGS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. B-line, an Eaton business.
2. Hilti, Inc.
3. Mason Industries, Inc.

B. Description: MFMA-4, shop- or field-fabricated bracing assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end, with other matching components, and with corrosion-resistant coating; rated in tension, compression, and torsion forces.

2.3 RESTRAINT CABLES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Kinetics Noise Control, Inc.
2. Vibration & Seismic Technologies, LLC.

B. Restraint Cables: ASTM A 603 galvanized-steel cables. End connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; with a minimum of two clamping bolts for cable engagement.

2.4 SEISMIC-RESTRAINT ACCESSORIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. B-line, an Eaton business.
2. Kinetics Noise Control, Inc.
3. Mason Industries, Inc.

B. Hanger-Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections to hanger rod.

C. Hinged and Swivel Brace Attachments: Multifunctional steel connectors for attaching hangers to rigid channel bracings and restraint cables.
D. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings and matched to type and size of anchor bolts and studs.

E. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings and matched to type and size of attachment devices used.

F. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face.

2.5 MECHANICAL ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. B-line, an Eaton business.
2. Hilti, Inc.

B. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

2.6 ADHESIVE ANCHOR BOLTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Hilti, Inc.
2. Kinetics Noise Control, Inc.

B. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing PVC or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
B. Examine roughing-in for reinforcement and cast-in-place anchors to verify actual locations before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

A. Multiple Raceways or Cables: Secure raceways and cables to trapeze member with clamps approved for application by an evaluation service member of ICC-ES.

B. Hanger-Rod Stiffeners: Install hanger-rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods caused by seismic forces.

C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits.

3.3 SEISMIC-RESTRAINT DEVICE INSTALLATION

A. Coordinate the location of embedded connection hardware with supported equipment attachment and mounting points and with requirements for concrete reinforcement and formwork specified in Section 03 30 00 "Cast-in-Place Concrete."

B. Equipment and Hanger Restraints:
 1. Install resilient, bolt-isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch.
 2. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES providing required submittals for component.

C. Install cables so they do not bend across edges of adjacent equipment or building structure.

D. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall.

E. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

F. Drilled-in Anchors:
 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.

4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive.

5. Set anchors to manufacturer's recommended torque using a torque wrench.

6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications.

3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION

A. Install flexible connections in runs of raceways, cables, wireways, cable trays, and busways where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where connection is terminated to equipment that is anchored to a different structural element from the one supporting them as they approach equipment.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform the following tests and inspections:

1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction.

2. Schedule test with Government, through Contracting Officer, before connecting anchorage device to restrained component (unless post connection testing has been approved), and with at least seven days' advance notice.

3. Obtain Contracting Officer's approval before transmitting test loads to structure. Provide temporary load-spreading members.

4. Test at least four of each type and size of installed anchors and fasteners selected by Contracting Officer.

5. Test to 90 percent of rated proof load of device.

C. Seismic controls will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports.

3.6 ADJUSTING

A. Adjust restraints to permit free movement of equipment within normal mode of operation.

END OF SECTION 26 05 48.16
SECTION 26 05 53 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 2. Labels.
 4. Tapes and stencils.
 5. Tags.
 7. Cable ties.
 9. Fasteners for labels and signs.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

B. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.

C. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.
E. Comply with NFPA 70E and Section 2605.74 "Overcurrent Protective Device Arc-Flash Study" requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

G. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.
 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG.
 2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
 3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
 5. Color for Equipment Grounds: Bare copper, Green, Green with a yellow stripe.
 6. Colors for Isolated Grounds: Green with white stripe.

C. Color-Coding for Phase- and Voltage-Level Identification, 15 kV or Less.
 1. Colors shall be field applied.
 2. Colors for 12.47-kV Circuits:
 a. Phase A: Black A on an orange field.
 b. Phase B: Black B on an orange field.
 c. Phase C: Black C on an orange field.

D. Raceways and Cables Carrying Circuits at More Than 600 V:
E. Warning Label Colors:

1. Identify system voltage with black letters on an orange background.

F. Warning labels and signs shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES."

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Champion America.
 c. emedco.
 d. GrafoPlast Wire Markers.
 e. HellermannTyton.
 f. LEM Products Inc.
 g. Marking Services, Inc.
 h. Panduit Corp.

B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. HellermannTyton.
 c. Marking Services, Inc.
 d. Panduit Corp.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. A'n D Cable Products.
 b. Brady Corporation.
 c. Brother International Corporation.
 d. emedco.
 e. Grafoplast Wire Markers.
 f. Ideal Industries, Inc.
 g. LEM Products Inc.
 h. Marking Services, Inc.
 i. Panduit Corp.

2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.

3. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.

4. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.

D. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. A'n D Cable Products.
 b. Brady Corporation.
 c. Brother International Corporation.
 d. emedco.
 e. Grafoplast Wire Markers.
 f. HellermannTyton.
 g. Ideal Industries, Inc.
 h. LEM Products Inc.
 i. Marking Services, Inc.
 j. Panduit Corp.

2. Minimum Nominal Size:
 a. 1-1/2 by 6 inches for raceway and conductors
 b. 3-1/2 by 5 inches for equipment.
 c. As required by authorities having jurisdiction.
2.4 BANDS AND TUBES

A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. HellermannTyton.
 c. Marking Services, Inc.

B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.

2.5 TAPES AND STENCILS

A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Carlton Industries, LP.
 b. Champion America.
 c. HellermannTyton.
 d. Ideal Industries, Inc.
 e. Marking Services, Inc.

B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
C. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and is 12 inches wide. Stop stripes at legends.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. HellermannTyton.
 b. LEM Products Inc.
 c. Marking Services, Inc.

D. Floor Marking Tape: 2-inch-wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Carlton Industries, LP.

E. Underground-Line Warning Tape:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Ideal Industries, Inc.
 c. LEM Products Inc.
 d. Marking Services, Inc.
 e. Reef Industries, Inc.

2. Tape:
 a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.

3. Color and Printing:
 b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".
 c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

4. Tag: Type I:
a. Pigmented polyolefin, bright colored, compounded for direct-burial service.
b. Width: 3 inches.
c. Thickness: 4 mils.
d. Weight: 18.5 lb/1000 sq. ft.
e. Tensile according to ASTM D 882: 30 lbf and 2500 psi.

5. Tag: Type II:
 a. Multilayer laminate, consisting of high-density polyethylene scrim coated with pigmented polyolefin; bright colored, compounded for direct-burial service.
b. Width: 3 inches.
c. Thickness: 12 mils.
d. Weight: 36.1 lb/1000 sq. ft.
e. Tensile according to ASTM D 882: 400 lbf and 11,500 psi.

6. Tag: Type ID:
 a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, compounded for direct-burial service.
b. Width: 3 inches.
c. Overall Thickness: 5 mils.
d. Foil Core Thickness: 0.35 mil.
e. Weight: 28 lb/1000 sq. ft.
f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.

7. Tag: Type IID:
 a. Reinforced, detectable three-layer laminate, consisting of a printed pigmented woven scrim, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright-colored, compounded for direct-burial service.
b. Width: 3 inches.
c. Overall Thickness: 8 mils.
d. Foil Core Thickness: 0.35 mil.
e. Weight: 34 lb/1000 sq. ft.
f. Tensile according to ASTM D 882: 300 lbf and 12,500 psi.

F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 TAGS

A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Marking Services, Inc.

B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. emedco.
 d. Grafoplast Wire Markers.
 e. LEM Products Inc.
 f. Marking Services, Inc.
 g. Panduit Corp.

C. Write-on Tags:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Carlton Industries, LP.
 b. LEM Products Inc.
 2. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment.
 3. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 SIGNS
A. Baked-Enamel Signs:
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Carlton Industries, LP.
 b. Champion America.
c. emedco.

2. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.

3. 1/4-inch grommets in corners for mounting.

B. Metal-Backed Butyrate Signs:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Champion America.
 c. emedco.

2. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.

3. 1/4-inch grommets in corners for mounting.
4. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Brady Corporation.
 b. Carlton Industries, LP.
 c. Emedco.

2. Engraved legend.
3. Thickness:
 a. For signs up to 20 sq. in., minimum 1/16 inch.
 b. For signs larger than 20 sq. in., 1/8 inch thick.
 c. Engraved legend with black letters on white face.
 d. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. HellermannTyton.
2. Ideal Industries, Inc.
3. Marking Services, Inc.

B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 3. Temperature Range: Minus 40 to plus 185 deg F.

D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
 3. UL 94 Flame Rating: 94V-0.
 4. Temperature Range: Minus 50 to plus 284 deg F.
 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.
3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

H. System Identification for Raceways and Cables over 600 V: Identification shall completely encircle cable or conduit. Place adjacent identification of two-color markings in contact, side by side.
 1. Secure tight to surface of conductor, cable, or raceway.

J. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

K. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

L. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 1. "EMERGENCY POWER."
 2. "POWER."
 3. "UPS."

M. Vinyl Wraparound Labels:
1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.

N. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

O. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

P. Self-Adhesive Labels:
 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.

Q. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.

R. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.

S. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.

T. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

U. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

V. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

W. Underground Line Warning Tape:
 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches overall.
 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

X. Metal Tags:
 1. Place in a location with high visibility and accessibility.
 2. Secure using general-purpose cable ties.
Y. Nonmetallic Preprinted Tags:
 1. Place in a location with high visibility and accessibility.
 2. Secure using UV-stabilized cable ties.

Z. Write-on Tags:
 1. Place in a location with high visibility and accessibility.
 2. Secure using UV-stabilized cable ties.

AA. Baked-Enamel Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on minimum 1-1/2-inch-high sign; where two lines of text are required, use signs minimum 2 inches high.

BB. Metal-Backed Butyrate Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

CC. Laminated Acrylic or Melamine Plastic Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 inches high.

DD. Cable Ties: General purpose, for attaching tags, except as listed below:
 1. Outdoors: UV-stabilized nylon.
 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

1. Locate identification at changes in direction, at penetrations of walls and floors, and at 30-foot maximum intervals.

D. Accessible Raceways, Armored and Metal-Clad Cables, More Than 600 V: Vinyl wraparound labels.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

E. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

F. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:

1. "EMERGENCY POWER."
2. "POWER."
3. "UPS."

G. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.

1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

H. Power-Circuit Conductor Identification, More Than 600 V: For conductors in vaults, pull and junction boxes, manholes, and handholes, use nonmetallic preprinted tags colored and marked to indicate phase, and a separate tag with the circuit designation.

I. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

J. Control-Circuit Conductor Termination Identification: For identification at terminations, provide heat-shrink preprinted tubes with the conductor designation.

K. Conductors to Be Extended in the Future: Attach marker tape to conductors and list source.

L. Auxiliary Electrical Systems Conductor Identification: Marker tape that is uniform and consistent with system used by manufacturer for factory-installed connections.

1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
M. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.

N. Concealed Raceways and Duct Banks, More Than 600 V, within Buildings: Apply floor marking tape to the following finished surfaces:

1. Floor surface directly above conduits running beneath and within 12 inches of a floor that is in contact with earth or is framed above unexcavated space.
2. Wall surfaces directly external to raceways concealed within wall.
3. Accessible surfaces of concrete envelope around raceways in vertical shafts, exposed in the building, or concealed above suspended ceilings.

O. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.

P. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

Q. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.

1. Apply to exterior of door, cover, or other access.
2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

S. Operating Instruction Signs: Self-adhesive labels.

T. Emergency Operating Instruction Signs: Self-adhesive labels with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.

U. Equipment Identification Labels:

1. Indoor Equipment: Self-adhesive label.
2. Outdoor Equipment: Laminated acrylic or melamine sign.
3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Switchgear.
e. Switchboards.
f. Transformers: Label that includes tag designation indicated on Drawings for the
 transformer, feeder, and panelboards or equipment supplied by the secondary.
g. Substations.
h. Emergency system boxes and enclosures.
i. Motor-control centers.
j. Enclosed switches.
k. Enclosed circuit breakers.
l. Enclosed controllers.
m. Variable-speed controllers.
n. Push-button stations.
o. Power-transfer equipment.
p. Contactors.
q. Remote-controlled switches, dimmer modules, and control devices.
r. Battery-inverter units.
s. Battery racks.
t. Power-generating units.
u. Monitoring and control equipment.
v. UPS equipment.

END OF SECTION 26 05 53
SECTION 26 05 72 - OVERCURRENT PROTECTIVE DEVICE SHORT-CIRCUIT STUDY

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.2 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

B. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

C. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.

D. SCCR: Short-circuit current rating.

E. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.3 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals may be in digital form.

1. Short-circuit study input data, including completed computer program input data sheets.

2. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.

 a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Contracting Officer for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.

 b. Revised single-line diagram, reflecting field investigation results and results of short-circuit study.
1.4 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Short-Circuit Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

C. Short-Circuit Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. CGI CYME.
2. EDSA Micro Corporation.
3. ESA Inc.
4. Easy Power
5. Operation Technology, Inc.
6. Power Analytics, Corporation.
7. SKM Power Tools

B. Comply with IEEE 399 and IEEE 551.

C. Analytical features of fault-current-study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output.
2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

A. Executive summary.

B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of the computer printout.

C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.

D. Comments and recommendations for system improvements, where needed.

E. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.

G. Short-Circuit Study Output:
 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. Equivalent impedance.
 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
d. Calculated asymmetrical fault currents:
 1) Based on fault-point X/R ratio.
 2) Based on calculated symmetrical value multiplied by 1.6.
 3) Based on calculated symmetrical value multiplied by 2.7.

3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Obtain all data necessary for the conduct of the study.
 1. Verify completeness of data supplied on the one-line diagram. Call any discrepancies to the attention of Contracting Officer.
 2. For equipment provided that is Work of this Project, use characteristics submitted under the provisions of action submittals and information submittals for this Project.
 3. For relocated equipment and that which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. The qualifications of technicians and engineers shall be qualified as defined by NFPA 70E.

B. Gather and tabulate the following input data to support the short-circuit study. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.
 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 2. Obtain electrical power utility impedance at the service.
 3. Power sources and ties.
 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
5. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
6. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
7. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
8. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
9. Motor horsepower and NEMA MG 1 code letter designation.
10. Cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.2 SHORT-CIRCUIT STUDY

A. Perform study following the general study procedures contained in IEEE 399.
B. Calculate short-circuit currents according to IEEE 551.
C. Base study on the device characteristics supplied by device manufacturer.
D. The extent of the electrical power system to be studied is indicated on Drawings.
E. Begin short-circuit current analysis at the service, extending down to the system overcurrent protective devices as follows:
 1. To normal system low-voltage load buses where fault current is 10 kA or less.
 2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.
F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
G. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault at each of the following:
 1. Electric utility's supply termination point.
 2. Incoming switchgear.
 3. Control panels.
 4. Standby generators and automatic transfer switches.
7. Disconnect switches.

3.3 ADJUSTING

A. Make minor modifications to equipment as required to accomplish compliance with short-circuit study.

END OF SECTION 26 05 72
SECTION 26 05 73 - OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.

1.2 DEFINITIONS
A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.
B. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
C. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
D. SCCR: Short-circuit current rating.
E. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.3 ACTION SUBMITTALS
A. Product Data: For computer software program to be used for studies.
B. Other Action Submittals: Submit the following after the approval of system protective devices submittals. Submittals may be in digital form.

1. Coordination-study input data, including completed computer program input data sheets.
2. Study and equipment evaluation reports.
3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.

a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Contracting Officer for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For the overcurrent protective devices to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

 a. The following parts from the Protective Device Coordination Study Report:

 1) One-line diagram.
 2) Protective device coordination study.
 3) Time-current coordination curves.

 b. Power system data.

1.5 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Coordination Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

 1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

C. Coordination Study Specialist Qualifications: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Software Developers:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. CGI CYME.
 b. EDSA Micro Corporation.
 c. ESA Inc.
 d. Easy Power
 e. Operation Technology, Inc.
 f. Power Analytics, Corporation.
 g. SKM Power Tools

B. Comply with IEEE 242 and IEEE 399.

C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

D. Computer software program shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.

1. Optional Features:
 a. Arcing faults.
 b. Simultaneous faults.
 c. Explicit negative sequence.
 d. Mutual coupling in zero sequence.

2.2 PROTECTIVE DEVICE COORDINATION STUDY REPORT CONTENTS

A. Executive summary.

B. Study descriptions, purpose, basis and scope. Include case descriptions, definition of terms and guide for interpretation of the computer printout.

C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center, and panelboard designations.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 05 72 "Overcurrent Protective Device Short-Circuit Study."

OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY 26 05 73 - 3
F. Protective Device Coordination Study:

1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.

 a. Phase and Ground Relays:

 1) Device tag.
 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 3) Recommendations on improved relaying systems, if applicable.

 b. Circuit Breakers:

 1) Adjustable pickups and time delays (long time, short time, ground).
 2) Adjustable time-current characteristic.
 3) Adjustable instantaneous pickup.
 4) Recommendations on improved trip systems, if applicable.

 c. Fuses: Show current rating, voltage, and class.

G. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:

1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
4. Plot the following listed characteristic curves, as applicable:

 a. Power utility's overcurrent protective device.
 b. Medium-voltage equipment overcurrent relays.
 c. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 d. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 e. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 f. Cables and conductors damage curves.
 g. Ground-fault protective devices.
 h. Motor-starting characteristics and motor damage points.
 i. Generator short-circuit decrement curve and generator damage point.
 j. The largest feeder circuit breaker in each motor-control center and panelboard.
5. Provide adequate time margins between device characteristics such that selective operation is achieved.
6. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance. Devices to be coordinated are indicated on Drawings.

1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 PROTECTIVE DEVICE COORDINATION STUDY

A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.

B. Comply with IEEE 399 for general study procedures.

C. The study shall be based on the device characteristics supplied by device manufacturer.

D. The extent of the electrical power system to be studied is indicated on Drawings.

E. Begin analysis at the service, extending down to the system overcurrent protective devices as follows:

1. To normal system low-voltage load buses where fault current is 10 kA or less.
2. Exclude equipment rated 240-V ac or less when supplied by a single transformer rated less than 125 kVA.

F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.

G. Transformer Primary Overcurrent Protective Devices:

1. Device shall not operate in response to the following:
 a. Inrush current when first energized.
 b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.

H. Motor Protection:
 1. Select protection for low-voltage motors according to IEEE 242 and NFPA 70.
 2. Select protection for motors served at voltages more than 600 V according to IEEE 620.

I. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.

J. Generator Protection: Select protection according to manufacturer's written recommendations and to IEEE 242.

K. The calculations shall include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and shall apply to low- and medium-voltage, three-phase ac systems. The calculations shall also account for the fault-current dc decrement, to address the asymmetrical requirements of the interrupting equipment.
 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.

L. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and single line-to-ground fault at each of the following:
 1. Electric utility's supply termination point.
 2. Switchgear.
 3. Unit substation primary and secondary terminals.
 4. Low-voltage switchgear.
 5. Motor-control centers.

M. Protective Device Evaluation:
 1. Evaluate equipment and protective devices and compare to short-circuit ratings.
 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
 3. Any application of series-rated devices shall be recertified, complying with requirements in NFPA 70.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the overcurrent protective device study.
1. Verify completeness of data supplied in the one-line diagram on Drawings. Call discrepancies to the attention of Contracting Officer.

2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.

3. For existing equipment, whether or not relocated obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. The qualifications of technicians and engineers shall be qualified as defined by NFPA 70E.

B. Gather and tabulate the following input data to support coordination study. The list below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Electrical power utility impedance at the service.

3. Power sources and ties.

4. Short-circuit current at each system bus, three phase and line-to-ground.

5. Full-load current of all loads.

6. Voltage level at each bus.

7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.

8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.

9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.

10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.

11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.

12. Maximum demands from service meters.

13. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.

14. Motor horsepower and NEMA MG 1 code letter designation.

15. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).

16. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield performance parameters.

17. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:

 a. Special load considerations, including starting inrush currents and frequent starting and stopping.
b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.

c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.

d. Generator thermal-damage curve.

e. Ratings, types, and settings of utility company's overcurrent protective devices.

f. Special overcurrent protective device settings or types stipulated by utility company.

g. Time-current-characteristic curves of devices indicated to be coordinated.

h. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.

i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.

j. Panelboards, switchboards, motor-control center ampacity, and SCCR in amperes rms symmetrical.

3.4 FIELD ADJUSTING

A. Adjust relay and protective device settings according to the recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of the equipment manufacturer under the Startup and Acceptance Testing contract portion.

B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.

C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.

1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.5 DEMONSTRATION

A. Engage the Coordination Study Specialist to train Government's maintenance personnel in the following:

1. Acquaint personnel in the fundamentals of operating the power system in normal and emergency modes.

2. Hand-out and explain the objectives of the coordination study, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting the time-current coordination curves.

3. Adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 26 05 73
SECTION 26 05 74 - OVERCURRENT PROTECTIVE DEVICE ARC-FLASH STUDY

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.2 DEFINITIONS

A. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed and salvaged, or removed and reinstalled.

B. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.

C. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.

D. SCCR: Short-circuit current rating.

E. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

1.3 ACTION SUBMITTALS

A. Product Data: For computer software program to be used for studies.

B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals may be in digital form.

1. Arc-flash study input data, including completed computer program input data sheets.

2. Arc-flash study report; signed, dated, and sealed by a qualified professional engineer.

a. Submit study report for action prior to receiving final approval of the distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Contracting Officer for preliminary submittal of sufficient study data to ensure that the selection of devices and associated characteristics is satisfactory.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data:

1. Maintenance procedures according to requirements in NFPA 70E shall be provided in the equipment manuals.

2. Operation and Maintenance Procedures: In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," provide maintenance procedures for use by Government's personnel that comply with requirements in NFPA 70E.

1.5 QUALITY ASSURANCE

A. Studies shall use computer programs that are distributed nationally and are in wide use. Software algorithms shall comply with requirements of standards and guides specified in this Section. Manual calculations are unacceptable.

B. Arc-Flash Study Software Developer Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.

1. The computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.

C. Arc-Flash Study Specialist Qualifications: Professional engineer in charge of performing the study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

D. Field Adjusting Agency Qualifications: An independent agency, with the experience and capability to adjust overcurrent devices and to conduct the testing indicated, that is a member company of the InterNational Electrical Testing Association or is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. CGI CYME.
2. EDSA Micro Corporation.
3. ESA Inc.
4. Easy Power
5. Operation Technology, Inc.
6. Power Analytics, Corporation.
7. SKM Power Tools

B. Comply with IEEE 1584 and NFPA 70E.

C. Analytical features of device coordination study computer software program shall have the
capability to calculate "mandatory," "very desirable," and "desirable" features as listed in
IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

A. Executive summary.

B. Study descriptions, purpose, basis and scope.

C. One-line diagram, showing the following:
 1. Protective device designations and ampere ratings.
 2. Cable size and lengths.
 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 4. Motor and generator designations and kVA ratings.
 5. Switchgear, switchboard, motor-control center and panelboard designations.

D. Study Input Data: As described in "Power System Data" Article.

E. Short-Circuit Study Output: As specified in "Short Circuit Study Output" Paragraph in "Short-
Circuit Study Report Contents" Article in Section 26.05.72 "Overcurrent Protective Device
Short-Circuit Study."

F. Protective Device Coordination Study Report Contents: As specified in "Protective Device
Coordination Study Report Contents" Article in Section 26.05.73 "Overcurrent Protective
Device Coordination Study."

G. Arc-Flash Study Output:
 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the
 following for each overcurrent device location:
 a. Voltage.
 b. Calculated symmetrical fault-current magnitude and angle.
 c. Fault-point X/R ratio.
 d. No AC Decrement (NACD) ratio.
 e. Equivalent impedance.
 f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a
 symmetrical basis.
 g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

H. Incident Energy and Flash Protection Boundary Calculations:
1. Arcing fault magnitude.
2. Protective device clearing time.
3. Duration of arc.
5. Working distance.
6. Incident energy.

I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of the computer printout.

2.3 ARC-FLASH WARNING LABELS

A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch self-adhesive equipment label for each work location included in the analysis.

B. The label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:

1. Location designation.
2. Nominal voltage.
3. Flash protection boundary.
5. Incident energy.
7. Engineering report number, revision number, and issue date.

C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.

3.2 ARC-FLASH HAZARD ANALYSIS

A. Comply with NFPA 70E and its Annex D for hazard analysis study.

B. Preparatory Studies:
1. Short-Circuit Study Output: As specified in "Short-Circuit Study Output" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26.05.72 "Overcurrent Protective Device Short-Circuit Study."

2. Protective Device Coordination Study Report Contents: As specified in "Protective Device Coordination Study Report Contents" Article in Section 26.05.73 "Overcurrent Protective Device Coordination Study."

C. Calculate maximum and minimum contributions of fault-current size.

1. The minimum calculation shall assume that the utility contribution is at a minimum and shall assume no motor load.
2. The maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.

D. Calculate the arc-flash protection boundary and incident energy at locations in the electrical distribution system where personnel could perform work on energized parts.

E. Include medium- and low-voltage equipment locations, except equipment rated 240-V ac or less fed from transformers less than 125 kVA.

F. Safe working distances shall be specified for calculated fault locations based on the calculated arc-flash boundary, considering incident energy of 1.2 cal/sq.cm.

G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:

1. Fault contribution from induction motors should not be considered beyond three to five cycles.
2. Fault contribution from synchronous motors and generators should be decayed to match the actual decrement of each as closely as possible (e.g., contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).

H. Arc-flash computation shall include both line and load side of a circuit breaker as follows:

1. When the circuit breaker is in a separate enclosure.
2. When the line terminals of the circuit breaker are separate from the work location.

I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

A. Obtain all data necessary for the conduct of the arc-flash hazard analysis.
1. Verify completeness of data supplied on the one-line diagram on Drawings and under "Preparatory Studies" Paragraph in "Arc-Flash Hazard Analysis" Article. Call discrepancies to the attention of Contracting Officer.

2. For new equipment, use characteristics submitted under the provisions of action submittals and information submittals for this Project.

3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers.

B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study, and shall be by the engineer or its representative who holds NETA ETT Level III certification or NICET Electrical Power Testing Level III certification.

1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.

2. Obtain electrical power utility impedance at the service.

3. Power sources and ties.

4. Short-circuit current at each system bus, three phase and line-to-ground.

5. Full-load current of all loads.

6. Voltage level at each bus.

7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in per cent, and phase shift.

8. For reactors, provide manufacturer and model designation, voltage rating and impedance.

9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.

10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.

11. For relays, provide manufacturer and model designation, current transformer ratios, potential transformer ratios, and relay settings.

12. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.

13. Motor horsepower and NEMA MG 1 code letter designation.

14. Low-voltage cable sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

15. Medium-voltage cable sizes, lengths, conductor material, and cable construction and metallic shield performance parameters.

3.4 LABELING

A. Apply one arc-flash label for 600-V ac, 480-V ac, and applicable 208-V ac panelboards and disconnects and for each of the following locations:
1. Motor-control center.
2. Low-voltage switchboard.
3. Switchgear.
4. Medium-voltage switch.
5. Control panel.

3.5 APPLICATION OF WARNING LABELS

A. Install the arc-fault warning labels under the direct supervision and control of the Arc-Flash Study Specialist.

3.6 DEMONSTRATION

A. Engage the Arc-Flash Study Specialist to train Government's maintenance personnel in the potential arc-flash hazards associated with working on energized equipment and the significance of the arc-flash warning labels.

END OF SECTION 26 05 74
SECTION 26 09 23 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Time switches.
 2. Photoelectric switches.
 3. Standalone daylight-harvesting switching and dimming controls.
 4. Indoor occupancy and vacancy sensors.
 5. Switchbox-mounted occupancy sensors.
 6. High-bay occupancy sensors.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings:
 1. Show installation details for the following:
 a. Occupancy sensors.
 b. Vacancy sensors.
 2. Interconnection diagrams showing field-installed wiring.
 3. Include diagrams for power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 3. Device address list.
 4. Printout of software application and graphic screens.
1.4 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Faulty operation of lighting control software.
 b. Faulty operation of lighting control devices.

2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Invensys Controls.
4. Leviton Manufacturing Co., Inc.
5. NSi Industries LLC.

B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.

1. Listed and labeled as defined in NFPA 70 and marked for intended location and application.
2. Contact Configuration: SPST.
3. Contact Rating: 30-A inductive or resistive, 240-V ac.
4. Programs: Eight on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays.
5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program.
6. Astronomic Time: All channels.
7. Automatic daylight savings time changeover.
8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Intermatic, Inc.
3. Leviton Manufacturing Co., Inc.
4. NSi Industries LLC.

B. Description: Solid state, with SPST dry contacts rated for 1800 VA inductive, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A, and compatible with drivers and LED lamps.
1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
3. Time Delay: Fifteen-second minimum, to prevent false operation.
5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
6. Failure Mode: Luminaire stays ON.

2.3 DAYLIGHT-HARVESTING SWITCHING CONTROLS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Cooper Industries, Inc.
2. Eaton.
3. Hubbell Building Automation, Inc.
4. Leviton Manufacturing Co., Inc.
5. Lithonia Lighting; Acuity Brands Lighting, Inc.
6. NSi Industries LLC.
7. Sensor Switch, Inc.
8. TE Connectivity Ltd.

B. System Description: System operates indoor lighting.

C. Sequence of Operation: As daylight increases, the lights are turned off at a predetermined level. As daylight decreases, the lights are turned on at a predetermined level.
1. Lighting control set point is based on two lighting conditions:
 a. When no daylight is present.
 b. When significant daylight is present (target level).
 c. System programming is done with two hand-held, remote-control tools.

D. Ceiling-Mounted Switching Controls: Solid-state, light-level sensor unit, with power pack, that detects changes in indoor lighting levels that are perceived by the eye.

E. Ceiling-Mounted Switching Controls: Solid-state, light-level sensor unit, with separate power pack, that detects changes in indoor lighting levels that are perceived by the eye.
F. Electrical Components, Devices, and Accessories:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
4. Sensor type: Open loop.
5. Zone: Multi.
6. Power Pack: Digital controller capable of accepting 3 RJ45 inputs with two outputs rated for 20-A LED load at 120- and 277-V ac, for 16-A LED at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc Class 2 power source, as defined by NFPA 70.
 a. With integral current monitoring
 b. Compatible with digital addressable lighting interface.
 c. Plenum rated.
7. General Space Sensors Light-Level Monitoring Range: 10 to 200 fc, with an adjustment for turn-on and turn-off levels within that range.
8. Atrium Space Sensors Light-Level Monitoring Range: 100 to 1000 fc, with an adjustment for turn-on and turn-off levels within that range.
9. Skylight Sensors Light-Level Monitoring Range: 1000 to 10,000 fc, with an adjustment for turn-on and turn-off levels within that range.
10. Time Delay: Adjustable from 5 to 300 seconds to prevent cycling.
11. Set-Point Adjustment: Equip with deadband adjustment of 25, 50, and 75 percent above the "on" set point, or provide with separate adjustable "on" and "off" set points.
12. Test Mode: User selectable, overriding programmed time delay to allow settings check.
13. Control Load Status: User selectable to confirm that load wiring is correct.
14. Indicator: Two digital displays to indicate the beginning of on-off cycles.

2.4 DAYLIGHT-HARVESTING DIMMING CONTROLS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Cooper Industries, Inc.
2. Hubbell Building Automation, Inc.
3. Leviton Manufacturing Co., Inc.
4. Lithonia Lighting; Acuity Brands Lighting, Inc.

B. System Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.

1. Lighting control set point is based on two lighting conditions:
 a. When no daylight is present (target level).
 b. When significant daylight is present.
2. System programming is done with two hand-held, remote-control tools.
a. Initial setup tool.
b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.

C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with power pack, to detect changes in indoor lighting levels that are perceived by the eye.

D. Electrical Components, Devices, and Accessories:
 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 2. Sensor Output: 0- to 10-V dc to operate luminaires. Sensor is powered by controller unit.
 3. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.

E. Power Pack: Digital controller capable of accepting 3 RJ45 inputs with two outputs rated for 20-A LED load at 120- and 277-V ac, for 16-A LED at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc Class 2 power source, as defined by NFPA 70.
 1. With integral current monitoring
 a. Compatible with digital addressable lighting interface.
 1) Plenum rated.

2.5 INDOOR OCCUPANCY AND VACANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Bryant Electric.
 2. Cooper Industries, Inc.
 3. Hubbell Building Automation, Inc.
 4. Leviton Manufacturing Co., Inc.
 5. Lithonia Lighting; Acuity Brands Lighting, Inc.
 7. NSi Industries LLC.
 8. Philips Lighting Controls.
 9. RAB Lighting.
 10. Square D.

B. General Requirements for Sensors:
 1. Wall or Ceiling-mounted, solid-state indoor occupancy and vacancy sensors.
 2. Dual technology.
 4. Hardwired connection to switch and BAS.
 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 6. Operation:
a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.

7. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A.
9. Power Pack: Dry contacts rated for 20-A LED load at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
10. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
11. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
12. Bypass Switch: Override the "on" function in case of sensor failure.
13. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.

C. PIR Type: Wall or Ceiling mounted; detect occupants in coverage area by their heat and movement.
 1. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
 2. Detection Coverage (Room, Ceiling Mounted): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.

D. Ultrasonic Type: Wall or Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch-high ceiling.
 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
 4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch-high ceiling.
5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot-high ceiling in a corridor not wider than 14 feet.

6. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet when mounted 84 inches above finished floor.

E. Dual-Technology Type: Wall or Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet when mounted 48 inches above finished floor.

2.6 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Bryant Electric.
2. Cooper Industries, Inc.
3. Hubbell Building Automation, Inc.
4. Leviton Manufacturing Co., Inc.
5. Lithonia Lighting; Acuity Brands Lighting, Inc.
7. NSi Industries LLC.
8. Philips Lighting Controls.
9. RAB Lighting.
10. Square D.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
4. Switch Rating: Not less than 800-VA LED load at 120 V, 1200-VA LED load at 277 V.
C. Wall-Switch Sensor:

1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft.
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off."
5. Voltage: Match the circuit voltage.
6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
10. Faceplate: Color matched to switch.

2.7 HIGH-BAY OCCUPANCY SENSORS

A. General Description: Solid-state unit. The unit is designed to operate with the lamp and drivers indicated.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Operation: Turn lights on when coverage area is occupied, and to half-power when unoccupied; with a time delay for turning lights to half-power that is adjustable over a minimum range of 1 to 16 minutes.
3. Continuous Lamp Monitoring: When lamps are dimmed continuously for 24 hours, automatically turn lamps on to full power for 15 minutes for every 24 hours of continuous dimming.
5. Operating Ambient Conditions: 32 to 149 deg F.
7. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
8. Detector Technology: PIR.
9. Power and dimming control from the luminaire driver that has been modified to include the dimming capacitor.

B. Detector Coverage: User selectable by interchangeable PIR lenses, suitable for mounting heights from 12 to 50 feet.

C. Accessories: Obtain manufacturer's installation and maintenance kit with laser alignment tool for sensor positioning and power port connectors.
2.8 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION

A. Comply with NECA 1.

B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structure-borne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.
3.4 WIRING INSTALLATION

A. Comply with NECA 1.

B. Wiring Method: Comply with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.5 IDENTIFICATION

A. Identify components and power and control wiring according to Section 26 05 53 "Identification for Electrical Systems."

1. Identify controlled circuits in lighting contactors.
2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.

B. Label time switches and contactors with a unique designation.

3.6 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set
time delay to suit Government's operations.
2. For daylighting controls, adjust set points and deadband controls to suit Government's
operations.
3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.8 SOFTWARE SERVICE AGREEMENT

A. Technical Support: Beginning at Substantial Completion, service agreement shall include
software support for two years.

B. Upgrade Service: At Substantial Completion, update software to latest version. Install and
program software upgrades that become available within two years from date of Substantial
Completion. Upgrading software shall include operating system and new or revised licenses for
using software.

1. Upgrade Notice: At least 30 days to allow Government to schedule and access the system
and to upgrade computer equipment if necessary.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government's maintenance
personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 26 09 23
SECTION 26 12 19 - PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes pad-mounted, liquid-filled, medium-voltage distribution transformers, with primary and secondary bushings within or without air-terminal enclosures.

1.2 DEFINITIONS
A. BIL: Basic Impulse Insulation Level.
B. Bushing: An insulating structure including a central conductor, or providing a central passage for a conductor, with provision for mounting on a barrier, conducting or otherwise, for the purpose of insulating the conductor from the barrier and conducting current from one side of the barrier to the other.
C. Bushing Elbow: An insulated device used to connect insulated conductors to separable insulated connectors on dead-front, pad-mounted transformers and to provide a fully insulated connection. This is also called an "elbow connector."
D. Bushing Insert: That component of a separable insulated connector that is inserted into a bushing well to complete a dead-front, load break or nonload break, separable insulated connector (bushing).
E. Bushing Well: A component of a separable insulated connector, either permanently welded or clamped to an enclosure wall or barrier, having a cavity that receives a replaceable component (bushing insert) to complete the separable insulated connector (bushing).
F. Elbow Connector: See "bushing elbow" above.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
B. Shop Drawings: For pad-mounted, liquid-filled, medium-voltage transformers.
 1. Include plans and elevations showing major components and features.
 a. Include a plan view and cross section of equipment base, showing clearances, required workspace, and locations of penetrations for grounding and conduits.
2. Include details of equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include single-line diagram.
4. Include list of materials.
5. Include nameplate data.
6. Manufacturer's published time-current curves of the transformer high-voltage fuses, with transformer damage curve, inrush curve, and thru fault current indicated.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformer and accessories to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with IEEE C2.

C. Comply with IEEE C57.12.00.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: The transformers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the transformer will remain in place without separation of any parts when subjected to the seismic forces specified and the transformer will be fully operational after the seismic event."
 2. Component Importance Factor: 1.0.
 3. Component Amplification Factor: 3.

B. Windings Material: Aluminum.
C. Surge Arresters: Comply with IEEE C62.11, Distribution Class; metal-oxide-varistor type, fully shielded, separable-elbow type, suitable for plugging into the inserts provided in the high-voltage section of the transformer. Connected in each phase of incoming circuit and ahead of any disconnecting device.

D. Winding Connections: The connection of windings and terminal markings shall comply with IEEE C57.12.70.

E. Efficiency: Comply with 10 CFR 431, Subpart K.

F. Insulation: Transformer kVA rating shall be as follows: The average winding temperature rise above a 30 deg C ambient temperature shall not exceed 65 deg C and 80 deg C hottest-spot temperature rise at rated kVA when tested according to IEEE C57.12.90, using combination of connections and taps that give the highest average winding temperature rise.

G. Tap Changer: External handle, for de-energized operation.

H. Tank: Sealed, with bolt-on cover.

I. Enclosure Integrity: Comply with IEEE C57.12.28 for pad-mounted enclosures that contain energized electrical equipment in excess of 600 V that may be exposed to the public.

J. Mounting: An integral skid mounting frame, suitable to allow skidding or rolling of transformer in any direction, and with provision for anchoring frame to pad.

K. Insulating Liquids:
 1. Mineral Oil: ASTM D 3487, Type II, and tested for compliance with ASTM D 117.
 2. Less-Flammable Liquids:
 a. Biodegradable and Nontoxic Dielectric: Listed and labeled by an NRTL as complying with NFPA 70 requirements for fire point of not less than 300 deg C when tested according to ASTM D 92.

L. Sound level shall comply with NEMA TR 1 requirements.

M. Corrosion Protection:
 1. Transformer coating system shall be factory applied, complying with requirements of IEEE C57.12.28, in manufacturer's standard color green.

2.3 THREE-PHASE TRANSFORMERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. ABB.
 2. Eaton/Cooper Industries, Inc.
B. Description:

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Compartment Construction:

1. Double-Compartment Construction: Individual compartments for high- and low-voltage sections, formed by steel isolating barriers that extend full height and depth of compartments, with hinged, lift-off doors and three-point latching, with a stop in the open position and provision for padlocking.

D. Primary Fusing: Designed and rated to provide thermal protection of transformer by sensing overcurrent and high liquid temperature.

1. 150-kV BIL current-limiting fuses, conforming to requirements of IEEE C37.47.
2. Interrupting Rating: 50,000 rms A symmetrical at system voltage.
4. Provide bayonet fuse assembly with an oil retention valve and an external drip shield inside the housing to eliminate or minimize oil spills. Valve shall close when fuse holder is removed and an external drip shield is installed.
5. Provide a conspicuously displayed warning adjacent to bayonet fuse(s), cautioning against removing or inserting fuses unless transformer has been de-energized and tank pressure has been released.

E. High-Voltage Section: Dead-front design.

1. To connect primary cable, use separable insulated connectors; coordinated with and complying with requirements of Section 26 05 13 "Medium-Voltage Cables." Bushings shall be one-piece units, with ampere and BIL ratings the same as connectors.
2. Bushing inserts and feed-through inserts:
 a. Conform to the requirements of IEEE 386.
 b. Rated at 200 A, with voltage class matching connectors. Provide a parking stand near each bushing well. Parking stands shall be equipped with insulated standoff bushings for parking of energized load-break elbow connectors on parking stands.
 c. Provide insulated protective caps for insulating and sealing out moisture from unused bushing inserts and insulated standoff bushings.
3. Bushing wells configured for loop-feed application.
5. Dead-front surge arresters.
6. Tap-changer operator.
7. Load-Break Switch:
a. Loop-feed sectionalizing switches, using three two-position, liquid-immersed-type switches for closed transition loop-feed and sectionalizing operation. Voltage class and BIL shall match that of separable connectors, with a continuous current rating and load-break rating of 200 amperes, and a make-and-latch rating of 12 kA rms symmetrical. Switch operation shall be as follows:

1) Position I: Line A connected to line B and both lines connected to the transformer.
2) Position II: Transformer connected to line A only.
3) Position III: Transformer connected to line B only.
4) Position IV: Transformer disconnected and line A not connected to line B.
5) Position V: Transformer disconnected and line A connected to line B.

8. Ground pad.

F. Low-Voltage Section:

1. Bushings with spade terminals drilled for terminating the number of conductors indicated on the Drawings, and the lugs that comply with requirements of Section 26.05.19 "Low-Voltage Electrical Power Conductors and Cables."

G. Capacities and Characteristics:

1. Power Rating (kVA): Refer to drawings.
2. Voltage Ratings: Refer to drawings.
3. Taps: Comply with IEEE C57.12.26 requirements.
4. Transformer BIL (kV): Comply with IEEE C57.12.26 requirements.
5. Minimum Tested Impedance (Percent at 85 deg C): 5.75.
6. Comply with FM Global Class No. 3990.
7. Comply with UL listing requirements for combination classification and listing for transformer and less-flammable insulating liquid.

H. Transformer Accessories:

1. Drain and filter connection.
2. Filling and top filter press connections.
3. Pressure-vacuum gauge.
4. Dial-type analog thermometer with alarm contacts.
5. Magnetic liquid level indicator with high and low alarm contacts.
6. Automatically resetting pressure-relief device. Device flow shall be as recommended by manufacturer.
7. Stainless-steel ground connection pads.
9. Sudden pressure relay for remote alarm or trip when internal transformer pressure rises at field-set rate. Provide with seal-in delay.
2.4 SERVICE CONDITIONS

A. Transformers shall be suitable for operation under service conditions specified as usual service conditions in IEEE C57.12.00, except for the following:

1. Exposure to seismic shock or to abnormal vibration, shock, or tilting.

2.5 WARNING LABELS AND SIGNS

A. Comply with requirements for labels and signs specified in Section 26 05 53 "Identification for Electrical Systems."

1. High-Voltage Warning Label: Provide self-adhesive warning signs on outside of high-voltage compartment door(s). Sign legend shall be "DANGER HIGH VOLTAGE" printed in two lines of nominal 2-inch-high letters. The word "DANGER" shall be in white letters on a red background and the words "HIGH VOLTAGE" shall be in black letters on a white background.

2. Arc Flash Warning Label: Provide self-adhesive warning signs on outside of high-voltage compartment door(s), warning of potential electrical arc flash hazards and appropriate personal protective equipment required.

2.6 SOURCE QUALITY CONTROL

A. Provide manufacturer's certificate that the transformer design tests comply with IEEE C57.12.90.

1. Perform the following factory-certified routine tests on each transformer for this Project:

 a. Resistance.
 b. Turns ratio, polarity, and phase relation.
 c. Transformer no-load losses and excitation current at 100 percent of ratings.
 d. Transformer impedance voltage and load loss.
 e. Operation of all devices.
 f. Lighting impulse.
 g. Low frequency.
 h. Leak.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine pad-mounted, liquid-filled, medium-voltage transformers upon delivery.

 1. Upon delivery of transformers and prior to unloading, inspect equipment for any damage that may have occurred during shipment or storage.
2. Verify that tie rods and chains are undamaged and tight, and that all blocking and bracing is tight. Verify that there is no evidence of load shifting in transit, and that readings from transportation shock recorders, if equipped, are within manufacturer's recommendations.

3. Verify that there is no indication of external damage and no dents or scratches in doors and sill, tank walls, radiators and fins, or termination provisions.

4. Verify that there is no evidence of insulating-liquid leakage on transformer surfaces, at weld seams, on high- or low-voltage bushing parts, and at transformer base.

5. Verify that there is positive pressure or vacuum on tank. Check pressure gauge; it is required to read other than zero.

6. Compare transformers and accessories received with bill of materials to verify that shipment is complete. Verify that transformers and accessories conform with manufacturer's quotation and shop drawings. If shipment is incomplete or does not comply with Project requirements, notify manufacturer in writing immediately.

7. Verify presence of polychlorinated biphenyl content labeling.

8. Unload transformers carefully, observing all packing label warnings and handling instructions.

9. Open termination compartment doors and inspect components for damage or displaced parts, loose or broken connections, cracked or chipped insulators, bent mounting flanges, dirt or foreign material, and water or moisture.

B. Handling:

1. Handle transformers carefully, in accordance with manufacturer recommendations, to avoid damage to enclosure, termination compartments, base, frame, tank, and internal components. Do not subject transformers to impact, jolting, jarring, or rough handling.

2. Protect transformer termination compartments against entrance of dust, rain, and snow.

3. Transport transformers upright, to avoid internal stresses on core and coil mounting assembly and to prevent trapping air in windings. Do not tilt or tip transformers.

4. Verify that transformer weights are within rated capacity of handling equipment.

5. Use only manufacturer-recommended points for lifting, jacking, and pulling. Use all lifting lugs when lifting transformers.

6. Use jacks only at corners of tank base plate.

7. Use nylon straps of same length to balance and distribute weight when handling transformers with a crane.

8. Use spreaders or a lifting beam to obtain a vertical lift and to protect transformer from straps bearing against enclosure. Lifting cable pull angles may not be greater than 15 degrees from vertical.

9. Exercise care not to damage tank base structure when handling transformer using skids or rollers. Use skids to distribute stresses over tank base when using rollers under large transformers.

C. Storage:

1. Store transformers in accordance with manufacturer's recommendations.

2. Transformers may be stored outdoors. If possible, store transformers at final installation locations on concrete pads. If dry concrete surfaces are unavailable, use pallets of adequate strength to protect transformers from direct contact with ground. Ensure transformer is level.
3. Ensure that transformer storage location is clean and protected from severe conditions. Protect transformers from dirt, water, contamination, and physical damage. Do not store transformers in presence of corrosive or explosive gases. Protect transformers from weather when stored for more than three months.

4. Store transformers with compartment doors closed.

5. Regularly inspect transformers while in storage and maintain documentation of storage conditions, noting any discrepancies or adverse conditions. Verify that an effective pressure seal is maintained using pressure gauges. Visually check for insulating-liquid leaks and rust spots.

D. Examine areas and space conditions for compliance with requirements for pad-mounted, liquid-filled, medium-voltage transformers and other conditions affecting performance of the Work.

E. Examine roughing-in of conduits and grounding systems to verify the following:
 1. Wiring entries comply with layout requirements.
 2. Entries are within conduit-entry tolerances specified by manufacturer, and no feeders will cross section barriers to reach load or line lugs.

F. Examine concrete bases for suitable conditions for transformer installation.

G. Pre-Installation Checks:
 2. Remove a sample of insulating liquid according to ASTM D 923. Insulating-liquid values shall comply with NETA ATS, Table 100.4. Sample shall be tested for the following:
 b. Acid Neutralization Number: ASTM D 974.
 c. Specific Gravity: ASTM D 1298.
 d. Interfacial Tension: ASTM D 971.
 e. Color: ASTM D 1500.
 g. Water in Insulating Liquids: Comply with ASTM D 1533.
 h. Power Factor or Dissipation Factor: ASTM D 924.

H. Verify that ground connections are in place and that requirements in Section 26.05.26 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at transformer location.

I. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install transformers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03.30.00 "Cast-in-Place Concrete."

B. Transformer shall be installed level and plumb and shall tilt less than 1.5 degrees while energized.
C. Comply with requirements for vibration isolation and seismic control devices specified in Section 26 05 29 "Hangers and Supports for Electrical Systems" and Section 26 05 48.16 "Seismic Controls for Electrical Systems."

D. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and IEEE C2.

3.3 CONNECTIONS

A. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
 1. For counterpoise, use tinned bare copper cable not smaller than No. 4/0 AWG, buried not less than 30 inches below grade interconnecting the grounding electrodes. Bond surge arrester and neutrals directly to transformer enclosure and then to grounding electrode system with bare copper conductors, sized as shown. Keep lead lengths as short as practicable, with no kinks or sharp bends.
 2. Fence and equipment connections shall not be smaller than No. 4 AWG. Ground fence at each gate post and corner post and at intervals not exceeding 10 ft.. Bond each gate section to fence post using 1/8 by 1 inch tinned flexible braided copper strap and clamps.
 3. Make joints in grounding conductors and loops by exothermic weld or compression connector.
 4. Terminate all grounding and bonding conductors on a common equipment grounding terminal on transformer enclosure.
 5. Complete transformer tank grounding and lightning arrester connections prior to making any other electrical connections.

B. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
 1. Maintain air clearances between energized live parts and between live parts and ground for exposed connections in accordance with manufacturer recommendations.
 2. Bundle associated phase, neutral, and equipment grounding conductors together within transformer enclosure. Arrange conductors such that there is not excessive strain that could cause loose connections. Allow adequate slack for expansion and contraction of conductors.

C. Terminate medium-voltage cables in incoming section of transformers according to Section 26 05 13 "Medium-Voltage Cables."

3.4 SIGNS AND LABELS

A. Comply with installation requirements for labels and signs specified in Section 26 05 53 "Identification for Electrical Systems."

B. Install warning signs as required to comply with 29 CFR 1910.269.
3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. General Field-Testing Requirements:
 b. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
 c. After installing transformer but before primary is energized, verify that grounding system at the transformer is tested at specified value or less.
 d. After installing transformer and after electrical circuitry has been energized, test for compliance with requirements.
 e. Visual and Mechanical Inspection:
 1) Verify equipment nameplate data complies with Contract Documents.
 2) Inspect bolted electrical connections for high resistance using one of the following two methods:
 a) Use a low-resistance ohmmeter to compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 b) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In absence of manufacturer's published data, use NETA ATS, Table 100.12.
 f. Remove and replace malfunctioning units and retest.
 g. Prepare test and inspection reports. Record as-left set points of all adjustable devices.

2. Medium-Voltage Surge Arrester Field Tests:
 a. Visual and Mechanical Inspection:
 1) Inspect physical and mechanical condition.
 2) Verify arresters are clean.
 3) Verify that ground lead on each device is individually attached to a ground bus or ground electrode.

 b. Electrical Test:
 1) Perform an insulation-resistance test on each arrester, phase terminal-to-ground. Apply voltage according to manufacturer’s published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Replace units that fail to comply with recommended minimum insulation resistance listed in that table.
2) Perform a watts-loss test. Evaluate watts-loss values by comparison with similar units and test equipment manufacturer's published data.

3. Liquid-Filled Transformer Field Tests:

a. Visual and Mechanical Inspection:
 1) Test dew point of tank gases if applicable.
 2) Inspect anchorage, alignment, and grounding.
 3) Verify bushings are clean.
 4) Verify that alarm, control, and trip settings on temperature and level indicators are set and operate within manufacturer's recommended settings.
 5) Verify that liquid level in tanks is within manufacturer's published tolerances.
 6) Perform specific inspections and mechanical tests recommended by manufacturer.
 7) Verify presence of transformer surge arresters and that their ratings are as specified.
 8) Verify that as-left tap connections are as specified.

b. Electrical Tests:
 1) Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index; the value of the index shall not be less than 1.0.
 2) Perform power-factor or dissipation-factor tests on all windings according to test equipment manufacturer's published data. Maximum winding insulation power-factor/dissipation-factor values shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.3.
 3) Measure core insulation resistance at 500-V dc if the core is insulated and the core ground strap is removable. Core insulation-resistance values shall not be less than 1 megohm at 500-V dc.
 4) Perform a power-factor or dissipation-factor tip-up test on windings greater than 2.5 kV.
 5) Perform turns-ratio tests at tap positions. Turns-ratio test results shall not deviate by more than one-half percent from either adjacent coils or calculated ratio. If test fails, replace transformer.
 6) Perform an excitation-current test on each phase. The typical excitation-current test data pattern for a three-legged core transformer is two similar current readings and one lower current reading. Investigate and correct if test shows a different pattern.
 7) Measure resistance of each winding at each tap connection, and record temperature-corrected winding-resistance values in the Operations and Maintenance Manual.
 8) Perform an applied-voltage test on high- and low-voltage windings-to-ground. Comply with IEEE C57.12.91, Sections 10.2 and 10.9. This test is
not required for single-phase transformers and for three-phase Y-Y-connected transformers.

9) Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

10) Remove a sample of insulating liquid according to ASTM D 923, and perform dissolved-gas analysis according to IEEE C57.104 or ASTM D 3612.

3.6 FOLLOW-UP SERVICE

A. Infrared Inspection: Perform survey during periods of maximum possible loading. Remove all necessary covers prior to inspection.

1. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of transformer's electrical power connections.

2. Instrument: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1 deg. C at 30 deg. C.

3. Record of Infrared Inspection: Prepare a certified report that identifies testing technician and equipment used, and lists results as follows:

 a. Description of equipment to be tested.
 b. Discrepancies.
 c. Temperature difference between area of concern and reference area.
 d. Probable cause of temperature difference.
 e. Areas inspected. Identify inaccessible and unobservable areas and equipment.
 f. Identify load conditions at time of inspection.
 g. Provide photographs and thermograms of deficient area.

4. Act on inspection results according to recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Government's operations permit. Retest until deficiencies are corrected.

3.7 DEMONSTRATION

A. Train Government's maintenance personnel to adjust, operate, and maintain systems.

END OF SECTION 26 12 19
SECTION 26 13 29.20 - MEDIUM-VOLTAGE, PAD-MOUNTED GEAR

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes medium voltage pad-mounted gear.

1.2 DEFINITIONS
A. BIL: Basic Impulse Insulation Level.
B. Bushing: An insulating structure including a central conductor, or providing a central passage for a conductor, with provision for mounting on a barrier, conducting or otherwise, for insulating the conductor from the barrier and conducting current from one side of the barrier to the other.
C. Bushing Elbow: An insulated device used to connect insulated conductors to separable insulated connectors on dead-front, pad-mounted gear and to provide a fully insulated connection. Also called an "elbow connector."
D. Bushing Insert: That component of a separable insulated connector that is inserted into a bushing well to complete a dead-front, load break or non-load break, separable insulated connector (bushing).
E. Bushing Well: A component of a separable insulated connector, either permanently welded or clamped to an enclosure wall or barrier, having a cavity that receives a replaceable component (bushing insert) to complete the separable insulated connector (bushing).
F. Fault Interrupter: A self-controlled mechanical switching device capable of making, carrying, and automatically interrupting an alternating current. It includes an assembly of control elements to detect overcurrents and control the fault interrupter. A fault interrupter always consists of a switching device, a control unit, and sensors for current and/or voltage sensing.
G. Hotstick: An insulated stick, usually made of fiberglass, that is used to work energized overhead conductors and operate electrical equipment that is overhead, underground, and compartmentalized.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product.
1. Include rated capacities, operating characteristics, and furnished specialties and accessories.
2. Time-current characteristic curves for overcurrent protective devices.

B. Shop Drawings: For pad-mounted gear.

1. Include a tabulation of installed devices with features and ratings.
2. Include dimensioned plans and elevations, showing dimensions, shipping sections, and weights of each assembled section. Elevations shall show major components and features, and they will mimic bus diagram.
3. Include a plan view and cross section of equipment base showing clearances, manufacturer's recommended work space, and locations of penetrations for grounding and conduits. Show location of anchor bolts and leveling channels.
4. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, and location and size of each field connection.
5. Include list of materials.
6. Wiring Diagrams: For each gear assembly, include the following:
 a. Power, signal, and control wiring.
 b. Three-line diagrams of current and future secondary circuits, showing device terminal numbers and internal diagrams.
 c. Schematic control diagrams.
 d. Diagrams showing connections of component devices and equipment.

1.4 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Data: Certificates, for pad-mounted gear, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gear and gear components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis of design product: S&C Manual PME Pad-Mounted Gear

B. Alternate Manufacturers: Alternate manufacturers offering products may be incorporated into the Work subject to compliance with the requirements.

2.2 SYSTEM DESCRIPTION

A. Manufactured Unit: Pad-mounted gear, designed for application in solidly grounded neutral underground distribution systems.

B. The pad-mounted gear shall be in accordance with the single-line diagram, and shall conform to the following specification.

C. The pad-mounted gear shall consist of a single self-supporting enclosure, containing interrupter switches and power fuses with the necessary accessory components, all completely factory-assembled and operationally checked. The interrupter switches and fuses shall be enclosed within an inner grounded steel compartment for electrical isolation and for protection from contamination. Switch terminals shall be equipped with bushings rated 600 amperes continuous, and fuse terminals and bus terminals shall be equipped with bushing wells rated 200 amperes continuous to provide for elbow connection. Bushings and bushing wells shall be mounted on the walls of the inner compartment and shall extend into termination compartments. A termination compartment shall be provided for each three-phase switch, each three-phase set of fuses, and each three-phase set of bus terminals.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Compliance with Standards and Codes

1. The pad-mounted gear shall conform to or exceed the applicable requirements of the following standards and codes:

2. All portions of ANSI C57.12.28, covering enclosure integrity for pad-mounted equipment.
3. Article 710.21(e) in the National Electrical Code, which specifies that the interrupter switches in combination with power fuses shall safely withstand the effects of closing, carrying, and interrupting all possible currents up to the assigned maximum short-circuit rating.
4. All portions of ANSI, IEEE, and NEMA standards applicable to the basic switch and fuse components.
2.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: The gear shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the gear will remain in place without separation of any parts when subjected to the seismic forces specified and the gear will be fully operational after the seismic event."

B. Service Conditions:

1. Gear shall be suitable for operation under service conditions specified as usual service conditions in IEEE C37.20.3.

2.4 RATINGS

A. Gear is applied to a nominal 14.4 kV (L-L) medium-voltage electrical power system. Minimum ratings of the gear shall be as follows:

1. Rated Maximum Voltage and Rated BIL: 17.0 kV and 95 kV BIL.
2. Continuous and Load Interrupting Current: 600 A.

2.5 GEAR ENCLOSURE

A. Weatherproof enclosure with an integral skid mounting frame, designed for mounting on a concrete pad, suitable to allow skidding or rolling of the gear in any direction, and with provision for anchoring the frame to the pad.

B. Enclosure

1. The pad-mounted gear enclosure shall be of unitized monocoque (not structural-frame-and-bolted-sheet) construction to maximize strength, minimize weight, and inhibit corrosion.
2. The basic material shall be 11-gauge hot-rolled, pickled and oiled steel sheet.
3. Enclosure coating system shall be factory applied, meeting the requirements of IEEE C57.12.28, in manufacturer's standard color green.
4. Enclosure Integrity: Comply with IEEE C57.12.28 for compartmentalized enclosures that contain energized electrical equipment in excess of 600 V that may be exposed to the public.
5. All structural joints and butt joints shall be welded, and the external seams shall be ground flush and smooth. The gas-metal-arc welding process shall be employed to eliminate alkaline residues and to minimize distortion and spatter.
6. To guard against unauthorized or inadvertent entry, enclosure construction shall not utilize any externally accessible hardware.
7. The base shall consist of continuous 90-degree flanges, turned inward and welded at the corners, for bolting to the concrete pad.
8. The door openings shall have 90-degree flanges, facing outward, that shall provide strength and rigidity as well as deep overlapping between doors and door openings to guard against water entry.
9. Gasketing between the roof and the enclosure shall guard against entry of water and airborne contaminants and shall discourage tampering or insertion of foreign objects.
10. An internal steel-enclosed compartment shall encase the interrupter switches and fuses for electrical isolation and protection from contamination. The compartment shall have a galvanized steel sheet floor to exclude foliage and animals. The floor shall have screened drain vents to allow drainage if the enclosure is flooded. The top of this compartment shall be gasketed to provide sealing with the enclosure roof.
11. Insulating barriers of NEMA GPO3-grade fiberglass-reinforced polyester shall be provided for each interrupter switch where required to achieve BIL ratings. Additional insulating barriers of the same material shall isolate the tie bus (where furnished).
12. Full-length steel barriers shall separate adjoining termination compartments.
13. Lifting tabs shall be removable. Sockets for the lifting-tab bolts shall be blind-tapped. A resilient material shall be placed between the lifting tabs and the enclosure to help prevent corrosion by protecting the finish against scratching by the tabs. To further preclude corrosion, this material shall be closed-cell to prevent moisture from being absorbed and held between the tabs and the enclosure in the event that lifting tabs are not removed.
14. The enclosure shall be provided with an instruction manual holder.

C. Doors
1. Doors shall be constructed of 11-gauge hot-rolled, pickled and oiled steel sheet.
2. Door-edge flanges shall overlap with door-opening flanges to discourage tampering or insertion of foreign objects.
3. Doors shall have a minimum of two extruded-aluminum hinges with stainless-steel hinge pins, and interlocking extruded-aluminum hinge supports for the full length of the door to provide strength, security, and corrosion resistance. Mounting hardware shall be stainless steel or zinc-nickel-plated steel, and shall not be externally accessible to guard against tampering.
4. Doors shall be hinged at the sides to swing open with minimum effort. Doors hinged at the top requiring significant effort to lift open shall not be allowed.
5. In consideration of controlled access and tamper resistance, each door (or set of double doors) shall be equipped with an automatic three-point latching mechanism.
6. The latching mechanism shall be spring-loaded, and shall latch automatically when the door is closed. All latch points shall latch at the same time to preclude partial latching.
7. A pentahead socket wrench or tool shall be required to actuate the mechanism to unlatch the door and, in the same motion, recharge the spring for the next closing operation.
8. The latching mechanism shall have provisions for padlocking that incorporate a means to protect the padlock shackle from tampering and that shall be coordinated with the latches such that:
9. It shall not be possible to unlatch the mechanism until the padlock is removed, and
10. It shall not be possible to insert the padlock until the mechanism is completely latched closed.
11. Doors providing access to solid-material power fuses shall have provisions to store spare fuse units or refill units.
12. Each door shall be provided with a zinc-nickel-plated steel door holder located above the door opening. The holder shall be hidden from view when the door is closed, and it shall not be possible for the holder to swing inside the enclosure.

D. Roof

1. The roof shall be constructed of 11-gauge hot-rolled, pickled and oiled steel sheet.
2. A heavy coat of insulating “no-drip” compound shall be applied to the inside surface of the center roof section to minimize condensation of the moisture thereon.
3. Roof sections over termination compartments shall be liftable and hinged to allow room for cable pulling during installation. Each roof section shall require minimal effort to open and close and shall have a retainer to hold it in the open position.
4. A mechanical interlock shall be provided to ensure that the roof sections over the termination compartments are closed and secured before allowing full engagement of the door latching mechanism described in Section 3.02(e).
5. Roof sections over high-voltage compartments shall be bolted to the enclosure with no exposed fasteners.

E. Finish

1. Full coverage at joints and blind areas shall be achieved by processing enclosures independently of components such as doors and roofs before assembly into the unitized structures.
2. All exterior seams shall be filled and sanded smooth for neat appearance.
3. To remove oils and dirt, to form a chemically and anodically neutral conversion coating to improve the finish-to-metal bond, and to retard underfilm propagation of corrosion, all surfaces shall undergo a thorough pretreatment process comprised of a fully automated system of cleaning, rinsing, phosphatizing, sealing, drying, and cooling before any protective coatings are applied. By utilizing an automated pretreatment process, the enclosure shall receive a highly consistent thorough treatment, eliminating fluctuations in reaction time, reaction temperature, and chemical concentrations.
4. After pretreatment, protective coatings shall be applied that shall help resist corrosion and protect the steel enclosure. To establish the capability to resist corrosion and protect the enclosure, representative test specimens coated by the enclosure manufacturer’s finishing system shall satisfactorily pass the following tests:
5. 4000 hours of exposure to salt-spray testing per ASTM B 117 with:
6. Underfilm corrosion not to extend more than 1/32 in. from the scribe, as evaluated per ASTM D 1645, Procedure A, Method 2 (scraping); and
7. Loss of adhesion from bare metal not to extend more than 1/8 in. from the scribe.
8. 1000 hours of humidity testing per ASTM D 4585 using the Cleveland Condensing Type Humidity Cabinet, with no blistering as evaluated per ASTM D 714.
9. 500 hours of accelerated weathering testing per ASTM G 53 using lamp UVB-313, with no chalking as evaluated per ASTM D 659, and no more than 10% reduction of gloss as evaluated per ASTM D 523.
10. Crosshatch-adhesion testing per ASTM D 3359 Method B, with no loss of finish.
11. 160-inch-pound impact, followed by adhesion testing per ASTM D 2794, with no chipping or cracking.
12. 3000 cycles of abrasion testing per ASTM 4060, with no penetration to the substrate.
13. Certified test abstracts substantiating the above capabilities shall be furnished upon request.

14. After the finishing system has been properly applied and cured, welds along the enclosure bottom flange shall be coated with a wax-based anticorrosion moisture barrier to give these areas added corrosion resistance.

15. A resilient closed-cell material, such as PVC gasket, shall be applied to the entire underside of the enclosure bottom flange to protect the finish on this surface from scratching during handling and installation. This material shall isolate the bottom flange from the alkalinity of a concrete foundation to help protect against corrosive attack.

16. After the enclosure is completely assembled and the components (switches, fuses, bus, etc.) are installed, the finish shall be inspected for scuffs and scratches. Blemishes shall be touched up by hand to restore the protective integrity of the finish.

17. The finish shall be olive green, Munsell 7GY3.29/1.5.

F. To guard against corrosion, all hardware (including door fittings, fasteners, etc.), all operating-mechanism parts, and other parts subject to abrasive action from mechanical motion shall be of either nonferrous materials, or galvanized or zinc-nickel-plated ferrous materials. Cadmium-plated ferrous parts shall not be used.

2.6 GEAR CONSTRUCTION

A. Dead-front, front and rear access gear.

B. Interrupter Switches

1. Interrupter switches shall be enclosed in an inner steel compartment and shall be provided with bushings rated 600 amperes continuous to permit connection of elbows external to the switch compartment.

2. Interrupter switches shall have a three-time duty-cycle fault-closing rating equal to or exceeding the short-circuit rating of the pad-mounted gear. These ratings define the ability to close the interrupter switch three times against a three-phase fault with asymmetrical current in at least one phase equal to the rated value, with the switch remaining operable and able to carry and interrupt rated current. Tests substantiating these ratings shall be performed at maximum voltage with current applied for at least 10 cycles. Certified test abstracts establishing such ratings shall be furnished upon request.

3. Interrupter switches shall be operated by means of an externally accessible 3/4-in. hex switch-operating hub. The switch-operating hub shall be located within a recessed stainless-steel pocket mounted on the side of the pad-mounted gear enclosure and shall accommodate a 3/4-in. deep-socket wrench or a 3/4-in. shallow-socket wrench with extension. The switch-operating-hub pocket shall include a padlockable stainless-steel access cover that shall incorporate a hood to protect the padlock shackle from tampering. Stops shall be provided on the switch-operating hub to prevent overtravel and thereby guard against damage to the interrupter switch quick-make quick-break mechanism. Labels to indicate switch position shall be provided in the switch-operating-hub pocket.

4. Each interrupter switch shall be provided with a folding switch-operating handle. The switch-operating handle shall be secured to the inside of the switch-operating-hub pocket by a brass chain. The folded handle shall be stored behind the closed switch-operating-hub access cover.
5. Interrupter switches shall utilize a quick-make quick-break mechanism installed by the switch manufacturer. The quick-make quick-break mechanism shall be integrally mounted on the switch frame, and shall swiftly and positively open and close the interrupter switch independent of the switch-operating-hub speed.

6. Each interrupter switch shall be completely assembled and adjusted by the switch manufacturer on a single rigid mounting frame. The frame shall be of welded steel construction such that the frame intercepts the leakage path which parallels the open gap of the interrupter switch to positively isolate the load circuit when the interrupter switch is in the open position.

7. Interrupter switch contacts shall be backed up by stainless-steel springs to provide constant high contact pressure.

8. Interrupter switches shall be provided with a single blade per phase for circuit closing, including fault closing, continuous current carrying, and circuit interrupting. Spring-loaded auxiliary blades shall not be permitted. Interrupter switch blade supports shall be permanently molded in place in a unified insulated shaft constructed of the same cycloaliphatic epoxy resin as the insulators.

9. Circuit interruption shall be accomplished by use of an interrupter which is positively and inherently sequenced with the blade position. It shall not be possible for the blade and interrupter to get out of sequence. Circuit interruption shall take place completely within the interrupter, with no external arc or flame. Any exhaust shall be vented in a controlled manner through a deionizing vent.

C. Fuses

1. Solid-Material Power Fuses

2. Solid-material power fuses shall utilize refill-unit-and-holder or fuse-unit-and-end-fitting construction. The refill unit or fuse unit shall be readily replaceable and low in cost.

3. Fusible elements shall be nonaging and nondamageable so it is unnecessary to replace unblown companion fuses following a fuse operation.

4. Fusible elements for refill units or fuse units, rated 10 amperes or larger, shall be helically coiled to avoid mechanical damage due to stresses from current surges.

5. Fusible elements that carry continuous current shall be supported in air to help prevent damage from current surges.

6. Refill units and fuse units shall have a single fusible element to eliminate the possibility of unequal current sharing in parallel current paths.

7. Solid-material power fuses shall have melting time-current characteristics that are permanently accurate to within a maximum total tolerance of 10% in terms of current. Time-current characteristics shall be available which permit coordination with source-side and load-side protective relays, automatic circuit reclosers, and other fuses.

8. Solid-material power fuses shall be capable of detecting and interrupting all faults, whether large, medium, or small (down to minimum melting current); under all realistic conditions of circuitry; and with line-to-line or line-to-ground voltage across the fuse. They shall be capable of handling the full range of transient recovery voltage severity associated with these faults.

9. All arcing accompanying solid-material power fuse operation shall be contained within the fuse, and all arc products and gases evolved shall be effectively contained within the exhaust control device during fuse operation.

10. Solid-material power fuses shall be equipped with a blown-fuse indicator that shall provide visible evidence of fuse operation while installed in the fuse mounting.
D. Fuse Storage

1. A fuse-storage feature shall be provided in one source interrupter-switch compartment. Each fuse-storage feature shall provide space for storing three spare fuse holders or fuse units with end fittings for solid-material power fuses.

E. Labeling

1. Hazard-Alerting Signs
 a. All external doors shall be provided with “Warning—Keep Out—Hazardous Voltage Inside—Can Shock, Burn, or Cause Death” signs.
 b. The inside of each door shall be provided with a “Danger—Hazardous Voltage—Failure to Follow These Instructions Will Likely Cause Shock, Burns, or Death” sign. The text shall further indicate that operating personnel must know and obey the employer’s work rules, know the hazards involved, and use proper protective equipment and tools to work on this equipment.
 c. Termination compartments shall be provided with “Danger—Keep Away—Hazardous Voltage—Will Shock, Burn, or Cause Death” signs.
 d. Arc-Flash Warning Label: Self-adhesive labels on the outside of the high-voltage compartment door(s), warning of potential electrical arc-flash hazards and appropriate personal protective equipment required.

2. Nameplates, Ratings Labels, and Connection Diagrams
 a. The outside of each door (or set of double doors) shall be provided with a nameplate indicating the manufacturer’s name, catalog number, model number, date of manufacture, and serial number.
 b. The inside of each door (or set of double doors) shall be provided with a ratings label indicating the following:
 c. Overall pad-mounted gear ratings: nominal voltage, kV; maximum voltage, kV; BIL voltage, kV; power frequency, Hz; short-circuit peak withstand current, amperes, peak; short-circuit one-second short-time withstand current, amperes, RMS, symmetrical; and short-circuit MVA, three-phase symmetrical, at rated nominal voltage.
 d. Main bus ratings: continuous current, amperes; peak withstand current, amperes, peak; and one-second short-time withstand current, amperes, RMS symmetrical.
 e. Switch ratings: continuous current, amperes; load splitting current, amperes; load dropping current, amperes; peak withstand current, amperes, peak; one-second short-time withstand current, amperes, RMS, symmetrical; and three-time duty-cycle fault-closing current, amperes, RMS symmetrical and amperes, peak.
 f. Fuse type and ratings: maximum current, amperes and interrupting current, amperes, RMS, symmetrical.
 g. A three-line connection diagram showing interrupter switches, fuses, and bus along with the manufacturer’s model number shall be provided on the inside of each door (or set of double doors), and on the inside of each switch-operating-hub access cover.

F. Accessories
1. End fittings and fuse unit, holder and refill unit, or interrupting module and control module shall be furnished for each fuse mounting. In addition, one spare fuse unit, refill unit, or interrupting module shall be furnished.

2.7 SOURCE QUALITY CONTROL

A. Tests:

1. Calibrate

2. Operating tests shall verify the following:

 a. Switch position indicators and contacts are in the correct position for both the open and closed positions.
 b. Fuses conform to published time-current characteristic curves and size is in accordance with plans and selective coordination study report.
 c. Circuit configuration is shown correctly.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Upon delivery of gear and prior to unloading, inspect equipment for damage.

1. Examine tie rods and chains to verify they are undamaged and tight and that blocking and bracing are tight.
2. Verify that there is no evidence of load shifting in transit and that readings from transportation shock recorders, if equipped, are within manufacturer's recommendations.
3. Examine gear for external damage, including dents or scratches in doors and sill, and termination provisions.
4. Compare gear and accessories received with the bill of materials to verify that the shipment is complete. Verify that gear and accessories conform to the manufacturer's quotation and Shop Drawings. If the shipment is not complete or does not comply with project requirements, notify the manufacturer in writing immediately.
5. Unload gear, observing packing label warnings and handling instructions.
6. Open compartment doors and inspect components for damage or displaced parts, loose or broken connections, cracked or chipped insulators, bent mounting flanges, dirt or foreign material, and water or moisture.

B. Handling:

1. Handle gear, according to manufacturer's recommendations; avoid damage to the enclosure, termination compartments, base, frame, and internal components. Do not subject gear to impact, jolting, jarring, or rough handling.
2. Transport gear upright to avoid internal stresses on equipment mounting assemblies. Do not tilt or tip gear.
3. Use spreaders or a lifting beam to obtain a vertical lift and to protect gear from straps bearing against the enclosure. Lifting cable pull angles may not be greater than 15 degrees from vertical.
4. Do not damage structure when handling gear.

C. Storage:
1. Gear may be stored outdoors. If possible, store gear at final installation locations on concrete pads. If dry concrete surfaces are not available, use pallets of adequate strength to protect gear from direct contact with the ground. Ensure gear is level.
2. Protect gear from physical damage. Do not store gear in the presence of corrosive or explosive gases.
3. Store gear with compartment doors closed.

D. Examine roughing-in of conduits and grounding systems to verify the following:
1. Wiring entries comply with layout requirements.
2. Entries are within conduit-entry tolerances specified by manufacturer and no feeders have to cross section barriers to reach load or line lugs.

E. Pre-Installation Checks:

F. Verify that ground connections are in place and that requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at gear location.

G. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 GEAR INSTALLATION
A. Comply with NECA 1.

B. Equipment Mounting:
1. Install gear on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
2. Comply with requirements for vibration isolation and seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Install level and plumb, tilting less than 1.5 degrees when energized.

D. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

E. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and IEEE C2.
3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

1. For counterpoise, use tinned bare copper cable, buried not less than 30 inches below ground interconnecting the grounding electrodes. Bond surge arrester and neutrals directly to the gear enclosure and then to the grounding electrode system with bare copper conductors, sized as shown. Keep lead lengths as short as practicable with no kinks or sharp bends.

2. Fence and equipment connections shall not be smaller than No. 4 AWG. Ground fence at each gate post and corner post and at intervals not exceeding 10 ft. Bond each gate section to the fence post using 1/8 by 1 inch tinned flexible braided copper strap and clamps.

3. Make joints in grounding conductors and loops by exothermic weld or compression connector.

4. Terminate all grounding and bonding conductors on a common equipment grounding terminal on the gear enclosure.

5. Complete the gear grounding and surge protector connections prior to making any other electrical connections.

B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

1. Maintain air clearances between energized live parts and between live parts and ground for exposed connections in accordance with manufacturer recommendations.

2. Bundle associated phase, neutral, and equipment grounding conductors together within the gear enclosure. Arrange conductors such that there is not excessive strain on the connections that could cause loose connections. Allow adequate slack for expansion and contraction of conductors.

C. Terminate medium-voltage cables in incoming section of gear according to Section 260513 "Medium-Voltage Cables."

3.4 SIGNS AND LABELS

A. Comply with the installation requirements for labels and signs specified in Section 260553 "Identification for Electrical Systems."

B. Install warning signs as required to comply with OSHA 29 CFR 1910.269.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. General Field Testing Requirements:

2. Perform each visual and mechanical inspection and electrical test. Certify compliance with test parameters.
3. After installing gear but before primary is energized, verify that grounding system at the gear is tested at the specified value or less.
4. After installing gear and after electrical circuitry has been energized, test for compliance with requirements.

C. Medium-Voltage Gear Field Tests:

1. Visual and Mechanical Inspection:
 a. Verify that current and voltage transformer ratios correspond to Drawings.
 b. Inspect bolted electrical connections using calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 c. Confirm correct operation and sequencing of electrical and mechanical interlock systems.
 2) Make key exchange with devices operated in off-normal positions.
 d. Inspect control power transformers.
 1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
 2) Verify that primary and secondary fuse or circuit breaker ratings match Drawings.

2. Electrical Tests:
 a. Inspect bolted electrical connections using a low-resistance ohmmeter to compare bolted resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 b. Perform dc voltage insulation-resistance tests on each bus section, phase-to-phase and phase-to-ground, for one minute. If the temperature of the bus is other than plus or minus 20 deg C, adjust the resulting resistance as provided in NETA ATS, Table 100.11.
 1) Insulation-resistance values of bus insulation shall be according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.1. Investigate and correct values of insulation resistance less than manufacturer's recommendations or NETA ATS, Table 100.1.
2) Do not proceed to the dielectric withstand voltage tests until insulation-resistance levels are raised above minimum values.

c. Perform a dielectric withstand voltage test on each bus section, each phase-to-ground with phases not under test grounded, according to manufacturer's published data. If manufacturer has no recommendation for this test, it shall be conducted according to NETA ATS, Table 100.2. Apply the test voltage for one minute.

1) If no evidence of distress or insulation failure is observed by the end of the total time of voltage application during the dielectric withstand test, the test specimen is considered to have passed the test.

d. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 V dc for 300 V-rated cable and 1000 V dc for 600 V-rated cable. Test duration shall be one minute. For units with solid-state components or control devices that cannot tolerate the applied voltage, follow the manufacturer's recommendation.

1) Minimum insulation-resistance values of control wiring shall not be less than two megohms.

e. Perform current-injection tests on the entire current circuit in each section of gear.

1) Perform current tests by secondary injection with magnitudes such that a minimum current of 1.0 A flows in the secondary circuit. Verify correct magnitude of current at each device in the circuit.

f. Perform system function tests according to "System Function Tests" Article.

g. Verify operation of space heaters.

h. Perform phasing checks on double-ended or dual-source gear to ensure correct bus phasing from each source.

D. Ground Resistance Test:

1. Visual and Mechanical Inspection:

a. Verify ground system complies with the Contract Documents and NFPA 70 "Grounding and Bonding" Article.

b. Inspect physical and mechanical condition. Grounding system electrical and mechanical connections shall be free of corrosion.

c. Inspect bolted electrical connections using a calibrated torque-wrench method according to manufacturer's published data or NETA ATS, Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS, Table 100.12. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

d. Inspect anchorage.

2. Electrical Tests:
a. Perform fall-of-potential or alternative test according to IEEE 81 on the main grounding electrode or system. The resistance between the main grounding electrode and ground shall be no more than 5 ohms.

b. Perform point-to-point tests to determine the resistance between the main grounding system and all major electrical equipment frames, system neutral, and derived neutral points. Investigate point-to-point resistance values that exceed 0.5 ohms. Compare equipment nameplate data with Contract Documents.

c. Inspect bolted electrical connections for high resistance using a low-resistance ohmmeter to compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

d. Inspect physical and mechanical condition.

e. Inspect anchorage.

E. Gear will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

3.6 SYSTEM FUNCTION TESTS

A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after “Field Quality Control” tests have been completed and all components have passed specified tests.

1. Develop test parameters and perform tests for evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.

2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.

3. Verify the correct operation of sensing devices, alarms, and indicating devices.

END OF SECTION 26 13 29
SECTION 26 22 13 - LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 500 kVA.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:

 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 INFORMATIONAL SUBMITTALS

A. Seismic Qualification Data: Certificates, for transformers, accessories, and components, from manufacturer.

 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 4. Certification: Indicate that equipment meets seismic requirements.

B. Source quality-control reports.

C. Field quality-control reports.

1.4 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.
1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.

1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.

B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.
4. Square D.

B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Transformers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the transformer will remain in place without separation of any parts when subjected to the seismic forces specified and the transformer will be fully operational after the seismic event."

2.3 GENERAL TRANSFORMER REQUIREMENTS

A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
B. Comply with NFPA 70.
 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

C. Transformers Rated 15 kVA and Larger:
 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

D. Shipping Restraints: Paint or otherwise color-code bolts, wedges, blocks, and other restraints that are to be removed after installation and before energizing. Use fluorescent colors that are easily identifiable inside the transformer enclosure.

2.4 DISTRIBUTION TRANSFORMERS

A. Comply with NFPA 70.

B. Provide transformers that are constructed to withstand seismic forces specified in Section 260548.16 "Seismic Controls for Electrical Systems."

C. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 1. One leg per phase.
 2. Core volume shall allow efficient transformer operation at 10 percent above the nominal tap voltage.
 3. Grounded to enclosure.

D. Coils: Continuous windings except for taps.
 2. Internal Coil Connections: Brazed or pressure type.

E. Enclosure: Ventilated.
 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound using a vacuum-pressure impregnation process to seal out moisture and air.
 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 3. Wiring Compartment: Sized for conduit entry and wiring installation.
 4. Finish: Comply with NEMA 250.

F. Taps for Transformers 3 kVA and Smaller: None.

G. Taps for Transformers 7.5 to 24 kVA: One 5 percent tap above and one 5 percent tap below normal full capacity.

H. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
I. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature.

J. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.

K. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.

L. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:

1. 9.00 kVA and Less: 45 dBA.
2. 9.01 to 15.00 kVA: 50 dBA.
3. 15.01 to 50.00 kVA: 50 dBA.
4. 50.01 to 150.00 kVA: 55 dBA.
5. 150.01 to 300.00 kVA: 57 dBA.
6. 300.01 to 500.00 kVA: 59 dBA.

2.5 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 260553 "Identification for Electrical Systems."

2.6 SOURCE QUALITY CONTROL

A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.

1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
2. Ratio tests at rated voltage connections and at all tap connections.
3. Phase relation and polarity tests at rated voltage connections.
4. No load losses, and excitation current and rated voltage at rated voltage connections.
5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
6. Applied and induced tensile tests.
7. Regulation and efficiency at rated load and voltage.
8. Insulation-Resistance Tests:
 a. High-voltage to ground.
 b. Low-voltage to ground.
 c. High-voltage to low-voltage.
9. Temperature tests.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.

B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.

C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.

D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.

F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install transformers level and plumb on a concrete base with vibration-dampening supports. Locate transformers away from corners and not parallel to adjacent wall surface.

B. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete and anchor floor-mounted transformers according to manufacturer's written instructions, seismic codes applicable to Project, and requirements in Section 260529 "Hangers and Supports for Electrical Systems."

1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Secure transformer to concrete base according to manufacturer's written instructions.

D. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.

E. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:

1. Visual and Mechanical Inspection.
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, and grounding.
 c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 d. Verify the unit is clean.
 e. Perform specific inspections and mechanical tests recommended by manufacturer.
 f. Verify that as-left tap connections are as specified.
 g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:
 a. Measure resistance at each winding, tap, and bolted connection.
 b. Perform insulation-resistance tests winding-to-winding and each winding-to-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.

C. Remove and replace units that do not pass tests or inspections and retest as specified above.

D. Infrared Scanning: Two months after Substantial Completion, perform an infrared scan of transformer connections.

1. Use an infrared-scanning device designed to measure temperature or detect significant deviations from normal values. Provide documentation of device calibration.
2. Perform two follow-up infrared scans of transformers, one at four months and the other at 11 months after Substantial Completion.
3. Prepare a certified report identifying transformer checked and describing results of scanning. Include notation of deficiencies detected, remedial action taken, and scanning observations after remedial action.

E. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262213
SECTION 26 24 13 - SWITCHBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Service and distribution switchboards rated 600 V and less.
 2. Disconnecting and overcurrent protective devices.
 3. Instrumentation.
 4. Control power.
 5. Accessory components and features.
 6. Identification.

1.2 ACTION SUBMITTALS

A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
 1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

B. Shop Drawings: For each switchboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 2. Detail enclosure types for types other than NEMA 250, Type 1.
 3. Detail bus configuration, current, and voltage ratings.
 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
 6. Detail utility company's metering provisions with indication of approval by utility company.
 7. Include evidence of NRTL listing for series rating of installed devices.
 8. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 9. Include time-current coordination curves for each type and rating of overcurrent protective device included in switchboards. Submit on translucent log-log graft paper; include selectable ranges for each type of overcurrent protective device.
 10. Include diagram and details of proposed mimic bus.
 11. Include schematic and wiring diagrams for power, signal, and control wiring.

C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.
1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 a. Routine maintenance requirements for switchboards and all installed components.
 b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Potential Transformer Fuses: Equal to 10 percent of quantity installed for each size and type but no fewer than two of each size and type.
2. Control-Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Fuses for Fused Power-Circuit Devices: Equal to 10 percent of quantity installed for each size and type but no fewer than three of each size and type.
4. Indicating Lights: Equal to 10 percent of quantity installed for each size and type but no less than one of each size and type.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.

B. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.

B. Handle and prepare switchboards for installation according to NECA 400.

1.7 FIELD CONDITIONS

A. Installation Pathway: Remove and replace access fencing, doors, lift-out panels, and structures to provide pathway for moving switchboards into place.
B. Environmental Limitations:

1. Do not deliver or install switchboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above switchboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

a. Ambient Temperature: Not exceeding 104 deg F.
 b. Altitude: Not exceeding 6600 feet.

C. Unusual Service Conditions: NEMA PB 2, as follows:

1. Ambient temperatures within limits specified.

1.8 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Three years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Switchboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.
2. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 SWITCHBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.
4. Square D.

B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for switchboards including clearances between switchboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NEMA PB 2.

F. Comply with NFPA 70.

G. Comply with UL 891.

H. Front-Connected, Front-Accessible Switchboards:

1. Main Devices: Fixed, individually mounted.
3. Sections front and rear aligned.

I. Nominal System Voltage: 480Y/277 V.

J. Main-Bus Continuous: 1600 A.

K. Seismic Requirements: Fabricate and test switchboards according to IEEE 344 to withstand seismic forces defined in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Shake-table testing shall comply with ICC-ES AC156.

 a. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
b. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

L. Indoor Enclosures: Steel, NEMA 250, Type 1.

M. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.

N. Insulation and isolation for main bus of main section and main and vertical buses of feeder sections.

O. Service Entrance Rating: Switchboards intended for use as service entrance equipment shall contain from one to six disconnecting means with overcurrent protection, a neutral bus with disconnecting link, a grounding electrode conductor terminal, and a main bonding jumper.

P. Utility Metering Compartment: Barrier compartment and section complying with utility company's requirements; hinged sealable door; buses provisioned for mounting utility company's current transformers and potential transformers or potential taps as required by utility company. If separate vertical section is required for utility metering, match and align with basic switchboard. Provide service entrance label and necessary applicable service entrance features.

Q. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.

R. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.

S. Buses and Connections: Three phase, four wire unless otherwise indicated.

1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
3. Copper feeder circuit-breaker line connections.
4. Ground Bus: Minimum-size required by UL 891, hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
5. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
6. Disconnect Links:
 a. Isolate neutral bus from incoming neutral conductors.
 b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.

7. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

3. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replaceable electronic trip; and the following field-adjustable settings:
 a. Instantaneous trip.
 b. Long- and short-time pickup levels.
 c. Long and short time adjustments.
 d. Ground-fault pickup level, time delay, and \(I_f \) response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

6. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.

2.4 INSTRUMENTATION

A. Instrument Transformers: NEMA EI 21.1, and the following:

1. Potential Transformers: NEMA EI 21.1; 120 V, 60 Hz, single secondary; disconnecting type with integral fuse mountings. Burden and accuracy shall be consistent with connected metering and relay devices.

2. Current Transformers: NEMA EI 21.1; 5 A, 60 Hz, secondary; wound, bushing, bar or window type; single secondary winding and secondary shorting device. Burden and accuracy shall be consistent with connected metering and relay devices.

3. Control-Power Transformers: Dry type, mounted in separate compartments for units larger than 3 kVA.

4. Current Transformers for Neutral and Ground-Fault Current Sensing: Connect secondary wiring to ground overcurrent relays, via shorting terminals, to provide selective tripping
of main and tie circuit breaker. Coordinate with feeder circuit-breaker, ground-fault protection.

B. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:

1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
 b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
 c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
 d. Megawatts: Plus or minus 1 percent.
 e. Megavars: Plus or minus 1 percent.
 f. Power Factor: Plus or minus 1 percent.
 g. Frequency: Plus or minus 0.1 percent.
 h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
 i. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.
 j. Contact devices to operate remote impulse-totalizing demand meter.

2. Mounting: Display and control unit flush or semiflush mounted in instrument compartment door.

3. Digital meter communication interface to building automation systems include:
 a. BACnet IP protocol.

2.5 CONTROL POWER

A. Control Circuits: 120-V ac, supplied through secondary disconnecting devices from control-power transformer.

2.6 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from switchboard.

C. Mounting Accessories: For anchors, mounting channels, bolts, washers, and other mounting accessories, comply with requirements in Section 26 05 48.16 "Seismic Controls for Electrical Systems" or manufacturer's instructions.
2.7 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store switchboards according to NECA 400.

1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
3. Protect from moisture, dust, dirt, and debris during storage and installation.
4. Install temporary heating during storage per manufacturer's instructions.

B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.

C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install switchboards and accessories according to NECA 400.

B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 03 30 00 "Cast-in-Place Concrete."

1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
5. Install anchor bolts to elevations required for proper attachment to switchboards.
6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.
C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.

D. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

E. Operating Instructions: Frame and mount the printed basic operating instructions for switchboards, including control and key interlocking sequences and emergency procedures. Fabricate frame of finished wood or metal and cover instructions with clear acrylic plastic. Mount on front of switchboards.

F. Install filler plates in unused spaces of panel-mounted sections.

G. Install overcurrent protective devices, surge protection devices, and instrumentation.
 1. Set field-adjustable switches and circuit-breaker trip ranges.

H. Install electronic metering communication interface wiring to building automation system.

I. Comply with NECA 1.

3.3 CONNECTIONS

A. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.

B. Support and secure conductors within the switchboard according to NFPA 70.

3.4 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

B. Switchboard Nameplates: Label each switchboard compartment with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

C. Device Nameplates: Label each disconnecting and overcurrent protective device and each meter and control device mounted in compartment doors with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
1. Acceptance Testing:
 a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard, and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 b. Test continuity of each circuit.

3. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Perform the following infrared scan tests and inspections, and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switchboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

B. Switchboard will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports, including a certified report that identifies switchboards included and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat, to maintain temperature according to manufacturer's written instructions, until switchboard is ready to be energized and placed into service.
3.8 DEMONSTRATION

A. Train Government's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 26 24 13
SECTION 26 24 16 - PANELBOARDS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Distribution panelboards.
 2. Lighting and appliance branch-circuit panelboards.

1.2 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. GFEP: Ground-fault equipment protection.
D. HID: High-intensity discharge.
E. MCCB: Molded-case circuit breaker.
F. SPD: Surge protective device.
G. VPR: Voltage protection rating.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.
 1. Include materials, switching and overcurrent protective devices, accessories, and components indicated.
 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

B. Shop Drawings: For each panelboard and related equipment.
 1. Include dimensioned plans, elevations, sections, and details.
 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 4. Detail bus configuration, current, and voltage ratings.
 5. Short-circuit current rating of panelboards and overcurrent protective devices.
6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Keys: Two spares for each type of panelboard cabinet lock.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.

B. Handle and prepare panelboards for installation according to NECA 407.

1.8 FIELD CONDITIONS

A. Environmental Limitations:

1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:

a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.

b. Altitude: Not exceeding 6600 feet.
1.9 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.

1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS AND LOAD CENTERS COMMON REQUIREMENTS

A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces defined in Section 26.05.48.16 "Seismic Controls for Electrical Systems."

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for panelboards including clearances between panelboards and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NEMA PB 1.

E. Comply with NFPA 70.

F. Enclosures: Flush and Surface-mounted, dead-front cabinets.

1. Rated for environmental conditions at installed location.

 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Outdoor Locations: NEMA 250, Type 3R.
 d. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 e. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

2. Height: 84 inches maximum.

3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

4. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

5. Finishes:

 a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
c. Fungus Proofing: Permanent fungicidal treatment for overcurrent protective devices and other components.

G. Incoming Mains:

1. Location: Convertible between top and bottom.
2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

H. Phase, Neutral, and Ground Buses:

 a. Plating shall run entire length of bus.
 b. Bus shall be fully rated the entire length.
2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
4. Isolated Ground Bus: Adequate for branch-circuit isolated ground conductors; insulated from box, where indicated on plans.
5. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.

I. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Compression type, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Compression type, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
8. Gutter-Tap Lugs: Compression type suitable for use with conductor material and with matching insulating covers. Locate at same end of bus as incoming lugs or main device.

J. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

K. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
4. Square D.

B. Panelboards: NEMA PB 1, distribution type.

C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.

1. For doors more than 36 inches high, provide two latches, keyed alike.

D. Mains: As indicated on Plans.

F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
4. Square D.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
C. Mains: Circuit breaker or lugs only.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.

B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.

1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.

3. Electronic Trip Circuit Breakers for circuit-breaker frame sizes 150 A and larger:
 a. RMS sensing.
 b. Field-replaceable rating plug or electronic trip.
 c. Digital display of settings, trip targets, and indicated metering displays.
 d. Multi-button keypad to access programmable functions and monitored data.
 e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 f. Integral test jack for connection to portable test set or laptop computer.
 g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.

4. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

6. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
b. Breaker handle indicates tripped status.
c. UL listed for reverse connection without restrictive line or load ratings.
d. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
f. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
g. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
h. Multipole units enclosed in a single housing with a single handle or factory assembled to operate as a single unit.
i. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
j. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

D. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NECA 407.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NECA 407.

D. Equipment Mounting:

 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
 2. Comply with requirements for seismic control devices specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.

F. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

G. Mount top of trim 90 inches above finished floor unless otherwise indicated.

H. Mount panelboard cabinet plumb and rigid without distortion of box.

I. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
J. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

L. Install filler plates in unused spaces.

M. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Government's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

E. Install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Acceptance Testing Preparation:
 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:
 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6
Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. optional tests. Certify compliance with test parameters.

2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3. Perform the following infrared scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.

 b. Instruments and Equipment:

 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

D. Panelboards will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Contracting Officer of effect on phase color coding.

1. Measure loads during period of normal facility operations.

2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Contracting Officer. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.

3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.

4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 26 24 16
SECTION 26 27 26 - WIRING DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Straight-blade convenience receptacles.
 2. GFCI receptacles.
 3. Twist-locking receptacles.
 4. Power cord reels
 5. Cord and plug sets.
 6. Toggle switches.
 7. Wall plates.
 8. Floor service fittings.

1.2 DEFINITIONS

A. Abbreviations of Manufacturers' Names:
 1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.

B. BAS: Building automation system.

C. EMI: Electromagnetic interference.

D. GFCI: Ground-fault circuit interrupter.

E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

F. RFI: Radio-frequency interference.

G. SPD: Surge protective device.

H. UTP: Unshielded twisted pair.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 2. Devices shall comply with the requirements in this Section.

D. Devices for Government-Furnished Equipment:
 1. Receptacles: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.

E. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2.3 GFCI RECEPTACLES

A. General Description:
 1. 125 V, 20 A, straight blade, feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

B. Duplex GFCI Convenience Receptacles:
1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2.4 HAZARDOUS (CLASSIFIED) LOCATION RECEPTACLES
 A. Hazardous (Classified) Locations Receptacles: Comply with NEMA FB 11 and UL 1010.

2.5 TWIST-LOCKING RECEPTACLES
 A. Twist-Lock, Single Convenience Receptacles: 125 V, 30 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-30R, and UL 498.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.

2.1 POWER CORD REELS
 A. Description: Cord reel, motor driven with receptacle body connector, heavy-duty, industrial grade, wet location rated.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Cox Reels
 b. Hannay Reels
 c. Reelcraft
 C. Connector Body: Yellow, EPTR Rubber, with stainless steel assembly screws.
 E. Reel: External, heavy gauge, powder coated steel or stainless steel rated for wet locations
F. Adjustable guide arm and bumper stop.

G. Motor Drive: Enclosed, direct gear drive. 115 VAC, reversible, AC rectified. UL listed for wet locations.
 1. Chain drive is not acceptable.

H. Reversing switch: General purpose, NEMA 3R, for direct starting and reversing AC cord reel motor.
 1. Furnish one per motorized cord reel.

I. Warranty: Manufacturer’s limited 2 year.

2.2 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.3 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:
 1. Single Pole:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.
 2. Two Pole:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
3. Three Way:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.

4. Four Way:
 a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1) Eaton (Arrow Hart).
 2) Hubbell Incorporated; Wiring Device-Kellems.
 3) Leviton Manufacturing Co., Inc.

C. Pilot-Light Switches: 120/277 V, 20 A.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 2. Description: Single pole, with LED-lighted handle, illuminated when switch is off.

D. Key-Operated Switches: 120/277 V, 20 A.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton (Arrow Hart).
 b. Hubbell Incorporated; Wiring Device-Kellems.
 c. Leviton Manufacturing Co., Inc.
 2. Description: Single pole, with factory-supplied key in lieu of switch handle.
2.4 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

2.5 FLOOR SERVICE FITTINGS

A. Type: Modular, flush-type, dual-service units suitable for wiring method used.
B. Designed to be installed in concrete and raised floor types.
C. Compartments: Barrier separates power from voice and data communication cabling.
D. Dividers configurable with removable modules. 6 gang capacity.
E. Service Plate: Rectangular, die-cast aluminum with satin finish.
F. Cover designed to close around wires in-use, exiting floor box, to protect cabling and reduce trip hazards.
G. Trim flange shall be designed to meet the ADA Accessibility Guidelines as it pertains to ADA Standard 4.5 regarding the change in floor and ground surface levels.
H. Floor Box covers meet and exceed UL scrub water exclusion requirements for tile, carpet, wood, bare concrete and terrazzo floor coverings.
I. Power Receptacle: 2-gang duplex NEMA WD 6 Configuration 5-20R, with standard cover plates, white finish, unless otherwise indicated.
J. Voice and Data Communication Outlet: Two modular, keyed, color-coded, RJ-45 jacks for UTP cable complying with requirements in Section 27 15 00 "Communications Horizontal Cabling."
K. Floor Boxes are to be furnished with multiple trade size knockouts ranging in size from 3/4" to 2".

2.6 POKE-THROUGH ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
1. Hubbell Incorporated; Wiring Device-Kellems.
2. Pass & Seymour/Legrand (Pass & Seymour).
3. Square D; by Schneider Electric.
4. Thomas & Betts Corporation; A Member of the ABB Group.

B. Description:

1. Factory-fabricated and -wired assembly of below-floor junction box with multichanneled, through-floor raceway/firestop unit and detachable matching floor service-outlet assembly.
2. Comply with UL 514 scrub water exclusion requirements.
3. Service-Outlet Assembly: Flush type with four simplex receptacles and space for four RJ-45 jacks complying with requirements in Section 27 15 00 "Communications Horizontal Cabling."
4. Size: Selected to fit nominal 4-inch cored holes in floor and matched to floor thickness.
5. Fire Rating: Unit is listed and labeled for fire rating of floor-ceiling assembly.
6. Closure Plug: Arranged to close unused 4-inch cored openings and reestablish fire rating of floor.
7. Wiring Raceways and Compartments: For a minimum of four No. 12 AWG conductors and a minimum of four, four-pair cables that comply with requirements in Section 27 15 00 "Communications Horizontal Cabling."

2.7 FINISHES

A. Device Color:

1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: For plastic covers, match device color.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtauls.
4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtauls that are not less than 6 inches in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtauls for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:
1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the left.
2. Install hospital-grade receptacles in patient-care areas with the ground pin or neutral blade at the top.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:
1. Install dimmers within terms of their listing.
2. Verify that dimmers used for fan-speed control are listed for that application.
3. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

I. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through-type GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

A. Comply with Section 26 05 53 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Test Instruments: Use instruments that comply with UL 1436.

B. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

C. Perform the following tests and inspections:

1. In healthcare facilities, prepare reports that comply with recommendations in NFPA 99.
2. Test Instruments: Use instruments that comply with UL 1436.
3. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Convenience Receptacles:

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar
problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

E. Wiring device will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 26 27 26
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Cartridge fuses rated 600 V ac and less for use in the following:
 a. Control circuits.
 b. Motor-control centers.
 c. Panelboards.
 d. Switchboards.
 e. Enclosed controllers.
 f. Enclosed switches.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for spare-fuse cabinets. Include the following for each fuse type indicated:

1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.

2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

4. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse. Submit in electronic format suitable for use in coordination software and in PDF format.

5. Coordination charts and tables and related data.

6. Fuse sizes for elevator feeders and elevator disconnect switches.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
1. Ambient temperature adjustment information.
2. Current-limitation curves for fuses with current-limiting characteristics.
3. Time-current coordination curves (average melt) and current-limitation curves (instantaneous peak let-through current) for each type and rating of fuse used on the Project. Submit in electronic format suitable for use in coordination software and in PDF format.
4. Coordination charts and tables and related data.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.5 FIELD CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 1. Bussmann, an Eaton business.
 2. Edison; a brand of Bussmann by Eaton.
 3. Littelfuse, Inc.
 4. Mersen USA.

B. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, current-limiting, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.
 1. Type RK-1: 250-V, zero- to 600-A rating, 200 kAIC, time delay.
 2. Type CC: 600-V, zero- to 30-A rating, 200 kAIC, time delay.
 3. Type J: 600-V, zero- to 600-A rating, 200 kAIC, time delay.
 4. Type L: 600-V, 601- to 6000-A rating, 200 kAIC, time delay.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NEMA FU 1 for cartridge fuses.

D. Comply with NFPA 70.

E. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.

B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.

C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.

D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

A. Cartridge Fuses:

1. Service Entrance: Class L, time delay.
2. Feeders: Class L, time delay.
3. Motor Branch Circuits: Class RK1, time delay.
4. Large Motor Branch (601-4000 A): Class L, time delay.
5. Power Electronics Circuits: Class J, high speed.
6. Other Branch Circuits: Class RK1, time delay.
7. Control Transformer Circuits: Class CC, time delay, control transformer duty.
8. Provide open-fuse indicator fuses or fuse covers with open fuse indication.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems" and indicating fuse replacement information inside of door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 26 28 13
SECTION 26 28 16 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Nonfusible switches.
3. Receptacle switches.
4. Shunt trip switches.
5. Molded-case circuit breakers (MCCBs).

1.2 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.
C. SPDT: Single pole, double throw.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

B. Shop Drawings: For enclosed switches and circuit breakers.

1. Include plans, elevations, sections, details, and attachments to other work.
2. Include wiring diagrams for power, signal, and control wiring.
1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

 a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF electronic format.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: Accredited by NETA.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.7 FIELD CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.8 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: One year from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

2.2 GENERAL REQUIREMENTS

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.

D. Comply with NFPA 70.

2.3 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. ABB Inc.
 2. Eaton.
 4. Siemens Industry, Inc.

B. Type HD, Heavy Duty:
 1. Single throw.
 2. Three pole.
 3. 240-V ac.
 4. 1200 A and smaller.
 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses.
 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories (where indicated on plans):
ENCLOSED SWITCHES AND CIRCUIT BREAKERS

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton.
2. General Electric Company.

B. Type HD, Heavy Duty, Three Pole, Single Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Type HD, Heavy Duty, Three Pole, Double Throw, 240-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

D. Accessories (where indicated on plans):

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.5 RECEPTACLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Eaton-Crouse-Hinds.
2. General Electric Company.
3. Hubbell Wiring Device-Kellems
4. Siemens Industry, Inc.
B. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 600-V ac, amperage as indicated on plans; UL 98 and NEMA KS 1; horsepower rated, with clips or bolt pads to accommodate indicated fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

C. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 600-V ac, amperage as indicated on plans; UL 98 and NEMA KS 1; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Interlocking Linkage: Provided between the receptacle and switch mechanism to prevent inserting or removing plug while switch is in the on position, inserting any plug other than specified, and turning switch on if an incorrect plug is inserted or correct plug has not been fully inserted into the receptacle.

E. Receptacle: Polarized, three-phase, four-wire receptacle (fourth wire connected to enclosure ground lug).

F. Accessories:
 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.6 SHUNT TRIP SWITCHES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Bussmann, an Eaton business.
 2. Littelfuse, Inc.

B. General Requirements: Comply with ASME A17.1, UL 50, and UL 98, with Class J fuse block and 200-kA interrupting and short-circuit current rating.

C. Type HD, Heavy-Duty, Three Pole, Single-Throw Fusible Switch: 240-V ac, A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, with clips or bolt pads to accommodate specified fuses; lockable handle with capability to accept three padlocks; interlocked with cover in closed position.

D. Type HD, Heavy-Duty, Three Pole, Single-Throw Nonfusible Switch: 240-V ac, A; UL 98 and NEMA KS 1; integral shunt trip mechanism; horsepower rated, lockable handle with capability to accept three padlocks; interlocked with cover in closed position.
E. Control Circuit: 120-V ac; obtained from integral control power transformer, with primary and secondary fuses, with a control power of enough capacity to operate shunt trip, pilot, indicating and control devices.

F. Accessories:
 1. Oiltight key switch for key-to-test function.
 2. Mechanically interlocked auxiliary contacts that change state when switch is opened and closed.
 3. Form C alarm contacts that change state when switch is tripped.
 4. Three-pole, double-throw, fire-safety and alarm relay; 120-V ac coil voltage.
 5. Three-pole, double-throw, fire-alarm voltage monitoring relay complying with NFPA 72.
 6. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 7. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
 8. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 9. Lugs: Mechanical type, suitable for number, size, and conductor material.
 10. Service-Rated Switches: Labeled for use as service equipment.

2.7 MOLDED-CASE CIRCUIT BREAKERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 1. Eaton.
 2. General Electric Company.
 4. Square D.

B. Circuit breakers shall be constructed using glass-reinforced insulating material. Current carrying components shall be completely isolated from the handle and the accessory mounting area.

C. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker handle shall be over center, be trip free, and reside in a tripped position between on and off to provide local trip indication. Circuit-breaker escutcheon shall be clearly marked on and off in addition to providing international I/O markings. Equip circuit breaker with a push-to-trip button, located on the face of the circuit breaker to mechanically operate the circuit-breaker tripping mechanism for maintenance and testing purposes.

D. The maximum ampere rating and UL, IEC, or other certification standards with applicable voltage systems and corresponding interrupting ratings shall be clearly marked on face of circuit breaker.

E. MCCBs shall be equipped with a device for locking in the isolated position.

F. Lugs shall be suitable for 167 deg F rated wire.
G. Standards: Comply with UL 489 and NEMA AB 3, with interrupting capacity to comply with available fault currents.

I. Adjustable, Instantaneous-Trip Circuit Breakers: Magnetic trip element with front-mounted, field-adjustable trip setting.

J. Electronic Trip Circuit Breakers: Field-replaceable rating plug, rms sensing, with the following field-adjustable settings:
 1. Instantaneous trip.
 2. Long- and short-time pickup levels.
 3. Long- and short-time time adjustments.

K. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller, and let-through ratings less than NEMA FU 1, RK-5.

L. Integrally Fused Circuit Breakers: Thermal-magnetic trip element with integral limiter-style fuse listed for use with circuit breaker and trip activation on fuse opening or on opening of fuse compartment door.

M. Ground-Fault Circuit-Interrupter (GFCI) Circuit Breakers: Single- and two-pole configurations with Class A ground-fault protection (6-mA trip).

N. Features and Accessories:
 1. Standard frame sizes, trip ratings, and number of poles.
 2. Lugs: Mechanical type, suitable for number, size, trip ratings, and conductor material.
 3. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge lighting circuits.
 4. Ground-Fault Protection: Comply with UL 1053; integrally mounted, self-powered type with mechanical ground-fault indicator; relay with adjustable pickup and time-delay settings, push-to-test feature, internal memory, and shunt trip unit; and three-phase, zero-sequence current transformer/sensor.
 5. Shunt Trip: Trip coil energized from separate circuit, with coil-clearing contact.

2.8 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).
C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.

D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.

E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.

F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 4X.
3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
5. Hazardous Areas Indicated on Drawings: NEMA 250, Type 7.
3.3 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

C. Comply with mounting and anchoring requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in fusible devices.

F. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

A. Testing Agency: Government will engage a qualified testing agency to perform tests and inspections.

B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

D. Perform tests and inspections.

E. Tests and Inspections for Switches:

1. Visual and Mechanical Inspection:
 a. Inspect physical and mechanical condition.
 b. Inspect anchorage, alignment, grounding, and clearances.
 c. Verify that the unit is clean.
 d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 e. Verify that fuse sizes and types match the Specifications and Drawings.
f. Verify that each fuse has adequate mechanical support and contact integrity.
g. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
i. Verify correct phase barrier installation.
j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

F. Tests and Inspections for Molded Case Circuit Breakers:

1. Visual and Mechanical Inspection:
a. Verify that equipment nameplate data are as described in the Specifications and shown on the Drawings.
b. Inspect physical and mechanical condition.
c. Inspect anchorage, alignment, grounding, and clearances.
d. Verify that the unit is clean.
e. Operate the circuit breaker to ensure smooth operation.
f. Inspect bolted electrical connections for high resistance using one of the two following methods:

1) Use a low-resistance ohmmeter.
 a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.

2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.

g. Inspect operating mechanism, contacts, and chutes in unsealed units.
h. Perform adjustments for final protective device settings in accordance with the coordination study.

2. Electrical Tests:

a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
b. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with circuit breaker closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
c. Perform a contact/pole resistance test. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
d. Perform insulation resistance tests on all control wiring with respect to ground. Applied potential shall be 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable. Test duration shall be one minute. For units with solid state components, follow manufacturer's recommendation. Insulation resistance values shall be no less than two megohms.
e. Determine the following by primary current injection:
1) Long-time pickup and delay. Pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

2) Short-time pickup and delay. Short-time pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

3) Ground-fault pickup and time delay. Ground-fault pickup values shall be as specified. Trip characteristics shall not exceed manufacturer's published time-current characteristic tolerance band, including adjustment factors.

4) Instantaneous pickup. Instantaneous pickup values shall be as specified and within manufacturer's published tolerances.

f. Test functionality of the trip unit by means of primary current injection. Pickup values and trip characteristics shall be as specified and within manufacturer's published tolerances.

g. Perform minimum pickup voltage tests on shunt trip and close coils in accordance with manufacturer's published data. Minimum pickup voltage of the shunt trip and close coils shall be as indicated by manufacturer.

h. Verify correct operation of auxiliary features such as trip and pickup indicators; zone interlocking; electrical close and trip operation; trip-free, anti-pump function; and trip unit battery condition. Reset all trip logs and indicators. Investigate units that do not function as designed.

i. Verify operation of charging mechanism. Investigate units that do not function as designed.

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Perform the following infrared scan tests and inspections and prepare reports:

 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each enclosed switch and circuit breaker. Remove front panels so joints and connections are accessible to portable scanner.

 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each enclosed switch and circuit breaker 11 months after date of Substantial Completion.

 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

G. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

H. Prepare test and inspection reports.

 1. Test procedures used.
2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

END OF SECTION 26 28 16
SECTION 26 29 13 - ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes the following enclosed controllers rated 600 V and less:
 1. Full-voltage manual.
 2. Full-voltage magnetic.

1.2 DEFINITIONS

A. CPT: Control power transformer.
B. MCCB: Molded-case circuit breaker.
C. MCP: Motor circuit protector.
D. N.C.: Normally closed.
E. N.O.: Normally open.
F. OCPD: Overcurrent protective device.
G. SCR: Silicon-controlled rectifier.

1.3 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Enclosed controllers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed controller, include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
1. Show tabulations of the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Nameplate legends.
 d. Short-circuit current rating of integrated unit.
 e. Listed and labeled for integrated short-circuit current (withstand) rating of OCPDs in combination controllers by an NRTL acceptable to authorities having jurisdiction.
 f. Features, characteristics, ratings, and factory settings of individual OCPDs in combination controllers.

2. Wiring Diagrams: For power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 1. Routine maintenance requirements for enclosed controllers and installed components.
 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 3. Manufacturer's written instructions for setting field-adjustable overload relays.
 4. Manufacturer's written instructions for testing, adjusting, and reprogramming reduced-voltage solid-state controllers.

1.6 MATERIALS MAINTENANCE SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 3. Indicating Lights: Two of each type and color installed.
 4. Auxiliary Contacts: Furnish one spare for each size and type of magnetic controller installed.
 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.7 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.
1. Testing Agency’s Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

D. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

1.8 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
2. Altitude: Not exceeding 6600 feet.

1.10 COORDINATION

A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

C. Coordinate installation of roof curbs, equipment supports, and roof penetrations.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton.
 b. General Electric Company.
 c. Rockwell Automation, Inc.
 d. Siemens Industry, Inc.
 e. Square D.

C. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton.
 b. General Electric Company.
 c. Rockwell Automation, Inc.
 d. Siemens Industry, Inc.
 e. Square D.

2. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.

3. Surface mounting.

D. Integral Horsepower Manual Controllers: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton.
 b. General Electric Company.
 c. Rockwell Automation, Inc.
 d. Siemens Industry, Inc.
 e. Square D.

2. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters and sensors in each phase, matched to nameplate full-load current of actual protected motor and having appropriate adjustment for duty cycle; external reset push button; bimetallic type.

3. Surface mounting.
5. N.O. auxiliary contact.

E. Magnetic Controllers: Full voltage, across the line, electrically held.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Eaton.
 b. General Electric Company.
 c. Rockwell Automation, Inc.
 d. Siemens Industry, Inc.
 e. Square D.

2. Configuration: Nonreversing.

3. Contactor Coils: Pressure-encapsulated type with coil transient suppressors.
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.

4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.

5. Control Circuits: 24-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 100 VA.

6. Melting Alloy Overload Relays:
 a. Inverse-time-current characteristic.
 b. Class 10 tripping characteristic.
 c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.

7. Bimetallic Overload Relays:
 a. Inverse-time-current characteristic.
 b. Class 10 tripping characteristic.
 c. Heaters in each phase matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 d. Ambient compensated.
 e. Automatic resetting.

8. Solid-State Overload Relay:
 a. Switch or dial selectable for motor running overload protection.
 b. Sensors in each phase.
c. Class 10 tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

d. Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.

e. Analog communication module.

9. External overload reset push button.

F. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Eaton.
 b. General Electric Company.
 c. Rockwell Automation, Inc.
 d. Siemens Industry, Inc.
 e. Square D.

2. Fusible Disconnecting Means:

 a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate Class R fuses.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.

3. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

4. Nonfusible Disconnecting Means:

 a. NEMA KS 1, heavy-duty, horsepower-rated, nonfusible switch.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 c. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.

5. MCP Disconnecting Means:

 a. UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents, instantaneous-only circuit breaker with front-mounted, field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
 b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 c. Current-limiting module to increase controller short-circuit current (withstand) rating to 100 kA.

6. MCCB Disconnecting Means:
2.2 ENCLOSURES

A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.

1. Dry and Clean Indoor Locations: Type 1.
2. Outdoor Locations: Type 4X.
3. Other Wet or Damp Indoor Locations: Type 4.
4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.
5. Hazardous Areas Indicated on Drawings: Type 7.

2.3 ACCESSORIES

A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.

 a. Push Buttons: Unguarded types; momentary as indicated.
 b. Pilot Lights: LED types; colors as indicated; push to test.
 c. Selector Switches: Rotary type.

2. Elapsed Time Meters: Heavy duty with digital readout in hours; nonresettable.
3. Meters: Panel type, 2-1/2-inch minimum size with 90- or 120-degree scale and plus or minus two percent accuracy. Where indicated, provide selector switches with an off position.

B. Reversible N.C./N.O. auxiliary contact(s).

C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.

E. Cover gaskets for Type 1 enclosures.

F. Spare control wiring terminal blocks, quantity as indicated; unwired.
PART 3 - EXECUTION

3.1 EXAMINATION
A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.

B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 26 05 29 "Hangers and Supports for Electrical Systems."

B. Floor-Mounted Controllers: Install enclosed controllers on 4-inch nominal-thickness concrete base. Comply with requirements for concrete base specified in Section 03 30 00 "Cast-in-Place Concrete."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

C. Seismic Bracing: Comply with requirements specified in Section 26 05 48.16 "Seismic Controls for Electrical Systems."

D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in each fusible-switch enclosed controller.

F. Install fuses in control circuits if not factory installed. Comply with requirements in Section 26 28 13 "Fuses."

G. Install heaters in thermal overload relays. Select heaters based on actual nameplate full-load amperes after motors have been installed.

H. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
I. Comply with NECA 1.

3.3 IDENTIFICATION

A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved nameplate.
 3. Label each enclosure-mounted control and pilot device.

3.4 CONTROL WIRING INSTALLATION

A. Install wiring between enclosed controllers and remote devices and facility's central control system. Comply with requirements in Section 26 05 23 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic-control selection devices where applicable.

 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switch is in manual-control position.
 2. Connect selector switches with enclosed-controller circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Acceptance Testing Preparation:

 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 2. Test continuity of each circuit.

C. Tests and Inspections:

 1. Inspect controllers, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Government before starting the motor(s).
5. Test each motor for proper phase rotation.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Perform the following infrared (thermographic) scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each multi-pole enclosed controller. Remove front panels so joints and connections are accessible to portable scanner.
 b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each multi-pole enclosed controller 11 months after date of Substantial Completion.
 c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Enclosed controllers will be considered defective if they do not pass tests and inspections.

E. Prepare test and inspection reports including a certified report that identifies enclosed controllers and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.6 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust to six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium
Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Government before increasing settings.

D. Set field-adjustable switches and program microprocessors for required start and stop sequences in reduced-voltage solid-state controllers.

E. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73 "Overcurrent Protective Device Coordination Study."

3.7 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.

B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.8 DEMONSTRATION

A. Train Government's maintenance personnel to adjust, operate, and maintain enclosed controllers.

END OF SECTION 26 29 13
SECTION 26 29 33 - CONTROLLERS FOR FIRE-PUMP DRIVERS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Full-service, reduced-voltage controllers rated 600 V and less.
 2. Controllers for pressure-maintenance pumps.

1.2 DEFINITIONS

A. ECM: Electronic control module.
B. MCCB: Molded-case circuit breaker.
C. NO: Normally open.
D. PID: Proportional integral derivative.
E. SPD: Surge protective device.
F. VFC: Variable-frequency controller(s)

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For each type of product indicated.
 1. Include plans, elevations, sections, and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Show tabulations of the following:
 a. Each installed unit's type and details.
 b. Enclosure types and details for types other than NEMA 250, Type 2.
 c. Factory-installed devices.
 d. Nameplate legends.
 e. Short-circuit current (withstand) rating of integrated unit.
 f. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices.
1. Specified modifications.

4. Include diagrams for power, signal, alarm, control wiring, and pressure-sensing tubing.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Seismic Qualification Certificates: For each type of product indicated, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Product Certificates: For each type of product indicated, from manufacturer.

D. Source quality-control reports.

E. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of product indicated to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 1. Manufacturer’s written instructions for setting field-adjustable timers, controls, and status and alarm points.
 2. Manufacturer’s written instructions for testing, adjusting, and reprogramming microprocessor-based logic controls.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Indicating Lights: Two of each type and color of lens installed; two of each type and size of lamp installed.
 2. Auxiliary Contacts: One for each size and type of magnetic contactor installed.
 3. Power Contacts: Three for each size and type of magnetic contactor installed.
 4. Contactor Coils: One for each size and type of magnetic controller installed.
 5. Relay Boards: One for each size and type of relay board installed.
1.7 QUALITY ASSURANCE
 A. Testing Agency Qualifications: Member company of an NRTL.
 B. Source Limitations: Obtain fire-pump controllers and all associated equipment from single source or producer.

1.8 FIELD CONDITIONS
 A. Environmental Limitations:
 1. Ambient Temperature Rating: Not less than 40 deg F and not exceeding 122 deg F unless otherwise indicated.
 2. Altitude Rating: Not exceeding 6600 feet unless otherwise indicated.
 B. Interruption of Existing Electric Service: Notify Owner no fewer than seven days in advance of proposed interruption of electric service, and comply with NFPA 70E.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Comply with NFPA 20 and NFPA 70.
 B. IEEE Compliance: Fabricate and test enclosed controllers according to IEEE 344 to withstand seismic forces defined in Section 260548.16 "Seismic Controls for Electrical Systems."
 C. Seismic Performance: Fire-pump controllers and alarm panels shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."
 D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 FULL-SERVICE CONTROLLERS
 A. General Requirements for Full-Service Controllers:
 1. Comply with NFPA 20 and UL 218.
 2. Nonautomatic operation.
 3. Factory assembled, wired, and tested; continuous-duty rated.
 B. Method of Starting:
1. Pressure-switch actuated.
 a. Water-pressure-actuated switch and pressure transducer with independent high-
 and low-calibrated adjustments responsive to water pressure in fire-suppression
 piping.
 b. System pressure recorder, electric ac driven, with spring backup.
 c. Programmable minimum-run-time relay to prevent short cycling.
 d. Programmable timer for weekly tests.

3. Emergency Start: Mechanically operated start handle that closes and retains the motor
 RUN contactor independent of all electric or pressure actuators.

C. Method of Stopping: Nonautomatic.

D. Capacity: Rated for fire-pump-driver horsepower and short-circuit-current (withstand) rating
 equal to or greater than short-circuit current available at controller location.

E. Method of Isolation and Overcurrent Protection: Interlocked isolating switch and nonthermal
 MCCB; with a common, externally mounted operating handle, and providing locked-rotor
 protection.

F. Door-Mounted Operator Interface and Controls:
 1. Monitor, display, and control the devices, alarms, functions, and operations listed in
 NFPA 20 as required for drivers and controller types used.
 2. Method of Control and Indication:
 a. Microprocessor-based logic controller, with multiline digital readout.
 b. Membrane keypad.
 c. LED alarm and status indicating lights.
 3. Local Alarm and Status Indications:
 a. Controller power on.
 b. Motor running condition.
 c. Loss-of-line power.
 d. Line-power phase reversal.
 e. Line-power single-phase condition.
 4. Audible alarm, with silence push button.
 5. Nonautomatic START and STOP push buttons or switches.

G. Surge Suppression: Factory installed as an integral part of controller, complying with UL 1449
 SPD Type 2. Reference specification section 26 43 13, “Surge Protection for Low-Voltage
 Electrical Power Circuits” for SPD requirements.

H. Optional Features:
 1. Extra Output Contacts:
a. One NO contact for motor running condition.
b. One set of contacts for loss-of-line power.
c. One each, Form C contacts for high and low reservoir level.

2.3 CONTROLLERS FOR PRESSURE-MAINTENANCE PUMPS

A. General Requirements for Pressure-Maintenance-Pump Controllers:

1. Type: UL 508, factory-assembled, -wired, and -tested, across-the-line controller; for combined automatic and manual operation.
2. Enclosure: UL 508 and NEMA 250, Type 2 for wall-mounting.
3. Factory assembled, wired, and tested.
4. Finish: Manufacturer's standard color paint.

B. Rate controller for scheduled horsepower and include the following:

1. Fusible disconnect switch.
2. Pressure switch.
4. Pilot light.
5. Running period timer.

2.4 ENCLOSURES

A. Fire-Pump Controllers, Remote Alarm Panels, and Low-Suction-Shutdown Panels: NEMA 250, to comply with environmental conditions at installed locations and NFPA 20.

1. Indoor Locations Subject to Dripping Noncorrosive Liquids: Type 2 (IEC IP11).

B. Enclosure Color: Manufacturer's standard "fire-pump-controller red".

C. Nameplates: Comply with NFPA 20; complete with capacity, characteristics, approvals, listings, and other pertinent data.

D. Fire pump controller shall be furnished in a free standing, floor mounted enclosure where noted on plans.

1. Provide floor stands as required.
2.5 SOURCE QUALITY CONTROL

A. Testing: Test and inspect fire-pump controllers according to requirements in NFPA 20 and UL 218.

1. Verification of Performance: Rate controllers according to operation of functions and features specified.

B. Fire-pump controllers will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and surfaces to receive equipment, with Installer present, for compliance with requirements and other conditions affecting performance.

B. Examine equipment before installation. Reject equipment that is wet or damaged by moisture or mold.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 CONTROLLER INSTALLATION

A. Coordinate installation of controllers with other construction including conduit, piping, fire-pump equipment, and adjacent surfaces. Maintain required clearances for workspace and equipment access doors and panels. Ensure that controllers are within sight of fire-pump drivers.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Install controllers within sight of their respective drivers.

D. Connect controllers to their dedicated pressure-sensing lines.

E. Wall-Mounting Controllers: Install controllers on walls with disconnect operating handles not higher than 79 inches (2006 mm) above finished floor, and bottom of enclosure not less than 12 inches (305 mm) above finished floor unless otherwise indicated. Bolt units to wall or mount on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

F. Floor-Mounting Controllers: Install controllers on concrete base(s), using floor stands high enough so that the bottom of enclosure cabinet is not less than 12 inches (305 mm) above.
finished floor. Comply with requirements for concrete bases specified in Section 033053 "Miscellaneous Cast-in-Place Concrete."

1. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete floor.
2. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
3. Install anchor bolts to elevations required for proper attachment to supported equipment.

G. Seismic Bracing: Comply with requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."

H. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

I. Comply with NEMA ICS 15.

3.3 POWER WIRING INSTALLATION

A. Install power wiring between controllers and their services or sources, and between controllers and their drivers. Comply with requirements in NFPA 20, NFPA 70, and Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 CONTROL AND ALARM WIRING INSTALLATION

A. Install wiring between controllers and remote devices. Comply with requirements in NFPA 20, NFPA 70.

B. Install wiring between controllers and the building's fire-alarm system. Comply with requirements specified in Section 283111 "Digital, Addressable Fire-Alarm System."

C. Bundle, train, and support wiring in enclosures.

D. Connect remote manual and automatic activation devices where applicable.

3.5 IDENTIFICATION

A. Comply with requirements in NFPA 20 for marking fire-pump controllers.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification in NFPA 20 and as specified in Section 260553 "Identification for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

D. Acceptance Testing Preparation:
 1. Inspect and Test Each Component:
 a. Inspect wiring, components, connections, and equipment installations. Test and adjust components and equipment.
 b. Test insulation resistance for each element, component, connecting supply, feeder, and control circuits.
 c. Test continuity of each circuit.

 2. Verify and Test Each Electric-Drive Controller:
 a. Verify that voltages at controller locations are within plus 10 or minus 1 percent of motor nameplate rated voltages, with motors off. If outside this range for any motor, notify Owner before starting the motor(s).
 b. Test each motor for proper phase rotation.

 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation.
 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

E. Field Acceptance Tests:
 1. Do not begin field acceptance testing until suction piping has been flushed and hydrostatically tested and the certificate for flushing and testing has been submitted to Owner and authorities having jurisdiction.
 2. Prior to starting, notify authorities having jurisdiction of the time and place of the acceptance testing.
 3. Engage manufacturer's factory-authorized service representative to be present during the testing.
 4. Perform field acceptance tests as outlined in NFPA 20.

F. Controllers will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

 1. Complete installation and startup checks according to manufacturer's written instructions.
3.8 ADJUSTING

A. Adjust controllers and battery charger systems to function smoothly and as recommended by manufacturer.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, and timers.

C. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

D. Set field-adjustable pressure switches.

3.9 PROTECTION

A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until enclosed controllers are ready to be energized and placed into service.

B. Replace controllers whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain controllers, and to use and reprogram microprocessor-based controls within this equipment.

END OF SECTION 26 29 33
SECTION 26 32 26 - FREQUENCY CONVERTER UNITS

PART 1 - GENERAL

1.1 SUMMARY
A. Section includes freestanding, prepackaged frequency converter units for transforming and providing 400Hz electrical power to military aircraft during ground operations. The system shall be a solid-state, three phase, Frequency Converter designed to provide regulated and conditioned sinusoidal power to both linear and non-linear type loads. The specified solid state frequency converter equipment shall be referred to as “SSFC.”

1.2 ACTION SUBMITTALS
A. The following submittals shall be required:
 1. Manufacturers Data.
 2. Connection Diagrams and Outline Drawings.
 4. Spare parts list.
 5. List of required Special Tools.
 6. Operational and Maintenance Manuals.
 8. Test Reports.

1.3 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For frequency converter units to include in operation and maintenance manuals.

1.4 QUALITY ASSURANCE
A. Manufacturer Qualifications: A qualified manufacturer. Maintain a service center capable of providing training, parts, and emergency on-site repairs in less than eight hours’ maximum response time.

1.5 FIELD CONDITIONS
A. Environmental Conditions: Units shall be capable of operating continuously in the following environmental conditions without mechanical or electrical damage or degradation of operating capability.
1. Operating Temperature Range: -40 to 125 deg F.
2. Relative Humidity Range: 0 to 98 percent, noncondensing.
3. Altitude: Sea level to 6,000 above sea level.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis of design product: Cavotec

B. Alternate Manufacturers: Alternate manufacturers offering products may be incorporated into the Work subject to compliance with the requirements.

1. Note that companies wishing to bid as an alternate will be required to obtain approval of equipment. Bidder will be responsible for all costs associated with approval by Owner. Costs may include sample unit and testing by independent laboratory; tests to be witnessed by Owner representative.

C. Source Limitations: Obtain frequency converter unit and associated components specified in this Section from a single manufacturer.

2.2 DESCRIPTION

A. This section covers designing, manufacturing, testing, furnishing of 60 Hz to 400 Hz Pulse Width Modulated (PWM) frequency converter to conform to MIL-STD-704E standard for aircraft ground power systems. Basis of design is PWM/IGBT technology. Only the following PWM configurations will be accepted: Sine PWM (Natural), Interactive PWM, Optimum PWM (Multiple Inversion), Flash PWM (optimum), Phase Shifted PWM. Step conversion and/or bi-polar transistors will not be acceptable. The SSFC shall be a standalone, self-contained unit capable of converting 50/60 Hz input power to 400 Hz output power for combinations of linear and nonlinear loads in aircraft electrical systems and avionic back shop facilities. The SSFC shall be of solid state electronic construction and contain no moving parts to accomplish the power conversion (Note: cooling fans shall be permitted). The SSFC shall be constructed of modular and easily replaceable subassemblies and components wherever possible. The SSFC enclosure shall be free standing with provision for floor mounting and shall be capable of being mounted with its back flush against a wall or structure without impeding ventilation or access for maintenance, repair or component service or replacement. The enclosure shall have hinged doors to provide access for maintenance, repair, and replacement of modular components and subassemblies. The SSFC enclosure shall be weatherproof for outdoor operation in accordance with NEMA 250 Type 4 and be designed for use in aircraft hangars. The SSFC shall have Built-In-Test-Equipment and alarm functions to continuously monitor, control, and provide diagnostics. Components of the SSFC shall be UL recognized or listed for their intended application whenever possible and the SSFC shall have a UL 1012 label covering the configuration defined herein. Additional features and capabilities shall be permitted unless otherwise indicated by this document.
2.3 APPLICABLE CODES AND STANDARDS

B. MIL-S-19500 Semiconductor devices.

C. MIL-STD-461 Electromagnetic emission and susceptibility requirements for the control of electro-magnetic interference.

D. DFS-400 400 Hz aircraft ground power.

E. ST-20-1972(R-1978) Dry type transformer for general application.

F. IEEE 127 Aerospace equipment and frequency rating.

G. IEC 146 Semiconductor converters.

H. ISO-1540 Aerospace characteristics of aircraft electrical systems.

I. ATA-101 Ground equipment technical data.

K. ISO-6858 Aircraft ground support electrical supplies.

L. NFPA 70 National Electrical Code.

M. UL1012 Standard for Power Units Other Than Class 2

2.4 PRODUCTS

A. Provide frequency converter consisting of modular construction. Solid-state components for 60 to 400Hz conversion, input / output devices and ancillary control devices. The frequency converter shall be the manufacturer's latest design that complies with the specification. Only PWM design units (as identified in Section 1.1) are acceptable; units to be designed with switching devices using IGBT technology, a maximum of 12 switching elements shall be used. No step conversion or bi-polar transistor units will be considered. All frequency converters provided shall be products of the same manufacturer, complying with requirements as stated herein.

B. Provide 400HZ Aircraft Cable Assembly, single jacket, with 400HZ Aircraft Connector. 60 Feet in length.

1. Cavotec Cable no. N0001SC064035-060. 60feet with RVS.
2. Aircraft 400HZ Connector: Cavotec FLADUNG Connector Head.
 a. Confirm cable and connector requirements with NCANG prior to ordering.
2.5 INPUT-POWER

A. The SSFC shall operate with 3-phase, 4-wire, grounded, Alternating Current (AC) power input. Inrush current shall not exceed 150% of the rated full load current of the connected voltage.

B. INPUT VOLTAGE AND FREQUENCY

1. The SSFC shall be set at the factory to accept a 60 Hz, 480 volts AC (VAC) input. The SSFC shall be capable of accepting inputs from different voltage and frequency systems including:
 a. 60 (± 5%)Hz:
 1) 208 (±10%) VAC
 2) 480 (± 10%) VAC
 b. 50 (± 5%)Hz:
 1) 380 (± 10 %) VAC

C. INPUT PHASE SEQUENCE

1. The SSFC shall accept any input power phase sequence.

D. INPUT POWER FACTOR

1. The SSFC shall accept input power having a power factor from 0.8 leading to 0.8 lagging.

2.6 OUTPUT POWER

A. The SSFC shall provide the output power characteristics listed below.

B. OUTPUT VOLTAGE AND FREQUENCY

1. The SSFC output steady state voltage shall be three phase, Wye configured with a grounded neutral and the SSFC output frequency shall be a sine wave form at 400 Hz (±0.1 %). The output voltage shall be user connectable for both 115/200 VAC and 230/400VAC. Output voltage shall be adjustable but shall be regulated to within ±1% at all settings from zero to full load. The direct current (DC) component in the output voltage shall not exceed ±0.1 volts. The crest factor shall be 1.31 to 1.51. The SSFC shall operate as specified with both Delta and Wye configured loads.

C. OUTPUT POWER RATING

1. The SSFC shall be capable of providing 100 kW continuously into loads with power factors ranging between 0.8 leading and 0.8 lagging. The output voltage shall be maintained within the stated tolerances under all load conditions within these limits.

D. OUTPUT PHASE SEQUENCE
1. The phase sequence of the SSFC output voltage shall be a positive sequence of A-B-C (AB-BC-CA).

E. OPERATIONAL CHARACTERISTICS

1. The SSFC shall operate continuously or intermittently at any load with the characteristics listed below.

F. AUTOMATIC AND MANUAL LINE DROP COMPENSATION

1. The SSFC shall provide both a manual output voltage adjustment (±10%) and an automatic output voltage adjustment to compensate for voltage drop associated with losses in the output power cable. Automatic line drop compensation (ALDC) shall be operable in both stand-alone and parallel modes of operation. If remote voltage sensing (RVS) is used for line drop compensation processing, the SSFC shall automatically revert to local (output terminal) sensing if a break occurs in the remote sensing circuit. The SSFC shall have a switch to manually select the compensation/adjustment method. The SSFC shall provide the specified voltage as required by MIL-STD-704F at the load connection end of the following cables:
 a. Single jacket, 260 amp rated cable equivalent to part number NR16-1005641960, with RVS.
 b. Single jacket, 260 amp rated cable equivalent to part number NR16-1005641915, with RVS.

2. A cable assembly equivalent to part number MS90328-28 as shown in SAE AS90328.
 a. For these cables, the SSFC ALDC circuit shall provide enough adjustment range to overcome voltage drop at a 300 Ampere load (overloaded) condition and shall maintain the steady-state output voltage at the load connection end of the power cable within the limits specified in paragraph 4.3 and Figure 3 of MIL-STD-704F. The steady-state output voltage amplitude limits for the 115/200 volts standard shall apply proportionally to the SSFC ALDC when connected for 230/400 volts output.

G. UNBALANCED LOADS

1. The SSFC shall be capable of supplying a 15% maximum unbalanced load. The unbalanced load of 15% shall be defined as any one phase at its full load condition and the remaining two phases at 85% of their full load condition.

H. PHASE ANGLE REGULATION

1. The displacement angle between adjacent voltages shall be 120 Degrees (±2 Degrees) for balanced loads and shall be 120 Degrees (±4 Degrees) for three phase 15% unbalanced loads.

I. NO-LOAD INPUT LOSSES

1. The SSFC no-load input losses shall not exceed 9% of the total output kW rating.
J. EFFICIENCY
 1. The minimum efficiency of the SSFC shall be at least 85% at 50% load condition and 88% at full load condition.

K. OVERLOAD/OVERCURRENT
 1. The SSFC shall not be tripped or sustain damage during the following overload/overcurrent conditions:
 a. % of Full Load Satisfactory Operating Time
 1) 110% 60 Minutes
 2) 125% 10 Minutes
 3) 150% 2 Minutes
 4) 200% 20 Seconds
 5) 300% 6 Seconds

L. SHORT CIRCUIT
 1. The SSFC shall be capable of tripping the protective input and output devices on three phase, two phase, two phase to ground and single phase to ground short circuit fault conditions without sustaining damage.

M. OUTPUT TOTAL HARMONIC DISTORTION (THD)
 1. The THD (in accordance with IEEE 519) in the output voltage for the SSFC shall be as follows:
 a. Balanced Load Condition: THD shall not exceed 3% line-to-line and line-to-neutral. Maximum single harmonic distortion shall not exceed 2% of the fundamental at the nominal voltage.
 b. Unbalanced Load Condition: THD shall not exceed 4% line-to-neutral with a 15% unbalanced load applied.

N. INPUT TOTAL HARMONIC DISTORTION (THD)
 1. THD (as defined in IEEE 519) at the SSFC input power terminals at normal input voltages while operating at full rated output load shall not exceed 10%.

O. AMPLITUDE MODULATION
 1. The SSFC amplitude modulation shall not exceed 1% for no load to full load condition.

P. FREQUENCY STABILITY
 1. The SSFC frequency regulation shall be independent of load changes. The frequency stability of the SSFC shall be 400 Hz (± 0.5%) for all load conditions.

Q. TRANSIENT OUTPUT VOLTAGE AND FREQUENCY RECOVERY
1. The SSFC transient output voltage and frequency recovery shall be in accordance with MIL-STD-704F (Figures 3 and 5 respectively). The transient output voltage amplitude limits for the 115/200 volts standard shall apply proportionally to the SSFC when connected for 230/400 volts output.

R. AUTOMATIC PARALLEL OPERATION

1. The SSFC shall be capable of automatic parallel to other like units of the same kVA rating. The SSFC shall automatically synchronize and share load equally (within +/- 5%). Interconnection cables, if required to support parallel operation, shall be provided with each SSFC. Interconnection cables shall not be less than 20 ft in length or greater than 25 ft in length. Each SSFC shall include provisions for secure storage of the provided interconnection cables.

S. INPUT SURGE PROTECTION

1. The SSFC shall be capable of sustaining an input surge described in and tested in accordance with IEEE C62.41, location category B, and continue to operate with no alarms within the specified tolerance.

T. 28 VOLT DC (VDC) AIRCRAFT E-F PIN INTERLOCK CIRCUIT

1. The SSFC shall have a selector switch labeled as SSFC LOOP – BYPASS – AIRCRAFT LOOP to control the E-F pin interlock circuits. The SSFC shall contain terminal block points for the connection of two 12 AWG wires from the aircraft cable assembly for the interlock circuit.

2. In the AIRCRAFT LOOP mode, the SSFC shall close the output circuit breaker or contactor for a period of 4 to 5 seconds at start up. The SSFC shall receive a 28 VDC (nominal) interlock signal from the aircraft and loop it back to the aircraft via the E-F pin interlock circuit. The SSFC E-F interlock circuit shall not be polarity sensitive to the current flowing to/from the aircraft but an intermittent signal shall not be permitted. The interlock loop shall be monitored by the SSFC to determine if a 16 to 32 VDC signal is present and if current is flowing through the loop. When this voltage level and a current are present, the output circuit breaker or contactor shall remain closed. When current is not present or drops out, the output contactor or circuit breaker shall open within 50 milliseconds. While in the AIRCRAFT LOOP mode the SSFC shall be capable of accepting an unfiltered, noisy, poorly regulated, half-wave rectified 28 VDC interlock signal (Note that the signal peak voltage values may approach 64 volts.)

3. In the BYPASS mode the E-F pins shall be connected together but not monitored or grounded. The E-F pin circuit shall not be used to control the output contactor or circuit breaker in BYPASS mode. Any changes required to operate in the BYPASS mode shall be automatically implemented.

4. In the SSFC LOOP mode, the SSFC shall close the output circuit breaker or contactor for a period of 4 to 5 seconds at start up. The SSFC shall provide a filtered and regulated 28 V (+/- 1) DC interlock signal to the aircraft via pin E of the interlock circuit. This signal shall be monitored for current flow. If the current flow from the 28 VDC signal is looped back on pin F of the interlock circuit, then the output circuit breaker or contactor shall remain closed. If current is not present or the voltage is not present on pin F, then the output circuit breaker or contactor shall open within 50 milliseconds. The SSFC shall be
2.7 CONTROL AND MONITORING CHARACTERISTICS

A. The SSFC shall be designed to control, indicate, monitor, and display the functions listed below. All switches and controls shall be located together in a control panel in the front of the unit unless otherwise indicated. All controls and indicator devices shall be clearly marked as to their function, position and signal. Voltage and current meters shall have accuracy of +/- 2%, or better, full scale. Frequency meters shall be accurate to not less than +/- 0.5% full scale. Multiple function (multi-function) meters, displays and indicators shall not be used.

1. Start & stop push-button
 a. A start push-button shall be provided on the control panel to operate the internal operations of the SSFC; it shall not close the output control device. A stop push-button shall also be provided to shut off the internal operations of the SSFC.

2. Push-to-test button
 a. A push-to-test button or switch shall be provided to test the indicating light emitting diodes (LEDs), audible signals, and display panel for the SSFC.

3. Emergency stop push-button
 a. An emergency stop push-button shall be provided on the control panel to immediately turn off the input and output power and open the input and output control devices. The emergency stop push-button shall be a turn-to-release or pull-to-release design.

4. Input circuit breaker/contactor
 a. The SSFC shall be equipped with a device for control of input power. The device shall be manually operable and have shunt-trip and under voltage release features. If circuit breakers are used for this purpose they shall be fully rated heavy duty three pole breakers in accordance with UL 489.

5. Output circuit breakers/contactor
 a. The SSFC shall be equipped with a manual device for opening and closing the output control device. An interlock circuit shall prevent the output circuit breaker (or contactor) from closing without the input circuit breaker (or contactor) being first closed with power applied. An interlock circuit bypass switch or other device shall be provided to defeat the interlock by maintenance personnel while performing troubleshooting and maintenance activities. The output circuit breaker/contactor shall be automatically tripable by the SSFC abnormal alarm conditions. A device to open and close the output circuit breaker/contactor shall be provided on the control panel. The output circuit breaker/contactor shall be in accordance with UL 489. All devices operating at 400 Hz shall be designed for, or be derated for, 400 Hz operation.

6. System alarm
 a. An LED to indicate that fault conditions exist shall be provided on the SSFC control panel. This indication shall be latched in the ON position during alarm condition and shall remain ON until the alarm reset push-button is pressed.

7. Alarm annunciator
 a. The SSFC shall be capable of detecting and displaying the following abnormal conditions:
1) Input Overvoltage/Under voltage
2) Output Overvoltage/Under voltage
3) Output Overload
4) System Alarm
5) Control Logic Failure
6) Frequency Deviation
7) Over temperature
8) Logic Power Supply Failure

8. Audible alarm
 a. An audible alarm to sound the SSFC alarm conditions shall be provided on the control panel.

9. Alarm silence
 a. A push button to silence the SSFC audible alarm shall be provided on the control panel. This device shall not clear the fault or test failure indicators.

10. Alarm reset
 a. The SSFC shall be provided with a device to reset or clear all alarm or test failure indications. This device shall not prevent a fault from being displayed again if it is still valid.

2.8 DISPLAYS

A. The SSFC shall have as a minimum the displays or indicators listed below. All displays or indicators shall be located together on the control panel of the SSFC. All displays shall be discernable and all meters shall be readable in ambient light conditions ranging from darkness to bright sun lighted conditions. Display characters for digital displays shall be two inches in height.

1. Alarm disable
 a. An LED shall be provided on the control panel to indicate the alarm silence device is in the enabled position.

2. Input power available
 a. The SSFC control panel shall be equipped with an LED to indicate input power is available on the supply side of the input control device.

3. Input circuit breaker/contactor ON
 a. A LED to indicate that the SSFC input circuit breaker/contactor is ON shall be provided on the control panel.

4. Output power available
 a. The SSFC control panel shall be equipped with an LED to indicate that output power is available.

5. Output circuit breaker/contactor ON
 a. An LED to indicate that the SSFC output circuit breaker/contactor is ON shall be provided on the control panel.

6. SSFC parallel operation indicator
 a. A Master/Slave parallel operation LED shall be provided on the control panel to indicate when the SSFC is in either Master or Slave operation mode.

7. Aircraft interlock bypass indication
a. An LED to indicate that the Aircraft Interlock Circuit is bypassed shall be provided on the control panel.

8. Elapsed time meter
a. An elapsed time meter to show the operating hours of the SSFC shall be provided on the control panel. The range of the elapsed time meter shall be 99,999 Hours.

9. Voltmeter
a. A dedicated voltmeter with a selector switch to select Phase-to-Neutral voltages and Phase-to-Phase voltages shall be provided on the SSFC control panel. The voltage selector switch shall also have an OFF position. The voltmeter shall display true Root-Mean-Squared (RMS) voltages.

10. Ammeter
a. A dedicated ammeter with a selector switch to select line currents shall be provided on the SSFC control panel. Ammeter selector switch shall also have an OFF position. Ammeter shall display true RMS current.

11. Frequency meter
a. A dedicated meter shall be provided on the control panel to indicate the output frequency of the SSFC. The meter shall have an ON-OFF switch and a range of 390-410 Hz.

12. Built-in-test-equipment
a. The SSFC shall be provided with Built-in-Test-Equipment which will monitor both primary circuits and protective circuits for the unit. All the controls needed to operate or perform manual functions for the Built-in-Test-Equipment features shall also be included.

2.9 SAFETY CHARACTERISTICS

A. The SSFC shall be designed so that all electrical components are enclosed and access is not required during normal operation. Further, the SSFC shall be designed to safely permit access to internal components that may be required during troubleshooting for failures or other special needs. All exposed parts that are a hazard to personnel shall be insulated, enclosed, or guarded without impairing the function of the parts. The SSFC design shall not contain any system safety mishap risk categories greater than medium in accordance with Table A-IV of MIL-STD-882D.

B. Input under/over voltage protective circuit
1. The input Undervoltage or Overvoltage protective circuit shall trip and alarm the SSFC when the voltage is out of the specified range. A clear visual indication to notify the operator of the tripped status shall be provided on the SSFC.

C. Output under/over voltage protective circuit
1. The output Under voltage or Overvoltage protective circuit shall trip and alarm the SSFC when the voltage is out of the specified range. Output voltage limits of the SSFC shall be in accordance with MIL-STD-704F.

D. Loss of input power or phase
1. The SSFC shall trip and alarm when one or more phases of the input power is out of the
specified range or drops out altogether. The loss of input power phase shall trip and alarm
the SSFC.

E. Door and panel interlock

1. When any access door or panel cover is open, the door interlock protective circuit shall
open the 50/60 Hz input device and the 400 Hz output device and shall not allow the
SSFC to close either device while any access door or panel cover remains open. A bypass
switch for maintenance purposes shall be provided to defeat each access door or panel
cover interlock circuit.

F. Output overload

1. The output protective circuit shall trip the output circuit breaker/contactor when the
output of the SSFC is above the limits set forth in Section 2.6-K of this specification.

G. Automatic capacitor discharge

1. The SSFC shall be designed so that when the unit is turned off under normal procedures
or the Emergency Stop switch is activated all capacitive devices are discharged to prevent
hazardous voltages from remaining in the unit. The discharge rate shall be selected to
prevent damage to the components. No voltage greater than 15 volts shall exist on the
load side of the input control device fifteen minutes after the unit is turned off.

2.10 ENVIRONMENTAL CHARACTERISTICS

A. Operating environment

1. The SSFC shall be capable of satisfactory operation from no load to full load under the
following conditions:
 a. Operating Temperature (ambient): -25±F to 125±F
 b. Rain: Up to 4 inches per hour at angle from vertical to 45 Degrees Relative
 Humidity: 0% to 95% non-condensing
 c. Ambient Pressure (altitude): 0-6,000 ft
2. The SSFC shall not draw ventilation or cooling air from within 18 inches of the unit’s
floor mounting points. The SSFC shall be designed to operate safely outside a minimum
25 ft radius of aircraft or other fueled equipment.

B. Non-operating environment

1. The SSFC shall not be degraded or damaged by storage or transportation in the
following conditions:
 a. Temperature (ambient): -40±F to 165±F
 b. Rain: Up to 5 inches per hour at angle from vertical to 45 Degrees Relative
 Humidity: 0% to 98% non-condensing
 c. Ambient Pressure (altitude): 0-15000 ft
 d. Vibration: 5g’s (0-2000Hz)
C. Construction of enclosure shall provide complete protection of live or moving parts. Protection against harmful deposits of dust and protected against splashing liquids from any direction.

 1. IP54 rated as a minimum.

2.11 PHYSICAL CHARACTERISTICS

A. Input and output terminations.

 1. The SSFC shall have designated areas on the top and on the side of the enclosure for input power connection. The SSFC shall have a designated area on either side of the enclosure for output power cable connection. The areas shall provide space and support for incoming electrical conduit and associated hardware installation and clearances to accommodate routing and bending radii in accordance with NFPA 70 for the largest conductor sizes accepted by the input and output power terminals. The output power cable area shall provide for cable strain relief, space and support for electrical cable connectors and associated hardware installation. Input and output power terminal blocks shall be provided and marked for making the proper connections. The input and output terminals of the SSFC shall be sized accordingly to conduct the currents for the largest conductor(s) required for each phase. Input neutral and ground terminals shall be sized in accordance with NFPA 70. Output neutral termination shall be sized to properly terminate the neutral conductors for the cables listed in E and F pin sensing terminals shall be 5/16 inch stud. The output shall include a safety interlock protection and looped E/F mode for control.

B. Neutral-to-ground bond

 1. The SSFC shall come from the manufacturer with a removable neutral-to-ground bonding jumper sized in accordance with the National Electrical Code, NFPA 70.

C. Treatment and painting

 1. The SSFC components shall be treated and painted to prevent corrosion. For ferrous structures a zinc rich primer, non-water reducible (Type 1), 350g/l VOC (Class A) followed by a smooth topcoat of polyurethane, high solids formulation (Class H), 420g/l VOC (Type 1) shall be used. For Aluminum or mixed Aluminum and Ferrous structures an epoxy primer, strontium chromed based corrosion inhibitor (Class C), standard pigments (Type 1) followed by a smooth topcoat of polyurethane, high solids formulation (Class H, 240g/l VOC (Type 1) shall be used. Colors used shall be in accordance with Section 2.11-I.

D. Lifting and tie down provisions

 1. Lifting, tie down, and forklift provisions shall be provided in accordance with commercial industry standards. Forklift guides shall be placed on the bottom of the unit and lifting eyes shall be placed at the top corners of the unit.

E. Size
1. The maximum height, depth, and width of the SSFC are limited to not more than 76 inches high by 40 inches deep by 60 inches wide respectively. The weight of the SSFC is limited to not more than 4,000 pounds.

F. Markings

1. All external devices (i.e. cautions, lifting, tie down, center of gravity, etc.) which require an operational or maintenance interface shall be clearly marked. SSFC Unique Identification (UID) information and any SSFC components meeting UID criteria shall be permanently affixed near the respective identification plate(s). All markings shall be located and applied in accordance with MIL-STD-130N.

G. Identification plate

1. The identification plate shall contain the following information: input and output voltages, frequencies, rated kW and kVA and power factor, current, phase, serial number, part number, date of manufacture, manufacturer’s name, cage code, date of warranty expiration, and national stock number. The SSFC identification plate shall be mounted at a conspicuous place on the exterior of the unit.

H. Workmanship and wiring

1. The SSFC shall be free from defects. All the wiring shall be secured, properly and neatly routed and terminated, permanently marked and each wire must be uniquely identified.

I. Painted color

1. The color of the SSFC shall be in accordance with FED-STD-595C, semi color, semi-gloss gray, color 26173. Chemical Agent Resistant Coating (CARC) shall not be used. Painted markings shall be one-inch-high block letters unless prohibited by available space. In such cases the markings shall be the largest size possible, but shall not be less than one-half inch high. Colors used shall be as below:

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>FED-STD-595</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior Finish</td>
<td>26173</td>
<td>Gray</td>
</tr>
<tr>
<td>Markings, Informational / Caution</td>
<td>37038</td>
<td>Lusterless Black</td>
</tr>
<tr>
<td>Markings, Warning / Danger</td>
<td>31136</td>
<td>Lusterless Red</td>
</tr>
</tbody>
</table>

J. Surface transportability

1. The SSFC shall be transportable via all modes of surface shipment: rail, sea, road, etc. and shall be capable to withstand mechanical shock and vibration characteristics of rail, sea, and road transport.

K. Human engineering
1. The SSFC shall be designed in accordance with MIL-STD-1472F for ease of operation, inspection, and maintenance. All operations of the SSFC shall be accomplished using bare hands and while wearing: Work gloves, cold weather (arctic) mittens and Mission-Oriented Protective Posture (MOPP) Level 4 Chemical Warfare Gear.

L. Electromagnetic interference/electrostatic discharge

1. The SSFC shall meet the requirements listed in MIL-STD-461F for Radiated Emissions, RE102; Conducted Emissions, CE102 and Radiated Susceptibility, RS103. The SSFC design shall also preclude equipment damage due to Electrostatic Discharge (ESD), protect personnel from electrical shock due to static charging, and prevent ignition of explosive atmospheres due to sparking.

M. Acoustical noise

1. The maximum acoustical noise of the SSFC shall be 72 dBA at full load measured at 6.5ft horizontally from the center to each side of the SSFC at 5 feet above the floor.

N. Service life

1. The SSFC shall be designed for a minimum service life of 20 years/20,000 hours, without a need for major overhaul or repair. Service life does apply to wear items such as fans, etc. Accomplishment of manufacturer recommended and defined service tasks and intervals shall maintain output performance in excess of 90% of design through the entire service life. Additionally, the SSFC shall be constructed for extended storage in a warehouse environment for 20 years.

O. Materials

1. SSFC components and materials shall be selected for the purpose defined herein with consideration given to the minimum acceptable service life and the environmental conditions stated herein. The use of recovered or recycled materials is highly encouraged. The use of composites or light weight material is also highly encouraged. Magnesium alloys, wood products, polyvinylchloride (PVC) products, polyester, or RTV which yields acetic acid shall not be used. Materials in accordance with Class 1 or Class 2 Ozone Depleting Compounds/Substances (ODC/ODS) shall not be used. Materials used in construction of the SSFC shall not be nutrients for fungi unless these materials have been treated with an anti-fungal coating which will last for the service duration life of the component. Unless protected against galvanic corrosion dissimilar metals and materials, in accordance with MIL-STD-889B Change 3, shall not be in direct contact with one another. Metal plating or metal spraying of dissimilar base metals to provide electromotive compatible abutting surfaces is acceptable. The use of dissimilar metals only when separated by suitable insulating material is permitted, except in systems where bridging of insulation materials by an electrically conductive fluid can occur. Sealants or gel type gasket materials shall be used between faying surfaces and butt joints.
2.12 FACTORY TESTS

A. A factory Test Report shall be furnished for each frequency converter including test results, instrument used, test procedures, and final conclusions. Each Test Report shall be dated and signed by authorized personnel and shall be neat, readily legible and self-explanatory.

B. Factory testing shall be witnessed by two (2) Owner’s representatives. Bidder shall include all costs of Owner witness in their price.

C. Manufacturer shall submit proposed factory acceptance test for review a minimum of 60 days before original unit test is scheduled. Factory testing is not to be done until procedure is approved by Owner’s representative. Delay in shipment due to delay in submittal of an acceptable test procedure shall be the responsibility of the contractor.

D. Each converter shall be tested at no load and full load conditions and shall be given a "burn-in" test for at least 24 continuous hours.

E. In addition to load tests the following tests shall be performed:
 1. OUTPUT VOLTAGE WAVE FORM
 2. TRANSIENT VOLTAGE RECOVERY TIME (for 50% and 100% load shocks).
 3. OUTPUT VOLTAGE REGULATION.
 4. EFFICIENCY TEST at 100% load
 5. OUTPUT VOLTAGE BALANCE.
 6. OUTPUT FREQUENCY REGULATION.
 7. OVERLOAD CAPABILITIES.
 8. OPERATION OF SAFETY AND CONTROL DEVICES.
 9. LDC CIRCUIT.
 10. INPUT CURRENT HARMONICS
 11. OPERATION WITHOUT FANS @ 90°F

2.13 WARRANTY SERVICE AND PARTS

A. Manufacturer shall warrant that its products and work shall meet all applicable specifications, codes and other specific product and work requirements (including those of performance) and shall be free from defects in material and workmanship for a period of one year from commissioning or eighteen months from shipment, whichever occurs first. Upon submittal of a warranty claim, Contractor shall repair or replace items necessary to restore the GPU to satisfactory condition. This warranty does not include consumables. The terms and stipulations of the warranty period shall be submitted with the proposal.

B. In addition to the proposal for fabrication, delivery and installation of systems, the Proposer shall provide a recommended spare parts list, the cost for each part, the extended cost, the consigned cost, and any terms and conditions applicable to this proposal.

2.14 OPERATION AND MAINTENANCE MANUALS AND TRAINING

A. Manual Content
1. A complete manual in a protective binder or cover shall be provided for each converter and shall contain the following information:
 a. Converter description, theory of operation and specification.
 b. Installation and maintenance procedures.
 c. Starting, Operation, Maintenance and Troubleshooting instructions.
 d. Schematics and Connection wiring diagrams.
 e. Recommended Spare Parts list.

B. Operation and Maintenance Manuals

1. Shall follow the intent of the Air Transportation Association (ATA) Specification 101 or acceptable manufacturer’s standard. Included in the manuals shall be preventative maintenance requirements and problem solving procedures.

C. Operator training and maintenance training

1. Shall be provided at scheduled times during commissioning prior to beneficial use. Training shall include a combination of over-the-shoulder and classroom training. 24-Hours of classroom training are to be provided at the job site. Owner shall provide classroom space and training tools as required by Manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General

1. All equipment, wiring and installation shall be in accordance with current, applicable codes and per current industry standards.

B. Packaged frequency converters

1. The frequency converters shall be delivered to the site completely assembled and tested. The site shall provide all necessary concreate pad and electrical connections for mounting and electrically connect the SSFC and accessories.

C. Final Connections

1. The Contractor shall make final electrical connections from the pre-wired utility connections on the SSFC and make sure all accessories are connected accordingly. Arrange frequency converter units to provide adequate access to equipment and circulation of cooling air.

D. Equipment Mounting:

1. Install frequency converter units on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
E. Identify equipment and install warning signs according to Section 26 05 53 "Identification for Electrical Systems."

3.2 CONNECTIONS
A. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
B. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL
A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
B. After the installation is complete, operate each unit to verify performance compliance relative to output voltage, control functions and operating controls. Remove malfunctioning units, replace with new units, and retest as specified above.
C. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.
D. Prepare test and inspection reports.
E. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
F. Adjust frequency converter units to provide optimal voltage to equipment served throughout normal operating cycle of loads served. Record input and output voltages and adjustment settings, and incorporate into test results.

END OF SECTION 26 32 26
SECTION 26 33 53 - STATIC UNINTERRUPTIBLE POWER SUPPLY

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Three phase, on-line, double-conversion, static-type, UPS units with the following features:

a. Surge suppression.
b. Rectifier-charger.
c. Inverter.
d. Static bypass transfer switch.
e. Battery and battery disconnect device.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of UPS.

B. Shop Drawings: For UPS.

1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.4 WARRANTY

A. Special Battery Warranties: Manufacturer and Installer agree to repair or replace UPS system storage batteries that fail in materials or workmanship within specified warranty period.

B. Special UPS Warranties: Specified form in which manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within special warranty period.

1. Special Warranty Period: Two years from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 OPERATIONAL REQUIREMENTS

A. Automatic operation includes the following:

1. Double Conversion, Line Interactive:
 a. Normal Conditions: Load is supplied with power flowing from the normal power input terminals, with the rectifier-charger and inverter turned off and the battery disconnected.
 b. Abnormal Supply Conditions: If normal supply deviates from specified and adjustable voltage, voltage waveform, or frequency limits, the rectifier-charger and inverter turn on and the battery supplies energy to provide constant, regulated inverter power output to the load with minimum of 98 percent UPS system efficiency.
 c. Power Failure: If normal power fails, there is a maximum 4-microsecond delay while the rectifier-charger and inverter turn on and the battery supplies energy to re-establish constant, regulated power output to the load.

2. When power is restored at the normal supply terminals of the system, controls shall automatically synchronize the inverter with the external source before transferring the load. The rectifier-charger shall supply power to the load through the inverter and simultaneously recharge the battery.

3. If the battery becomes discharged and normal supply is available, the rectifier-charger shall charge the battery. The rectifier-charger shall automatically shift to float-charge mode on reaching full charge.

4. If any element of the UPS system fails and power is available at the normal supply terminals of the system, the static bypass transfer switch shall switch the load to the normal ac supply circuit without disturbance or interruption.

5. The output power converters shall produce up to 300 percent of rated full-load current for short-circuit clearing. The inverter shall sustain steady-state overload conditions of up to 200 percent of rated full-load current for 60 seconds in normal operation.

6. The inverter shall be capable of sustaining 150 percent of system capacity for 30 seconds while powered from the battery.

7. Should overloads persist past the time limitations, the automatic static transfer switch shall switch the load to the bypass output of the UPS. When the fault has cleared, the static bypass transfer switch shall return the load to the UPS system.

8. If the battery is disconnected, the UPS shall supply power to the load from the normal supply with no degradation of its regulation of voltage and frequency of the output bus.

B. Environmental Conditions: The UPS shall be capable of operating continuously in the following environmental conditions without mechanical or electrical damage or degradation of operating capability, except battery performance:

1. Ambient Temperature for Electronic Components: 32 to 104 deg F.
2. Ambient Temperature for Battery: 41 to 95 deg F.
3. Relative Humidity: Zero to 95 percent, noncondensing.
2.2 PERFORMANCE REQUIREMENTS

A. Seismic Performance: UPS shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified and the unit will be fully operational after the seismic event."

B. UL Compliance: Listed and labeled by an NRTL to comply with UL 1778.

C. NFPA Compliance: UPS components shall be listed and labeled by an NRTL as suitable for installation in computer rooms according to NFPA 75.

D. The UPS shall perform as specified in this article while supplying rated full-load current, composed of any combination of linear and nonlinear load, up to 100 percent nonlinear load with a maximum load crest factor of 3.0, under the following conditions or combinations of the following conditions:
 1. Inverter is switched to battery source.
 2. Steady-state ac input voltage deviates up to plus or minus 10 percent from nominal voltage.
 3. Steady-state input frequency deviates up to plus or minus 5 percent from nominal frequency.
 4. THD of input voltage is 15 percent or more with a minimum crest factor of 3.0, and the largest single harmonic component is a minimum of 5 percent of the fundamental value.

E. Minimum Power Supply: 10 kVA/8 kW

F. AC Input Voltage: 208V, 3 Phase, 4 wire (3PH+N+G).

G. AC Output Voltage: 208V, 3 Phase, 4 wire (3PH+N+G).

H. Minimum Duration of Supply: If battery is sole energy source supplying rated full-load UPS current at 80 percent power factor, duration of supply is 90 minutes.

I. Input Voltage Tolerance: System steady-state and transient output performance remains within specified tolerances when steady-state ac input voltage varies plus 10 percent and minus 15 percent from nominal voltage.

J. Overall UPS Efficiency: Equal to or greater than 93 percent at 100 percent load, 90 percent at 75 percent load, and 85 percent at 25 percent load.

K. AC Output-Voltage Regulation for Loads 100 Percent Unbalanced: Maximum of plus or minus 2 percent over the full range of battery voltage.

L. AC Output-Voltage Regulation for Loads 100 Percent Balanced: Maximum of plus or minus 1 percent over the full range of battery voltage.
M. Output Frequency: 60 Hz, plus or minus 0.1 percent over the full range of input voltage, load, and battery voltage.

N. Limitation of harmonic distortion of input current to the UPS shall be as follows:

1. Description: Rectifier-charger circuits shall limit THD to 6 percent, maximum, at rated full-load UPS current, for power sources with X/R ratio between 2 and 30. Provide tuned harmonic filter if required to meet harmonic distortion limit.

O. Maximum Harmonic Content of Output-Voltage Waveform: 5 percent rms total and 3 percent rms for any single harmonic, for rated full load with THD up to 50 percent, with a load crest factor of 3.0.

P. Minimum Overload Capacity of UPS at Rated Voltage: 125 percent of rated full load for 10 minutes, 150 percent for 1 minute in normal operation, 125 percent of rated full load for 10 minutes in battery operating mode, and 150 percent for 1 minute in battery operating mode.

Q. Maximum Output-Voltage Transient Excursions from Rated Value: For the following instantaneous load changes, stated as percentages of rated full UPS load, voltage shall remain within stated percentages of rated value and recover to, and remain within, plus or minus 2 percent of that value within 50 ms:

1. 50 Percent: Plus or minus 3 percent.
2. 100 Percent: Plus or minus 5 percent.
3. Loss of AC Input Power: Plus or minus 1 percent.
4. Restoration of AC Input Power: Plus or minus 1 percent.

R. Input Power Factor: A minimum of 0.90 lagging when supply voltage and current are at nominal rated values and the UPS is supplying rated full-load current without additional filters.

S. EMI Emissions: Comply with FCC rules and regulations and with 47 CFR 15 for Class A equipment.

2.3 UPS SYSTEMS

A. Description: Self-contained, battery backup device and accessories that provides electrical power in the event of failure or sag in the normal power system.

B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB USA.
2. APC; by Schneider Electric.
3. Eaton.

C. Electronic Equipment: Solid-state devices using hermetically sealed, semiconductor elements. Devices include rectifier-charger, inverter, static bypass transfer switch, and system controls.

D. Enclosures: Comply with NEMA 250, Type 1, unless otherwise indicated.

F. Control Assemblies: Mount on modular plug-ins, readily accessible for maintenance.

G. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.4 SURGE SUPPRESSION

A. Protect internal UPS components from surges that enter at each ac power input connection. Protect rectifier-charger, inverter, controls, and output components.

1. Use factory-installed surge suppressors tested according to IEEE C62.41.1 and IEEE C62.41.2, Category B.

2.5 RECTIFIER-CHARGER

A. Capacity: Adequate to supply the inverter during rated full output load conditions and simultaneously recharge the battery from fully discharged condition to 95 percent of full charge within 10 times the rated discharge time for duration of supply under battery power at full load.

B. Output Ripple: Limited by output filtration to less than 0.5 percent of rated current, peak to peak.

C. Control Circuits: Immune to frequency variations within rated frequency ranges of normal and emergency power sources.

1. Response Time: Field adjustable for maximum compatibility with local generator-set power source.

D. Battery Float-Charging Conditions: Comply with battery manufacturer's written instructions for battery terminal voltage and charging current required for maximum battery life. The battery charger shall be matched to the battery type supplied.

E. Battery Charger: Sense full charge by measuring the rate of temperature increase. Battery charging shall be terminated when the rate of temperature rise reaches 1.8 deg F per minute. If the battery reaches 140 deg F prior to reaching this rate of temperature rise, charging shall terminate. Chargers that determine full charge by voltage measurement to sense a 10-mV drop per cell when reaching full charge are also acceptable.

2.6 INVERTER

A. Description: Pulse-width modulated, with sinusoidal output.
2.7 CONTROLS AND INDICATIONS

A. Description: Group displays, indications, and basic system controls on a common control panel on front of UPS enclosure.

B. Minimum displays, indicating devices, and controls include those in lists below. Provide sensors, transducers, terminals, relays, and wiring required to support listed items. Alarms include audible signals and visual displays.

C. Indications:

1. Quantitative indications shall include the following:
 a. Input voltage.
 b. System output voltage.
 c. Input frequency.
 d. System output frequency.
 e. Battery capacity and runtime.

2. Basic status condition indications shall include the following:
 a. Normal operation.
 b. Load-on battery.
 c. Inverter off.
 d. Alarm condition.

3. Alarm indications shall include the following:
 a. Battery system alarm.
 b. Approaching end of battery operation.
 c. Battery undervoltage shutdown.

4. Controls shall include the following:
 a. Battery test.
 b. Alarm silence/reset.

D. Emergency Power off Switch: Capable of local operation and operation by means of activation by external dry contacts.

2.8 STATIC BYPASS TRANSFER SWITCH

A. Description: Solid-state switching device providing uninterrupted transfer with a contactor or electrically operated circuit breaker to automatically provide electrical isolation for the switch.

B. Switch Rating: Continuous duty at the rated full-load UPS current, minimum.

C. Input SPD: 80 kA.
2.9 MAINTENANCE BYPASS/ISOLATION SWITCH

A. Description: Manually operated switch or arrangement of switching devices with mechanically actuated contact mechanism arranged to route the flow of power to the load around the rectifier-charger, inverter, and static bypass transfer switch.

1. Switch shall be electrically and mechanically interlocked to prevent interrupting power to the load when switching to bypass mode.
2. Switch shall electrically isolate other UPS components to permit safe servicing.
3. Switch shall electrically isolate the rectifier-charger, inverter, and static bypass transfer switch from the load, but shall allow primary power to the UPS for testing.

B. Switch Rating: Continuous duty at rated full-load UPS current.

C. Mounting Provisions: Internal to system cabinet.

2.10 BATTERY

A. Description: Valve-regulated, recombinant, lead-calcium units, factory assembled in an isolated compartment of UPS cabinet, complete with battery disconnect switch.

1. Arrange for removal of battery assembly from cabinet for testing, inspecting or replacement.
2. Furnish additional battery cabinets as required to meet the minimum duration requirements.

2.11 SOURCE QUALITY CONTROL

A. Factory test complete UPS system before shipment. Include the following:

1. Test and demonstration of all functions, controls, indicators, sensors, and protective devices.
2. Full-load test.
4. Overload test.
5. Power failure test.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for conditions affecting performance of the UPS.

B. Comply with NECA 1.
C. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.

D. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.2 GROUNDING

A. Separately Derived Systems: If not part of a listed power supply for a data-processing room, comply with NFPA 70 requirements for connecting to grounding electrodes and for bonding to metallic piping near isolation transformer. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Inspect interiors of enclosures, including the following:
 a. Inspect anchorage, alignment, grounding, and required clearances.
 b. Component type and labeling verification.
 c. Ratings of installed components.

2. Test electrical and mechanical interlock systems for correct operation and sequencing.

3. Inspect bolted electrical connections for high resistance using one or more of the following methods:
 a. Use of low-resistance ohmmeter according to Section 7.22.2.2 of NETA ATS.
 b. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or Table 100.12 of NETA ATS.

4. Test direct current system's batteries.
 a. Verify all charger functions and alarms.
 b. Measure each cell voltage and total battery voltage with charger energized and in float mode of operation.

C. The UPS system will be considered defective if it does not pass tests and inspections.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain the UPS.

END OF SECTION 26 33 53
PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes lightning protection system for ordinary structures.
 B. Section includes lightning protection system for the following:
 1. Ordinary structures.

1.2 ACTION SUBMITTALS
 A. Product Data: For each type of product.
 B. Shop Drawings:
 1. Include layouts of the lightning protection system, with details of the components to be used in the installation.
 2. Include raceway locations needed for the installation of conductors.
 3. Details of air terminals, ground rods, ground rings, conductor supports, splices, and terminations, including concealment requirements.
 4. Include roof attachment details, coordinated with roof installation.
 5. Calculations required by NFPA 780 for bonding of metal bodies.

1.3 CLOSEOUT SUBMITTALS
 A. Maintenance Data: For lightning protection system to include in maintenance manuals.
 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 a. Dimensioned site plan showing dimensioned route of the ground loop conductor and the ground rod locations. Comply with requirements of Section 01 78 39 "Project Record Documents."
 b. A system testing and inspection record, listing the results of inspections and ground resistance tests, as recommended by NFPA 780, Annex D.
 B. Completion Certificate:
 1. UL Master Label Certificate.
1.4 QUALITY ASSURANCE

A. Installer Qualifications: LPI Master Installer.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Advanced Lightning Technology, LTD.
2. East Coast Lightning Equipment Inc.
3. ERICO International Corporation.
4. Harger Lightning & Grounding.
8. Preferred Lightning Protection.
9. Robbins Lightning, Inc.

2.2 PERFORMANCE REQUIREMENTS

A. NFPA Lightning Protection Standard: Comply with NFPA 780 requirements for Class I buildings and Unified Facilities Criteria UFC 3-575-01 Lightning and Static Electricity Protection Systems, dated July 1, 2012 including compliance with AFI 32-1065.

1. The lightning protection system as a whole shall also be inspected by a commercial, third-party inspector as compliant with AFI 32-1065 and NFPA 780.

B. UL Lightning Protection Standard: Comply with UL 96A requirements for Class I buildings.

C. Lightning Protection Components, Devices, and Accessories: Listed and labeled by a qualified testing agency as complying with UL 96, and marked for intended location and application.

2.3 MATERIALS

A. Air Terminals:

1. Copper, Stainless steel, or Aluminum unless otherwise indicated.
2. Rounded tip.
3. Threaded base support.

B. Class 1 Main Conductors:

1. Stranded Copper: 57,400 circular mils in diameter.

C. Class II Main Conductors:
 1. Stranded Copper: 115,000 circular mils in diameter.
 2. Aluminum: 192,000 circular mils in diameter.

D. Secondary Conductors:
 1. Stranded Copper: 26,240 circular mils in diameter.

E. Ground Loop Conductor: Tinned copper.

F. Ground Rods:
 1. Material: Copper-clad, Zinc-coated steel.
 3. Rods shall be not less than 10 feet long.
 4. Sectional type, with integral threads.

G. Conductor Splices and Connectors: Compression fittings that are installed with hydraulically operated tools, or exothermic welds, approved for use with the class type.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install lightning protection components and systems according to NFPA 780.

B. Install conductors with direct paths from air terminals to ground connections. Avoid bends less than 90 degrees and 8 inches in radius and narrow loops.

C. Conceal conductors within normal view from exterior locations at grade within 200 feet of building. Comply with requirements for concealed systems in NFPA 780.

1. Roof penetrations required for down conductors and connections to structural-steel framework shall be made using listed through-roof fitting and connector assemblies with solid rods and appropriate roof flashings. Use materials approved by the roofing manufacturer for the purpose. Conform to the methods and materials required at roofing penetrations of the lightning protection components to ensure compatibility with the roofing specifications and warranty.

2. Install conduit where necessary to comply with conductor concealment requirements.

3. Air Terminals on Single-Ply Membrane Roofing: Comply with adhesive manufacturer's written instructions.

D. Ground Ring Electrode: The conductor shall be not less than the main-size lightning conductor.
1. Ground ring shall be installed 3 to 8 feet from structure and buried a minimum of 30 inches below grade.
 a. Reference ANG AFI32-1065/A2.2.

3.2 CONNECTIONS
 A. Aboveground concealed connections, and connections in earth or concrete, shall be done by exothermic welds or by high-compression fittings listed for the purpose.
 B. Aboveground exposed connections shall be done using the following types of connectors, listed and labeled for the purpose: bolted connectors, exothermic weld, or high compression.
 C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance, except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.

3.3 CORROSION PROTECTION
 A. Do not combine materials that can form an electrolytic couple that will accelerate corrosion in the presence of moisture unless moisture is permanently excluded from junction of such materials.
 B. Use conductors with protective coatings where conditions would cause deterioration or corrosion of conductors.

3.4 FIELD QUALITY CONTROL
 A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 1. Perform inspections as required to obtain a UL Master Label for system.
 2. Perform inspections to obtain an LPI certification.
 B. Inspections shall certify the lightning protection system as compliant with AFI 32-1065 and NFPA 780.
 C. Prepare test and inspection reports and certificates.

END OF SECTION 26 41 13
SECTION 26 43 13 - SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes field-mounted SPDs for low-voltage (120 to 600 V) power distribution and control equipment.

1.2 DEFINITIONS

A. I-nominal: Nominal discharge current (I-n).
B. MCOV: Maximum continuous operating voltage.
C. Mode(s), also Modes of Protection: The pair of electrical connections where the VPR applies.
D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.
E. OCPD: Overcurrent protective device.
F. SCCR: Short-circuit current rating.
G. SPD: Surge protective device.
H. VPR: Voltage protection rating.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 2. Copy of UL Category Code VZCA certification, as a minimum, listing the tested values for VPRs, I-nominal ratings, MCOVs, type designations, OCPD requirements, model numbers, system voltages, and modes of protection.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.
B. Sample Warranty: For manufacturer's special warranty.
1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For SPDs to include in maintenance manuals.

1.6 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to replace SPDs that fail in materials or workmanship within specified warranty period. The entire unit shall be replaced upon detection of the failure of any mode. Include unlimited free replacements of the unit if destroyed by lightning or other transients during the warranty period.

1. Warranty Period: Minimum of 5 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL SPD REQUIREMENTS

A. SPD with Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Total unit as installed must be UL 1283 and UL 1449 listed and not merely the components or modules.

D. MCOV for L-N, L-G, and N-G modes of operation: 120% of nominal voltage for 240 volts and below; 115% of nominal voltage above 240 volts to 480 volts.

E. Surge Life: Greater than 5000 surges of repetitive sequential IEEE C62.41 Category C3 waveforms with less than 10 percent degradation of measured limiting voltage.

2.2 SERVICE ENTRANCE SUPPRESSOR

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB USA.
3. Current Technology Inc.
4. Eaton.
5. General Electric Company.
6. Intermatic, Inc.
7. LEA International.
8. Leviton Manufacturing Co., Inc.
10. Square D; by Schneider Electric.
B. SPDs: Comply with UL 1449, Type 2.

C. SPDs: Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 2

1. SPDs with the following features and accessories:
 a. Integral disconnect switch.
 b. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 c. Self-monitoring with indicator light display for protection status for each mode.
 d. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.
 e. Surge counter.

D. Comply with UL 1283.

E. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 200 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

F. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits shall not exceed the following:

1. Line to Neutral: 1,200 V for 480Y/277 V.
2. Line to Ground: 1,200 V for 480Y/277 V.
3. Neutral to Ground: 1,200 V for 480Y/277 V.
4. Line to Line: 2,000 V for 480Y/277 V.

G. Per mode single pulse surge current rating for an 8x20 ms waveform must be no less than:

1. Line to Neutral: 40kA
2. Line to Ground: 40kA
3. Neutral to Ground: 40kA
4. Line to Line: 80kA

H. SCCR: 200 kA.

I. I-nominal Rating: 20 kA.

2.3 PANEL SUPPRESSORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. ABB USA.
3. Atlantic Scientific.
5. Eaton.
7. Intermatic, Inc.
8. LEA International.
9. Leviton Manufacturing Co., Inc.
10. Liebert; a brand of Emerson Electric Co.
11. Schneider Electric USA, Inc.
12. Siemens Industry, Inc.
13. Square D; by Schneider Electric.

B. SPDs: Comply with UL 1449, Type 2.
 1. Include LED indicator lights for power and protection status.
 2. Internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 3. Include Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device. Coordinate with building power monitoring and control system.

C. Peak Surge Current Rating: The minimum single-pulse surge current withstand rating per phase shall not be less than 100 kA. The peak surge current rating shall be the arithmetic sum of the ratings of the individual MOVs in a given mode.

D. Comply with UL 1283.

E. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 1,200 V for 480Y/277 V.
 2. Line to Ground: 1,200 V for 480Y/277 V.
 3. Neutral to Ground: 1,200 V for 480Y/277 V.
 4. Line to Line: 2,000 V for 480Y/277 V.

F. Protection modes and UL 1449 VPR for grounded wye circuits with 208Y/120 V, three-phase, four-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V for 208Y/120 V.
 2. Line to Ground: 700 V for 208Y/120 V.
 3. Neutral to Ground: 700 V for 208Y/120 V.
 4. Line to Line: 1200 V for 208Y/120 V

G. Protection modes and UL 1449 VPR for 240/120 V, single-phase, three-wire circuits shall not exceed the following:
 1. Line to Neutral: 700 V.
 2. Line to Ground: 700 V.
 3. Neutral to Ground: 700 V.
4. Line to Line: 1,200 V.

H. Per mode single pulse surge current rating for an 8x20 ms waveform must be no less than:
 1. Line to Neutral: 20kA
 2. Line to Ground: 20kA
 3. Neutral to Ground: 20kA
 4. Line to Line: 40kA

I. SCCR: 200 kA.

J. I-nominal Rating: 20 kA.

2.4 ENCLOSURES
 A. Indoor Enclosures: NEMA 250, Type 1.
 B. Outdoor Enclosures: NEMA 250, Type 4X.

2.5 CONDUCTORS AND CABLES
 A. Power Wiring: Same size as SPD leads, complying with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
 B. Class 2 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG, complying with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
 C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14 AWG, complying with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Comply with NECA 1.
 B. Install an OCPD or disconnect as required to comply with the UL listing of the SPD.
 C. Install SPDs with conductors between suppressor and points of attachment as short and straight as possible, and adjust circuit-breaker positions to achieve shortest and straightest leads. Do not splice and extend SPD leads unless specifically permitted by manufacturer. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 D. Use crimped connectors and splices only. Wire nuts are unacceptable.
E. Wiring:

1. Power Wiring: Comply with wiring methods in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
2. Controls: Comply with wiring methods in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative.

1. Compare equipment nameplate data for compliance with Drawings and Specifications.
2. Inspect anchorage, alignment, grounding, and clearances.
3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. An SPD will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

3.3 STARTUP SERVICE

A. Complete startup checks according to manufacturer's written instructions.

B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests, and reconnect them immediately after the testing is over.

C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Train Government's maintenance personnel to operate and maintain SPDs.

END OF SECTION 26 43 13
SECTION 26 51 19 - LED INTERIOR LIGHTING

PART 1 - PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.
B. CRI: Color Rendering Index.
C. Fixture: See "Luminaire."
D. IP: International Protection or Ingress Protection Rating.
E. LED: Light-emitting diode.
F. Lumen: Measured output of lamp and luminaire, or both.
G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include emergency lighting units, including batteries and chargers.
 5. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 6. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project, IES LM-79, and IES LM-80.
 a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Sustainable Design Submittals.

D. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Ten year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7

B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, product(s) indicated on Drawings.

B. General requirements for LED lighting units:

1. LED light source shall provide uniform stable color with a shift of no more than +/- 100K over life of the LEDs.
2. 80 CRI or better.
3. Color temperature: 4000K, unless otherwise noted.
4. LED unit shall provide plug-in style LED arrays and LED power supply boards for easy removal.
5. Recessed LED downlights must be accessible from below the ceiling.
6. 50,000 hour minimum lifetime at 70% lumen maintenance.
7. LM 79 and LM 80 compliant.
C. LED Fixtures: Comply with UL 1598. Where LER is specified, test according to NEMA LE 5A.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

F. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

G. Recessed Fixtures: Comply with NEMA LE 4.

H. Bulb shape complying with ANSI C79.1.

I. Lamp base complying with ANSI C81.61 or IEC 60061-1.

J. Minimum allowable lumens: Refer to Plans.

K. Lamps dimmable from 100 percent to 0 percent of maximum light output.

L. Internal driver with replaceable Surge Protection Device (Category B).

M. Nominal Operating Voltage: as indicated on Drawings.

N. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

O. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear anodized finish.

2.1 EMERGENCY LED UNITS:

A. Emergency lighting shall be provided using a standard LED fixture equipped with an emergency LED driver, equal to the manufacturer specified on the plans.

B. The emergency LED driver shall consist of field replaceable, high-temperature, maintenance-free nickel-cadmium batteries with separate battery charger, electronic circuitry and test switch.

C. The emergency LED driver shall be capable of operating the LED load up to the rated wattage and lumens specified on the plans for 90 minutes.

D. The emergency LED driver shall be suitable for damp locations and sealed and gasketed fixtures.

E. The emergency LED driver shall be UL Component Recognized and warranted for three years from date of purchase.
2.2 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:
 1. Prismatic glass.
 2. Glass: Annealed crystal glass unless otherwise indicated.
 3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
 1. Extruded-aluminum housing and heat sink.
 2. Clear anodized finish.

E. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.

2.3 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.4 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:

 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:

 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.
F. Wall-Mounted Luminaire Support:
 1. Attached to structural members in walls.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- diameter aircraft cable supports adjustable to 120 inches in length.
 2. Ceiling mount with pendant mount with 5/32-inch- diameter aircraft cable supports adjustable to 120 inches in length.
 3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod or wire support for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
2. Test for Emergency Lighting:Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Comply with requirements for startup specified in Section 26 09 23 "Lighting Control Devices."

3.7 ADJUSTING

A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.

1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
3. Adjust the aim of luminaires in the presence of the Contracting Officer.

END OF SECTION 26 51 19
SECION 26 52 19 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Emergency lighting units.
 2. Exit signs.
 3. Luminaire supports.
 4. Uninterruptible (UPS-type) central battery equipment.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color Rendering Index.

C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.

D. Fixture: See "Luminaire" Paragraph.

E. Lumen: Measured output of lamp and luminaire, or both.

F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 1. Include data on features, accessories, and finishes.
 2. Include physical description of the unit and dimensions.
 3. Battery and charger for light units.
 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.

 a. Testing Agency Certified Data: For indicated luminaires and signs, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires and signs shall be certified by manufacturer.
b. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

B. Shop Drawings: For nonstandard or custom luminaires.
 1. Include plans, elevations, sections, and mounting and attachment details.
 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 3. Include diagrams for power, signal, and control wiring.

C. Sustainable Design Submittals.

D. Product Schedule:
 1. For emergency lighting units. Use same designations indicated on Drawings.
 2. For exit signs. Use same designations indicated on Drawings.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 2. Luminaire-mounted, emergency battery pack: One for every 50 emergency lighting units. Furnish at least one of each type.
 3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
B. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five year(s) from date of Substantial Completion.

B. Special Warranty for Emergency Lighting Batteries: Manufacturer's standard form in which manufacturer of battery-powered emergency lighting unit agrees to repair or replace components of rechargeable batteries that fail in materials or workmanship within specified warranty period.

1. Warranty Period for Emergency Power Unit Batteries: Five years from date of Substantial Completion. Full warranty shall apply for first year and prorated warranty for the remaining four years.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.

C. Comply with NFPA 70 and NFPA 101.
D. Comply with NEMA LE 4 for recessed luminaires.

E. Comply with UL 1598 for fluorescent luminaires.

F. Lamp Base: Comply with ANSI C81.61 or IEC 60061-1.

G. Bulb Shape: Complying with ANSI C79.1.

H. Internal Type Emergency Power Unit: Self-contained, modular, battery-inverter unit, factory mounted within luminaire body.
 1. Emergency Connection: Operate one lamp continuously at an output of 1100 lumens each upon loss of normal power. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire ballast.
 2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 3. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Less than 0 deg F or exceeding 104 deg F, with an average value exceeding 95 deg F over a 24-hour period.
 b. Ambient Storage Temperature: Not less than minus 4 deg F and not exceeding 140 deg F.
 c. Humidity: More than 95 percent (condensing).
 d. Altitude: Exceeding 3300 feet.
 4. Nightlight Connection: Operate lamp continuously at 40 percent of rated light output.
 5. Test Push-Button and Indicator Light: Visible and accessible without opening luminaire or entering ceiling space.
 a. Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 b. Indicator Light: LED indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 7. Charger: Fully automatic, solid-state, constant-current type with sealed power transfer relay.
 8. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 9. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.
I. External Type: Self-contained, modular, battery-inverter unit, suitable for powering one or more lamps, remote mounted from luminaire.

 1. Emergency Connection: Operate one LED lamp continuously. Connect unswitched circuit to battery-inverter unit and switched circuit to luminaire.
 2. Operation: Relay automatically turns lamp on when power-supply circuit voltage drops to 80 percent of nominal voltage or below. Lamp automatically disconnects from battery when voltage approaches deep-discharge level. When normal voltage is restored, relay disconnects lamps from battery, and battery is automatically recharged and floated on charger.
 5. Charger: Fully automatic, solid-state, constant-current type.
 6. Housing: NEMA 250, Type 1 enclosure listed for installation inside, on top of, or remote from luminaire. Remote assembly shall be located no less than half the distance recommended by the emergency power unit manufacturer, whichever is less.
 7. Test Push Button: Push-to-test type, in unit housing, simulates loss of normal power and demonstrates unit operability.
 8. LED Indicator Light: Indicates normal power on. Normal glow indicates trickle charge; bright glow indicates charging at end of discharge cycle.
 9. Remote Test: Switch in handheld remote device aimed in direction of tested unit initiates coded infrared signal. Signal reception by factory-installed infrared receiver in tested unit triggers simulation of loss of its normal power supply, providing visual confirmation of either proper or failed emergency response.
 10. Integral Self-Test: Factory-installed electronic device automatically initiates code-required test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing red LED.

2.3 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

B. Emergency Luminaires:

 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

 a. Amerlux.
 b. Architectural Lighting Works.
 c. Cooper Lighting, an Eaton business.
 d. Dual-Lite.
 e. GE Lighting Solutions.
 f. Juno Lighting Group by Schneider Electric.
 g. Lightolier; a Philips group brand.
 h. Lithonia Lighting; Acuity Brands Lighting, Inc.
2. Emergency Luminaires: as indicated on Drawings, with the following additional features:
 a. Operating at nominal voltage of 120 V ac.
 b. Internal emergency power unit.
 c. Rated for installation in damp locations, and for sealed and gasketed luminaires in wet locations.

C. Emergency Lighting Unit:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Amerlux.
 b. Architectural Lighting Works.
 c. Cooper Lighting, an Eaton business.
 d. Dual-Lite.
 e. Evenlite, Inc.
 f. GE Lighting Solutions.
 g. Lighting Services, Inc.
 h. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Emergency Lighting Unit: as indicated on Drawings.
3. Operating at nominal voltage of 120 V ac.
4. Wall-mount with universal junction box adaptor.
5. UV stable thermoplastic housing, rated for damp locations.
6. Two LED lamp heads.
7. Internal emergency power unit.

D. Remote Emergency Lighting Units:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Cooper Lighting, an Eaton business.
 b. GE Lighting Solutions.
 c. Hubbell Industrial Lighting; Hubbell Incorporated.
 d. Juno Lighting Group by Schneider Electric.
 e. Lithonia Lighting; Acuity Brands Lighting, Inc.

2. Emergency Lighting Unit: as indicated on Drawings.
3. Operating at nominal voltage of 120 V ac.
4. Wall-mount with universal junction box adaptor.
5. UV stable thermoplastic housing, rated for damp locations.
6. One LED lamp heads.
7. External emergency power unit.
2.4 EXIT SIGNS

A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.

B. Internally Lighted Signs:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Amerlux.
 b. Cooper Lighting, an Eaton business.
 c. Evenlite, Inc.
 d. Hubbell Industrial Lighting; Hubbell Incorporated.
 e. Lithonia Lighting; Acuity Brands Lighting, Inc.
 f. Philips Lighting Company.

2. Operating at nominal voltage of 120 V ac.
3. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.
4. Self-Powered Exit Signs (Battery Type): Internal emergency power unit.
5. Master/Remote Sign Configurations:

 a. Master Unit: Comply with requirements above for self-powered exit signs, and provide additional capacity in LED power supply for power connection to remote unit.
 b. Remote Unit: Comply with requirements above for self-powered exit signs, except omit power supply, battery, and test features. Arrange to receive full power requirements from master unit. Connect for testing concurrently with master unit as a unified system.

2.5 MATERIALS

A. Metal Parts:

1. Free of burrs and sharp corners and edges.
2. Sheet metal components shall be steel unless otherwise indicated.
3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access:

1. Smooth operating, free of light leakage under operating conditions.
2. Designed to permit relamping without use of tools.
3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Diffusers and Globes:

1. Prismatic glass.
2. Glass: Annealed crystal glass unless otherwise indicated.
3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

D. Housings:
1. Extruded aluminum housing and heat sink.
2. Clear anodized finish.

2.6 METAL FINISHES
A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT COMPONENTS
A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

2.8 UNINTERRUPTIBLE (UPS-TYPE) CENTRAL BATTERY EQUIPMENT
A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 a. Cooper Lighting, an Eaton business.
 b. Hubbell Industrial Lighting; Dual-Lite.
 c. Lithonia Lighting
 d. Philips Chloride
 e. Thomas & Betts, Emergi-Lite.
B. Unit Operating Requirements:
 1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent.
 2. Input Frequency Tolerance: Plus or minus 3 percent.
 3. Synchronizing Slew Rate: 1 Hz per second, nominal.
 4. Minimum Off-Line Efficiency: 95 percent at 60 Hz, full load.
 5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or operating condition.
 6. Output Regulation: Static +/-5%
 7. Output Distortion: Less than 5% THD, linear load.
 8. Ambient Temperature Rating (Other Than Batteries): Not less than 68 deg F and not exceeding 86 deg F.
 9. Ambient Storage Temperature Rating (Other Than Batteries): Not less than minus 4 deg F and not exceeding 158 deg F.
10. Ambient Temperature Rating (Batteries): Not less than 32 deg F and not exceeding 104 deg F.
11. Ambient Storage Temperature Rating (Batteries): Not less than 0 deg F and not exceeding 104 deg F
14. Off-Line Overload Capability: 1.5 times momentary; 1.1 times the base load current for 10 minutes; minimum of 1.2 times the base load current for five minutes.
15. Surge Voltage Test: Per UL 924

C. Inverter and Controls Logic: Microprocessor based, isolated from all power circuits; provides complete self-diagnostics, periodic automatic testing and reporting; with alarms.

D. Integral Input Disconnecting Means and OCPD: Thermal-magnetic circuit breaker.
 1. Integrated Equipment Minimum Short-Circuit Current (Withstand) Rating: 42 kA.

E. Rectifier: Solid state, with the following operational features:
 1. Automatically convert incoming ac voltage to regulated dc bus voltage, with less than 2 percent rms ripple voltage with inverter fully loaded and batteries disconnected.
 2. Rectified Efficiency: Not less than 98 percent.
 3. Generator compatible.

F. Inverter: Solid-state, high-frequency, PWM type, IGBT circuitry.
 1. IGBT Frequency Switching Rate-16k Hz per second.

G. Battery Runtime: 90 minutes per UL 924.

H. Battery Charger: Solid state, variable rate, temperature compensated.
 1. Maximum Battery Recharge Time from Fully Discharged State: 24 hours.

I. Batteries: Standard VRLA batteries.
 1. Capable of sustaining full-capacity output of inverter unit for minimum of 90 minutes.

J. Battery Cabinet Short Circuit Breaker Protection.
 1. Thermal magnetic circuit breaker and fuses.

K. Line Conditioning and Filtering:
 1. Input Line Conditioning: Limit TDD at input terminals of all central battery equipment to less than 5 percent and THD(V) to 3 percent.
 2. Input Line Conditioning: Limit TDD and THD(V) at the defined point of common coupling.
 3. Output Voltage Waveform: Sine wave with maximum 3 percent TDD throughout battery operating-voltage range, for 100 percent linear load.
L. Integral Output Disconnecting Means and OCPD:

M. Enclosures: Type 1 steel cabinets with access to components through hinged doors with flush tumbler lock and latch.

N. WARRANTY
 1. Materials and Workmanship:
 a. Central Battery Equipment (excluding Batteries): Two year(s).
 b. Standard VRLA Batteries:
 1) Full Warranty: One year.
 2) Pro Rata: Nine years.

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
 B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
 C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.
 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Comply with NECA 1.
 B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
 C. Install lamps in each luminaire.
 D. Supports:
 1. Sized and rated for luminaire and emergency power unit weight.
 2. Able to maintain luminaire position when testing emergency power unit.
 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.

E. Wall-Mounted Luminaire Support:
1. Attached to structural members in walls.
2. Do not attach luminaires directly to gypsum board.

F. Suspended Luminaire Support:
1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod or wire support for suspension for each unit length of luminaire chassis, including one at each end.
4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

G. Ceiling Grid Mounted Luminaires:
1. Secure to any required outlet box.
2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 CENTRAL BATTERY EQUIPMENT INSTALLATION

A. Coordinate layout and installation of central battery equipment with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Wall-Mounted Central Battery Equipment: Install central battery equipment on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For units not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."

C. Floor-Mounted Central Battery Equipment: Install central battery equipment on 4-inch nominal-thickness concrete base. Comply with requirements for concrete base specified in Section 033000 "Cast-in-Place Concrete."
1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

4. Install anchor bolts to elevations required for proper attachment to supported equipment.

D. Seismic Bracing: Comply with requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."

E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

F. Comply with NECA 1.

1. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

H. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

I. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

1. Separately Derived Systems: Make grounding connections to grounding electrodes and bonding connections to metallic piping systems as indicated; comply with NFPA 70.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

B. Identify central battery equipment, components, and control wiring. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Central Battery Equipment:

1. Perform tests and inspections.
2. Inspect central battery equipment, wiring, components, connections, and equipment installation.
3. Test insulation resistance for all external branch circuit, feeder, control, and alarm wiring connected to central battery equipment element and component.
4. Test continuity of each circuit.
5. Perform each visual and mechanical inspection and electrical test stated in manufacturer's written instructions and in NETA Acceptance Testing Specification, including specifically those for batteries, battery chargers, and UPS, regardless of the type of central battery equipment provided. Certify compliance with test parameters.
6. Perform a load-duration test at rated voltage and rated output current to verify the correct functional operation of the unit under full-load stable operating conditions for the minimum time limits required by UL 924. Monitor and record ambient temperature and temperatures within the unit.
7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

D. Central battery equipment will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

A. Perform startup service:

1. Charge emergency power units and batteries minimum of one hour and depress switch to conduct short-duration test.
2. Charge emergency power units and batteries minimum of 24 hours and conduct one-hour discharge test.
3. Central battery equipment: Complete installation and startup checks according to manufacturer's written instructions.

END OF SECTION 26 52 19
SECTION 26 56 13 - LIGHTING POLES AND STANDARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Poles and accessories for support of luminaires.

1.3 DEFINITIONS
 A. EPA: Equivalent projected area.
 B. Luminaire: Complete luminaire.
 C. Pole: Luminaire-supporting structure, including tower used for large-area illumination.
 D. Standard: See "Pole."

1.4 ACTION SUBMITTALS
 A. Product Data: For each pole, accessory, and luminaire-supporting and -lowering device, arranged as indicated.
 1. Include data on construction details, profiles, EPA, cable entrances, materials, dimensions, weight, rated design load, and ultimate strength of individual components.
 2. Include finishes for lighting poles and luminaire-supporting devices.
 3. Anchor bolts.
 B. Sustainable Design Submittals:
 1. Product data from manufacturers indicating VOC content of any adhesives, sealants, paints, or coatings used documenting compliance with EQ Credit 4.1 and 4.2.
 C. Shop Drawings:
 1. Include plans, elevations, sections, and mounting and attachment details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

3. Detail fabrication and assembly of poles and pole accessories.

4. Foundation construction details, including material descriptions, dimensions, anchor bolts, support devices, and calculations, signed and sealed by a professional engineer licensed in the state of installation.

5. Anchor bolt templates keyed to specific poles and certified by manufacturer.

6. Method and procedure of pole installation. Include manufacturer's written installations.

1.5 INFORMATIONAL SUBMITTALS

A. Pole and Support Component Certificates: Signed by manufacturers of poles, certifying that products are designed for indicated load requirements according to AASHTO LTS-6-M and that load imposed by luminaire and attachments has been included in design. The certification shall be based on design calculations signed and sealed by a professional engineer.

B. Seismic Qualification Data: For pole, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Sample Warranty: Manufacturer's standard warranty.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Package aluminum poles for shipping according to ASTM B 660.

B. Store poles on decay-resistant skids at least 12 inches above grade and vegetation. Support poles to prevent distortion and arrange to provide free air circulation.

C. Retain factory-applied pole wrappings on metal poles until right before pole installation. Handle poles with web fabric straps.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of pole(s) that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within a specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs from special warranty period.
1. Warranty Period: Five years from date of Substantial Completion.
2. Warranty Period for Corrosion Resistance: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design pole foundation and pole power system.

B. Seismic Performance: Foundation and pole shall withstand the effects of earthquake motions determined according to ASCE/SEI 7, Chapter 15 requirements.

1. The term "withstand" means "the system will remain in place without separation of any parts when subjected to the seismic forces specified and the system will be fully operational after the seismic event."
2. Importance Factor: 1.0.
3. Deflection Amplification Factor: 1.5
4. Response Modification Factor: 1.5
5. Overstrength Factor: 1.5

C. Structural Characteristics: Comply with AASHTO LTS-6-M.

D. Dead Load: Weight of luminaire and its horizontal and vertical supports, and supporting structure, applied according to AASHTO LTS-6-M.

E. Wind Load: Pressure of wind on pole and luminaire, calculated and applied according to AASHTO LTS-6-M.

1. Basic wind speed for calculating wind load for poles 50 feet high or less is 100 mph.
 a. Wind Importance Factor: 1.0.
 c. Velocity Conversion Factor: 1.0.

F. Strength Analysis: For each pole, multiply the actual EPA of luminaires and brackets by a factor of 1.1 to obtain the EPA to be used in pole selection strength analysis.

G. Luminaire Attachment Provisions: Comply with luminaire manufacturers' mounting requirements. Use stainless-steel fasteners and mounting bolts unless otherwise indicated.

2.2 ALUMINUM POLES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the work include the following:
1. Cooper Lighting, an Eaton Business
2. H.E. Williams
3. Hapco
4. Hubbell Incorporated
5. KIM Lighting
6. Lithonia Lighting; Acuity Brands Lighting, Inc.
7. LSI Industries
8. Union Metal Corporation

B. Poles: Seamless, extruded structural tube complying with ASTM B 221, Alloy 6061-T6, with access handhole in pole wall.
 1. Shape: Straight, square.
 2. Mounting Provisions: Butt flange for bolted mounting on foundation or breakaway support.

C. Pole-Top Tenons: Fabricated to support luminaire or luminaires and brackets indicated, and securely fastened to pole top.

D. Grounding and Bonding Lugs: Bolted 1/2-inch threaded lug, complying with requirements in Section 260526 "Grounding and Bonding for Electrical Systems," listed for attaching grounding and bonding conductors of type and size listed in that Section, and accessible through handhole.

E. Fasteners: Stainless steel, size and type as determined by manufacturer. Corrosion-resistant items compatible with support components.
 1. Materials: Compatible with poles and standards as well as to substrates to which poles and standards are fastened and shall not cause galvanic action at contact points.

F. Handhole: Oval shaped, with minimum clear opening of 2-1/2 by 5 inches, with cover secured by stainless-steel captive screws.

G. Prime-Coat Finish: Manufacturer's standard prime-coat finish ready for field painting.

H. Aluminum Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.

I. Powder-Coat Finish: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" recommendations for applying and designating finishes.
1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1 to remove dirt, oil, grease, and other contaminants that could impair powder coat bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, according to SSPC-SP 5/NACE No. 1 or SSPC-SP 8.

2. Powder coat shall comply with AAMA 2604.
 a. Electrostatic applied powder coating; single application with a minimum 2.5- to 3.5-mils dry film thickness; cured according to manufacturer's instructions. Coat interior and exterior of pole for equal corrosion protection.

2.3 POLE ACCESSORIES

A. Base Covers: Manufacturers' standard metal units, finished same as pole, and arranged to cover pole's mounting bolts and nuts.

2.4 GENERAL FINISH REQUIREMENTS

A. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Appearance of Finished Work: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine poles, luminaire-mounting devices, lowering devices, and pole accessories before installation. Components that are scratched, dented, marred, wet, moisture damaged, or visibly damaged are considered defective.

C. Examine roughing-in for foundation and conduit to verify actual locations of installation.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 POLE FOUNDATION

A. Concrete Pole Foundations: Cast in place, with anchor bolts to match pole-base flange. Structural steel complying with ASTM A 36/A 36M and hot-dip galvanized according to ASTM A 123/A 123 M; and with top-plate and mounting bolts to match pole-base flange and
strength required to support pole, luminaire, and accessories. Concrete, reinforcement, and formwork are specified in Section 033000 "Cast-in-Place Concrete."

B. Anchor Bolts: Install plumb using manufacturer-supplied template, uniformly spaced.

3.3 POLE INSTALLATION

A. Alignment: Align pole foundations and poles for optimum directional alignment of luminaires and their mounting provisions on pole.

B. Clearances: Maintain the following minimum horizontal distances of poles from surface and underground features unless otherwise indicated on drawing.

1. Fire Hydrants and Water Piping: 60 inches.
3. Trees: 15 feet from tree trunk.

C. Foundation-Mounted Poles: Mount pole with leveling nuts and tighten top nuts to torque level according to pole manufacturer's written instructions.

1. Use anchor bolts and nuts selected to resist seismic forces defined for the application and approved by manufacturer.
2. Grout void between pole base and foundation. Use nonshrink or expanding concrete grout firmly packed to fill space.
3. Install base covers unless otherwise indicated.
4. Use a short piece of 1/2-inch diameter pipe to make a drain hole through grout. Arrange to drain condensation from interior of pole.

D. Poles and Pole Foundations Set in Concrete-Paved Areas: Install poles with a minimum 6-inch-wide, unpaved gap between the pole or pole foundation and the edge of the adjacent concrete slab. Fill unpaved ring with pea gravel. Insert material to a level 1 inch below top of concrete slab.

E. Raise and set pole using web fabric slings (not chain or cable) at locations indicated by manufacturer.

3.4 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum using insulating fittings or treatment.

B. Steel Conduits: Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50-percent overlap.
3.5 GROUNDING

A. Ground Metal Poles and Support Structures: Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

1. Install grounding electrode for each pole unless otherwise indicated.
2. Install grounding conductor pigtail in the base for connecting luminaire to grounding system.

3.6 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

END OF SECTION 26 56 13
SECTION 26 56 19 – LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 2. Luminaire supports.
 3. Luminaire-mounted photoelectric relays.

B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.
 2. Section 265613 "Lighting Poles and Standards" for poles and standards used to support exterior lighting equipment.

1.2 DEFINITIONS

A. CCT: Correlated color temperature.

B. CRI: Color rendering index.

C. Fixture: See "Luminaire."

D. IP: International Protection or Ingress Protection Rating.

E. Lumen: Measured output of lamp and luminaire, or both.

F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of luminaire.
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaire.
 4. Lamps, include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IES Lighting Measurements Testing and Calculation Guides, of each luminaire type. The
adjustment factors shall be for lamps and accessories identical to those indicated for the
luminaire as applied in this Project, IES LM-79, and IES LM-80.

a. Manufacturer's Certified Data: Photometric data certified by manufacturer's
laboratory with a current accreditation under the NVLAP for Energy Efficient
Lighting Products.

b. Testing Agency Certified Data: For indicated luminaires, photometric data
certified by a qualified independent testing agency. Photometric data for remaining
luminaires shall be certified by manufacturer.

6. Wiring diagrams for power, control, and signal wiring.
7. Photoelectric relays.
8. Means of attaching luminaires to supports and indication that the attachment is suitable
for components involved.

B. Sustainable Design Submittals.

C. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

D. Delegated-Design Submittal: For luminaire supports.

1. Include design calculations for luminaire supports and seismic restraints.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and photoelectric relays to include in
operation and maintenance manuals.

1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.
2. Provide a list of all photoelectric relay types used on Project; use manufacturers' codes.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective
covering for storage and identified with labels describing contents.

1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each
type.
2. Glass, Acrylic, and Plastic Lenses, Covers, and Other Optical Parts: One for every 100
of each type and rating installed. Furnish at least one of each type.
3. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at
least one of each type.
4. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least
one of each type.
1.6 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.

C. Provide luminaires from a single manufacturer for each luminaire type.

D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.8 FIELD CONDITIONS

A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.

B. Mark locations of exterior luminaires for approval by Contracting Officer prior to the start of luminaire installation.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:

 a. Structural failures, including luminaire support components.
 b. Faulty operation of luminaires and accessories.
 c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

 2. Warranty Period: 10 year(s) from date of Substantial Completion.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.

1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.2 LUMINAIRE REQUIREMENTS

A. General requirements for LED lighting units:

1. LED light source shall provide uniform stable color with a shift of no more than +/- 100K over life of the LEDs.
2. LM 79 and LM 80 compliant.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.

D. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

E. UL Compliance: Comply with UL 1598 and listed for wet location.

F. Exterior LED luminaires to be rated IP 66.

G. 70 CRI minimum.

H. CCT of 4000 K, or as indicated on the Drawings.

I. L70 lamp life of 50,000 hours.

J. Internal driver with replaceable Surge Protection Device (Category B)

K. Nominal Operating Voltage: as indicated on the Drawings.

L. In-line Fusing: On the primary for each luminaire.

M. Lamp Rating: Lamp marked for outdoor use and in enclosed locations.
N. LED modules shall be replaceable and LED power supply boards shall have quick disconnects for easy removal.

O. Fixture shall have optical systems for either, Type II, III, IV and V as noted on the plans and shall produce no light above nadir.

P. Source Limitations: Obtain luminaires from single source from a single manufacturer.

2.3 LUMINAIRE-MOUNTED PHOTOELECTRIC RELAYS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

2. Cooper Lighting, an Eaton business.
3. Deco Lighting.
4. Eaton.
5. GE Lighting Solutions.
6. Intelligent Illuminations, Inc.
7. Lithonia Lighting; Acuity Brands Lighting, Inc.
9. Schneider Electric USA, Inc.

B. Comply with UL 773 or UL 773A.

C. Contact Relays: Factory mounted, single throw, designed to fail in the on position, and factory set to turn light unit on at 1.5 to 3 fc and off at 4.5 to 10 fc with 15-second minimum time delay. Relay shall have directional lens in front of photocell to prevent artificial light sources from causing false turnoff.

1. Relay with locking-type receptacle shall comply with ANSI C136.10.
2. Adjustable window slide for adjusting on-off set points.

2.4 LUMINAIRE TYPES

A. Area and Site:

2.5 MATERIALS

A. Metal Parts: Free of burrs and sharp corners and edges.

B. Sheet Metal Components: Corrosion-resistant aluminum or Stainless steel. Form and support to prevent warping and sagging.
C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.

D. Diffusers and Globes:

1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
2. Glass: Annealed crystal glass unless otherwise indicated.
3. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.

E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.

F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:

1. White Surfaces: 85 percent.
2. Specular Surfaces: 83 percent.
3. Diffusing Specular Surfaces: 75 percent.

G. Housings:

1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
2. Provide filter/breather for enclosed luminaires.

H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp diameter, shape, size, wattage and coating.
 c. CCT and CRI for all luminaires.

2.6 FINISHES

A. Variations in Finishes: Noticeable variations in same piece are unacceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

B. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
C. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20 requirements; and seal aluminum surfaces with clear, hard-coat wax.
3. Class I, Clear-Anodic Finish: AA-M32C22A41 (Mechanical Finish: Medium satin; Chemical Finish: Etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.
 a. Color: Dark bronze.

D. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.
2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 a. Color: As selected by Contracting Officer from manufacturer's full range.

2.7 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.

C. Examine walls, roofs, canopy ceilings and overhang ceilings for suitable conditions where luminaires will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 TEMPORARY LIGHTING

A. If approved by the Contracting Officer, use selected permanent luminaires for temporary lighting. When construction is substantially complete, clean luminaires used for temporary lighting and install new lamps.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Comply with NECA 1.

B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

C. Install lamps in each luminaire.

D. Fasten luminaire to structural support.

E. Supports:

1. Sized and rated for luminaire weight.
2. Able to maintain luminaire position after cleaning and relamping.
3. Support luminaires without causing deflection of finished surface.
4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

F. Wall-Mounted Luminaire Support:

1. Attached to a minimum 1/8 inch backing plate attached to wall structural members.

H. Install luminaires level, plumb, and square with finished grade unless otherwise indicated.

I. Coordinate layout and installation of luminaires with other construction.

J. Adjust luminaires that require field adjustment or aiming. Include adjustment of photoelectric device to prevent false operation of relay by artificial light sources, favoring a north orientation.

K. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" and 260533 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.4 CORROSION PREVENTION

A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
B. Steel Conduits: Comply with Section 26 05 33 "Raceways and Boxes for Electrical Systems." In concrete foundations, wrap conduit with 0.010-inch-thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.6 FIELD QUALITY CONTROL

A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.

B. Perform the following tests and inspections:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

2. Verify operation of photoelectric controls.

C. Tests:

1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

D. Luminaire will be considered defective if it does not pass tests and inspections.

E. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

3.7 DEMONSTRATION

A. Train Government's maintenance personnel to adjust, operate, and maintain luminaires and photocell relays.

END OF SECTION 26 56 19
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Grounding conductors.
2. Grounding connectors.
3. Grounding busbars.
4. Grounding rods.
5. Grounding labeling.

1.2 DEFINITIONS

A. BCT: Bonding conductor for telecommunications.
B. EMT: Electrical metallic tubing.
C. TGB: Telecommunications grounding busbar.
D. TMGB: Telecommunications main grounding busbar.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.4 INFORMATIONAL SUBMITTALS

A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:

1. Ground rods.
2. Ground and roof rings.
3. BCT, TMGB, TGBs, and routing of their bonding conductors.

B. Qualification Data: For Installer, installation supervisor, and field inspector.
C. All test results shall be a required submittal to the Government.
D. Field quality-control reports.

E. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:

a. Result of the ground-resistance test, measured at the point of BCT connection.

b. Result of the bonding-resistance test at each TMGB and its nearest grounding electrode.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

1. Installation Supervision: Installation shall be under the direct supervision of ITS Technician, who shall be present at all times when Work of this Section is performed at Project site.

2. Field Inspector: Currently registered by BICSI as a registered communications distribution designer to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 SYSTEM COMPONENTS

A. Comply with TIA-607-C.

2.2 CONDUCTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Harger Lightning and Grounding.

2. Panduit Corp.

B. Comply with UL 486A-486B.
C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.
 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
 2. Cable Tray Equipment Grounding Wire: No. 6 AWG.

D. Cable Tray Grounding Jumper:
 1. Not smaller than No. 6 AWG 26 kcmils and not longer than 12 inches. If jumper is a wire, it shall have a crimped grounding lug with two holes and long barrel for two crimps. If jumper is a flexible braid, it shall have a one-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.
 2. Not smaller than No. 10 AWG 26 kcmils and not longer than 12 inches. If jumper is a wire, it shall have a crimped grounding lug with one hole and standard barrel for one crimp. If jumper is a flexible braid, it shall have a one- or two-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.

E. Bare Copper Conductors:
 4. Bonding Cable: 28 kcmils, 14 strands of No. 17 AWG conductor, and 1/4 inch diameter.
 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with two-hole copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTORS

A. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Burndy; Part of Hubbell Electrical Systems.
 2. Thomas and Betts.
 3. Harger Lightning and Grounding.
 4. Panduit Corp.

C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.

 1. Electroplated tinned copper, C and H shaped.
D. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.

E. Busbar Connectors: Cast silicon bronze, solderless compression or exothermic-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch centers for a two-bolt connection to the busbar.

F. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Harger Lightning and Grounding.
2. Panduit Corp.

B. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with TIA-607-C.

1. Predrilling shall be with holes for use with lugs specified in this Section.
3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

C. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 4 inches in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with TIA-607-C.

1. Predrilling shall be with holes for use with lugs specified in this Section.
2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.

D. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.

E. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-607-C. Predrilling shall be with holes for use with lugs specified in this Section.

1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.

2.5 LABELING

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 2. HellermannTyton.
 3. Panduit Corp.

B. Comply with TIA/EIA-606-C and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

C. Adhesive Film Label with Clear Protective Overlay: Machine printed, in black, by thermal transfer or equivalent process. Minimum letter height shall be 3/8 inch. Overlay shall provide a weatherproof and UV-resistant seal for label.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.

B. Inspect the test results of the ac grounding system measured at the point of TBC connection.

C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.

D. Proceed with connection of the TBC only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.

B. Comply with NECA 1.

C. Comply with TIA-607-C.
3.3 APPLICATION

A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
 1. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.

B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2 AWG minimum.

C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 3. Connections to Ground Rods at Test Wells: Bolted connectors.

D. Conductor Support:
 1. Secure grounding and bonding conductors at intervals of not less than 36 inches.

E. Grounding and Bonding Conductors:
 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
 2. Install without splices.
 3. Support at not more than 36-inch intervals.
 4. Install grounding and bonding conductors in 2-inch PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.

 a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 26.05.33 "Raceways and Boxes for Electrical Systems," and bond both ends of the conduit to a TMGB.

3.4 GROUNDING ELECTRODE SYSTEM

A. The TBC between the TMGB and the ac service equipment ground shall not be smaller than No. 4/0 AWG.

3.5 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches minimum from wall, 12 inches above finished floor unless otherwise indicated.
B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of
doorway, and down; connect to horizontal bus.

3.6 CONNECTIONS

A. Bond metallic equipment, conduit, cable tray, ladder rack, structural steel, entrance conduits,
cable shields, primary and secondary surge protectors in a telecommunications equipment room
to the grounding busbar in that room, using equipment grounding conductors not smaller than
No. 6 AWG.

B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.

C. Assemble the wire connector to the conductor, complying with manufacturer's written
instructions and as follows:

1. Use crimping tool and the die specific to the connector.
2. Pretwist the conductor.
3. Apply an antioxidant compound to all bolted and compression connections.

D. Primary Protector: Bond to the TMGB with insulated bonding conductor.

E. Telecommunications Enclosures and Equipment Racks: Individually bond metallic components
of enclosures to the telecommunications bonding and grounding system using conductor size
based on TIA 607-C. Install top-mounted rack grounding busbar unless the enclosure and rack
are manufactured with the busbar. Bond the equipment grounding busbar to the TMGB with a
minimum No. 2 AWG bonding conductors.

F. Structural Steel: Where the structural steel of a steel frame building is readily accessible within
the room or space, bond the TMGB to the vertical steel of the building frame.

G. Electrical Power Panelboards: Where an electrical panelboard for telecommunications
equipment is located in the same room or space, bond the TMGB to the ground bar of the
panelboard.

H. Shielded Cable: Bond the shield of shielded cable to the TMGB in communications rooms and
spaces. Comply with TIA/EIA-568-C.1 and TIA/EIA-568-C.2 when grounding screened,
balanced, twisted-pair cables.

I. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or
rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding
conductor in the power cord of cord- and plug-connected equipment shall be considered as a
supplement to bonding requirements in this Section.

J. Access Floors: Bond all metal parts of access floors to the TGB.

K. Towers and Antennas:

1. Special Requirements for Roof-Mounted Towers:
Roof Ring: Meet requirements for the ground ring except the conductors shall comply with requirements in Section 264113 "Lightning Protection for Structures."

b. Bond tower base footings steel, the TGB in the equipment room, and antenna support guys to the roof ring.

c. Connect roof ring to the perimeter conductors of the lightning protection system.

2. Waveguides and Coaxial Cable:

a. Bond cable shields at the point of entry into the building to the TGB and to the cable entrance plate, using No. 2 AWG bonding conductors.

b. Bond coaxial cable surge arrester to the ground or roof ring using bonding conductor size recommended by surge-arrester manufacturer.

3.7 IDENTIFICATION

A. Labels shall be preprinted or computer-printed type.

1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.

2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.

3. Label the TBC and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB or TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.

a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.
3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.

a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB. Maximum acceptable ac current level is 1 A.

D. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.

E. Grounding system will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 27 05 26
SECTION 27 05 36 - CABLE TRAYS FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Ladder cable trays.
 2. Wire-basket cable trays.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of cable tray.
 1. Include data indicating dimensions and finishes for each type of cable tray indicated.

B. Shop Drawings: For each type of cable tray.
 1. Show fabrication and installation details of cable trays, including plans, elevations, and sections of components and attachments to other construction elements. Designate components and accessories, including clamps, brackets, hanger rods, splice-plate connectors, expansion-joint assemblies, straight lengths, and fittings.

C. Delegated-Design Submittal: For seismic restraints.
 1. Seismic-Restraint Details: Signed and sealed by a qualified professional engineer, licensed in the state where Project is located, who is responsible for their preparation. Design Calculations: Calculate requirements for selecting seismic restraints.
 2. Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and sections, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Include scaled cable tray layout and relationships between components and adjacent structural, electrical, and mechanical elements.
 2. Vertical and horizontal offsets and transitions.
 3. Clearances for access above and to side of cable trays.
 4. Vertical elevation of cable trays above the floor or below bottom of ceiling structure.

B. Seismic Qualification Certificates: For cable trays, accessories, and components, from manufacturer.
1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Field quality-control reports.

D. All test results shall be a required submittal to the Government.

E. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 01 40 00 "Quality Requirements," to design cable tray supports and seismic bracing.

B. Seismic Performance: Cable trays and supports shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.

1. The term "withstand" means "the cable trays will remain in place without separation of any parts when subjected to the seismic forces specified."

C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes in cable tray installed outdoors.

1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.

1. Source Limitations: Obtain cable trays and components from single manufacturer.

B. Sizes and Configurations: See drawings for specific requirements for types, materials, sizes, and configurations.

C. Structural Performance: See articles for individual cable tray types for specific values for the following parameters:
1. Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE 1.

2. Concentrated Load: A load applied at midpoint of span and centerline of tray.

3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 LADDER CABLE TRAYS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Allied Tube & Conduit; a Tyco International Ltd. Co.
2. Hoffman
3. Ortronics
4. Chatsworth Products, Inc.
5. Cooper B-Line, Inc.

B. Description:

1. Configuration: Two I-beam side rails with transverse rungs welded to side rails.
2. Rung Spacing: 9 inches o.c.
3. Radius-Fitting Rung Spacing: 9 inches at center of tray's width.
5. No portion of the rungs shall protrude below the bottom plane of side rails.
6. Structural Performance of Each Rung: Capable of supporting a maximum cable load, with a safety factor of 1.5, plus a 200-lb concentrated load, when tested according to NEMA VE 1.
7. Minimum Usable Load Depth: 3 inches.
8. Straight Section Lengths: 10 feet except where shorter lengths are required to facilitate tray assembly.
9. Width: 18 inches unless otherwise indicated on Drawings.
10. Fitting Minimum Radius: 12 inches.
11. Class Designation: Comply with NEMA VE 1, Class 12B.
12. Splicing Assemblies: Bolted type using serrated flange locknuts.
13. Hardware and Fasteners: Steel, zinc plated according to ASTM B 633.
14. Splice Plate Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.

2.4 WIRE-BASKET CABLE TRAYS

A. Manufacturers: The following manufacturers may be used on this Project:

1. Cabolfil (Legrand)
2. Hoffman
3. Chatsworth Products, Inc.
4. Cooper B-Line Inc.
B. Description:

1. Configuration: Wires are formed into a standard 2-by-4-inch wire mesh pattern with intersecting wires welded together. Mesh sections must have at least one bottom longitudinal wire along entire length of section.
4. Sizes:
 a. Straight sections shall be furnished in standard 118-inch lengths.
 b. Wire-Basket Depth: as indicated on drawings.
5. Connector Assemblies: Bolt welded to plate shaped to fit around adjoining tray wires and mating plate. Mechanically joins adjacent tray wires to splice sections together or to create horizontal fittings.
6. Connector Assembly Capacity: Splices located within support span shall not diminish rated loading capacity of cable tray.
7. Hardware and Fasteners: Steel, zinc plated according to ASTM B 633.

2.5 MATERIALS AND FINISHES

A. Steel:

1. Straight Section and Fitting Side Rails and Rungs: Steel complies with the minimum mechanical properties of ASTM A 1008/A 1008M, Grade 33, Type 2.
2. Steel Tray Splice Plates: ASTM A 1011/A 1011M, HSLAS, Grade 50, Class 1.
3. Fasteners: Steel complies with the minimum mechanical properties of ASTM A 510/A 510M, Grade 1008.
 a. Powder-Coat Enamel: Cable tray manufacturer's recommended primer and corrosion-inhibiting treatment, with factory-applied powder-coat paint.
 b. Epoxy-Resin Prime Coat: Cold-curing epoxy primer, MPI# 101.
 c. Epoxy-Resin Topcoat: Epoxy, cold-cured, gloss, MPI# 77.
 d. Hardware: Chromium-zinc plated, ASTM F 1136.

2.6 CABLE TRAY ACCESSORIES

A. Fittings: Tees, crosses, risers, elbows, and other fittings as indicated, of same materials and finishes as cable tray.

B. Covers: Solid type made of same materials and with same finishes as cable tray.

C. Barrier Strips: Same materials and finishes as for cable tray.
D. Cable tray supports and connectors, including bonding jumpers, as recommended by cable tray manufacturer.

2.7 WARNING SIGNS
 A. Lettering: 1-1/2-inch-high, black letters on yellow background with legend "Warning! Not To Be Used as Walkway, Ladder, or Support for Ladders or Personnel."
 B. Comply with requirements for fasteners in Section 260553 "Identification for Electrical Systems."

2.8 SOURCE QUALITY CONTROL
 A. Testing: Test and inspect cable trays according to NEMA VE 1.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION
 A. Install cable trays according to NEMA VE 2.
 B. Install cable trays as a complete system, including fasteners, hold-down clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
 C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.
 D. Remove burrs and sharp edges from cable trays.
 E. Join aluminum cable tray with splice plates; use four square neck-carriage bolts and locknuts.
 F. Fasten cable tray supports to building structure and install seismic restraints.
 G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems." Comply with seismic-restraint details according to Section 26 05 48.16 "Seismic Controls for Electrical Systems."
 H. Place supports so that spans do not exceed maximum spans on schedules and provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-carrying capacity of the tray rungs.
 I. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
J. Support bus assembly to prevent twisting from eccentric loading.

K. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.

L. Make connections to equipment with flanged fittings fastened to cable trays and to equipment. Support cable trays independent of fittings. Do not carry weight of cable trays on equipment enclosure.

M. Make changes in direction and elevation using manufacturer's recommended fittings.

N. Make cable tray connections using manufacturer's recommended fittings.

O. Seal penetrations through fire and smoke barriers. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

P. Install capped metal sleeves for future cables through firestop-sealed cable tray penetrations of fire and smoke barriers.

Q. Install cable trays with enough workspace to permit access for installing cables.

R. Install barriers to separate cables of different systems, such as power, communications, and data processing; or of different insulation levels, such as 600, 5000, and 15000 V.

S. Install permanent covers, if used, after installing cable. Install cover clamps according to NEMA VE 2.

T. Clamp covers on cable trays installed outdoors with heavy-duty clamps.

U. Install warning signs in visible locations on or near cable trays after cable tray installation.

3.2 CABLE TRAY GROUNDING

A. Ground cable trays according to NFPA 70 unless additional grounding is specified. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems."

B. Cable trays with communications cable shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

C. Cable trays with control conductors shall be bonded together with splice plates listed for grounding purposes or with listed bonding jumpers.

D. When using epoxy- or powder-coat painted cable trays as a grounding conductor, completely remove coating at all splice contact points or ground connector attachment. After completing splice-to-grounding bolt attachment, repair the coated surfaces with coating materials recommended by cable tray manufacturer.

E. Bond cable trays to power source for cables contained within with bonding conductors sized according to NFPA 70, Article 250.122, "Size of Equipment Grounding Conductors."
3.3 CABLE INSTALLATION

A. Install cables only when each cable tray run has been completed and inspected.

B. Fasten cables on horizontal runs with cable clamps or cable ties according to NEMA VE 2. Tighten clamps only enough to secure the cable, without indenting the cable jacket. Install cable ties with a tool that includes an automatic pressure-limiting device.

C. Fasten cables on vertical runs to cable trays every 18 inches.

D. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.

3.4 CONNECTIONS

A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.

B. Connect pathways to cable trays according to requirements in NEMA VE 2 and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing cable trays and after electrical circuitry has been energized, survey for compliance with requirements.

2. Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable trays, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.

3. Verify that the number, size, and voltage of cables in cable trays do not exceed that permitted by NFPA 70. Verify that communications or data-processing circuits are separated from power circuits by barriers or are installed in separate cable trays.

4. Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.

5. Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.

6. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and retorque in suspect areas.

7. Check for improperly sized or installed bonding jumpers.

8. Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.

9. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable trays. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.
B. Prepare test and inspection reports.

3.6 Protection

A. Protect installed cable trays and cables.

1. Install temporary protection for cables in open trays to safeguard exposed cables against falling objects or debris during construction. Temporary protection for cables and cable tray can be constructed of wood or metal materials and shall remain in place until the risk of damage is over.

2. Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.

3. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 27 05 36
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves for pathway and cable penetration of non-fire-rated construction walls and floors.
 2. Sleeve-seal systems.
 5. Silicone sealants.

B. Related Requirements:
 1. Section 07 84 13 "Penetration Firestopping" for penetration firestopping installed in fire-resistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.2 SUBMITTALS

A. Product Data: For each type of product.

B. LEED Submittals:
 1. Product Data for Credit EQ 4.1: For sealants, documentation including printed statement of VOC content.
 2. Laboratory Test Reports for Credit EQ 4: For sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. All test results shall be a required submittal to the Government.

D. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:
2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

C. PVC-Pipe Sleeves: ASTM D 1785, Schedule 40.

D. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

E. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

F. Sleeves for Rectangular Openings:
 2. Minimum Metal Thickness:
 a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVES SEAL SYSTEMS

A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and pathway or cable.

 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Advance Products & Systems, Inc.
 b. CALPICO, Inc.
 c. Metraflex Company (The).
 d. Pipeline Seal and Insulator, Inc.
 e. Proco Products, Inc.

 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 3. Pressure Plates: Carbon steel.
 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 GROUT

A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.

C. Design Mix: 5000-psi, 28-day compressive strength.

D. Packaging: Premixed and factory packaged.

2.4 SILICONE SEALANTS

A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.

1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
2. Sealant shall have VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Sealant shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

A. Comply with NECA 1.

B. Comply with NEMA VE 2 for cable tray and cable penetrations.

C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:

1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 a. Seal annular space between sleeve and pathway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 92 00 "Joint Sealants."
 b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.

2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.

3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and pathway or cable unless sleeve seal is to be installed or unless seismic criteria require different clearance.
4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.

5. Install sleeves for floor penetrations. Extend sleeves installed in floors 4 inches above finished floor level. Install sleeves during erection of floors.

D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.

E. Roof-Penetration Sleeves: Seal penetration of individual pathways and cables with flexible boot-type flashing units applied in coordination with roofing work.

F. Aboveground, Exterior-Wall Penetrations: Seal penetrations using steel pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.

G. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between pathway or cable and sleeve for installing sleeve-seal system.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at pathway entries into building.

B. Install type and number of sealing elements recommended by manufacturer for pathway or cable material and size. Position pathway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pathway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

A. Install sleeve-seal fittings in new walls and slabs as they are constructed.

B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.

C. Secure nailing flanges to concrete forms.

D. Using grout, seal the space around outside of sleeve-seal fittings.
PART 1 - GENERAL

1.1 SUMMARY

 A. Section Includes:

 1. Telecommunications mounting elements.
 2. Backboards.
 3. Telecommunications equipment racks and cabinets.

1.2_DEFINITIONS

 B. LAN: Local area network.

 C. RCDD: Registered Communications Distribution Designer.

1.3 ACTION SUBMITTALS

 A. Product Data: For each type of product.

 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

 B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.

 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Seismic Qualification Certificates: For equipment frames from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings shall be under the direct supervision of RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 3. Field Inspector: Currently registered by BICSI as RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Seismic Performance: Equipment frames shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, AC Grade with the A side exposed to the interior of the TER or TR, Void Free, Size as indicated on Plans. Comply with requirements for plywood backing panels specified in Section 06 10 00 "Rough Carpentry." Paint backboards with fire retardant paint, but do not paint over label.
B. Backboards shall be painted on all 6-sides with 2 coats of UL 723 fire retardant paint. Label depicting fire rating shall not be painted over and shall be visible on each backboard.

2.3 EQUIPMENT FRAMES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Chatsworth (CPI)
2. Cooper B-Line.
3. Ortronics, Inc.
4. Panduit Corp.
5. Hoffman

B. Modular Freestanding Cabinets:

1. Removable and lockable side panels.
2. Hinged and lockable front and rear doors.
3. Adjustable feet for leveling.
4. Screened ventilation openings in the roof and rear door.
5. Cable access provisions in the roof and base.
7. Cabinet-mounted, 550-cfm fan with filter.
10. All cabinets keyed alike.

C. 4-Post Equipment Support Frame (Rack):

1. Floor mounted modular type, 16 gauge steel or 11 gauge aluminum construction, minimum, treated to resist corrosion. Rack shall be compatible with 19 inch panel mounting.

D. Cable Management for Equipment Frame (Rack):

1. Metal, with integral wire retaining fingers.
2. Baked-polyester powder coat finish.
3. Vertical cable management panels shall have front channels, with covers.
4. Provide horizontal crossover cable manager at the top of each rack, with a minimum height of two rack units each.

2.4 POWER STRIPS

A. Power Strips: Comply with UL 1363.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Rack mounting.
4. LED indicator lights for power and protection status.
5. LED indicator lights for reverse polarity and open outlet ground.
6. Circuit Breaker and Thermal Fusing: When protection is lost, circuit opens and cannot be reset.
7. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
9. Rocker-type on-off switch, illuminated when in on position.
11. Protection modes shall be line to neutral, line to ground, and neutral to ground. UL 1449 clamping voltage for all three modes shall be not more than 330 V.
12. Quantity per Cabinet: 1 ea.

2.5 GROUNDING

A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

2.6 LABELING

A. Comply with TIA/EIA-606-C and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.

B. Install underground pathways complying with recommendation in TIA/EIA-569-D, “Entrance Facilities” Article.

C. Install underground entrance pathway complying with Section 26 05 33 “Raceways and Boxes for Electrical Systems.”

3.2 INSTALLATION

A. Comply with NECA 1.

B. Comply with BICSI TDMM for layout and installation of communications equipment rooms.

C. Furnish and install specified equipment cabinets and vertical cable managers as shown. Securely mount equipment cabinets to floor as required.
D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

E. Coordinate layout and installation of communications equipment with Owner's telecommunications and LAN equipment and service suppliers. Coordinate service entrance arrangement with local exchange carrier.

 1. Meet jointly with telecommunications and LAN equipment suppliers, local exchange carrier representatives, and Owner to exchange information and agree on details of equipment arrangements and installation interfaces.
 2. Record agreements reached in meetings and distribute them to other participants.
 3. Adjust arrangements and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize arrangement and space requirements of telephone switch and LAN equipment.
 4. Adjust arrangements and locations of equipment with distribution frames, cross-connects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in the equipment room.

F. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 27 05 44 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.4 FIRESTOPPING

A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with TIA-607-C.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-C. Comply with requirements in Section 260553 "Identification for Electrical Systems."
B. Comply with requirements in Section 09 91 23 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

C. Paint and label colors for equipment identification shall comply with TIA/EIA-606-C for Class 3 level of administration including optional identification requirements of this standard.

D. Labels shall be preprinted or computer-printed type.

END OF SECTION 27 11 00
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pathways.
 2. UTP cable.
 3. Outside Plant Campus Cable
 5. Multi-mode laser optimized 50/125-micrometer, optical fiber cabling.
 6. Cable connecting hardware, protection blocks, patch panels, and cross-connects.
 7. Cabling identification products.

1.2 PERFORMANCE REQUIREMENTS

B. Quality Standards:
 1. For Telecommunications Pathways and Spaces: TIA-569-D.
 2. Grounding: TIA-607-C.

1.3 DEFINITIONS

C. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

D. EMI: Electromagnetic interference.

E. IDC: Insulation displacement connector.

F. LAN: Local area network.

H. OSP: Outside Plant

I. RCDD: Registered Communications Distribution Designer.
1.4 BACKBONE CABLING DESCRIPTION

A. Backbone cabling system shall provide interconnections between telecommunications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.

B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.5 PERFORMANCE REQUIREMENTS

A. General Performance: Backbone cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1. For coaxial cable, include the following installation data for each type used:

 a. Nominal OD.
 b. Minimum bending radius.
 c. Maximum pulling tension.

B. Shop Drawings:

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by the Government.
2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
3. Cabling administration drawings and printouts.
4. Wiring diagrams to show typical wiring schematics including the following:

 b. Patch panels.
 c. Patch cords.

5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.
6. Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
a. Vertical and horizontal offsets and transitions.
b. Clearances for access above and to side of cable trays.
c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.

1.7 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Source quality-control reports.

C. Field quality-control reports.

D. Maintenance Data: For splices and connectors to include in maintenance manuals.

E. All test results shall be a required submittal to the Government.

F. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

1.8 CLOSEOUT SUBMITTALS

A. Software and Firmware Operational Documentation:

 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.9 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Patch-Panel Units: One of each type.
 2. Connecting Blocks: One of each type.

1.10 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.

 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings, and field testing program development by an RCDD.
2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.

3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: An NRTL.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

C. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 450 or less.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Telecommunications Pathways and Spaces: Comply with TIA-569-D.

F. Grounding: Comply with TIA-607-C.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.
3. Test each pair of UTP cable for open and short circuits.

1.12 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.13 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with the Government’s telecommunications and LAN equipment and service suppliers.
PART 2 - PRODUCTS

2.1 PATHWAYS

A. General Requirements: Comply with TIA-569-D.

B. Cable Support: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 2. Lacing bars, spools, J-hooks, and D-rings.
 3. Straps and other devices.

C. Cable Trays: Comply with requirements in Section 27 05 36 “Cable Trays for Communications Systems.”

D. Conduit and Boxes: Comply with requirements in Section 26 05 33 “Raceway and Boxes for Electrical Systems.” Flexible metal conduit shall not be used.

2.2 BACKBONE CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. General Cable Technologies Corporation.
 2. CommScope, Inc.
 3. Mohawk; a division of Belden CDT.
 4. Superior Essex Inc.

B. Description: (Indoor) 100-ohm, multi-pair Category 5e UTP, formed into 25-pair binder groups covered with a gray thermoplastic jacket and overall metallic shield.
 1. Comply with ICEA S-90-661 for mechanical properties.
 2. Comply with TIA-568-C.1 for performance specifications.
 3. Comply with TIA-568-C.2, Category 5e.
 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, General Purpose: Type CM or CMG; or MPP, CMP, MPR.
 b. Communications, Plenum Rated: Type CMP or MPP, complying with NFPA 262.
 c. Communications, Riser Rated: Type CMR; or MPP, CMP, or MPR, complying with UL 1666.
 d. Communications, Limited Purpose: Type CMX; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG.
 e. Multipurpose: Type MP or MPG; or MPP or MPR.
 f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 g. Multipurpose, Riser Rated: Type MPR or MPP, complying with UL 1666.
C. Description: (Outside Plant Cable): Multi-pair shielded, 24 AWG, RUS/REA PE-89 type cable with 25-pair binder groups, 100-ohm, UTP, as indicated on drawings. Solid annealed bare copper conductors with foamed polyolefin insulation. Cable core filled with dry block cable waterproofing compound. Flooding compound applied over the core and to all surfaces of the shield/armor. Black polyethylene jacket imprinted with footage marker at regular intervals.

1. Comply with ICEA 7CFR 390 for mechanical properties.

2.3 UTP BACKBONE CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

2. Emerson Network Power.
3. Hubbell Premise Wiring.
4. Leviton Voice & Data Division.
5. Panduit Corp.
7. Tyco Electronics/AMP Netconnect; Tyco International Ltd.

B. General Requirements for Cable Connecting Hardware: Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.

C. Building Entrance Protection Blocks (BEPB): RUS approved, UL497 listed with 110- style IDC output connectors. Provide blocks for the number of cables terminated on the block, as indicated on drawings. Provide integral with connector bodies, including plugs and jacks where indicated.

D. Protection Modules: Gas tube 380 V DC, 5-pin protector modules with heat coils.

E. Connecting Blocks: 110-style IDC for Category 5e. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

F. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.

1. Number of Terminals per Field: One for each conductor in assigned cables.

G. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.

1. Number of Jacks per Field: One for each four-pair conductor group of indicated cables, plus spares and blank positions adequate to suit specified expansion criteria.

H. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.
I. Patch Cords: Factory-made, 4-pair cables in 48-inch lengths; terminated with 8-position modular plug at each end.

1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure Category 6 performance. Patch cords shall have latch guards to protect against snagging.
2. Patch cords shall have color-coded boots for circuit identification.

2.4 OPTICAL FIBER CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Berk-Tek; a Nexans company.
2. CommScope, Inc.
3. Corning Cable Systems.
4. General Cable Technologies Corporation.
5. Mohawk; a division of Belden CDT.
6. Superior Essex Inc.

B. Description: (Indoor) Single-mode, 8.3-micrometer, nonconductive, tight buffer, optical fiber cable.

1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA-568-C.3 for performance specifications.
3. Comply with TIA-492CAAA for detailed specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 a. General Purpose, Nonconductive: Type OFN or OFNG.
 b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 d. General Purpose, Conductive: Type OFC or OFCG.
 e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.

5. Conductive cable shall be steel armored type.
6. Maximum Attenuation: 0.4 dB/km at 1310 nm; .3 dB/km at 1550 nm.

C. Jacket:

1. Jacket Color: Yellow for 8.3 micron single mode cable.
2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

D. Description: (Indoor) Multimode, 50/125-micrometer, nonconductive, tight buffer, optical fiber cable.

1. Comply with ICEA S-83-596 for mechanical properties.
2. Comply with TIA-568-C.3 for performance specifications.
3. Comply with TIA-492AAAA-B for detailed specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 a. General Purpose, Nonconductive: Type OFN or OFNG.
 b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 c. Riser Rated, Nonconductive: Type OFNR, complying with UL 1666.
 d. General Purpose, Conductive: Type OFC or OFCG.
 e. Plenum Rated, Conductive: Type OFCP, complying with NFPA 262.
 f. Riser Rated, Conductive: Type OFCR, complying with UL 1666.
5. Conductive cable shall be steel armored type.
6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.
7. Minimum Modal Bandwidth: 1500 MHz-km at 850 nm; 500 MHz-km at 1300 nm.

E. Jacket:
 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-C.
 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

F. Description: (Outside plant campus cable): Single-mode, 8.3-micron, loose tube, optical fiber cable.
 1. Comply with ICEA S-87-640 Fiber Optic Outside Plant Communications Cable.
 2. Comply with TIA-568-C.3 for performance specifications.
 4. Jelly filled core.
 6. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-B.
 7. Maximum Attenuation: .4dB/km at 1310 nm; .3 dB/km at 1550 nm.
 8. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches.

2.5 OPTICAL FIBER CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Ortronics
 2. Berk-Tek; a Nexans company.
 3. Corning Cable Systems.
 4. Hubbell Premise Wiring.
 5. Nordex/CDT; a subsidiary of Belden.
 6. Panduit
B. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.

 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.

C. Cable Connecting Hardware:

 1. Multimode cable terminations shall be Ultra Physical Contact (UPC) connectors and Singlemode cable terminations shall be Angled Physical Contact (APC) connectors.
 3. Fusion splice cables with factory polished duplex, Type SC connectors. Insertion loss not more than 0.3 dB.
 4. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.6 GROUNDING

A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Comply with TIA-607-C.

2.7 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-C and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.8 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test cables on reels according to TIA/EIA-568-C.1.

C. Factory test UTP cables according to TIA/EIA-568-C.2.

D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-C.3.

E. Cable will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.
PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.

 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceway and Boxes for Electrical Systems."

B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF PATHWAYS

A. Cable Trays: Comply with NEMA VE 2 and TIA-569-D.

B. Comply with requirements for demarcation point, pathways, cabinets, and racks specified in Section 27 11 00 "Communications Equipment Room Fittings." Drawings indicate general arrangement of pathways and fittings.

C. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.

D. Comply with requirements in Section 26 05 33 "Raceway and Boxes for Electrical Systems" for installation of conduits and wireways.

E. Install manufactured conduit sweeps and long-radius elbows whenever possible.

F. Pathway Installation in Communications Equipment Rooms:

 1. Position conduit ends adjacent to a corner on backboard where a single piece of plywood is installed, or in the corner of room where multiple sheets of plywood are installed around perimeter walls of room.
 2. Install cable trays to route cables if conduits cannot be located in these positions.
 3. Secure conduits to backboard when entering room from overhead.
 4. Extend conduits 4 inches above finished floor.
5. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.4 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:

1. Comply with TIA-568-C.1 and TIA-568-C.3.
2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
3. Install 110-style IDC termination hardware unless otherwise indicated.
4. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
6. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
8. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
10. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
11. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:

2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Optical Fiber Cable Installation:

2. Cable may be terminated on connecting hardware that is rack or cabinet mounted.

E. Group connecting hardware for cables into separate logical fields.

F. Separation from EMI Sources:
1. Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.5 FIRESTOPPING

A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter and Section 27 05 26 “Grounding and Bonding for Communications Systems.

B. Comply with TIA-607-C.

C. Bond metallic equipment, conduit, cable tray, ladder rack, structural steel, entrance conduits, cable shields, primary and secondary surge protectors to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.
3.7 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA-606-C. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

1. Administration Class: 2.
2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

B. Paint and label colors for equipment identification shall comply with TIA-606-C for Class 2 level of administration including optional identification requirements of this standard.

C. Comply with requirements in Section 27 15 00 "Communications Horizontal Cabling" for cable and asset management software.

D. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

E. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, and entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.

F. Cable and Wire Identification:

1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA 606-C, for the following:

1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.8 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Perform tests and inspections.

C. Tests and Inspections:

1. Visually inspect UTP and optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.

2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

3. Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.

 a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

4. Optical Fiber Cable Tests:

 a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.

 b. Tests for Single Mode Cabling:

 1) OTDR Test: The OTDR test shall be used to determine the adequacy of the cable installations by showing any irregularities, such as discontinuities, micro-bendings or improper splices for the cable span under test. Hard copy fiber signature records shall be obtained from the OTDR for each fiber in each span and shall be included in the test results. The OTDR test shall be measured in both directions. A reference length of fiber, 66 feet minimum, used as the delay line shall be placed before the new end connector and after the far end patch panel connectors for inspection of connector signature. Conduct OTDR test and provide calculation or interpretation of results in...
accordance with TIA-526-7 for single-mode fiber. Splice losses shall not exceed 0.3 db.

2) Attenuation Test: End-to-end attenuation measurements shall be made on all fibers, in both directions, using 1310 and 1550 nanometer light source at one end and the optical power meter on the other end to verify that the cable system attenuation requirements are met in accordance with TIA-526-7 for single-mode fiber optic cables. The measurement method shall be in accordance with TIA-455-78-B. Attenuation losses shall not exceed 0.5 db/km at 1310 nm and 1550 nm for single-mode fiber.

D. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

E. Remove and replace cabling where test results indicate that they do not comply with specified requirements.

F. End-to-end cabling will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

END OF SECTION 27 13 00
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. UTP cabling.
2. Cable connecting hardware, patch panels, and cross-connects.
3. Telecommunications outlet/connectors.
4. Cabling system identification products.
5. Cable management system.

B. Related Requirements:

1. Section 27 13 00 "Communications Backbone Cabling" for voice and data cabling associated with system panels and devices.

1.2 DEFINITIONS

B. Consolidation Point: A location for interconnection between horizontal cables extending from building pathways and horizontal cables extending into furniture pathways.

C. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.

D. EMI: Electromagnetic interference.

E. IDC: Insulation displacement connector.

F. LAN: Local area network.

G. Outlet/Connectors: A connecting device in the work area on which horizontal cable or outlet cable terminates.

H. RCDD: Registered Communications Distribution Designer.

I. UTP: Unshielded twisted pair.

1.3 PERFORMANCE REQUIREMENTS

A. Transmission Standards: TIA-568-C.
B. Products: NRTL listed and labeled.

C. Quality Standards:

1. Telecommunications Pathways and Spaces: TIA-569-D.
2. Grounding: TIA-607-C.

1.4 ADMINISTRATIVE REQUIREMENTS

A. Coordinate layout and installation of telecommunications cabling with Owner's telecommunications and LAN equipment and service suppliers.

B. Coordinate telecommunications outlet/connector locations with location of power receptacles at each work area.

1.5 ACTION SUBMITTALS

A. Shop Drawings:

1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
3. Cabling administration drawings and printouts.
4. Wiring diagrams to show typical wiring schematics, including the following:
 b. Patch panels.
 c. Patch cords.
5. Cross-connects and patch panels. Detail mounting assemblies, and show elevations and physical relationship between the installed components.

B. Samples: For workstation outlets, jacks, jack assemblies, in specified finish, one for each size and outlet configuration.

1.6 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.

B. Source quality-control reports.

C. Field quality-control reports.

D. All test results shall be a required submittal to the Government.
E. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For splices and connectors to include in maintenance manuals.

B. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Patch-Panel Units: One of each type.
 2. Connecting Blocks: One of each type.
 3. Device Plates: One of each type.

1.9 QUALITY ASSURANCE

A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings by an RCDD.
 2. Installation Supervision: Installation shall be under the direct supervision of Registered Technician, who shall be present at all times when Work of this Section is performed at Project site.
 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

B. Testing Agency Qualifications: An NRTL.
 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

1.10 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.
 1. Test each pair of UTP cable for open and short circuits.
PART 2 - PRODUCTS

2.1 HORIZONTAL CABLEING DESCRIPTION

A. Horizontal cable and its connecting hardware provide the means of transporting signals between the telecommunications outlet/connector and the horizontal cross-connect located in the communications equipment room. This cabling and its connecting hardware are called a "permanent link," a term that is used in the testing protocols.

1. TIA-/568-C.1 requires that a minimum of two telecommunications outlet/connectors be installed for each work area.
2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications outlet/connector.
3. Bridged taps and splices shall not be installed in the horizontal cabling.

B. A work area is approximately 100 sq. ft., and includes the components that extend from the telecommunications outlet/connectors to the station equipment.

C. The maximum allowable horizontal cable length is 295 feet. This maximum allowable length does not include an allowance for the length of 16 feet to the workstation equipment or in the horizontal cross-connect.

2.2 PERFORMANCE REQUIREMENTS

A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-/568-C.1 when tested according to test procedures of this standard.

B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 450 or less.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Grounding: Comply with TIA-607-C.

2.3 UTP CABLE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden Inc.
2. Berk-Tek; a Nexans company.
3. CommScope, Inc.
4. Mohawk; a division of Belden Networking, Inc.
5. Superior Essex Inc.
6. SYSTIMAX Solutions; a CommScope, Inc. brand.
7. Panduit
8. General

B. Description: 100-ohm, four-pair UTP, 23 AWG solid bare annealed copper, with a cross-web separator, covered with a blue or white thermoplastic jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA/EIA-568-C.1 for performance specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 a. Communications, General Purpose: Type CM or CMG.
 b. Communications, Plenum Rated: Type CMP or MPP, complying with NFPA 262.
 c. Communications, Riser Rated: Type CMR; or MPP, CMP, or MPR, complying with UL 1666.
 d. Communications, Limited Purpose: Type CMX.
 e. Multipurpose: Type MP or MPG; or MPP or MPR.
 f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
 g. Multipurpose, Riser Rated: Type MPR or MPP, complying with UL 1666.

C. Description: 100-ohm, four-pair indoor/outdoor UTP, covered with a thermoplastic jacket.

1. Comply with ICEA S-90-661 for mechanical properties.
2. Comply with TIA-568-C.1 for performance specifications.
4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70.

2.4 UTP CABLE HARDWARE

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Belden Inc.
2. Hubbell Premise Wiring.
3. Leviton Commercial Networks Division.
4. Ortronics
5. Panduit Corp.
7. Systimax

B. General Requirements for Cable Connecting Hardware: Comply with TIA/EIA-568-C.2, IDC type, with modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of same category or higher.
C. Connecting Blocks: 110-style IDC for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

D. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 1. Number of Terminals per Field: One for each conductor in assigned cables.

E. Patch Panel: Modular panels housing multiple-numbered jack units with IDC-type connectors at each jack for permanent termination of pair groups of installed cables.
 1. Number of Jacks per Field: One for each four-pair UTP cable indicated, plus spares and blank positions adequate to suit specified expansion criteria.

F. Jacks and Jack Assemblies: Modular, color-coded, eight-position modular receptacle units with integral IDC-type terminals.

2.5 TELECOMMUNICATIONS OUTLET/CONNECTORS

A. Jacks: Category 6, 100-ohm, balanced, twisted-pair connector; four-pair, eight-position modular. Comply with TIA-568-C.1.

B. Workstation Outlets: Two or Four-port-connector assemblies mounted in single or multi-gang faceplate.
 1. Plastic Faceplate: High-impact plastic. Coordinate color with Section 262726 "Wiring Devices."
 2. Metal Faceplate: Stainless steel, complying with requirements in Section 262726 "Wiring Devices."
 3. For use with snap-in jacks accommodating any combination of UTP, optical fiber, and coaxial work area cords.
 a. Flush mounting jacks, positioning the cord at a 45-degree angle.
 4. Legend: Factory labeled by silk-screening or engraving.
 5. Legend: Machine printed, in the field, using adhesive-tape label.

2.6 GROUNDING

A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.

B. Comply with TIA-607-C.
2.7 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-C and UL 969 for labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.8 SOURCE QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to evaluate cables.

B. Factory test UTP and optical fiber cables on reels according to TIA-568-C.1.

C. Factory test UTP cables according to TIA-568-C.2.

D. Cable will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

A. Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters. Conceal pathways and cables except in unfinished spaces.

 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
 3. Comply with requirements in Section 27 05 36 "Cable Trays for Communications Systems."

B. Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

C. Wiring within Enclosures:

 1. Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
 2. Install lacing bars and distribution spools.
 3. Install conductors parallel with or at right angles to sides and back of enclosure.
3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:

2. Comply with BICSI ITSIM, Ch. 5, "Cable Termination Practices."
3. Install 110-style IDC termination hardware unless otherwise indicated.
4. Consolidation points shall not be used as a cross-connect point.
5. Consolidation points may be used only for making a direct connection to telecommunications outlet/connectors:
 a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 b. Locate consolidation points for UTP at least 49 feet from communications equipment room.
6. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
7. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
8. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
9. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
10. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
12. In the communications equipment room, install a 10-foot-long service loop on each end of cable.
13. Pulling Cable: Comply with BICSI ITSIM, Ch. 5, "Pulling Cable." Monitor cable pull tensions.

C. UTP Cable Installation:

2. Do not untwist UTP cables more than 1/2 inch from the point of termination to maintain cable geometry.

D. Group connecting hardware for cables into separate logical fields.

E. Separation from EMI Sources:
1. Comply with BICSI TDMM and TIA-569-D for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.

2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.

3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.

4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.

5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches.

6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.4 FIRESTOPPING

A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."

B. Comply with TIA-569-D, Annex A, "Firestopping."

C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.5 GROUNDING

A. Install grounding according to BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. Comply with TIA-607-C.

C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch clearance behind the grounding bus bar. Connect grounding bus bar
with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.

D. Bond metallic equipment, conduits, cable tray, ladder rack, structural steel, entrance conduits, cable shields, primary and secondary surge protectors to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

A. Identify system components, wiring, and cabling complying with TIA/EIA-606-C. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

1. Administration Class: 2.
2. Color-code cross-connect fields. Apply colors to voice and data service backboards, connections, covers, and labels.

B. Using cable management system software specified in Part 2, develop Cabling Administration Drawings for system identification, testing, and management. Use unique, alphanumeric designation for each cable and label cable, jacks, connectors, and terminals to which it connects with same designation. At completion, cable and asset management software shall reflect as-built conditions.

C. Comply with requirements in Section 09 91 23 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.

D. Paint and label colors for equipment identification shall comply with TIA-606-C for Class 2 level of administration, including optional identification requirements of this standard.

E. Cable Schedule: Post in prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

F. Cabling Administration Drawings: Show building floor plans with cabling administration-point labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, entrance pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors. Follow convention of TIA-606-B. Furnish electronic record of all drawings, in software and format selected by the Government.

G. Cable and Wire Identification:

1. Label each cable within 4 inches of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet.
4. Label each terminal strip and screw terminal in each cabinet, rack, or panel.
 a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group being extended from a panel or cabinet to a building-mounted device shall be identified with name and number of particular device as shown.
 b. Label each unit and field within distribution racks and frames.
5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
6. Uniquely identify and label work area cables extending from the consolidation point to the work area. These cables may not exceed the length stated on the consolidation point label.

H. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA/EIA-606-B.
 1. Cables use flexible vinyl or polyester that flex as cables are bent.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

C. Perform the following tests and inspections:
 2. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.
 3. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 4. Test UTP backbone copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 a. Test instruments shall meet or exceed applicable requirements in TIA-568- C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters.
that are qualified by test equipment manufacturer for channel or link test configuration.

5. UTP Performance Tests:
 a. Test for each outlet. Perform the following tests according to TIA-568-C.1 and TIA-568-C.2:
 1) Wire map.
 2) Length (physical vs. electrical, and length requirements).
 3) Insertion loss.
 4) Near-end crosstalk (NEXT) loss.
 5) Power sum near-end crosstalk (PSNEXT) loss.
 6) Equal-level far-end crosstalk (ELFEXT).
 7) Power sum equal-level far-end crosstalk (PSELFEXT).
 8) Return loss.
 9) Propagation delay.
 10) Delay skew.

6. Final Verification Tests: Perform verification tests for UTP and optical fiber systems after the complete communications cabling and workstation outlet/connectors are installed.
 a. Voice Tests: These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test number is available, make and receive a local, long distance, and digital subscription line telephone call.
 b. Data Tests: These tests assume the Information Technology Staff has a network installed and is available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

D. Document data for each measurement. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.

E. End-to-end cabling will be considered defective if it does not pass tests and inspections.

F. Prepare test and inspection reports.

END OF SECTION 27 15 00
SECTION 27 51 16 - PUBLIC ADDRESS SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. VoIP public address gateway unit.
 2. Power amplifiers.
 3. Equipment cabinet.
 4. Telephone paging adapters.
 5. Loudspeakers.
 6. Outlets
 7. Conductors and cables.
 8. Raceways.

1.2 DEFINITIONS

A. Channels: Separate parallel signal paths, from sources to loudspeakers or loudspeaker zones, with separate amplification and switching that permit selection between paths for speaker alternative program signals.

B. VU: Volume unit.

C. Zone: Separate group of loudspeakers and associated supply wiring that may be arranged for selective switching between different channels.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design supports and seismic restraints for control consoles, equipment cabinets and racks, and components, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Seismic Performance: Supports and seismic restraints for control consoles, equipment cabinets and racks, and components shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.

 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."
1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For supports and seismic restraints for control consoles, equipment cabinets and racks, and components. Include plans, elevations, sections, details, and attachments to other work.

1. Include details of equipment assemblies. Indicate dimensions, weights, required clearances, method of field assembly, components, and location and size of each field connection.
2. Console layouts.
3. Control panels.
4. Rack arrangements.
5. Calculations: For sizing backup battery.
6. Wiring Diagrams: For power, signal, and control wiring.
 a. Identify terminals to facilitate installation, operation, and maintenance.
 b. Single-line diagram showing interconnection of components.
 c. Cabling diagram showing cable routing.

C. Delegated-Design Submittal: For supports and seismic restraints for control consoles, equipment cabinets and racks, and components indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Detail fabrication and assembly of supports and seismic restraints for control consoles, equipment cabinets and racks, and components.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings are shown and coordinated with each other, using input from installers of the items involved.

B. Qualification Data: For Installer and testing agency.

C. Seismic Qualification Certificates: For control consoles, equipment cabinets and racks, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. Include qualification data for testing agency.
2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
D. Field quality-control reports.

E. All test results shall be a required submittal to the Government.

F. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For public address systems to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.8 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

B. Testing Agency Qualifications: Qualified agency, with the experience and capability to conduct testing indicated.

C. Source Limitations: Obtain public address systems from single source from single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

E. Comply with NFPA 70.

1.9 COORDINATION

A. Coordinate layout and installation of system components and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.
PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Atlas Sound LP.
2. Bogen Communications, Inc.
4. Rauland-Borg Corporation.

2.2 FUNCTIONAL DESCRIPTION OF SYSTEM

A. System Functions:

1. Selectively connect any zone to any available signal channel.
2. Selectively control sound from microphone outlets and other inputs.
3. "All-call" feature shall connect the all-call sound signal simultaneously to all zones regardless of zone or channel switch settings.
4. Telephone paging adapter shall allow paging by dialing an extension from any local telephone instrument and speaking into the telephone.
5. Produce a program-signal tone that is amplified and sounded over all speakers, overriding signals currently being distributed.
6. Reproduce high-quality sound that is free of noise and distortion at all loudspeakers at all times during equipment operation including standby mode with inputs off; output free of nonuniform coverage of amplified sound.

2.3 GENERAL EQUIPMENT AND MATERIAL REQUIREMENTS

A. Compatibility of Components: Coordinate component features to form an integrated system. Match components and interconnections for optimum performance of specified functions.

B. Equipment: Comply with UL 813. Equipment shall be modular, using solid-state components, and fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied at 110 to 130 V, 60 Hz.

C. Equipment Mounting: Where rack, cabinet, or console mounting is indicated, equipment shall be designed to mount in a 19-inch housing complying with TIA/EIA-310-D.

D. Weather-Resistant Equipment: Listed and labeled by a qualified testing agency for duty outdoors or in damp locations.

2.4 POWER AMPLIFIERS

A. Mounting: Floor mounted rack.
B. Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus allowance for future stations.

C. Total Harmonic Distortion: Less than 3 percent at rated power output from 50 to 12,000 Hz.

E. Frequency Response: Within plus or minus 2 dB from 20 to 12,000 Hz.

F. Output Regulation: Less than 2 dB from full to no load.

G. Controls: On-off, input levels, and low-cut filter.

H. Input Sensitivity: Matched to preamplifier and to provide full-rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on speaker microphone or handset transmitter.

2.5 VOIP PUBLIC ADDRESS GATEWAY

A. Connectivity: Ethernet connectivity and full IP compatibility with routers and WAN infrastructure.

B. Analog Ports: 1 port unit.

C. FXS/FXO Port Connections: Connectors on each port for direct connection to telephone paging interface unit.

D. Configuration Programming Setup: Web browser setup.

F. Voice Compression: 5.3 Kbs per call with support for multiple algorithms, including ITU G723 and G.729.

2.6 TELEPHONE ZONE SELECT PAGING ADAPTER

A. Adapters shall accept voice signals from VoIP public address gateway interface to provide public address paging functions including single zone paging, all-page, and emergency override of general paging by Public Address and Fire Alarm Systems.

1. Telephone Interface: Loop start and ground start trunks.
2. Registration: Registered under Part 68 of FCC Rules.
3. Ringer Equivalence: 1.0B.
5. Programming: Programmable via DTMF tones and DIP switches.
7. Operating Temperature: 25 degrees F to 100 degrees F.
8. Operating Humidity: 0 to 90% non-condensing humidity.
9. Mounting: Unit shall be rack mounted in standard 19-inch equipment rack.

2.7 TELEPHONE PAGING ADAPTER

A. Adapters shall accept voice signals from telephone extension dialing access and automatically provide amplifier input and program override for preselected zones.

1. Minimum Frequency Response: Flat, 200 to 2500 Hz.
2. Impedance Matching: Adapter matches telephone line to public address equipment input.

2.8 LOUDSPEAKERS

A. Cone-Type Loudspeakers:

1. Minimum Axial Sensitivity: 91 dB at 1 m, with 1-W input.
2. Frequency Response: Within plus or minus 3 dB from 50 to 15,000 Hz.
3. Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
4. Rated Output Level: 10 W.
5. Minimum Dispersion Angle: 100 degrees.
6. Matching Transformer: Full-power rated with four taps. Maximum insertion loss of 0.5 dB.
7. Surface-Mounted Units: Ceiling, wall, or pendant mounted, as indicated, in steel back boxes, acoustically dampened. Front face of at least 0.0478-inch steel and whole assembly rust proofed and shop primed for field painting.

B. Horn-Type Loudspeakers:

1. Type: Single-horn units, double-reentrant design, with minimum full-range power rating of 15 W.
2. Matching Transformer: Full-power rated with four standard taps. Maximum insertion loss of 0.5 dB.
3. Frequency Response: Within plus or minus 3 dB from 250 to 12,000 Hz.
4. Dispersion Angle: 130 by 110 degrees.

2.9 OUTLETS

A. Volume Attenuator Station: Wall-plate-mounted autotransformer type with paging priority feature.

1. Wattage Rating: 10 W unless otherwise indicated.
2. Attenuation per Step: 3 dB, with positive off position.
3. Insertion Loss: 0.4 dB maximum.
4. Attenuation Bypass Relay: SPDT. Connected to operate and bypass attenuation when all-call, paging, program signal, or prerecorded message features are used. Relay returns to normal position at end of priority transmission.
5. Label: "PA Volume."

2.10 CONDUCTORS AND CABLES
A. Jacketed, twisted pair and twisted multipair, untinned solid copper.
 1. Insulation for Wire in Conduit: Thermoplastic, not less than $\frac{1}{32}$ inch thick.
 2. Plenum Cable: Listed and labeled for plenum installation.

2.11 RACEWAYS
A. Conduit and Boxes: Comply with Section 27 05 28 "Pathways for Communications Systems." Flexible metal conduit shall not be used.
 1. Outlet boxes shall be not less than 2 inches wide, 3 inches high, and 2-1/2 inches deep.

PART 3 - EXECUTION

3.1 WIRING METHODS
A. Wiring Method: Install cables in pathways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 2. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
C. Wiring within Enclosures: Bundle, lace, and train cables to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.2 INSTALLATION OF RACEWAYS
A. Comply with requirements in Section 26 05 33 "Raceways and Boxes for Electrical Systems" for installation of conduits and wireways.
B. Install manufactured conduit sweeps and long-radius elbows whenever possible.
3.3 INSTALLATION OF CABLES

A. Comply with NECA 1.

B. General Cable Installation Requirements:

1. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
2. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
3. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
5. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
6. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.

C. Open-Cable Installation:

1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
2. Suspend speaker cable not in a wireway or pathway a minimum of 8 inches above ceiling by cable supports not more than 60 inches apart.
3. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.

D. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate pathways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other communication equipment conductors as recommended by equipment manufacturer.

3.4 INSTALLATION

A. Match input and output impedances and signal levels at signal interfaces. Provide matching networks where required.

B. Identification of Conductors and Cables: Color-code conductors and apply wire and cable marking tape to designate wires and cables so they identify media in coordination with system wiring diagrams.

C. Equipment Cabinets:

1. Group items of same function together, either vertically or side by side, and arrange controls symmetrically. Mount monitor panel above the amplifiers.
2. Arrange all inputs, outputs, interconnections, and test points so they are accessible at rear of rack for maintenance and testing, with each item removable from rack without disturbing other items or connections.

3. Blank Panels: Cover empty space in equipment racks so entire front of rack is occupied by panels.

D. Conductor Sizing: Unless otherwise indicated, size speaker circuit conductors from racks to loudspeaker outlets not smaller than No. 18 AWG and conductors from microphone receptacles to amplifiers not smaller than No. 22 AWG.

E. Weatherproof Equipment: For units that are mounted outdoors, in damp locations, or where exposed to weather, install consistent with requirements of weatherproof rating.

F. Speaker-Line Matching Transformer Connections: Make initial connections using tap settings indicated on Drawings.

G. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.5 GROUNDING

A. Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

B. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.

C. Install grounding electrodes as specified in Section 27 05 26 "Grounding and Bonding for Communications Systems."

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

 1. Schedule tests with at least seven days advance notice of test performance.

 2. After installing public address system and after electrical circuitry has been energized, test for compliance with requirements.
3. Operational Test: Perform tests that include originating program and page messages at microphone outlets, preamplifier program inputs, and other inputs. Verify proper routing and volume levels and that system is free of noise and distortion.

4. Signal-to-Noise Ratio Test: Measure signal-to-noise ratio of complete system at normal gain settings as follows:
 a. Disconnect microphone at connector or jack closest to it and replace it in the circuit with a signal generator using a 1000-Hz signal. Replace all other microphones at corresponding connectors with dummy loads, each equal in impedance to microphone it replaces. Measure signal-to-noise ratio.
 b. Repeat test for each separately controlled zone of loudspeakers.
 c. Minimum acceptance ratio is 50 dB.

5. Distortion Test: Measure distortion at normal gain settings and rated power. Feed signals at frequencies of 50, 200, 400, 1000, 3000, 8000, and 12,000 Hz into each preamplifier channel. For each frequency, measure distortion in the paging and all-call amplifier outputs. Maximum acceptable distortion at any frequency is 3 percent total harmonics.

6. Acoustic Coverage Test: Feed pink noise into system using octaves centered at 500 and 4000 Hz. Use sound-level meter with octave-band filters to measure level at five locations in each zone. For spaces with seated audiences, maximum permissible variation in level is plus or minus 2 dB. In addition, the levels between locations in same zone and between locations in adjacent zones must not vary more than plus or minus 3 dB.

7. Power Output Test: Measure electrical power output of each power amplifier at normal gain settings of 50, 1000, and 12,000 Hz. Maximum variation in power output at these frequencies must not exceed plus or minus 1 dB.

8. Signal Ground Test: Measure and report ground resistance at public address equipment signal ground. Comply with testing requirements specified in Section 27 05 26 "Grounding and Bonding for Communications Systems."

E. Inspection: Verify that units and controls are properly labeled and interconnecting wires and terminals are identified. Prepare a list of final tap settings of paging speaker-line matching transformers.

F. Public address system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.
 1. Include a record of final speaker-line matching transformer-tap settings and signal ground-resistance measurement certified by Installer.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
 1. Verify that electrical wiring installation complies with manufacturer's submittal and installation requirements.
 2. Complete installation and startup checks according to manufacturer's written instructions.
3.8 ADJUSTING

A. On-Site Assistance: Engage a factory-authorized service representative to provide on-site assistance in adjusting sound levels, resetting transformer taps, and adjusting controls to meet occupancy conditions.

B. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government maintenance personnel to adjust, operate, and maintain the public address system and equipment.

B. Provide two (2) hours per session, of on-site training for Operations and Maintenance Personnel. The session outline shall cover the following items:

2. Review of As-built Drawings.
3. Overview of system components.
4. System operation under normal conditions.
5. System operation under abnormal conditions.
7. Troubleshooting procedures.
8. Maintenance and Repair procedures.

C. Provide one (1) indicated training session as outlined above.

D. Provide handouts in bound format and in sufficient quantity to provide each attendee with a copy.

END OF SECTION 27 51 16
SECTION 28 31 11 – DIGITAL, ADDRESSABLE FIRE-ALARM & MASS NOTIFICATION SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes a combined Fire Alarm and Mass Notification system.

B. Related Sections include the following.
 1. Section 07 84 13 “Penetration Firestopping.”
 2. Section 21 13 13 "Wet-Pipe Sprinkler Systems" for automatic sprinkler system devices that interface with the Fire Alarm system.
 3. Section 211316 “Pre-Actions Sprinkler System.”
 5. Section 213113 “Electric-Drive, Centrifugal Fire Pump.”
 6. Division 26 "Electrical" for electrical coordination and installation requirements.

1.2 DEFINITIONS

A. ACU: Autonomous Control Unit, integrated with addressable fire alarm control panel. Personnel at the ACU can initiate delivery of pre-recorded voice messages, provide live voice messages and instructions and initiate MNS visual strobes. Actions taken at the ACU take precedence over actions taken at any other location.

B. ANN: Annunciator.

C. FAMNCU: Fire Alarm and Mass Notification Control Unit. Addressable microprocessor based controls with automatic sensitivity control of certain smoke detectors and multiplexed signal transmission, dedicated to fire-alarm service only. Unit is combined with the ACU for complete functioning system.

D. LED: Light-Emitting Diode.

E. LOC: Local Operating Console. A unit designed to allow emergency response forces and building occupants to operate the MNS, including initiating delivery of pre-recorded voice messages, providing live voice messages and instructions and initiate MNS visual strobes.

F. MNS: Mass Notification System. A system designed to allow broadcasting of emergency response actions.

I. RAT: Radio Alarm Transmitter Communicator.

J. Definitions in NFPA 72 apply to Fire Alarm terms used in this Section.

K. Definitions in Unified Facilities Criteria (UFC) 4-021-01 apply to Mass Notification terms used in this Section.

1.3 REFERENCED STANDARDS

A. The referenced editions or the latest edition effective on the date for invitation to bid (for those items without a referenced edition) form a part of this specification and are applicable to the extent specified herein. NFPA Appendices shall be considered mandatory for the purposes of this specification. In referenced NFPA publications, the advisory provisions shall be mandatory, as though the word “shall” had been substituted for “should” wherever it appears.

C. Americans with Disabilities Act (ADA):

D. Factory Mutual (FM):
 1. Factory Mutual Approval Guide.

E. National Fire Protection Association (NFPA):

F. Underwriters Laboratories (UL):
 5. 864: Standard for Control Units for Fire-Protective Signaling Systems.
1.4 SYSTEM DESCRIPTION

A. Combined Fire Alarm and Mass Notification System: The systems described in this section are intended to satisfy the applicable provisions of NFPA 72, UFC 3-600-01 and UFC 4-021-01. The Mass Notification and Fire Alarm functions are combined into one system. The Mass Notification functions will temporarily disable the Fire Alarm notification appliance circuits to allow intelligible Mass Notification System voice announcements and Mass Notification System visual alerting when needed in the case of simultaneous fire and non-fire emergency events. In addition, the Mass Notification System will temporarily disable the Public Address system when needed.

B. Fire Alarm System: Noncoded, analog/addressable system; multiplexed signal transmission dedicated to Fire Alarm service, with Class B supervision. The Fire Alarm system includes smoke detectors in selected areas, duct-type smoke detectors in selected air-handling systems, manual fire alarm stations at all designated exits, and audible and visual notification appliances in accordance with applicable codes and standards. The Fire Alarm system shall also monitor the fire suppression systems in the facility. A digital alarm communicator transmitter shall transmit alarm, supervisory and trouble signals to a Central Station receiving station. A separate, distinct, alarm signal shall be transmitted which differentiates the building of the alarm condition.

C. Mass Notification System: Individual Building mass notification systems (MNS) provide real-time information to all building occupants and to personnel in the immediate vicinity (outside) of a building, including principal exterior egress and gathering areas. The system is designed to operate from one or more locations in the building.

An Individual Building MNS includes an autonomous control unit (ACU) and a notification device network. System design and wiring is designed to meet NFPA 72 requirements for MNS and fire alarm systems.

1.5 PERFORMANCE REQUIREMENTS

A. Comply with NFPA 72.

B. Comply with Unified Facilities Criteria (UFC) 3-600-01 and 4-021-01.

C. Seismic Performance: Fire-alarm circuits and devices shall withstand the effects of earthquake motions determined according to ASCE 7.

1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified".

D. Fire alarm signal initiation shall be by one or more of the following devices:

2. Verified automatic alarm operation of smoke detectors, including duct smoke detectors.
3. Automatic sprinkler system water flow.
4. Operation of the High Expansion Foam system (optical flame detectors)
E. Fire alarm signal shall initiate the following actions:

1. Identify alarm at the FAMNCU and remote annunciator.
2. Sounding of the local alarm sounding device in the FAMNCU and all remote annunciators.
3. Activate visual fire alarm notification appliances (strobes).
4. Activate audible fire alarm signal.
5. Transmit an alarm signal to the remote alarm receiving station (RAT).
6. Record events in the system memory.
7. Initiate elevator recall if the associated elevator machine room, elevator shaft, or one or more elevator landing detectors detects a fire condition; and
8. Initiate elevator power shunt trip upon activation of a top of shaft or elevator machine room water flow switch.
9. Shut down associated air handling unit on duct-type smoke detector operation.

F. Mass Notification function initiation shall be by one or more of the following actions:

1. Keying of a microphone at the FAMNCU/ACU or LOC.
2. Activation of a recorded message by manual operation at the FAMNCU/ACU or LOC.
3. Signaling from ATI base-wide mass notification system.

G. Actuation of the Mass Notification function shall initiate the following actions:

1. Activate visual Mass Notification appliances (strobes). Amber strobes activated in conjunction with the delivery of a live voice message shall operate during the period of message delivery and for a subsequent time period of not less than 15 seconds after message termination. Amber strobes activated in conjunction with the delivery of a prerecorded voice message shall operate continuously until message termination.
2. White/clear strobes activated by the fire alarm system shall not operate during those periods when the amber strobes are in operation, but otherwise shall operate continuously until the fire alarm system is reset.
3. Audible Fire Alarm notification signal, if operating, shall be deactivated until the Mass Notification system is deactivated.
4. The selected audible Mass Notification message shall be transmitted to the speakers. Message shall be repeated for 10 minutes or until manually stopped. If a Mass Notification microphone is activated, it shall take precedence over a recorded message.
5. Operation of the MNS system shall cause the facility’s public address system to stop broadcasting.
6. Send supervisory signal to the fire alarm system.
7. Upon receipt of ATI base-wide mass notification, deliver pre-recorded messages.

H. System Supervisory Signal initiation shall be by one or more of the following devices or actions:

1. Operation of a fire-protection system valve tamper switch.
2. MNS override of fire alarm audible signals during simultaneous fire and non-fire emergency events.
3. Disabling of MNS functions during simultaneous fire and non-fire emergency events.
4. Activation of duct smoke detectors.
5. Activation of mass notification system.
6. HEF system in trouble or supervisory condition.
7. Pre-action sprinkler system control panel in trouble or supervisory condition.

I. System Trouble Signal initiation shall be by one or more of the following devices or actions:

1. Open circuits, shorts and grounds of wiring for initiating device, signaling line, and notification-appliance circuits.
2. Opening, tampering, or removal of alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at the FAMNCU/ACU or LOC.
4. Ground or a single break in the internal circuits of the FAMNCU/ACU or LOC.
5. Abnormal AC voltage at the FAMNCU/ACU or LOC.
6. A break in standby battery circuitry.
7. Failure of battery charging.
8. Abnormal position of any switch at the FAMNCU/ACU, LOC, or annunciator.
9. Any failure in RAT communication.

J. System Trouble and Supervisory Signal Actions:

1. Sound audible device and annunciate at the FAMNCU and remote annunciator.
2. Transmit signal to remote alarm receiving station (RAT).
3. Record events in system memory.
4. The supervisory signal initiated by MNS override of Fire Alarm audible signals shall be annunciated at the FAMNCU and at the fire alarm annunciator, and be transmitted to the central station. The visual annunciation of this supervisory signal shall be distinctly labeled or otherwise clearly identified. This supervisory signal shall be separate from other fire alarm system supervisory signals.
5. The supervisory signal initiated by disabling of MNS functions shall be annunciated at the FAMNCU and at the fire alarm annunciator, and shall be transmitted to the fire department. The visual annunciation of the separate supervisory signal shall be distinctly labeled or otherwise clearly identified.

K. Priority of Signals: The following is the priority for system operation.

2. Mass Notification System pre-recorded voice message.
3. Fire Alarm, alarm condition.
5. System, trouble condition.

L. Notification-Appliance Circuit: Fire Alarm operation shall sound in a temporal pattern, complying with ANSI S3.41.

M. Operation on Standby Power:

1. When operating on standby power, mass notification strobes and prerecorded messages shall automatically turn off after 10 minutes of operation, but may be manually reinitiated for subsequent periods of 10 minutes each.
1.6 SUBMITTALS

A. General Submittal Requirements:

1. Technical Submittals shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.
 b. NICET-certified fire-alarm technician, Level IV or Professional Engineer registered in the State of North Carolina.

B. Product Data: For each type of product indicated. When multiple items appear on a data sheet, indicate the selected item clearly by reproducible annotation.

1. Fire Alarm and Mass Notification System Control Unit;
2. Interface Boards;
3. Smoke detectors;
4. Duct smoke detectors;
5. Manual pull stations;
6. Addressable interface devices;
7. Addressable control devices;
8. Fire Alarm audible and visual alarm notification appliances;
9. Mass Notification visual alarm notification appliances;
10. System components to be placed within the FAMNCU;
11. Voice amplifiers;
12. Tone generators;
13. Automatic fire transmitter.
15. Conduit, wire and cable;
16. Signs and labels;
17. ATI mass notification system receiver;
18. All other necessary equipment.

C. Shop Drawings: For fire-alarm and mass notification system. Include plans, elevations, sections, details, and attachments to other work.

2. Include voltage drop calculations for notification appliance circuits.
3. Include battery-size calculations.

 a. To confirm that the batteries have sufficient capacity to operate the Fire Alarm system under quiescent load (operating system in a non-alarm condition) for a minimum of 48 hours and, at the end of that period, shall be capable of operating all alarm notification appliances used for evacuation or to direct aid to the location of an emergency for 60 minutes as required by UFC 3-600-01.

 b. To confirm that the batteries have sufficient capacity to operate the Mass Notification system under quiescent load (operating system in a non-alarm condition) for a minimum of 48 hours and, at the end of that period, shall be capable of operating all Mass Notification alarm appliances used for evacuation or
to direct aid to the location of an emergency for 60 minutes as required by UFC 4-021-01.

c. To confirm that immediately upon loss of normal AC power, the standby source of power can provide a minimum of 60 minutes of Mass Notification at the maximum connected load as required by UFC 4-021-01.

4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.

5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.

6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.

7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and actual route of cable and conduits.

8. System riser diagram with device addresses, conduit sizes, and cable and wire types and sizes.

9. Conduit cables fill calculations.

10. Sequence of operations in matrix format.

D. Qualification Data:

1. For qualified Installer.

2. For qualified designer/engineer

E. Seismic Qualification Certificates: For fire-alarm control unit, accessories, and components, from manufacturer.

1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.

2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.

3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

F. Field quality-control reports.

G. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.

2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.

3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.

5. Manufacturer’s required maintenance related to system warranty requirements.

6. Abbreviated operating instructions for mounting at fire-alarm control unit.

H. Software and Firmware Operational Documentation:
 1. Software operating and upgrade manuals.
 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
 3. Device address list.
 4. Printout of software application and graphic screens.

I. All test results shall be a required submittal to the Government.

J. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

1.7 QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.

B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.8 PROJECT CONDITIONS

A. Verify site conditions prior to commencing work. Notify the Contracting Officer of discrepancies between field conditions and the construction documents. Proceed with installation as directed by the Contracting Officer.

1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
1. Strobe Units: Quantity equal to 10 percent of each type installed, but no fewer than 1 unit.
2. Smoke Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
3. Carbon Monoxide Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
4. Duct Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
5. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
6. Manual pull stations: 2 percent of amount of each type installed, but no fewer than 1 unit of each type;
7. Interface devices, control devices: 2 percent of each type installed, but no fewer than 1 unit of each type;
8. Keys and Tools: One extra set for access to locked and tamper proofed components.
9. Speakers: Quantity equal to 10 percent of amount installed in the project, but not less than 1 unit of each type.
10. Fuses: Two of each type installed in the system.

PART 2 - PRODUCTS

2.1 FIRE-ALARM AND MASS NOTIFICATION CONTROL UNIT (FAMNCU)

A. General Description:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.
 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.
 b. Include a real-time clock for time annotation of events on the event recorder.
 c. Panel shall be field expandable. Panels may be field programmable provide that this can be accomplished at the unit (panel) level, without the use of proprietary software, keys, the changing of electronic hardware, or use of any proprietary device. Any software, device, password, or other element used to program any component of the system shall become property of the government, along with the installed program.

2. Addressable initiation devices that communicate device identity and status.
 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.
 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.

3. Addressable control circuits for operation of mechanical equipment.
4. Able to switch between MNS and fire alarm notification functions without generation of trouble alarms in either system.

5. Capacity for at least eight prerecorded digital messages. Prerecorded messages shall be passed in the English language. Coordinate with the Contracting Officer, and do not record any messages until approved by the Contracting Officer. Messages should address at least the following:

 a. Bomb threat or actual bomb within/around the building
 b. Intruder/hostile person sighted within/around the building
 c. Occupants directed to take cover within the building
 d. Evacuation of the building using exits other than the normal main entrance/exit (since the front entrance/exit is often a location targeted by terrorists)
 e. Emergency weather conditions appropriate for the local area
 f. “All Clear” message
 g. A test message intended for verifying functionality of the system.

6. Able to activate strobes.

 a. Energize one set of white/clear strobe lights marked “FIRE” for a fire event and a separate set of amber strobe lights marked “ALERT” for a non-fire emergency event as appropriate for the situation.

7. Ability to automatically repeat prerecorded messages until terminated.

8. Microphone for delivering live voice messages.

9. Uses only commercial off the shelf (COTS) components.

10. Allows the MNS to temporarily override fire alarm audible messages and provide intelligible voice commands during simultaneous fire and non-fire emergency events. All other features of the fire alarm system, including the transmission of signals to the fire department, shall function properly.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.

2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

3. Provide a single switch or operating mechanism capable of temporarily disabling MNS functions during simultaneous fire and non-fire emergency events. Amber strobes shall be de-energized and white/clear strobes energized. The system shall automatically return to normal priority after completion of the fire event.

4. Provides a single switch or operating mechanism capable of shutdown all heating, ventilating, air conditioning (HVAC) equipment in the facility in accordance with requirements of UFC 4-010-01.

C. Circuits:
1. Signaling Line Circuits: NFPA 72, Class B.
2. Notification-Appliance Circuits: NFPA 72, Class B.
3. Actuation of Fire Alarm notification appliances and annunciation shall occur within 10 seconds after the activation of an initiating device.
4. Electrical monitoring for the integrity of wiring external to the FAMNCU for mechanical equipment shutdown is not required, provided a break in the circuit will cause mechanical equipment to shut down.

D. Elevator Control:

1. Smoke detectors at the following locations shall initiate automatic elevator recall to the primary level.
 a. Elevator lobby detectors except the lobby detector on the primary recall floor.
 b. Smoke detector in elevator machine room.

2. Elevator lobby detectors located on the primary recall floor shall be programmed to move the cars to the alternate recall floor.
3. Water flow alarm in the elevator machine room shall shunt power to the associated elevators.

E. Remote Smoke-Detector Sensitivity Adjustment: Controls shall select specific addressable smoke detectors for adjustment, display their current status and sensitivity settings, and change those settings.

F. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

G. Alarm Silencing, Trouble, and Supervisory Alarm Reset: Manual reset at the FAMNCU and remote annunciators, after Fire Alarm initiating devices are restored to normal.

1. Silencing-switch operation halts alarm operation of audible notification appliances and activates an "alarm silence" light.
2. Subsequent alarm signals from other devices reactivate audible notification appliances until silencing switch is operated again, except that silencing of audible devices by mass notification system shall not permit reactivation of audible notification appliances.
3. When alarm-initiating devices return to normal, and system reset switch is operated, notification appliances operate again until alarm silence switch is reset.
4. Operation of the mass notification system shall cause the fire alarm audible and visible devices to stop, until the mass notification event is terminated.

H. Voice/Alarm Signaling Service: Central emergency communication system with redundant microphones, preamplifiers, amplifiers, and tone generators.

1. Single alarm channel for automatic, transmission of emergency announcements or for manual transmission of announcements by use of the central-control microphone. Amplifiers shall comply with UL 1711 and be listed by an NRTL.
 a. Programmable tone and message sequence selection.
b. Generate tones to be sequenced with audio messages of type recommended by NFPA 72 and that are compatible with tone patterns of notification appliance circuits of fire-alarm control unit.

2. Preamplifiers, amplifiers, and tone generators shall automatically transfer to backup units, on primary equipment failure.

I. Service Modem: Ports shall be RS-232 for system printer and for connection to a dial-in terminal unit.

1. The dial-in port shall allow remote access to the FAMNCU for programming changes and system diagnostic routines. Access by a remote terminal shall be by encrypted password algorithm.

J. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm and mass notification system shall not exceed 80 percent of the power-supply module rating.
2. Power supply shall have a dedicated fused safety switch for this connection at the service entrance equipment. Paint the switch box red and identify it with "FIRE ALARM AND MASS NOTIFICATION SYSTEM POWER."

K. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2. Battery and Charger Capacity: Comply with NFPA 72.

L. Surge Protection:

1. Install surge protection on normal AC power for the FAMNCU and its accessories. Comply with Section 264313 "Surge Protection for Low-Voltage Electrical Power Circuits" for auxiliary panel suppressors.
3. Install surge protectors as recommended by FAMNCU manufacturer.

M. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

N. Fire Alarm Walk Test: A test mode to allow one person to test alarm and supervisory features of initiating devices. Enabling of this mode shall require the entry of a password. The FAMNCU and annunciators shall display a test indication while the test is underway. If testing ceases while in walk-test mode, after a preset delay, the system shall automatically return to normal.
2.2 MANUAL FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Double-action, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
2. Station Reset: Key- or wrench-operated switch.
3. Break-glass and break-rod type manual fire alarm boxes are not permitted.

2.3 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. UL 268 listed, operating at 24-V DC, nominal.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to the FAMNCU.
3. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. Provide terminals in the fixed base for connection of building wiring.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type. Indicating detector has operated and power-on status. Provide a remote status an alarm indicator where indicated.

B. Photoelectric Smoke Detectors:

1. Sensor: LED or infrared light source with matching silicon-cell receiver.
2. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268.

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Photoelectric Smoke Detectors:

 a. Sensor: LED or infrared light source with matching silicon-cell receiver.
 b. Detector Sensitivity: Between 2.5 and 3.5 percent/foot smoke obscuration when tested according to UL 268A.

2. Plug-in Arrangement: Detector and associated electronic components shall be mounted in a plug-in module that connects to a fixed base. The fixed base shall be designed for mounting directly to the air duct.
3. Integral Visual-Indicating Light: LED type. Provide remote status and alarm indicator and test station where indicated.
4. Sampling Tubes: Design and dimensions as recommended by manufacturer for the specific duct size, air velocity, and installation conditions where applied.
5. Relay Fan Shutdown: Rated to interrupt fan motor-control circuit.
2.4 NOTIFICATION APPLIANCES

A. Description: Equipped for mounting as indicated and with screw terminals for system connections.

B. Voice/Tone Speakers:

1. UL 1480 listed.
2. Provide appliances capable of satisfying all Uniform Federal Accessibility Standards (UFAS) and Americans with Disabilities Act Accessibility Guidelines (ADAAG).
3. Design to meet intelligibility requirements in accordance with NFPA 72.
4. High-Range Units: Rated 8 to 10 W.
5. Low-Range Units: Rated 1 to 2 W (for most occupied areas).
6. Field-adjustable tap settings to allow adjustment after installation to meet intelligibility requirements.
7. Capable of frequency response over the range at least 50 Hz to 10,000 Hz.
8. Speakers shall be provided with screw terminals for notification appliance circuits.
9. Speakers located on the exterior of the building shall be weatherproof.

C. Fire Alarm Visible Alarm Devices: Xenon strobe lights listed under UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch-high letters on the lens.

1. Rated Light Output: As indicated on drawings.
2. Strobe Leads: Factory connected to screw terminals.

D. Mass Notification Visible Alarm Devices:

1. Rated Light Output: As indicated on drawings.
2. Ratings shall be based on the UL 1971 values. This includes a derating for the amber color strobe.
4. Provide visual appliances capable of satisfying all Uniform Federal Accessibility Standards (UFAS) and Americans with Disabilities Act Accessibility Guidelines (ADAAG).
5. Amber-colored strobes marked with the word “ALERT” to alert the hearing-impaired.

2.5 ADDRESSABLE INTERFACE DEVICE

A. Addressable interface device: To monitor and supervise a device, and provide an input signal with a unique address to the FAMNCU identifying the status of the device. Distinguish the following input signal conditions: normal (open contact), short circuit (closed contact), and open circuit (field wire break). Provide one addressable interface device for each device to be monitored. Each monitored device shall have a unique address in the FAMNCU software.
2.6 ADDRESSABLE CONTROL DEVICE

A. Addressable Control Device: Respond to unique addressed command from FAMNCU and operate SPDT output contacts. Contacts rating: 2 A at 28 VDC, 300 mA at 120 VAC. Integral red LED to indicate normal operation and contact activation.

2.7 AUTOMATIC FIRE TRANSMITTER

A. Radio antenna transmitter shall be compatible with proprietary supervising station receiving equipment (Monaco D-21). Each radio alarm transmitter shall be the manufacturer's recognized commercial product, completely assembled, wired, factory tested, and delivered ready for installation and operation. Equipment shall be listed by a nationally recognized testing laboratory, and be able to transmit all appropriate signals to the responding fire department. Transmitters shall be provided in accordance with applicable portions of NFPA 72, Federal Communications Commission (FCC) 47 CFR 90 and Federal Communications Commission (FCC) 47 CFR 15. Transmitter electronics module shall be contained within the physical housing as an integral, removable assembly. The transmitter shall be Narrowband radio, with FCC certification for narrowband operation and meets the requirements of the NTIA (National Telecommunications and Information Administration) Manual of Regulations and Procedures for Federal Frequency Management. Adjustments to the transmitter that may affect the base-wide fire reporting system shall only be modified by a qualified technician.

B. Operation: Operate each transmitter from 120-volt ac power. In the event of 120-volt ac power loss, the transmitter shall automatically switch to battery operation. Switchover shall be accomplished with no interruption of protective service, and shall automatically transmit a trouble message. Upon restoration of ac power, transfer back to normal ac power supply shall also be automatic.

C. Battery Power: Transmitter standby battery capacity shall provide sufficient power to operate the transmitter in a normal standby status for a minimum of 48 hours and be capable of transmitting alarms during that period. Alarm period is for a minimum of 60 minutes.

D. Supervisory/Trouble Silencing Switch: Provide supervisory and trouble silencing switch that shall silence the audible trouble and supervisory signal at the panel, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent alarm, supervision, or trouble condition. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated. Supervisory and trouble signals shall not activate building notification appliances.

E. Transmitter Housing: Use NEMA Type 1 for housing. The housing shall contain a lock that is keyed identical to radio alarm transmitter housings on the base. Radio alarm transmitter housing shall be factory painted with a suitable priming coat and not less than two coats of a hard, durable weatherproof enamel.

F. Antenna: Antenna shall be omnidirectional, coaxial, halfwave dipole antennas for radio alarm transmitters with a driving point impedance to match transmitter output. The antenna and antenna mounts shall be corrosion resistant and designed to withstand wind velocities of 161
km/hour. Do not mount antennas to any portion of the building roofing system. Protect the antenna from physical damage.

2.8 EMERGENCY RESPONSE SYSTEM

A. Provide system in accordance with the International Fire Code Section 510.

B. System shall enhance radio transmission of emergency responders from within the building and receive signals from outside the building. Minimum inbound and outbound signal strengths required shall be -95 dBm. The system shall be capable of retransmitting all relevant public-safety frequencies, and these frequencies are to be provided by the AHJ.

C. System components: Provide a system that consists of, but not limited to: signal boosters, including bidirectional amplifier, shall have FCC type acceptance and must be operated in accordance with commission rules (i.e., refer to CFR Title 47, Part 90.219, Use of Signal Boosters). Also, provide manual activation switch at the panel.

D. Battery Power: System shall be provided with adequate standby battery capacity of 48 hours (standby) and 60 minutes (alarm).

E. Provide means to monitor manual activation of system and automatic activation of system by the fire alarm/mass notification system.

2.9 WIRE AND CABLE

A. Wire and cable for Fire Alarm systems shall be UL listed and labeled as complying with NFPA 70, Article 760. All wire shall be red FPL type unless otherwise required by NEC.

B. Signaling Line Circuits: Twisted, unshielded pair; size as recommended by system manufacturer.

C. Audible Notification Appliance Circuits: Twisted, shielded pair; size as recommended by system manufacturer.

D. Visible Notification Appliance Circuits: Twisted, unshielded pair; size as recommended by system manufacturer.

1. Low-Voltage Circuits: No. 16 AWG, minimum.
2. Line-Voltage Circuits: No. 12 AWG, minimum.

2.10 CONDUIT

A. All fire alarm and mass notification conductors shall be run in a minimum 3/4-inch electrical metallic tubing (EMT) conduit. Use of flexible metal conduit (FMC) or liquid-tite conduit is not
permitted, except in areas subject to extreme vibration, and where used, shall be limited to 6 feet lengths.

2.11 ANNUNCIATOR

A. Alphanumeric Display and System Controls: Display alarm, supervisory, and component status messages and the programming and control menu.

1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
2. Provides controls functions that duplicate the fire alarm control panel.

2.12 GRAPHIC ANNUNCIATOR

A. Annunciator Panel: Provide new graphic annunciator that indicates the building floor plan, including the locations of stairs and elevators. Alarm circuit boundaries shall be clearly marked on the floor plan. Annunciator shall include a north arrow, location of the fire alarm control panel, and a "you are here" indicator.

B. Indicating Lights: Provide the graphic annunciator with individual light emitting diode (LED) indicating lights for each type of alarm and supervisory device. Provide an amber LED for indicating a system trouble condition and a separate amber LED for indicating a supervisory condition. Provide a green LED to indicate presence of power and a red LED to indicate an alarm condition. The actuation of any alarm signal shall cause the illumination of a boundary LED, a floor LED, and a device LED. System supervisory or trouble shall cause the illumination of a trouble LED. In addition to all of these LED indicators, provide normal power and emergency power indicating LEDs. Provide a push button LED test switch. The test switch shall not require key operation. Annunciator LEDs shall only be extinguished by operation of the system reset switch on the FAMNCU.

C. Material: Construct the graphic annunciator face plate of smoked Plexiglas. The face plate shall be backlit with LEDs. Control equipment and wiring shall be housed in a back box. The exposed portions of the back box shall be chrome plated with knockouts.

D. Programming: Where programming for the operation of the proper LEDs is accomplished by a separate software program than the software for the FAMNCU, the software program shall not require reprogramming after loss of power. The software shall be reprogrammable in the field.

2.13 BASE WIDE MASS NOTIFICATION SYSTEM

A. Provide radio antenna system in order to communicate with the existing base wide mass notification system manufactured by Acoustic Technology, Inc (ATI) Systems.

B. Battery Power: Communicator standby battery capacity shall provide sufficient power to operate the transmitter in a normal standby status for a minimum of 48 hours and be capable of transmitting alarms during that period. Alarm period is for a minimum of 60 minutes.
2.14 AIR-SAMPLING SMOKE DETECTOR

A. General Description:

1. Air-sampling smoke detector shall be laser based using a piping system and a fan to transport the particles of combustion to the detector.
2. Provide two levels of alarm from each zone covered by the detector and two supervisory levels of alarm from each detector.
3. The air being sampled shall pass through filters to remove dust particulates greater than 20 microns before entering the detection chamber.
4. Detectors shall have the capability via RS 485 to connect up to 100 detectors in a network.
5. Detectors shall communicate with the fire-alarm control unit via addressable, monitored dry contact closures, RS 485, and interface modules. Provide a minimum of six relays, individually programmable remotely for any function.
6. Pipe airflow balancing calculations shall be performed using approved calculation software.

B. Detector:

1. Detector, Filter, Aspirator, and Relays: Housed in a mounting box and arranged in such a way that air is drawn from the detection area and a sample passed through the dual-stage filter and detector by the aspirator.
2. Obscuration Sensitivity Range: 0.005 - 6 percent obs/ft..
3. Four independent, field-programmable, smoke-alarm thresholds per sensor pipe and a programmable scan time delay. The threshold set points shall be programmable.
 a. The four alarm thresholds may be used as follows:
 1) Alarm Level 1 (Alert): Activate a visual and an audible supervisory alarm.
 2) Alarm Level 2 (Action): Activate a visual and an audible supervisory alarm.
 3) Alarm Level 3 (Fire 1): Activate building alarm systems and initiate call to fire response unit.
 4) Alarm Level 4 (Fire 2): Activate suppression system or other countermeasures.
 b. Final Detection System Settings: Approved by Owner.
 c. Initial Detection Alarm Settings:
 1) Alarm Level 1 (Alert): 0.08 percent obs/ft..
 2) Alarm Level 2 (Action): 1.0 percent obs/ft..
 3) Alarm Level 3 (Fire 1): 2.0 percent obs/ft..
 4) Alarm Level 4 (Fire 2): 4.0 percent obs/ft..

4. Power Supply:
 a. Regulated 24-V dc, monitored by the fire-alarm control unit, with battery backup.
 b. Battery backup shall provide 24 hours' standby, followed by 30 minutes at maximum connected load.
5. Detector shall also transmit the following faults:
 a. Detector.
 b. Airflow.
 c. Filter.
 d. System.
 e. Zone.
 f. Network.
 g. Power.

6. Provide four in-line sample pipe inlets that shall contain a flow sensor for each pipe inlet.
 The detector shall be capable of identifying the pipe from which smoke was detected.

7. Aspirator: Air pump capable of allowing for multiple sampling pipe runs up to 650 feet (200 m) in total, (four pipe runs per detector) with a transport time of less than 120 seconds from the farthest sample port.

9. Provide software-programmable relays rated at 2 A at 30-V dc for alarm and fault conditions.

10. Provide built-in event and smoke logging; store smoke levels, alarm conditions, operator actions, and faults with date and time of each event. Each detector (zone) shall be capable of storing up to 18,000 events.

11. Urgent and Minor Faults. Minor faults shall be designated as trouble alarms. Urgent faults, which indicate the unit may not be able to detect smoke, shall be designated as supervisory alarms.

C. Displays:

1. Include display module within each detector.
2. Each display shall provide the following features at a minimum:
 a. A bar-graph display.
 b. Four independent, high-intensity alarm indicators (Alert, Action, Fire 1, and Fire 2), corresponding to the four alarm thresholds of the indicated sector.
 d. LED indication that the first alarm sector is established.
 e. Detector fault and airflow fault indicators.
 f. LED indicators shall be provided for faults originating in the particular zone (Zone Fault), faults produced by the overall smoke-detection system, and faults resulting from network wiring errors (Network Fault).
 g. Minor and urgent LED fault indicators.

D. Sampling Tubes:

1. Smooth bore with a nominal 1-inch (25-mm) OD and a 7/8-inch (21-mm) ID. Sampling pipe with between 5/8- and 1-inch (15- and 25-mm) ID can be used in specifically approved locations when recommended by manufacturer.

3. Joints in the sampling pipe shall be airtight. Use solvent cement approved by the pipe manufacturer on all joints except at entry to the detector.
4. Identify piping with labels reading: "Aspirating Smoke Detector Pipe - Do Not Paint or Disturb" along its entire length at regular intervals according to NFPA 72.
5. Support pipes at not more than 60-inch (1520-mm) centers.
6. Fit end of each trunk or branch pipe with an end cap and drilled with a hole appropriately sized to achieve the performance as specified and as calculated by the system design.

E. Sampling Holes:
 1. Sampling holes of 5/64 inch (2 mm), or other sized holes per manufacturer's written instructions, shall be separated by not more than the maximum distance allowable for conventional smoke detectors. Intervals may vary according to calculations.
 2. Follow manufacturer's written recommendations to determine the number and spacing of sampling points and the distance from sampling points to ceiling or roof structure and to forced ventilation systems.
 3. Each sampling point shall be identified by an applied decal.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.

B. Smoke Detector Spacing:
 1. Smooth ceiling spacing shall not exceed 30 feet or the rating of the detector, whichever is less.

C. HVAC: Locate detectors not closer than 3 feet from air-supply diffuser or return-air opening.

D. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of the duct. At all locations where a duct detector is installed, provide a remote test switch (install at a maximum 7 feet above finish floor elevation) and a LED indicator for maintenance and alarm identification.

E. Remote Status and Alarm Indicators: Install near each smoke detector and each sprinkler water-flow switch and valve-tamper switch that is not readily visible from normal viewing position.

F. Audible Alarm-Indicating Devices: Install ceiling mounted, or 80 inches above finished floor, but not less than 6 inches below the ceiling.

G. Visible and Combination Audible/Visible Alarm-Indicating Devices: Install 80 inches above finished floor, but not less than 6 inches below the ceiling.

H. FAMNCU: Flush-mount with tops of cabinets 72 inches above the finished floor or center of the cabinet at 5 feet, whichever is lower.
I. Autonomous Control Unit (ACU)
 1. The ACU shall form a combined system with FAMNCU. These control panels may be co-located in the same enclosure or may be physically separated. If physically separated, provide fire detection at each location as required by NFPA 72 for the protection of fire alarm system control panels.
 2. Flush-mount with tops of cabinets 72 inches above the finished floor or center of the cabinet at 5 feet, whichever is lower.

J. Local Operating Console: Flush-mount with tops of cabinets 72 inches above the finished floor or center of the cabinet at 5 feet, whichever is lower.

K. Remote Annunciator: Flush-mount with tops of cabinets 72 inches above the finished floor or center of the cabinet at 5 feet, whichever is lower.

3.2 WIRING INSTALLATION

A. Install wiring according to the following:
 1. NECA 1.
 2. TIA/EIA 568-A.
 3. NEC.
 4. NFPA 72.

B. Wiring Method: Install wiring in metal raceway according to Section 26 05 33 "Raceways and Boxes for Electrical Systems."
 1. Fire alarm and Mass Notification circuits and equipment control wiring associated with the Fire Alarm and Mass Notification system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable. Raceway shall be ¾-inch minimum conduit or EMT.

C. Wiring Method:
 1. Cables and raceways used for Fire Alarm circuits, and equipment control wiring associated with the Fire Alarm system, may not contain any other wire or cable.
 2. Signaling Line Circuits: Power-limited Fire Alarm cables may be installed in the same cable or raceway as signaling line circuits.

D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer and required by NEC. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the Fire Alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.

E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
F. Color-Coding: Color-code Fire Alarm conductors differently from the normal building power wiring. Paint Fire Alarm system junction boxes and covers red.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

C. Paint power-supply disconnect switch red and label "FIRE ALARM."

D. Factory paint red all conduit and junction boxes in unfinished areas. Conduit and junction boxes in finished areas may be painted to match finish. Where conduit is painted to match finish, paint all junction box covers red and label “FIRE ALARM” and provide a 1-inch wide red strip every 20 feet on conduit.

E. All detection and terminal devices shall have engraved plastic or metallic alphanumeric identification, which shall be keyed to the posted operations and maintenance instructions.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results promptly and in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Before requesting final approval of the installation, submit a written statement using the form for Record of Completion shown in NFPA 72.

2. Perform each electrical test and visual and mechanical inspection listed in NFPA 72. Certify compliance with test parameters. All tests shall be conducted under the direct supervision of a NICET technician certified under the Fire Alarm Systems program at Level III, minimum.

3. Visual Inspection: Conduct a visual inspection before any testing. Use as-built drawings and system documentation for the inspection. Identify improperly located, damaged, or nonfunctional equipment, and correct before beginning tests.

4. Testing: Follow procedure and record results complying with requirements in NFPA 72.

 a. Detectors that are outside their marked sensitivity range shall be replaced.
5. Test and Inspection Records: Prepare according to NFPA 72, including demonstration of sequences of operation by using the matrix-style form in Appendix A in NFPA 72.

6. Verify by measurement after installation for intelligibility with a common intelligibility scale (CIS) score greater than 0.80 in each area where building occupants normally could be found. Areas of the building where occupants are not expected to be normally present may have a CIS score less than 0.80 if personnel can determine that a voice signal is being broadcast and they could walk less than 10 feet to find a location with at least 0.8 CIS. Measurements should be taken near the head level applicable for most personnel in the space under normal conditions (standing, sitting, etc., as appropriate).

8. Demonstrate acceptance of emergency response system with the local fire department.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government maintenance personnel to adjust, operate, and maintain the Fire Alarm system, appliances, and devices. Refer to Section 01 79 00 “Demonstration and Training.”

B. Identification and operations identification shall be coordinated with and keyed to the posted operations instruction and the operation and maintenance (O&M) manuals.

C. O&M manuals shall be completed and submitted for approval by no later than 30 days prior to beneficial occupancy.

D. Post instructions for, at a minimum, the following:
 1. Comprehensive schematics for fire alarm/mass notification system.
 2. Facility floor plans showing location of all fire equipment and devices with coordinated identification. Show items such as fire walls, riser, devices, modules, etc.
 3. System diagrams, including isometrics of special equipment and systems.
 4. Valve charts.
 5. Equipment schedule.
 6. Wiring diagrams and schematics.

E. Posted Operations instructions shall be framed in heavy gauge extruded metal frames, mounted under glass. These posted instructions shall be water/weather proof. Instructions shall be permanently mounted in the reserved clear wall area (i.e. adjacent to backflow preventer).

F. Posted instructions shall be completed with professionally prepared graphics, printed on full size sheets, and shall be in color. Instructions shall be prepared for all fire protection systems and shall include all components.

G. Provide training for Base personnel on all fire protection systems. Training shall be specified to be completed with all materials, fees, and tuition paid for by the contractor. Employee travel costs shall be paid for by the government.
H. A professional edited DVD for training on all fire protection systems shall be provided. Editing shall include voice-over editing describing features and action of the depicted system.

END OF SECTION 28 31 14
SECTION 31 10 00 - SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Protecting existing vegetation to remain.
 2. Removing existing vegetation.
 3. Clearing and grubbing.
 4. Stripping and stockpiling topsoil.
 5. Removing above- and below-grade site improvements.
 6. Disconnecting, capping or sealing, and removing site utilities.
 7. Temporary erosion- and sedimentation-control measures.

1.2 DEFINITIONS

A. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

B. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.

C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing in-place surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.

D. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and indicated on Drawings.

E. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.3 MATERIAL OWNERSHIP

A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain the Government's property, cleared materials shall become Contractor's property and shall be removed from Project site.
1.4 INFORMATIONAL SUBMITTALS

A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
 1. Use sufficiently detailed photographs or videotape.
 2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plants designated to remain.

B. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.5 QUALITY ASSURANCE

A. Preinstallation Conference: Conduct conference at Project site.

1.6 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Contracting Officer and authorities having jurisdiction.
 2. Provide alternate routes around closed or obstructed traffic ways if required by Contracting Officer or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining the Government's property will be obtained by Contracting Officer before award of Contract.
 1. Do not proceed with work on adjoining property until directed by Contracting Officer.

C. Salvable Improvements: Carefully remove items indicated to be salvaged and store on the Government's premises where directed by Contracting Officer.

D. Utility Locator Service: Notify North Carolina 811 for area where Project is located before site clearing.

E. Do not commence site clearing operations until temporary erosion- and sedimentation-control and tree-protection measures are in place.

F. The following practices are prohibited within protection zones:
 1. Storage of construction materials, debris, or excavated material.
 2. Parking vehicles or equipment.
 3. Foot traffic.
 4. Erection of sheds or structures.
5. Impoundment of water.
6. Excavation or other digging unless otherwise indicated.
7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

G. Do not direct vehicle or equipment exhaust towards protection zones.
H. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.
I. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 31 20 00 "Earth Moving."
 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

B. Antirust Coating: Fast-curing, lead- and chromate-free, self-curing, universal modified-alkyd primer complying with MPI #79, Alkyd Anticorrosive Metal Primer or SSPC-Paint 20 or SSPC-Paint 29 zinc-rich coating.
 1. Use coating with a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect and maintain benchmarks and survey control points from disturbance during construction.
B. Locate and clearly identify trees, shrubs, and other vegetation to remain. Wrap a 1-inch blue vinyl tie tape flag around each tree trunk at 54 inches above the ground.
C. Protect existing site improvements to remain from damage during construction.
 1. Restore damaged improvements to their original condition, as acceptable to Contracting Officer.
3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.

B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.

C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.

D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

A. General: Protect trees and plants remaining on-site according to requirements in Section 01 56 39 "Temporary Tree and Plant Protection."

B. Repair or replace trees, shrubs, and other vegetation indicated to remain or be relocated that are damaged by construction operations, in a manner approved by Contracting Officer.

3.4 EXISTING UTILITIES

A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed.

1. Arrange with utility companies to shut off indicated utilities.
2. Contracting Officer will arrange to shut off indicated utilities when requested by Contractor.

B. Locate, identify, and disconnect utilities indicated to be abandoned in place.

C. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:

1. Notify Contracting Officer not less than two days in advance of proposed utility interruptions.
2. Do not proceed with utility interruptions without Contracting Officer's written permission.

D. Excavate for and remove underground utilities indicated to be removed.

E. Removal of underground utilities is included in earthwork sections and with applicable fire suppression, plumbing, HVAC, electrical, communications, electronic safety and security and utilities sections and Section 024116 "Structure Demolition."
3.5 CLEARING AND GRUBBING

A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 2. Grind down stumps and remove roots, obstructions, and debris to a depth of 18 inches below exposed subgrade.
 3. Use only hand methods for grubbing within protection zones.
 4. Chip removed tree branches and dispose of off-site.

B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.6 TOPSOIL STRIPPING

A. Remove sod and grass before stripping topsoil.

B. Strip topsoil to depth of 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.
 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects more than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.

C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 1. Limit height of topsoil stockpiles to 72 inches.
 2. Do not stockpile topsoil within protection zones.
 3. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 4. Stockpile surplus topsoil to allow for re-spreading deeper topsoil.

3.7 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.8 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Government's property.

B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 31 10 00
SECTION 31 20 00 - EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and plants.
2. Excavating and backfilling for buildings and structures.
3. Drainage course for concrete slabs-on-grade.
4. Subbase course for concrete walks and pavements.
5. Subbase course and base course for asphalt paving.
6. Subsurface drainage backfill for walls and trenches.
7. Excavating and backfilling trenches for utilities and pits for buried utility structures.

1.2 DEFINITIONS

A. Backfill: Soil material or controlled low-strength material used to fill an excavation.

1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
2. Final Backfill: Backfill placed over initial backfill to fill a trench.

B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.

C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.

D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.

E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.

1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Contracting Officer. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.
3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Contracting Officer. Unauthorized excavation, as well as remedial work directed by Contracting Officer, shall be without additional compensation.
G. Fill: Soil materials used to raise existing grades.

H. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material 3/4 cu. yd. or more in volume that exceed a standard penetration resistance of 100 blows/2 inches when tested by a geotechnical testing agency, according to ASTM D 1586.

I. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

J. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete slab or pavement, or a cement concrete or hot-mix asphalt walk.

K. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.

L. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following manufactured products required:
 1. Geotextiles.
 2. Warning tapes.

B. Samples for Verification: For the following products, in sizes indicated below:
 2. Warning Tape: 12 inches long; of each color.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

B. Material Test Reports: For each on-site and borrow soil material proposed for fill and backfill as follows:
 1. Classification according to ASTM D 2487.
 2. Laboratory compaction curve according to ASTM D 1557.

C. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earth moving operations. Submit before earth moving begins.
1.5 QUALITY ASSURANCE

A. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

B. Preexcavation Conference: Conduct conference at Project site.

1.6 PROJECT CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Contracting Officer and authorities having jurisdiction.
2. Provide alternate routes around closed or obstructed traffic ways if required by Contracting Officer or authorities having jurisdiction.

B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Government's property will be obtained by Contracting Officer before award of Contract.

1. Do not proceed with work on adjoining property until directed by Contracting Officer.

C. Utility Locator Service: Notify “North Carolina 811” for area where Project is located before beginning earth moving operations.

D. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures, specified in Section 01 50 00 "Temporary Facilities and Controls," and Section 31 10 00 "Site Clearing," are in place.

E. The following practices are prohibited within protection zones:

1. Storage of construction materials, debris, or excavated material.
2. Parking vehicles or equipment.
3. Foot traffic.
4. Erection of sheds or structures.
5. Impoundment of water.
6. Excavation or other digging unless otherwise indicated.
7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.

F. Do not direct vehicle or equipment exhaust towards protection zones.

G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

H. Project Site Information: Geotechnical reports have been prepared for each Project site and are available for supplemental, non-binding information only. The opinions expressed in the geotechnical reports are those of the geotechnical engineer and represent interpretations of
subsoil conditions, tests, and results of analyses conducted by the geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

1. Make additional test borings, test samplings, and conduct all other required exploratory operations necessary according to the performance requirements.

I. Survey work: Engage a qualified Registered Land Surveyor to survey as required according to performance requirements. Establish exact elevations at fixed points to act as benchmarks.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.

B. Satisfactory Soils: Soil Classification Groups SW, SP, SM, SC, ML, and CL meeting the liquid limit and/or plasticity index requirements listed below, according to ASTM D 2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.

1. Liquid Limit: 50.
2. Plasticity Index: 30.
3. Maximum Dry Density: Not less than 90 pounds per cubic foot

C. Unsatisfactory Soils: Soil Classification Groups GC, OL, CH, MH, OH, PT, not meeting the liquid limit and/or plasticity index requirements specified above, according to ASTM D 2487, or a combination of these groups.

1. Unsatisfactory soils also include satisfactory soils not maintained within -3 and +2 percent of optimum moisture content at time of compaction.

D. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; free from ice and snow, roots, sod, rubbish, and other deleterious or organic matter; conforming to the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Finer by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½ Inch</td>
<td>100</td>
</tr>
<tr>
<td>1 Inch</td>
<td>75 – 97</td>
</tr>
<tr>
<td>½ Inch</td>
<td>55 – 80</td>
</tr>
<tr>
<td>No. 4</td>
<td>35 – 55</td>
</tr>
<tr>
<td>No. 40</td>
<td>14 – 30</td>
</tr>
<tr>
<td>No. 200</td>
<td>4 – 12</td>
</tr>
</tbody>
</table>

E. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
F. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.

G. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and zero to 2 percent passing a No. 4 sieve.

H. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and 0 to 5 percent passing a No. 4 sieve.

I. Sand: ASTM C 33; fine aggregate.

J. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 GEOTEXTILES

A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:

1. Survivability: Class 2; AASHTO M 288.
2. Grab Tensile Strength: 157 lbf; ASTM D 4632.
3. Sewn Seam Strength: 142 lbf; ASTM D 4632.
4. Tear Strength: 56 lbf; ASTM D 4533.
5. Puncture Strength: 56 lbf; ASTM D 4833.
6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D 4751.
7. Permittivity: 0.5 per second, minimum; ASTM D 4491.
8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.

2.3 ACCESSORIES

A. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:

2. Yellow: Gas, oil, steam, and dangerous materials.
3. Orange: Telephone and other communications.
4. Blue: Water systems.
5. Green: Sewer systems.
PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.

B. Protect and maintain erosion and sedimentation controls during earth moving operations.

C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.

1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.

3.4 EXCAVATION, GENERAL

A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.

1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

2. If existing foundations and walls are encountered, Contractor shall completely remove structures located beneath building footprint and at least two feet below pavement subgrade.

3. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:

 a. 24 inches outside of concrete forms other than at footings.
 b. 12 inches outside of concrete forms at footings.
 c. 6 inches outside of minimum required dimensions of concrete cast against grade.
d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.

e. 6 inches beneath bottom of concrete slabs-on-grade.

f. 6 inches beneath pipe in trenches and the greater of 24 inches wider than pipe or 42 inches wide.

3.5 EXCAVATION FOR STRUCTURES

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

1. Over excavate the full depth of unsuitable existing fill materials beneath the building footprint. The excavation of the unsuitable existing fill material shall extend a minimum horizontal distance equal to the depth of the excavation, plus 5 feet. Over excavated soils shall be replaced with compacted engineered fill, nominally compacted crushed stone wrapped in filter fabric, or lean concrete (concrete with $f'_c \leq 2,000$ psi).

2. Residual MH soils with a plasticity index greater than 30 shall not be used for direct support of foundations, slabs-on-grade, or pavements. Residual MH soils (Plasticity Index greater than 30) encountered within the aforementioned areas shall be undercut and backfilled with low plasticity engineered fill to a minimum depth of 2 feet below foundations and 2 feet below subgrade elevations in slab and pavement areas.

3. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.

4. Excavation for Underground Telecommunication or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.

5. Where groundwater is encountered, minimize excavation below the groundwater table. Excavations below the groundwater shall be stabilized by placing a minimum of 6-inches of clean crushed stone over Mirafi 140N non-woven filter fabric.

B. Excavations at Edges of Tree- and Plant-Protection Zones:

1. Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

1. Where groundwater is encountered, minimize excavation below the groundwater table. Excavations below the groundwater shall be stabilized by placing a minimum of 6-inches of clean crushed stone over Mirafi 140N non-woven filter fabric.
3.7 EXCAVATION FOR UTILITY TRENCHES

A. Excavate trenches to indicated gradients, lines, depths, and elevations.

1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.

B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

1. Clearance: 12 inches each side of pipe or conduit.

C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.

1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit on an undisturbed subgrade.
2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.
3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.
4. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
5. Where groundwater is encountered, minimize excavation below the groundwater table. Excavations below the groundwater shall be stabilized by placing a minimum of 6-inches of clean crushed stone over Mirafi 140N non-woven filter fabric.

D. Trenches in Tree- and Plant-Protection Zones:

1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.
3. Cut and protect roots according to requirements in Section 01 56 39 "Temporary Tree and Plant Protection."

3.8 SUBGRADE INSPECTION

A. Notify Contracting Officer when excavations have reached required subgrade.

B. If Contracting Officer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
C. Proof-roll subgrade below the building slabs and pavements with a loaded dump truck or similar pneumatic-tired vehicle having a loaded weight of approximately 25 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.

1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Provide a minimum of four passes and limit vehicle speed to 3 mph.
2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Contracting Officer, and replace with compacted backfill or fill as directed.

D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.

E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Contracting Officer, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500 psi, may be used when approved by Contracting Officer.

1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Contracting Officer.

3.10 STORAGE OF SOIL MATERIALS

A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.

1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

A. Place and compact backfill in excavations promptly, but not before completing the following:

1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
2. Surveying locations of underground utilities for Record Documents.
3. Testing and inspecting underground utilities.
4. Removing concrete formwork.
5. Removing trash and debris.
6. Removing temporary shoring and bracing, and sheeting.
7. Installing permanent or temporary horizontal bracing on horizontally supported walls.
B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.12 UTILITY TRENCH BACKFILL

A. Place backfill on subgrades free of mud, frost, snow, or ice.

B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

C. Trenches under Footings: Backfill trenches excavated under footings and within 18 inches of bottom of footings with satisfactory soil; fill with concrete to elevation of bottom of footings. Concrete is specified in Section 03 30 00 "Cast-in-Place Concrete".

D. Trenches under Roadways: Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway subbase course. Concrete is specified in Section 03 30 00 "Cast-in-Place Concrete".

E. Backfill voids with satisfactory soil while removing shoring and bracing.

F. Place and compact initial backfill of satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.

1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.

G. Place and compact final backfill of satisfactory soil to final subgrade elevation.

H. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.13 SOIL FILL

A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.

B. Place and compact fill material in layers to required elevations as follows:

1. Under grass and planted areas, use satisfactory soil material.
2. Under walks and pavements, use satisfactory soil material.
3. Under steps and ramps, use engineered fill.
4. Under building slabs, use engineered fill.
5. Under footings and foundations, use engineered fill.

C. Place soil fill on subgrades free of mud, frost, snow, or ice.
3.14 SOIL MOISTURE CONTROL

A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within minus 3 to plus 2 percent of optimum moisture content.

1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.
3.15 COMPACATION OF SOIL BACKFILLS AND FILLS

A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, 6 inches in loose depth for material compacted by small, self-propelled or remote controlled compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.

B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.

C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698:

1. Fill material shall be placed and compacted to at least 95 percent.
2. Under structures, building slabs, steps, and pavements, scarify and recompact top 24 inches of existing subgrade and each layer of backfill or fill soil material at 100 percent.
3. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 95 percent.
4. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 90 percent.
5. For utility trenches, compact each layer of initial and final backfill soil material at 92 percent.

3.16 GRADING

A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.

1. Provide a smooth transition between adjacent existing grades and new grades.
2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:

1. Turf or Unpaved Areas: Plus or minus 1 inch.
2. Walks: Plus or minus 1 inch.
3. Pavements: Plus or minus 1/2 inch.

C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.
3.17 SUBSURFACE DRAINAGE

A. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches of filter material, placed in compacted layers 6 inches thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698.

B. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches of final subgrade, in compacted layers 6 inches thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches.

1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698.
2. Place and compact impervious fill over drainage backfill in 6-inch-thick compacted layers to final subgrade.

3.18 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

A. Place subbase course and base course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:

1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
2. Place base course material over subbase course under hot-mix asphalt pavement.
3. Shape subbase course and base course to required crown elevations and cross-slope grades.
4. Place subbase course and base course 6 inches or less in compacted thickness in a single layer.
5. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
6. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

C. Pavement Shoulders: Place shoulders along edges of subbase course and base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each subbase and base layer to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.
3.19 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

A. Place drainage course on subgrades free of mud, frost, snow, or ice.

B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 2. Place drainage course 6 inches or less in compacted thickness in a single layer.
 3. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

3.20 FIELD QUALITY CONTROL

A. Special Inspections: Contractor shall engage a qualified special inspector to perform the following special inspections:
 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 2. Determine that fill material and maximum lift thickness comply with requirements.
 3. Determine, at the required frequency, that in-place density of compacted fill complies with requirements.

B. Testing Agency: Contractor shall engage a qualified geotechnical engineering testing agency to perform tests and inspections.

C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

D. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Contracting Officer.

E. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 2000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length, but no fewer than two tests.
 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 100 feet or less of trench length, but no fewer than two tests.
F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.21 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.

B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 1. Scarify or remove and replace soil material to depth as directed by Contracting Officer; reshape and recompact.

C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.22 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Transport surplus satisfactory soil to designated storage areas on Government's property. Stockpile or spread soil as directed by Contracting Officer.
 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Government's property.

END OF SECTION 31 20 00
SECTION 31 23 19 - DEWATERING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes construction dewatering.

B. Related Requirements:

1. Section 31 20 00 “Earth Moving” for excavating, backfilling, site grading, and controlling surface-water runoff and ponding.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Verify availability of Installer’s personnel, equipment, and facilities needed to make progress and avoid delays.
2. Review condition of site to be dewatered including coordination with temporary erosion-control measures and temporary controls and protections.
3. Review geotechnical report.
4. Review proposed site clearing and excavations.
5. Review existing utilities and subsurface conditions.
6. Review observation and monitoring of dewatering system.

1.3 ACTION SUBMITTALS

A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.

1. Include plans, elevations, sections, and details.
2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.
5. For local jurisdictional permitting purposes only, dewatering plan shall include estimated maximum gallons per day (GPD) for dewatering.
1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer, land surveyor and professional engineer.

B. Field quality-control reports.

C. Existing Conditions: Using photographs or video recordings, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.

D. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.6 FIELD CONDITIONS

A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for supplemental, non-binding, information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

1. Make additional test borings, test samplings, and conduct all other required exploratory operations necessary for dewatering according to the performance requirements.

B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer licensed in the State of North Carolina.
2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.

3. Prevent surface water from entering excavations by grading, dikes, or other means.

4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.

5. Remove dewatering system when no longer required for construction.

B. Regulatory Requirements: Comply with governing EPA and North Carolina Department of Environmental Quality (NCDEQ) notification regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction. Contractor shall obtain and pay for all applicable regulatory permits associated with all described tasks for dewatering.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.

1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.

2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.

B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Contracting Officer and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.

C. Provide temporary grading to facilitate dewatering and control of surface water.

D. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 01 50 00 "Temporary Facilities and Controls," during dewatering operations.

3.2 INSTALLATION

A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, and surface-water controls.

1. Space well points or wells at intervals required to provide sufficient dewatering.
2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.

B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.

C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.

D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.

1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.

2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.

3. Maintain piezometric water level a minimum of 6 inches below bottom of excavation for utility lines only. Maintain piezometric water level a minimum of 24 inches below bottom of excavation for all other structures and foundations.

C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.

D. Remove dewatering system from Project site on completion of dewatering. Abandon all wells in accordance with applicable NCDEQ regulations and guidelines; all work to be performed by NCDEQ approved licensed professionals.

3.4 FIELD QUALITY CONTROL

A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.

1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.

2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water
from observation-well risers to demonstrate that observation wells are functioning properly.

3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed in accordance with requirements in accordance with Section 3.3.E within this Specification Section.

B. Survey-Work Benchmarks: Resurvey benchmarks regularly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Contracting Officer if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.

C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.

D. Prepare reports of observations.

3.5 PROTECTION

A. Protect and maintain dewatering system during dewatering operations.

B. Promptly repair damages to all adjacent facilities and all damaged areas (to include but not limited to: asphalt / concrete roadways, sidewalks, curbing, walls, landscaping, etc) caused by dewatering.

END OF SECTION 31 23 19
PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Cold milling of existing asphalt pavement.
 2. Hot-mix asphalt patching.
 3. Hot-mix asphalt paving.
 4. Hot-mix asphalt overlay.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

 1. Review methods and procedures related to hot-mix asphalt paving including, but not limited to, the following:
 a. Review proposed sources of paving materials, including capabilities and location of plant that will manufacture hot-mix asphalt.
 b. Review requirements for protecting paving work, including restriction of traffic during installation period and for remainder of construction period.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

 1. Include technical data and tested physical and performance properties.
 2. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.

B. LEED Submittals:

 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For manufacturer and testing agency.
B. Material Certificates: For each paving material. Include statement that mixes containing recycled materials will perform equal to mixes produced from all new materials.

C. Material Test Reports: For each paving material, by a qualified testing agency.

D. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by the North Carolina Department of Transportation (NCDOT).

B. Testing Agency Qualifications: Qualified according to ASTM D 3666 for testing indicated.

C. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the North Carolina Department of Transportation for asphalt paving work.

 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.6 FIELD CONDITIONS

A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:

 1. Prime Coat: Minimum surface temperature of 60 deg F.
 2. Tack Coat: Minimum surface temperature of 60 deg F.
 3. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
 4. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.

PART 2 - PRODUCTS

2.1 AGGREGATES

A. General: Use materials and gradations that have performed satisfactorily in previous installations.

B. Coarse Aggregate: ASTM D 692, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag that is in accordance with Section 1012-1 (B) of the New Carolina Department of Transportation Standard Specifications for Roads and Structures, 2012.

C. Fine Aggregate: ASTM D 1073, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof that is in accordance with Section 1012-1 (C)

1. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.

D. Mineral Filler: AASHTO M 17, rock or slag dust, hydraulic cement, or other inert material that is in accordance with Section 1012-1 (D) of the New Carolina Department of Transportation Standard Specifications for Roads and Structures, 2012.

2.2 ASPHALT MATERIALS

A. Asphalt Binder: AASHTO M 320, PG 64-22.

D. Tack Coat: AASHTO M 140 emulsified asphalt, or AASHTO M 208 cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application that is in accordance with Section 1020-3 of the New Carolina Department of Transportation Standard Specifications for Roads and Structures, 2012.

E. Water: Potable.

F. Undersealing Asphalt: ASTM D 3141; pumping consistency.

2.3 AUXILIARY MATERIALS

A. Herbicide: Commercial chemical for weed control, registered by the EPA, and not classified as "restricted use" for locations and conditions of application. Provide in granular, liquid, or wettable powder form.

B. Sand: ASTM D 1073, Grade No. 2 or No. 3.

C. Paving Geotextile: AASHTO M 288 paving fabric; nonwoven polypropylene; resistant to chemical attack, rot, and mildew; and specifically designed for paving applications.

D. Joint Sealant: ASTM D 6690, Type II, hot-applied, single-component, polymer-modified bituminous sealant.

2.4 MIXES

A. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes approved by the North Carolina Department of Transportation and complying with the following requirements:
1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
2. Base Course: NCDOT Intermediate Course I19.0B.
3. Surface Course: NCDOT Asphalt Surface Course S9.5B.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.

B. Proof-roll subgrade below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 2. Proof roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 25 tons.
 3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Contracting Officer, and replace with compacted backfill or fill as directed.

C. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 COLD MILLING

A. Clean existing pavement surface of loose and deleterious material immediately before cold milling. Remove existing asphalt pavement by cold milling to grades and cross sections indicated.
 1. Mill to a depth of 2 inches.
 2. Mill to a uniform finished surface free of excessive gouges, grooves, and ridges.
 3. Control rate of milling to prevent tearing of existing asphalt course.
 4. Repair or replace curbs, manholes, and other construction damaged during cold milling.
 5. Excavate and trim unbound-aggregate base course, if encountered, and keep material separate from milled hot-mix asphalt.
 6. Patch surface depressions deeper than 1 inch after milling, before wearing course is laid.
 7. Handle milled asphalt material according to approved waste management plan required in Section 017419 "Construction Waste Management and Disposal."
 8. Keep milled pavement surface free of loose material and dust.
 9. Do not allow milled materials to accumulate on-site.
3.3 PATCHING

A. Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into perimeter of adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.

B. Tack Coat: Before placing patch material, apply tack coat uniformly to vertical asphalt surfaces abutting the patch. Apply at a rate of 0.05 to 0.15 gal./sq. yd..

1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

C. Placing Patch Material: Partially fill excavated pavements with hot-mix asphalt base mix and, while still hot, compact. Cover asphalt base course with compacted, hot-mix surface layer finished flush with adjacent surfaces.

3.4 SURFACE PREPARATION

A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.

B. Herbicide Treatment: Apply herbicide according to manufacturer's recommended rates and written application instructions. Apply to dry, prepared subgrade or surface of compacted-aggregate base before applying paving materials.

1. Mix herbicide with prime coat if formulated by manufacturer for that purpose.

C. Cutback Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.15 to 0.50 gal./sq. yd.. Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.

1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
2. Protect primed substrate from damage until ready to receive paving.

D. Emulsified Asphalt Prime Coat: Apply uniformly over surface of compacted unbound-aggregate base course at a rate of 0.10 to 0.30 gal./sq. yd. per inch depth. Apply enough material to penetrate and seal, but not flood, surface. Allow prime coat to cure.

1. If prime coat is not entirely absorbed within 24 hours after application, spread sand over surface to blot excess asphalt. Use enough sand to prevent pickup under traffic. Remove loose sand by sweeping before pavement is placed and after volatiles have evaporated.
2. Protect primed substrate from damage until ready to receive paving.

E. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd..
1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.5 PLACING HOT-MIX ASPHALT

A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.

1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
2. Place hot-mix asphalt surface course in single lift.
3. Spread mix at a minimum temperature of 250 deg F.
4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.
5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.

B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.

1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1-1/2 inches from strip to strip to ensure proper compaction of mix along longitudinal joints.
2. Complete a section of asphalt base course before placing asphalt surface course.

C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

3.6 JOINTS

A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.

1. Clean contact surfaces and apply tack coat to joints.
2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
3. Offset transverse joints, in successive courses, a minimum of 24 inches.
4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method according to AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations."
5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
6. Compact asphalt at joints to a density within 2 percent of specified course density.
3.7 COMPACTION

A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.

1. Complete compaction before mix temperature cools to 185 deg F.

B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:

1. Average Density: 96 percent of reference laboratory density according to ASTM D 6927 or AASHTO T 245, but not less than 94 percent or greater than 100 percent.

D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.

E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.

F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.

G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.

H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.8 INSTALLATION TOLERANCES

A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:

1. Base Course: Plus or minus 1/2 inch.
2. Surface Course: Plus 1/4 inch, no minus.

B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:

1. Base Course: 1/4 inch.
2. Surface Course: 1/8 inch.
3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.

3.9 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Thickness: In-place compacted thickness of hot-mix asphalt courses will be determined according to ASTM D 3549.

C. Surface Smoothness: Finished surface of each hot-mix asphalt course will be tested for compliance with smoothness tolerances.

D. In-Place Density: Testing agency will take samples of uncompacted paving mixtures and compacted pavement according to ASTM D 979 or AASHTO T 168.

1. Reference maximum theoretical density will be determined by averaging results from four samples of hot-mix asphalt-paving mixture delivered daily to site, prepared according to ASTM D 2041, and compacted according to job-mix specifications.

2. In-place density of compacted pavement will be determined by testing core samples according to ASTM D 1188 or ASTM D 2726.

 a. One core sample will be taken for every 1000 sq. yd. or less of installed pavement, with no fewer than three cores taken.

 b. Field density of in-place compacted pavement may also be determined by nuclear method according to ASTM D 2950 and correlated with ASTM D 1188 or ASTM D 2726.

E. Replace and compact hot-mix asphalt where core tests were taken.

F. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

3.10 WASTE HANDLING

A. General: Handle asphalt-paving waste according to approved waste management plan required in Section 01 74 19 "Construction Waste Management and Disposal."

END OF SECTION 32 12 16
SECTION 32 13 13 - CONCRETE PAVING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Aircraft Apron
2. Service areas.
3. Curbs and gutters.
4. Walks.

1.2 DEFINITIONS

A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blast-furnace slag.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. LEED Submittals:

1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
2. Design Mixtures for Credit ID 1: For each concrete mixture containing fly ash as a replacement for Portland cement or other Portland cement replacements. For each design mixture submitted, include an equivalent concrete mixture that does not contain Portland cement replacements, to determine amount of Portland cement replaced.

C. Samples for Initial Selection: For each type of product, ingredient, or admixture requiring color selection.

D. Other Action Submittals:

1. Design Mixtures: For each concrete paving mixture. Include alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.

1.4 INFORMATIONAL SUBMITTALS

A. Material Certificates: For the following, from manufacturer:
Cementitious materials.
2. Steel reinforcement and reinforcement accessories.
3. Admixtures.
4. Curing compounds.
5. Applied finish materials.
6. Bonding agent or epoxy adhesive.
7. Joint fillers.

B. Material Test Reports: For each of the following:

1. Aggregates. Include service-record data indicating absence of deleterious expansion of concrete due to alkali-aggregate reactivity.

C. Field quality-control reports.

1.5 QUALITY ASSURANCE

A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities" (Quality Control Manual - Section 3, "Plant Certification Checklist").

B. Testing Agency Qualifications: Qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.

1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

C. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.

D. ACI Publications: Comply with ACI 301 unless otherwise indicated.

E. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.

1. Build mockups of full-thickness sections of concrete paving to demonstrate typical joints; surface finish, texture, and color; curing; and standard of workmanship.
2. Build mockups of concrete paving in the location and of the size indicated or, if not indicated, build mockups where directed by Contracting Officer and not less than 96 inches by 96 inches.
3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Contracting Officer specifically approves such deviations in writing.
4. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
F. Preinstallation Conference: Conduct conference at Project site.
 1. Review methods and procedures related to concrete paving, including but not limited to, the following:
 a. Concrete mixture design.
 b. Quality control of concrete materials and concrete paving construction practices.
 2. Require representatives of each entity directly concerned with concrete paving to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixtures.
 c. Ready-mix concrete manufacturer.
 d. Concrete paving subcontractor.

1.6 PROJECT CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
 2. Do not use frozen materials or materials containing ice or snow.
 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.

C. Hot-Weather Concrete Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

D. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 deg F for oil-based materials and 55 deg F for water-based materials, and not exceeding 95 deg F.
PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

A. ACI Publications: Comply with ACI 301 unless otherwise indicated.

2.2 FORMS

A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.

1. Use flexible or uniformly curved forms for curves with a radius of 100 feet or less. Do not use notched and bent forms.

B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 STEEL REINFORCEMENT

A. Recycled Content: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.

B. Plain-Steel Welded Wire Reinforcement: ASTM A 185/A 185M, fabricated from galvanized-steel wire into flat sheets.

C. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 plain-steel bars; zinc coated (galvanized) after fabrication according to ASTM A 767/A 767M, Class I coating. Cut bars true to length with ends square and free of burrs.

D. Tie Bars: ASTM A 615/A 615M, Grade 60, deformed.

E. Zinc Repair Material: ASTM A 780.

2.4 CONCRETE MATERIALS

A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:

1. Portland Cement: ASTM C 150, gray Portland cement Type I.

a. Fly Ash: ASTM C 618, Class C or Class F.

b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.

B. Normal-Weight Aggregates: ASTM C 33, Class 4S, uniformly graded. Provide aggregates from a single source with documented service-record data of at least 10 years' satisfactory
service in similar paving applications and service conditions using similar aggregates and cementitious material.

1. Maximum Coarse-Aggregate Size: 1 inch nominal.
2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

C. Water: Potable and complying with ASTM C 94/C 94M.

E. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.

1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
2. Retarding Admixture: ASTM C 494/C 494M, Type B.
3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.

2.5 CURING MATERIALS

A. Absorptive Cover: AASHTO M 182, Class 3, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. dry.

B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

D. Evaporation Retarder: Waterborne, monomolecular, film forming, manufactured for application to fresh concrete.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Axim Italcementi Group, Inc.; Caltexol CIMFILM.
 b. BASF Construction Chemicals, LLC; Confilm.
 c. ChemMasters; Spray-Film.
 d. Conspec by Dayton Superior; Aquafilm.
 e. Dayton Superior Corporation; Sure Film (J-74).
 f. Edoco by Dayton Superior; BurkeFilm.
 g. Euclid Chemical Company (The), an RPM company; Eucobar.
 h. Kaufman Products, Inc.; VaporAid.
 i. Lambert Corporation; LAMBCO Skin.
 j. L&M Construction Chemicals, Inc.; E-CON.
 k. Meadows, W. R., Inc.; EVAPRE.
Metalcrete Industries; Waterhold.

Nox-Crete Products Group; MONOFILM.

Sika Corporation, Inc.; SikaFilm.

SpecChem, LLC; Spec Film.

Symons by Dayton Superior; Finishing Aid.

TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.

Unitex; PRO-FILM.

SpecChem, LLC; Certi-Vex EnvioAssist.

E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

a. Anti-Hydro International, Inc.; A-H Curing Compound #2 DR WB.

b. ChemMasters; Safe-Cure Clear.

c. Conspec by Dayton Superior; D.O.T. Resin Cure or DSSCC Clear Resin Cure.

d. Dayton Superior Corporation; Day-Chem Rez Cure (J-11-W).

e. Edoco by Dayton Superior; DSSCC Clear Resin Cure or Resin Emulsion Cure V.O.C. Type I.

f. Euclid Chemical Company (The), an RPM company; Kurez W VOX.

g. Kaufman Products, Inc.; Thinfilm 420.

h. Lambert Corporation; AQUA KURE - CLEAR.

i. L&M Construction Chemicals, Inc.; L&M CURE R.

j. Meadows, W. R., Inc.; 1100-CLEAR SERIES.

k. Nox-Crete Products Group; Resin Cure E.

l. SpecChem, LLC; PaveCure Rez.

m. Symons by Dayton Superior; Resi-Chem Clear.

n. Tamms Industries, Inc., Euclid Chemical Company (The); TAMMSCURE WB 30C.

o. TK Products, Division of Sierra Corporation; TK-2519 WB or TK-2519 DC W.

2.6 RELATED MATERIALS

A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber or ASTM D 1752, cork or self-expanding cork in preformed strips.

B. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

C. Epoxy Bonding Adhesive: ASTM C 881/C 881M, two-component epoxy resin capable of humid curing and bonding to damp surfaces; of class suitable for application temperature, of grade complying with requirements, and of the following types:

1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
2.7 CONCRETE MIXTURES

A. Prepare design mixtures, proportioned according to ACI 301, for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience.

1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
2. When automatic machine placement is used, determine design mixtures and obtain laboratory test results that meet or exceed requirements.

B. Proportion mixtures to provide normal-weight concrete with the following properties:

2. Flexural Strength (28 Days) at Aircraft Apron: 650 psi.
3. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.45.
4. Slump Limit: 4 inches, plus or minus 1 inch.

C. Add air-entraining admixture at manufacturer’s prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:

1. Air Content: 5-1/2 percent plus or minus 1.5 percent for 1-1/2-inch nominal maximum aggregate size.
2. Air Content: 6 percent plus or minus 1.5 percent for 1-inch nominal maximum aggregate size.
3. Air Content: 6 percent plus or minus 1.5 percent for 3/4-inch nominal maximum aggregate size.

D. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.

E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.

1. Use water-reducing admixture, high-range, water-reducing admixture, high-range, water-reducing and retarding admixture, plasticizing and retarding admixture in concrete as required for placement and workability.
2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.

F. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of Portland cement, which would otherwise be used, by not less than 40 percent. Limit percentage, by weight, of cementitious materials other than Portland cement in concrete as follows:

1. Fly Ash or Pozzolan: 25 percent.
2. Ground Granulated Blast-Furnace Slag: 50 percent.
3. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.
2.8 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94. Furnish batch certificates for each batch discharged and used in the Work.

1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For concrete batches of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
2. For concrete batches larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixing time, quantity, and amount of water added.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.

B. Proof-roll prepared subbase surface below concrete paving to identify soft pockets and areas of excess yielding.

1. Completely proof-roll subbase in one direction and repeat in perpendicular direction. Limit vehicle speed to 3 mph.
2. Proof-roll with a pneumatic-tired and loaded, 10-wheel, tandem-axle dump truck weighing not less than 25 tons.
3. Correct subbase with soft spots and areas of pumping or rutting exceeding depth of 1/2 inch according to requirements in Section 312000 "Earth Moving."

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.
3.3 EDGE FORMS AND SCREED CONSTRUCTION

A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.

B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

3.4 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.

B. Clean reinforcement of loose rust and mill scale, earth, ice, or other bond-reducing materials.

C. Install welded wire reinforcement in lengths as long as practicable. Lap adjoining pieces at least one full mesh, and lace splices with wire. Offset laps of adjoining widths to prevent continuous laps in either direction.

D. Zinc-Coated Reinforcement: Use galvanized-steel wire ties to fasten zinc-coated reinforcement. Repair cut and damaged zinc coatings with zinc repair material.

3.5 JOINTS

A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.

1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.

1. Continue steel reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of paving strips unless otherwise indicated.

2. Provide tie bars at sides of paving strips where indicated.

3. Butt Joints: Use epoxy bonding adhesive at joint locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

4. Keyed Joints: Provide preformed keyway-section forms or bulkhead forms with keys unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.

5. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.
C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting concrete curbs, catch basins, manholes, inlets, structures, other fixed objects, and where indicated.

1. Locate expansion joints at intervals of 50 feet unless otherwise indicated.
2. Extend joint fillers full width and depth of joint.
3. Terminate joint filler not less than 1/2 inch or more than 1 inch below finished surface if joint sealant is indicated.
4. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
5. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
6. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.

D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness, as follows:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a 1/4-inch radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
 a. Tolerance: Ensure that grooved joints are within 3 inches either way from centers of dowels.

2. Doweled Contraction Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or coat with asphalt one-half of dowel length to prevent concrete bonding to one side of joint.

E. Edging: After initial floating, tool edges of paving, curbs, and joints in concrete with an edging tool to a 1/4-inch radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, inspect and complete formwork installation, steel reinforcement, and items to be embedded or cast-in.

B. Remove snow, ice, or frost from subbase surface and steel reinforcement before placing concrete. Do not place concrete on frozen surfaces.

C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.

D. Comply with ACI 301 requirements for measuring, mixing, transporting, and placing concrete.
E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.

F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

G. Consolidate concrete according to ACI 301 by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.

1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from joint assemblies, reinforcement, or side forms. Use only square-faced shovels for hand spreading and consolidation. Consolidate with care to prevent dislocating reinforcement, dowels, and joint devices.

H. Screed paving surface with a straightedge and strike off.

I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.

J. Curbs and Gutters: Use design mixture for automatic machine placement. Produce curbs to required cross section, lines, grades, finish, and jointing.

K. Slip-Form Paving: Use design mixture for automatic machine placement. Produce paving to required thickness, lines, grades, finish, and jointing.

1. Compact subbase and prepare subgrade of sufficient width to prevent displacement of slip-form paving machine during operations.

L. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:

1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
2. Do not use frozen materials or materials containing ice or snow.
3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.

M. Hot-Weather Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.7 FLOAT FINISHING

A. General: Do not add water to concrete surfaces during finishing operations.

B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.

1. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across float-finished concrete surface perpendicular to line of traffic to provide a uniform, fine-line texture.

3.8 DETECTABLE WARNING INSTALLATION

A. Blockouts: Form blockouts in concrete for installation of detectable paving units specified in Section 321726 "Tactile Warning Surfacing."

1. Tolerance for Opening Size: Plus 1/4 inch, no minus.

B. Cast-in-Place Detectable Warning Tiles: Form blockouts in concrete for installation of tiles specified in Section 321726 "Tactile Warning Surfacing." Screed surface of concrete where tiles are to be installed to elevation, so that edges of installed tiles will be flush with surrounding concrete paving. Embed tiles in fresh concrete to comply with Section 321726 "Tactile Warning Surfacing" immediately after screeding concrete surface.

3.9 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.

B. Comply with ACI 306.1 for cold-weather protection.

C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.

D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.

E. Curing Methods: Cure concrete by moisture curing, moisture-retaining-cover curing, curing compound, or a combination of these as follows:
1. **Moisture Curing:** Keep surfaces continuously moist for not less than seven days with the following materials:

 a. Water.

 b. Continuous water-fog spray.

 c. Absorptive cover, water saturated and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.

2. **Moisture-Retaining-Cover Curing:** Cover concrete surfaces with moisture-retaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.

3. **Curing Compound:** Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.10 **PAVING TOLERANCES**

A. Comply with tolerances in ACI 117 and as follows:

1. Elevation: 3/4 inch.
3. Surface: Gap below 10-foot-long, unleveled straightedge not to exceed 1/2 inch.
4. Alignment of Tie-Bar End Relative to Line Perpendicular to Paving Edge: 1/2 inch per 12 inches of tie bar.
5. Lateral Alignment and Spacing of Dowels: 1 inch.
7. Alignment of Dowel-Bar End Relative to Line Perpendicular to Paving Edge: 1/4 inch per 12 inches of dowel.
8. Joint Spacing: 3 inches.

3.11 **FIELD QUALITY CONTROL**

A. **Testing Agency:** Engage a qualified testing agency to perform tests and inspections.

B. **Testing Services:** Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

1. **Testing Frequency:** Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.

 a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.

3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F and below and when it is 80 deg F and above, and one test for each composite sample.

5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.

6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.

C. Strength of each concrete mixture will be satisfactory if average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

D. Test results shall be reported in writing to Contracting Officer, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.

E. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Contracting Officer but will not be used as sole basis for approval or rejection of concrete.

F. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Contracting Officer.

G. Concrete paving will be considered defective if it does not pass tests and inspections.

H. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

I. Prepare test and inspection reports.

3.12 REPAIRS AND PROTECTION

A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved by Contracting Officer.
B. Drill test cores, where directed by Contracting Officer, when necessary to determine magnitude of cracks or defective areas. Fill drilled core holes in satisfactory paving areas with portland cement concrete bonded to paving with epoxy adhesive.

C. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

D. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 32 13 13
SECTION 32 13 73 - CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Cold-applied joint sealants.
2. Hot-applied joint sealants.
4. Primers.
5. Preformed polychloroprene compression joint seals.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch wide joints formed between two 6-inch long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.

C. Paving-Joint-Sealant Schedule: Include the following information:

1. Joint-sealant application, joint location, and designation.
2. Joint-sealant manufacturer and product name.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For installer and testing agency.

B. Product Certificates: For each type of joint sealant and accessory.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
B. Product Testing: Test joint sealants using a qualified testing agency.

1.6 FIELD CONDITIONS

A. Do not proceed with installation of joint sealants under the following conditions:

1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
2. When joint substrates are wet.
3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 COLD-APPLIED JOINT SEALANTS

A. Single-Component, Nonsag, Silicone Joint Sealant: ASTM D 5893/D 5893M, Type NS.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crafco Inc; RoadSaver Silicone.
 b. Dow Corning Corporation; 888.
 c. Pecora Corporation; 301 NS.

2.3 HOT-APPLIED JOINT SEALANTS

A. Hot-Applied, Single-Component Joint Sealant: ASTM D 6690, Type I, II, or III.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Crafco Inc; RoadSaver 222.
 b. Meadows, W.R.,Inc; Sealtight 3405.
 c. Right Pointe; JTS 3405 Regular 003 or JTS 3405 Rubber 009.
2.4 JOINT-SEALANT BACKER MATERIALS

A. Joint-Sealant Backer Materials: Nonstaining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by joint-sealant manufacturer, based on field experience and laboratory testing.

B. Round Backer Rods for Cold- and Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.

C. Round Backer Rods for Cold-Applied Joint Sealants: ASTM D 5249, Type 3, of diameter and density required to control joint-sealant depth and prevent bottom-side adhesion of sealant.

D. Backer Strips for Cold- and Hot-Applied Joint Sealants: ASTM D 5249; Type 2; of thickness and width required to control joint-sealant depth, prevent bottom-side adhesion of sealant, and fill remainder of joint opening under sealant.

2.5 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.

2.6 PREFORMED POLYCHLOROPRENE COMPRESSION JOINT SEAL

A. Composition: ASTM D 2628, Preformed polychloroprene compression joint seal manufactured from a vulcanized elastomeric compound using polymerized chloroprene as the base polymer and conforming to USACE CRD-C 548 for jet fuel and heat resistance.

1. Shape of the joint seal shall include six individual cells for seals greater than 0.450 inches and less than 1.50 inches in nominal width.
2. Nominal width compression joint seals: 1” width seal for joints greater than ½” to 5/8” width.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.

1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.

B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.

B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions.

C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.

1. Do not leave gaps between ends of joint-sealant backings.
2. Do not stretch, twist, puncture, or tear joint-sealant backings.
3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.

D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:

1. Place joint sealants so they fully contact joint substrates.
2. Completely fill recesses in each joint configuration.
3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.

E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:

1. Remove excess joint sealant from surfaces adjacent to joints.
2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.
F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING AND PROTECTION

A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.

B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.5 PAVING-JOINT-SEALANT SCHEDULE

A. Joint-Sealant Application: Joints within concrete paving.

1. Joint Location:
 a. Expansion and isolation joints in concrete paving.
 b. Contraction joints in concrete paving.
 c. Other joints as indicated.

B. Joint-Sealant Application: Joints within concrete paving and between concrete and asphalt paving.

1. Joint Location:
 a. Joints between concrete and asphalt paving.
 b. Joints between concrete curbs and asphalt paving.
 c. Other joints as indicated.

END OF SECTION 32 13 73
SECTION 32 17 23 - PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes painted markings applied to asphalt and concrete pavement.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1. Review methods and procedures related to marking pavement including, but not limited to, the following:

a. Pavement aging period before application of pavement markings.

b. Review requirements for protecting pavement markings, including restriction of traffic during installation period.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include technical data and tested physical and performance properties.

B. Shop Drawings: For pavement markings.

1. Indicate pavement markings, colors, lane separations, defined parking spaces, and dimensions to adjacent work.

2. Indicate, with international symbol of accessibility, spaces allocated for people with disabilities.

C. Samples: For each exposed product and for each color and texture specified; on rigid backing, 8 inches square.

1.4 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of the North Carolina Department of Transportation for pavement-marking work.

1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.
1.5 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient temperature of 45 deg F and a minimum surface temperature of 50 deg F for epoxy resin materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 PAVEMENT-MARKING PAINT

1. Color: Yellow and White, as noted on plans.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is dry and in suitable condition to begin pavement marking according to manufacturer's written instructions.

B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Contracting Officer.

B. Allow paving to age for a minimum of 30 days before starting pavement marking.

C. Sweep and clean surface to eliminate loose material and dust.

D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 20 mils.

1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to pavement. Mask an extended area beyond edges of each stencil to prevent paint application beyond the stencil. Apply paint so that it cannot run beneath the stencil.

2. Broadcast glass beads uniformly immediately after, or in conjunction with, the compound application at a rate of 12 lbs. of large beads/gal. of epoxy resin to the compound. After applying the large glass beads, uniformly apply 12 lbs. of small glass beads/gal. epoxy resin to the compound.
3.3 PROTECTING AND CLEANING

A. Protect pavement markings from damage and wear during remainder of construction period.

B. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 32 17 23
SECTION 321726 - TACTILE WARNING SURFACING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

B. Related Requirements:
 1. Section 32 13 13 "Concrete Paving" for concrete walkways serving as substrates for tactile warning surfacing.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Samples for Initial Selection: For each type of exposed finish requiring color selection.

C. Samples for Verification: For each type of tactile warning surface, in manufacturer's standard sizes unless otherwise indicated, showing edge condition, truncated-dome pattern, texture, color, and cross section; with fasteners and anchors.

1.3 CLOSEOUT SUBMITTALS

A. Maintenance Data: For tactile warning surfacing, to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. Mockups: Build mockups to verify selections made under Sample submittals, to demonstrate aesthetic effects, and to set quality standards for materials and execution.

1. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.
1.6 PROJECT CONDITIONS

A. Cold-Weather Protection: Do not use frozen materials or materials mixed or coated with ice or frost. Do not build on frozen subgrade or setting beds. Remove and replace unit paver work damaged by frost or freezing.

B. Weather Limitations for Adhesive Application:

1. Apply adhesive only when ambient temperature is above 50 deg. F and when temperature has not been below 35 deg. F for 12 hours immediately before application. Do not apply when substrate is wet or contains excess moisture.

C. Weather Limitations for Mortar and Grout:

2. Hot-Weather Requirements: Comply with hot-weather construction requirements contained in ACI 530.1/ASCE 6/TMS 602. Provide artificial shade and windbreaks, and use cooled materials as required. Do not apply mortar to substrates with temperatures of 100 deg. F and higher.
 a. When ambient temperature exceeds 100 deg. F, or when wind velocity exceeds 8 mph and ambient temperature exceeds 90 deg. F, set unit pavers within 1 minute of spreading setting-bed mortar.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of tactile warning surfaces that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Deterioration of finishes beyond normal weathering and wear.
 b. Separation or delamination of materials and components.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TACTILE WARNING SURFACING, GENERAL

A. Accessibility Requirements: Comply with applicable provisions in the U.S. Architectural & Transportation Barriers Compliance Board's ADA-ABA Accessibility Guidelines for Buildings and Facilities and ICC A117.1 for tactile warning surfaces.
1. For tactile warning surfaces composed of multiple units, provide units that when installed provide consistent side-to-side and end-to-end dome spacing that complies with requirements.

B. Source Limitations: Obtain each type of tactile warning surfacing, joint material, setting material, anchor, and fastener from single source with resources to provide materials and products of consistent quality in appearance and physical properties.

2.2 DETECTABLE WARNING TILES

A. Cast-in-Place Detectable Warning Tiles: Accessible truncated-dome detectable warning tiles with replaceable surface configured for setting flush in new concrete walkway surfaces, with slip-resistant surface treatment on domes and field of tile.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Access Products, Inc.
 b. ACO Polymer Products, Inc.
 c. ADA Solutions, Inc.
 d. Advanced Surface Systems, LLC
 e. AlertTile; a division of Cape Fear Systems, II, LLC
 f. Arcis Corp.
 g. Armocast Products Company
 h. Detectable Warning Systems, Inc.
 i. Detectable Corp.
 j. Engineered Plastics Inc.; Armor-Tile
 k. Mingo Products, Inc.
 l. StrongGo Industries, LLC
 m. Transpo Industries, Inc.

4. Shapes and Sizes:
 a. Rectangular panel, 24 by 36 inches

6. Mounting:
 a. Replaceable detectable warning tile wet-set into freshly poured concrete and surface-fastened to permanently embedded anchors.
2.3 ACCESSORIES

A. Fasteners and Anchors: Manufacturer's standard as required for secure anchorage of tactile warning surfaces, noncorrosive and compatible with each material joined, and complying with the following:

1. Furnish Type 304 or Type 316 stainless-steel fasteners for exterior use.
2. Fastener Heads: For nonstructural connections, use flathead or oval countersunk screws and bolts with tamper-resistant heads, colored to match tile.

B. Adhesive: As recommended by manufacturer for adhering tactile warning surfacing unit to pavement.

C. Sealant: As recommended by manufacturer for sealing perimeter of tactile warning surfacing unit.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that pavement is in suitable condition to begin installation according to manufacturer's written instructions. Verify that installation of tactile warning surfacing will comply with accessibility requirements upon completion.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF TACTILE WARNING SURFACING

A. General: Prepare substrate and install tactile warning surfacing according to manufacturer's written instructions unless otherwise indicated.

B. Place tactile warning surfacing units in dimensions and orientation indicated. Comply with location requirements of AASHTO MP 12.

3.3 INSTALLATION OF DETECTABLE WARNING TILES

A. Removable Cast-in-Place Detectable Warning Tiles:

1. Concrete Paving Installation: Comply with installation requirements in Section 32 13 13 "Concrete Paving." Mix, place, and finish concrete to conditions complying with detectable warning tile manufacturer's written requirements for satisfactory embedment of removable tile.

2. Set each detectable warning tile accurately and firmly in place with embedding anchors and fasteners attached, and firmly seat tile back in wet concrete by tamping or vibrating. If necessary, temporarily apply weight to tiles to ensure full contact with concrete.
3. Set surface of tile flush with surrounding concrete and adjacent tiles, with variations between tiles and between concrete and tiles not exceeding plus or minus 1/8 inch from flush.

4. Protect exposed surfaces of installed tiles from contact with wet concrete. Complete finishing of concrete paving surrounding tiles. Remove concrete from tile surfaces.

5. Clean tiles using methods recommended in writing by manufacturer.

3.4 CLEANING AND PROTECTION

A. Remove and replace tactile warning surfacing that is broken or damaged or does not comply with requirements in this Section. Remove in complete sections from joint to joint unless otherwise approved by Architect. Replace using tactile warning surfacing installation methods acceptable to Architect.

B. Protect tactile warning surfacing from damage and maintain free of stains, discoloration, dirt, and other foreign material.

END OF SECTION 32 17 26
SECTION 32 31 13 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Chain-link fences.
2. Gates: horizontal slide.

B. Related Sections:

1. Section 03 30 00 "Cast-in-Place Concrete" for cast-in-place concrete post footings.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design chain-link fences and gates, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Chain-link fence and gate framework shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated according to ASCE/SEI 7:

1. Minimum Post Size: Determine according to ASTM F 1043 for framework up to 12 feet high, and post spacing not to exceed 10 feet for Schedule 40 steel pipe.
2. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified and on the following:
 a. Wind Loads: 120 mph.
 b. Exposure Category: C.
 c. Fence Height: 7 feet.

C. Lightning Protection System: Maximum grounding-resistance value of 25 ohms under normal dry conditions.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for chain-link fences and gates.

1. Fence and gate posts, rails, and fittings.
2. Chain-link fabric, reinforcements, and attachments.
3. Accessories: Barbed wire.
4. Gates and hardware.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work. Show accessories, hardware, gate operation, and operational clearances.

C. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS
A. Qualification Data: For qualified professional engineer.
B. Product Certificates: For each type of chain-link fence and gate, from manufacturer.
C. Product Test Reports: For framing strength according to ASTM F 1043.
D. Field quality-control reports.
E. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For the following to include in emergency, operation, and maintenance manuals:
 1. Gate hardware.

1.6 QUALITY ASSURANCE
A. Testing Agency Qualifications: For testing fence grounding. Member company of NETA or an NRTL.
 1. Testing Agency’s Field Supervisor: Currently certified by NETA to supervise on-site testing.
B. Preinstallation Conference: Conduct conference at Project site.
 1. Review coordination of interlocked equipment specified in this Section and elsewhere.
 2. Review required testing, inspecting, and certifying procedures.
1.7 PROJECT CONDITIONS

A. Field Measurements: Verify layout information for chain-link fences and gates shown on Drawings in relation to property survey and existing structures. Verify dimensions by field measurements.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
 a. Deterioration of metals, metal finishes, and other materials beyond normal weathering.

2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 CHAIN-LINK FENCE FABRIC

A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:

1. Fabric Height: As indicated on Drawings.
2. Steel Wire Fabric: Wire with a diameter of 0.192 inch.
 a. Mesh Size: 2 inches.
 b. Zinc-Coated Fabric: ASTM A 392, Type II, Class 2, 2.0 oz./sq. ft. with zinc coating applied after weaving.
 c. Coat selvage ends of fabric that is metallic coated before the weaving process with manufacturer's standard clear protective coating.

3. Selvage: Twisted top and knuckled bottom.

2.2 FENCE FRAMING

A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:

1. Fence Height: 84 inches.
2. Heavy Industrial Strength: Material Group IA, round steel pipe, Schedule 40.
CHAIN LINK FENCES AND GATES

a. Line Post: 2.875 inches in diameter.
b. End, Corner and Pull Post: 4.0 inches in diameter.

a. Horizontal and bottom Rail: 1.66 inches in diameter.

5. Metallic Coating for Steel Framing:
a. Type A, consisting of not less than minimum 2.0-oz./sq. ft. average zinc coating per ASTM A 123/A 123M or 4.0-oz./sq. ft. zinc coating per ASTM A 653/A 653M.

2.3 TENSION WIRE

A. Metallic-Coated Steel Wire: 0.177-inch-diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:

1. Type II, zinc coated (galvanized) by hot-dip process, with the following minimum coating weight:

2.4 HORIZONTAL-SLIDE GATES

A. General: Comply with ASTM F 1184 for gate posts and single sliding gate types.

1. Classification: Type II Cantilever Slide, Class 1 with external roller assemblies.
a. Gate Frame Width and Height: As indicated.

B. Pipe and Tubing:

2. Gate Posts: Comply with ASTM F 1184. Provide rectangular tubular aluminum posts.
3. Gate Frames and Bracing: Rectangular tubular aluminum.

C. Frame Corner Construction: Welded.

D. Extended Gate Posts and Frame Members: Extend gate posts and frame end members above top of chain-link fabric at both ends of gate frame 12 inches as required to attach barbed wire assemblies.

E. Overhead Track Assembly: Manufacturer's standard track, with overhead framing supports, bracing, and accessories, engineered to support size, weight, width, operation, and design of gate and roller assemblies.
F. Hardware:

1. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
2. Hangers, roller assemblies, and stops fabricated from galvanized steel.

2.5 FITTINGS

A. General: Comply with ASTM F 626.

B. Post Caps: Provide for each post.

1. Provide line post caps with loop to receive tension wire or top rail.

C. Rail and Brace Ends: For each gate, corner, pull, and end post.

D. Rail Fittings: Provide the following:

1. Rail Clamps: Line and corner boulevard clamps for connecting bottom rails in the fence line-to-line posts.

E. Tension and Brace Bands: Pressed steel.

F. Tension Bars: Steel, length not less than 2 inches shorter than full height of chain-link fabric. Provide one bar for each gate and end post, and two for each corner and pull post, unless fabric is integrally woven into post.

G. Truss Rod Assemblies: Steel, hot-dip galvanized after threading rod and turnbuckle or other means of adjustment.

H. Barbed Wire Arms: Pressed steel or cast iron, with clips, slots, or other means for attaching strands of barbed wire, integral with post cap; for each post unless otherwise indicated, and as follows:

1. Provide line posts with arms that accommodate top rail or tension wire.
2. Provide corner arms at fence corner posts, unless extended posts are indicated.
3. Type I, single slanted arm.

I. Tie Wires, Clips, and Fasteners: According to ASTM F 626.

1. Standard Round Wire Ties: For attaching chain-link fabric to posts, rails, and frames, complying with the following:

 a. Hot-Dip Galvanized Steel: 0.148-inch-diameter wire; galvanized coating thickness matching coating thickness of chain-link fence fabric.

J. Finish:

1. Metallic Coating for Pressed Steel or Cast Iron: Not less than 1.2 oz. /sq. ft. zinc.
2.6 BARBED WIRE

A. Steel Barbed Wire: Comply with ASTM A121, for three-strand barbed wire, 0.099-inch-diameter line wire with 0.080-inch-diameter, four-point round barbs spaced not more than 5 inches o.c.

1. Zinc Coating: Type Z, Class 3.

2.7 GROUT AND ANCHORING CEMENT

A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C1107. Provide grout, recommended in writing by manufacturer, for exterior applications.

B. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydraulic-controlled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

2.8 FENCE GROUNDING

A. Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

1. Material above Finished Grade: Copper.
2. Material on or below Finished Grade: Copper.
3. Bonding Jumpers: Braided copper tape, 1 inch wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

B. Connectors and Grounding Rods: Comply with UL 467.

1. Connectors for Below-Grade Use: Exothermic welded type.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.

1. Do not begin installation before final grading is completed unless otherwise permitted by Contracting Officer.

B. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 PREPARATION

A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.

3.3 INSTALLATION, GENERAL

A. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.

1. Install fencing on established boundary lines inside property line.

3.4 CHAIN-LINK FENCE INSTALLATION

A. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.

B. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.

1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.

2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.

a. Concealed Concrete: Top 2 inches below grade to allow covering with surface material.

C. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal or vertical alignment of 15 degrees or more.

D. Line Posts: Space line posts uniformly at 10 feet o.c.

E. Post Bracing and Intermediate Rails: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Diagonally brace terminal posts to adjacent line posts with truss rods and turnbuckles. Install braces at end and gate posts and at both sides of corner and pull posts.

1. Locate horizontal braces at midheight of fabric 72 inches or higher, on fences with top rail and at two-third fabric height on fences without top rail. Install so posts are plumb when diagonal rod is under proper tension.

F. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Pull wire taut, without sags. Fasten fabric to tension wire with 0.120-inch-diameter hog rings of same material and finish as fabric wire, spaced a maximum of 24 inches o.c. Install tension wire in locations indicated before stretching fabric. Provide horizontal tension wire at the following locations:
1. Extended along top of fence fabric. Install top tension wire through post cap loops.
2. Extended along top of barbed wire arms and top of fence fabric for supporting barbed tape.

G. Intermediate and Bottom Rails: Install and secure to posts with fittings.

H. Chain-Link Fabric: Apply fabric to outside of enclosing framework. Leave 1 inch between finish grade or surface and bottom selvage unless otherwise indicated. Pull fabric taut and tie to posts, rails, and tension wires. Anchor to framework so fabric remains under tension after pulling force is released.

I. Tension or Stretcher Bars: Thread through fabric and secure to end, corner, pull, and gate posts with tension bands spaced not more than 15 inches o.c.

J. Tie Wires: Use wire of proper length to firmly secure fabric to line posts and rails. Attach wire at one end to chain-link fabric, wrap wire around post a minimum of 180 degrees, and attach other end to chain-link fabric per ASTM F626. Bend ends of wire to minimize hazard to individuals and clothing.

1. Maximum Spacing: Tie fabric to line posts at 12 inches o.c. and to braces at 24 inches o.c.

K. Fasteners: Install nuts for tension bands and carriage bolts on the side of the fence opposite the fabric side. Peen ends of bolts or score threads to prevent removal of nuts.

L. Barbed Wire: Install barbed wire uniformly spaced as indicated on Drawings. Pull wire taut, install securely to extension arms, and secure to end post or terminal arms.

3.5 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.6 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1500 feet except as follows:

1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.

 a. Gates and Other Fence Openings: Ground fence on each side of opening.

 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.
B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

C. Fences Enclosing Electrical Power Distribution Equipment: Ground as required by IEEE C2 unless otherwise indicated.

D. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at the grounding location, including the following:

1. Make grounding connections to each barbed wire strand with wire-to-wire connectors designed for this purpose.
2. Make grounding connections to each barbed tape coil with connectors designed for this purpose.

E. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

F. Connections: Make connections to minimize possibility of galvanic action or electrolysis. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
3. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

G. Bonding to Lightning Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning protection down conductor or lightning protection grounding conductor complying with NFPA 780.

3.7 FIELD QUALITY CONTROL

A. Testing Agency: Contractor shall hire and pay for an independent third-party qualified testing agency to perform tests and inspections.

1. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance no fewer than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.
2. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify Contracting Officer promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
3. Report: Prepare test reports certified by a testing agency of grounding resistance at each test location. Include observations of weather and other phenomena that may affect test results.

3.8 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Lubricate hardware and other moving parts.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government's personnel to adjust, operate, and maintain chain-link fences and gates.

END OF SECTION 32 31 13
SECTION 32 31 19.53 - DECORATIVE METAL SECURITY FENCES AND GATES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Decorative metallic-coated-steel security fences.
2. Horizontal-slide gates.

1.2 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

B. Shop Drawings: For gates. Include plans, elevations, sections, details, and attachments to other work.

1. Include diagrams for power, signal, and control wiring.

C. Samples: For each fence material and for each color specified.

1. Provide Samples 12 inches in length for linear materials.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For gate operators to include in maintenance manuals.
PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Lightning-Protection System: Maximum grounding-resistance value of 25 ohms under normal dry conditions.

2.2 DECORATIVE METALLIC-COATED-STEEL SECURITY FENCES

A. Decorative Metallic-Coated-Steel Security Fences:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Ameristar Fence Products; an ASSA ABLOY Company
 b. BetaFence USA LLC
 c. Builders Fence Company, Inc.
 d. Master Halco
 e. Xcel Fence

B. Posts:

1. Line, End, and Corner Posts: 2 3/4-by-3-inch, I-shaped sections formed from 12-gauge nominal-thickness, metallic-coated steel sheet. Steel material for fence framework shall be galvanized prior to forming and conform to ASTM A653 with a minimum zinc coating weight of 0.90 oz/ft², Coating Designation G-90.
2. Posts at Swing Gate Openings: Square steel tubing 3 by 3 inches with 12-gauge wall thickness, hot-dip galvanized.
3. Posts at Horizontal-Slide Gate Openings Wider Than 12 Feet: Square steel tubing minimum 4 by 4 inches with 11-gauge wall thickness, hot-dip galvanized.
4. Guide Posts for Class 1 Horizontal-Slide Gates: Square steel tubing 3 by 3 inches with 12-gauge wall thickness, hot-dip galvanized; installed adjacent to gate post to permit gate to slide in space between.

C. Post Caps: Aluminum castings.

D. Rails: 2-by-2-inch square tubes.

1. Metal and Thickness: 11-gauge nominal-thickness, metallic-coated steel sheet or uncoated steel sheet, hot-dip galvanized after fabrication.

2. Extend pickets beyond top rail as indicated and terminate with rounded edge.
3. Picket Spacing: 6 inches o.c., maximum.
F. Fasteners: Stainless-steel carriage bolts with tamperproof nuts.

G. Metallic-Coated Steel Sheet: Galvanized-steel sheet or aluminum-zinc, alloy-coated steel sheet.

H. Interior surface of tubes formed from uncoated steel sheet shall be hot-dip zinc coated same as exterior or coated with zinc-rich thermosetting coating to comply with ASTM F 2408.

I. Galvanizing: For components indicated to be galvanized, hot-dip galvanize to comply with ASTM A 123/A 123M. For hardware items, hot-dip galvanize to comply with ASTM A 153/A 153M.

J. Finish: Powder coating.

2.3 HORIZONTAL-SLIDE GATES

A. Gate Configuration: Single leaf.
 1. Type: Overhead slide.

B. Gate Frame Height: 84 inches.

C. Gate Opening Width: As indicated.

D. Galvanized-Steel Frames and Bracing: Fabricate members from square tubing.
 1. Frame Members: Square tubes 2 by 2 inches and 2 by 4 inches, as indicated on plans, formed from 11-gauge nominal-thickness, metallic-coated steel sheet or formed from nominal-thickness steel sheet and hot-dip galvanized after fabrication.
 2. Bracing Members: Square tubes 2 by 2 inches formed from 12-gauge nominal-thickness, metallic-coated steel sheet or formed from nominal-thickness steel sheet and hot-dip galvanized after fabrication.

E. Frame Corner Construction:
 1. Welded frame with panels assembled with bolted or riveted corner fittings and 5/16-inch-diameter, adjustable truss rods for panels 5 feet wide or wider.
 2. Overhead Slide Gates: Welded or assembled with corner fittings including 5/16-inch-diameter, adjustable truss rods for panels 5 feet wide or wider.

F. Additional Rails: Provide as indicated, complying with requirements for fence rails.

G. Infill: Comply with requirements for adjacent fence.

H. Overhead Track Assembly: Manufacturer's standard track, with overhead framing supports, bracing, and accessories, engineered to support size, weight, width, operation, and design of gate and roller assemblies.

I. Hardware: Latches permitting operation from both sides of gate, locking devices, hangers, roller assemblies and stops fabricated from galvanized steel.
J. Finish exposed welds to comply with NOMMA Guideline 1, Finish #2 - completely sanded joint, some undercutting and pinholes okay.

K. Galvanizing: For items other than hardware that are indicated to be galvanized, hot-dip galvanize to comply with ASTM A 123/A 123M. For hardware items, hot-dip galvanize to comply with ASTM A 153/A 153M.

L. Metallic-Coated-Steel Finish: High-performance coating.

M. Steel Finish: High-performance coating.

2.4 STEEL AND IRON

A. Plates, Shapes, and Bars: ASTM A 36.

B. Tubing: ASTM A 500, cold-formed steel tubing.

C. Uncoated Steel Sheet: Hot-rolled steel sheet, ASTM A 1011/A 1011M, Structural Steel, Grade 45 or cold-rolled steel sheet, ASTM A 1008/A 1008M, Structural Steel, Grade 50.

D. Galvanized-Steel Sheet: ASTM A 653/A 653M, structural quality, Grade 50, with G90 coating with a minimum yield strength of 45,000 psi.

E. Castings: Either gray or malleable iron unless otherwise indicated.

 2. Malleable Iron: ASTM A 47/A 47M.

2.5 COATING MATERIALS

A. Shop Primers for Steel: Provide primers that comply with Section 099600 "High-Performance Coatings."

B. Shop Primer for Steel: Manufacturer's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer complying with MPI#79 and compatible with topcoat.

C. Epoxy Zinc-Rich Primer for Uncoated Steel: Complying with MPI #20 and compatible with coating specified to be applied over it.

D. Epoxy Primer for Galvanized Steel: Epoxy primer recommended in writing by topcoat manufacturer.

2.6 MISCELLANEOUS MATERIALS

A. Welding Rods and Bare Electrodes: Select according to AWS specifications for metal alloy welded.
B. Concrete: Normal-weight, air-entrained, ready-mix concrete complying with requirements in Section 033000 "Cast-in-Place Concrete" with a minimum 28-day compressive strength of 3000 psi, 3-inch slump, and 1-inch maximum aggregate size or dry, packaged, normal-weight concrete mix complying with ASTM C 387/C 387M mixed with potable water according to manufacturer's written instructions.

C. Nonshrink Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M and specifically recommended by manufacturer for exterior applications.

2.7 GROUNDING MATERIALS

A. Grounding Conductors: Bare, solid wire for No. 6 AWG and smaller; stranded wire for No. 4 AWG and larger.

1. Material above Finished Grade: Copper.
2. Material on or below Finished Grade: Copper.
3. Bonding Jumpers: Braided copper tape, 1 inch wide, woven of No. 30 AWG bare copper wire, terminated with copper ferrules.

B. Grounding Connectors and Grounding Rods: Comply with UL 467.

1. Connectors for Below-Grade Use: Exothermic-welded type.
2. Grounding Rods: Copper-clad steel.
 a. Size: 5/8 by 96 inches.

2.8 STEEL FINISHES

A. Surface Preparation: Clean surfaces according to SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning."

1. After cleaning, apply a conversion coating compatible with the organic coating to be applied over it.

B. Primer Application: Apply zinc-rich epoxy primer immediately after cleaning, to provide a minimum dry film thickness of 2 mils per applied coat, to surfaces that are exposed after assembly and installation, and to concealed surfaces.

1. Match approved Samples for color, texture, and coverage. Remove and refinish, or recoat work that does not comply with specified requirements.
2.9 METALLIC-COATED-STEEL FINISHES

 A. Galvanized Finish: Clean welds, mechanical connections, and abraded areas, and repair galvanizing to comply with ASTM A 780/A 780M.

 B. Surface Preparation: Clean surfaces with nonpetroleum solvent so surfaces are free of oil and other contaminants. After cleaning, apply a zinc-phosphate conversion coating suited to the organic coating to be applied over it. Clean welds, mechanical connections, and abraded areas, and repair galvanizing to comply with ASTM A 780/A 780M.

 C. Powder Coating: Immediately after cleaning and pretreating, apply two-coat finish consisting of zinc-rich epoxy prime coat and TGIC polyester topcoat, with a minimum dry film thickness of 2 mils for topcoat. Comply with coating manufacturer's written instructions to achieve a minimum total dry film thickness of 4 mils.

 1. Color and Gloss: As selected by Contracting Officer from manufacturer's full range.
 2. Comply with surface finish testing requirements in ASTM F 2408 except change corrosion-resistance requirement to 3000 hours without failure.

 D. High-Performance Coating: Apply epoxy primer, polyurethane intermediate coat, and polyurethane topcoat to prepared surfaces. Comply with coating manufacturer's written instructions and with requirements in SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting. Apply at spreading rates recommended by coating manufacturer.

 1. Match approved Samples for color, texture, and coverage. Remove and refinish, or recoat work that does not comply with specified requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine areas and conditions, with Installer present, for compliance with requirements for site clearing, earthwork, pavement work, construction layout, and other conditions affecting performance of the Work.

 B. Do not begin installation before final grading is completed unless otherwise permitted by Architect.

 C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

 A. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.
1. Construction layout and field engineering are specified in Section 01 73 00 "Execution."

3.3 DECORATIVE SECURITY FENCE INSTALLATION

A. Install fences according to manufacturer's written instructions.

B. Install fences by setting posts as indicated and fastening rails to posts. Peen threads of bolts after assembly to prevent removal.

C. Post Excavation: Drill or hand-excavate holes for posts in firm, undisturbed soil. Excavate holes to a diameter of not less than 4 times post size and a depth of not less than 24 inches plus 3 inches for each foot or fraction of a foot that fence height exceeds 4 feet.

D. Post Setting: Set posts in concrete at indicated spacing into firm, undisturbed soil.
 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 2. Concrete Fill: Place concrete around posts and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
 a. Exposed Concrete: Extend 2 inches above grade. Finish and slope top surface to drain water away from post.
 3. Posts Set in Concrete: Extend post to within 6 inches of specified excavation depth, but not closer than 3 inches to bottom of concrete.
 4. Space posts uniformly at 8 feet o.c.

3.4 GATE INSTALLATION

A. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.

3.5 GROUNDING AND BONDING

A. Fence Grounding: Install at maximum intervals of 1500 feet except as follows:
 1. Fences within 100 Feet of Buildings, Structures, Walkways, and Roadways: Ground at maximum intervals of 750 feet.
 a. Gates and Other Fence Openings: Ground fence on each side of opening.
 1) Bond metal gates to gate posts.
 2) Bond across openings, with and without gates, except at openings indicated as intentional fence discontinuities. Use No. 2 AWG wire and bury it at least 18 inches below finished grade.
B. Protection at Crossings of Overhead Electrical Power Lines: Ground fence at location of crossing and at a maximum distance of 150 feet on each side of crossing.

C. Grounding Method: At each grounding location, drive a grounding rod vertically until the top is 6 inches below finished grade. Connect rod to fence with No. 6 AWG conductor. Connect conductor to each fence component at grounding location.

D. Bonding Method for Gates: Connect bonding jumper between gate post and gate frame.

E. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.

1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
2. Make connections with clean, bare metal at points of contact.
5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

F. Bonding to Lightning-Protection System: If fence terminates at lightning-protected building or structure, ground the fence and bond the fence grounding conductor to lightning-protection down conductor or lightning-protection grounding conductor, complying with NFPA 780.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

1. Grounding-Resistance Tests: Subject completed grounding system to a megger test at each grounding location. Measure grounding resistance not less than two full days after last trace of precipitation, without soil having been moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural grounding resistance. Perform tests by two-point method according to IEEE 81.
2. Excessive Grounding Resistance: If resistance to grounding exceeds specified value, notify Architect promptly. Include recommendations for reducing grounding resistance and a proposal to accomplish recommended work.
3. Report: Prepare test reports of grounding resistance at each test location certified by a testing agency. Include observations of weather and other phenomena that may affect test results.
3.7 ADJUSTING

A. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

B. Lubricate hardware and other moving parts.

3.8 DEMONSTRATION

A. Train Government's personnel to adjust, operate, and maintain gates.

END OF SECTION 323119.53
SECTION 32 92 00 - TURF AND GRASSES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Seeding.
2. Hydroseeding.
4. Meadow grasses and wildflowers.

1.2 DEFINITIONS

A. Finish Grade: Elevation of finished surface of planting soil.

B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliants, or desiccants.

C. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

D. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See and drawing designations for planting soils.

E. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For landscape Installer.

B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and
percentage of purity, germination, and weed seed. Include the year of production and date of packaging.

1. Certification of each seed mixture for turfgrass sod. Include identification of source and name and telephone number of supplier.

C. Product Certificates: For fertilizers, from manufacturer.

D. Soil-Testing Laboratory Qualifications: An independent laboratory or university laboratory, recognized by the State Department of Agriculture, with the experience and capability to conduct the testing indicated and that specializes in types of tests to be performed.

E. Soil Analysis: For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange capacity; sodium absorption ratio; deleterious material; pH; and mineral and plant-nutrient content of the soil.

1. Testing methods and written recommendations shall comply with USDA's Handbook No. 60.
2. The soil-testing laboratory shall oversee soil sampling, with depth, location, and number of samples to be taken per instructions from Contracting Officer. A minimum of three representative samples shall be taken from varied locations for each soil to be used or amended for planting purposes.

a. Based on the test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 1,000 sq. ft. or volume per cu. yd. for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for health, viable plants.

b. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: Recommended procedures to be established by Government for maintenance of turf and meadows during a calendar year. Submit before expiration of required maintenance periods.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful turf and meadow establishment.

1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.
2. Experience: Three years' experience in turf installation.
3. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.

B. Sod: Harvest, deliver, store, and handle sod according to requirements in "Specifications for Turfgrass Sod Materials" and "Specifications for Turfgrass Sod Transplanting and Installation" sections in TPI's "Guideline Specifications to Turfgrass Sodding." Deliver sod within 24 hours of harvesting and in time for planting promptly. Protect sod from breakage and drying.

C. Bulk Materials:
 1. Do not dump or store bulk materials near structures, utilities, walkways and pavements, or on existing turf areas or plants.
 2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 3. Accompany each delivery of bulk materials with appropriate certificates.

1.8 FIELD CONDITIONS

A. Planting Restrictions: Plant during one of the following periods. Coordinate planting periods with initial maintenance periods to provide required maintenance from date of Substantial Completion.
 2. Fall Planting: September 7 through November 7.

B. Weather Limitations: Proceed with planting only when existing and forecasted weather conditions permit planting to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

PART 2 - PRODUCTS

2.1 SEED

A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Rules for Testing Seeds" for purity and germination tolerances.
B. Seed Species: Seed of grass species as follows, with not less than 95 percent germination, not less than 85 percent pure seed, and not more than 0.5 percent weed seed:

1. Full Sun: Tall Fescue (Turf-Type), a minimum of three varieties.
2. Lawn Sun and Partial Shade: Proportioned by weight as follows:
 a. 50 percent chewings fescue, 3 varieties.
 b. 25 percent creeping red fescue, 3 varieties.
 c. 25 percent tall fescue (turf-type), 3 varieties.
3. Lawn Shade: Proportioned by weight as follows:
 a. 75 percent chewings fescue, 3 varieties.
 b. 25 percent redtop (Agrostis alba).
4. Landscape Area Seed Mix "As specified on drawing L500 by Ernst Seed Company

2.2 TURFGRASS SOD

A. Turfgrass Sod: Certified, complying with "Specifications for Turfgrass Sod Materials" in TPI's "Guideline Specifications to Turfgrass Sodding." Furnish viable sod of uniform density, color, and texture that is strongly rooted and capable of vigorous growth and development when planted.

2.3 PLANTING SOILS

A. General: Soil amendments, fertilizers, and rates of application specified in this article are guidelines that may need revision based on testing laboratory's recommendations after preconstruction soil analyses are performed.

B. Planting-Soil Type: Existing, on-site surface soil, with the duff layer, if any, retained; modified to produce viable planting soil. Blend existing, on-site surface soil with the following soil amendments and fertilizers in the following quantities to produce planting soil:

1. Ratio of Loose Compost to Soil: 1:3 by volume.
2. Ratio of Loose Peat to Soil: 1:30 by volume.
3. Weight of Lime: 50 pounds per 1000 sq. ft. per 6 inches of soil depth.
4. Weight of Slow-Release Fertilizer: 15 lbs per 1000 sq. ft. per 6 inches of soil depth.

2.4 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C 602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:

1. Class: T, with a minimum of 99 percent passing through a No. 8 sieve and a minimum of 75 percent passing through a No. 60 sieve.
2. Class: O, with a minimum of 95 percent passing through a No. 8 sieve and a minimum of 55 percent passing through a No. 60 sieve.

B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent elemental sulfur, with a minimum of 99 percent passing through a No. 6 sieve and a maximum of 10 percent passing through a No. 40 sieve.

C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

D. Perlite: Horticultural perlite, soil amendment grade.

E. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through a No. 50 sieve.

F. Sand: Clean, washed, natural or manufactured, free of toxic materials.

G. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.

2.5 FERTILIZERS

A. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:

1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.
2. Composition: Nitrogen, phosphorous, and potassium in amounts recommended in soil reports from a qualified soil-testing laboratory.

B. Bonemeal: Commercial, raw of steamed, finely ground; a minimum of 4 percent nitrogen and 10 percent phosphoric acid.

C. Superphosphate: Commercial, phosphate mixture, soluble; a minimum of 20 percent available phosphoric acid.

2.6 MULCHES

A. Straw Mulch: Provide air-dry, clean, mildew- and seed-free, salt hay or threshed straw of wheat, rye, oats, or barley.

B. Sphagnum Peat Mulch: Partially decomposed sphagnum peat moss, finely divided or of granular texture, and with a pH range of 3.4 to 4.8.

C. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
2.7 PESTICIDES

A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

PART 3 - EXECUTION

3.1 GENERAL

A. Place planting soil and fertilizers according to requirements in other Specification Sections.

B. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in planting soil.

C. Proceed with placement only after unsatisfactory conditions have been corrected.

3.2 TURF AND LANDSCAPE SEED MIX AREA PREPARATION

A. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

B. Before planting, obtain Contracting Officer's acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

3.3 SEEDING

A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph.

1. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.

2. Do not use wet seed or seed that is moldy or otherwise damaged.

3. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.

B. Sow seed at a total rate of 3 to 4 lb/1000 sq. ft..

C. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.

D. Protect seeded areas with slopes not exceeding 1:6 by spreading straw mulch. Spread uniformly at a minimum rate of 2 tons/acre to form a continuous blanket 1-1/2 inches in loose thickness over seeded areas. Spread by hand, blower, or other suitable equipment.
1. Anchor straw mulch by crimping into soil with suitable mechanical equipment.

E. Protect seeded areas from hot, dry weather or drying winds by applying compost mulch within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a thickness of 3/16 inch, and roll surface smooth.

3.4 HYDROSEEDING

A. Hydroseeding: Mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.

1. Mix slurry with fiber-mulch manufacturer's recommended tackifier.
2. Spray-apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre dry weight, and seed component is deposited at not less than the specified seed-sowing rate.
3. Spray-apply slurry uniformly to all areas to be seeded in a two-step process. Apply first slurry coat at a rate so that mulch component is deposited at not less than 500-lb/acre dry weight, and seed component is deposited at not less than the specified seed-sowing rate. Apply slurry cover coat of fiber mulch (hydromulching) at a rate of 1000 lb/acre.

3.5 SODDING

A. Lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.

B. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to soil or sod during installation. Tamp and roll lightly to ensure contact with soil, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.

1. Lay sod across slopes exceeding 1:3.
2. Anchor sod on slopes exceeding 1:6 with wood pegs or steel staples spaced as recommended by sod manufacturer but not less than two anchors per sod strip to prevent slippage.

C. Saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

3.6 TURF AND SEED MIX AREA MAINTENANCE

A. General: Maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf.
Provide materials and installation the same as those used in the original installation. Maintain seed mix areas by hand weeding a minimum of once per month until established.

1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.

B. Watering: Install and maintain temporary piping, hoses, and turf-watering equipment to convey water from sources and to keep turf uniformly moist to a depth of 4 inches.

1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly planted areas.
2. Water turf and seed mix area with fine spray at a minimum rate of 1 inch per week unless rainfall precipitation is adequate.

C. Mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain specified height without cutting more than one-third of grass height. Remove no more than one-third of grass-leaf growth in initial or subsequent mowings. Do not delay mowing until grass blades bend over and become matted. Do not mow when grass is wet.

D. Seed mix area shall be mowed once per year in late winter between the dates of February 15 and March 7. Do not mow lower than 4”.

E. Turf Postfertilization: Apply fertilizer after initial mowing and when grass is dry.

1. Use fertilizer that provides actual nitrogen of at least 1 lb/1000 sq. ft. to turf area.

3.7 Satisfactory Turf Landscape Seed Mix Areas

A. Turf installations shall meet the following criteria as determined by Contracting Officer:

1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
2. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.
3. Satisfactory Seed Mix Area: At the end of maintenance period, a full, well rooted variety of plants in various stages of flowering, free from weeds that are not included in the seed mix.

B. Use specified materials to reestablish turf that does not comply with requirements, and continue maintenance until turf is satisfactory.
3.8 PESTICIDE APPLICATION

A. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Government's operations and others in proximity to the Work. Notify Government before each application is performed.

B. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.9 CLEANUP AND PROTECTION

A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.

B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Government's property.

C. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after plantings are established.

D. Remove nondegradable erosion-control measures after grass establishment period.

3.10 MAINTENANCE SERVICE

A. Turf Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in "Turf Maintenance" Article. Begin maintenance immediately after each area is planted and continue until acceptable turf is established, but for not less than the following periods:

1. Seeded Turf: 60 days from date of Substantial Completion.
 a. When initial maintenance period has not elapsed before end of planting season, or if turf is not fully established, continue maintenance during next planting season.

2. Sodded Turf: 60 days from date of Substantial Completion.

B. Landscape Area Seed Mix Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in "Meadow Maintenance" Article. Begin maintenance immediately after each area is planted and continue until acceptable meadow is established, but for not less than maintenance period below.
SECTION 32 93 00 - PLANTS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
1. Plants.
2. Planting soils.

1.2 DEFINITIONS

A. Backfill: The earth used to replace or the act of replacing earth in an excavation.

B. Finish Grade: Elevation of finished surface of planting soil.

C. Manufactured Topsoil: Soil produced off-site by homogeneously blending mineral soils or sand with stabilized organic soil amendments to produce topsoil or planting soil.

D. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. This includes insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. It also includes substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.

E. Pests: Living organisms that occur where they are not desired, or that cause damage to plants, animals, or people. These include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.

F. Planting Soil: Standardized topsoil; existing, native surface topsoil; existing, in-place surface soil; imported topsoil; or manufactured topsoil that is modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.

G. Root Flare: Also called "trunk flare." The area at the base of the plant's stem or trunk where the stem or trunk broadens to form roots; the area of transition between the root system and the stem or trunk.

H. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

I. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.

J. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.
1.3 SUBMITTALS

A. Product Data: For each type of product indicated, including soils.

B. Product certificates.

C. Maintenance Instructions: Recommended procedures to be established by CO for maintenance of plants during a calendar year.

1.4 QUALITY ASSURANCE

A. Installer's Field Supervision: Require Installer to maintain an experienced full-time supervisor on Project site when work is in progress.

 1. Pesticide Applicator: State licensed, commercial.

B. Soil Analysis: For each unamended soil type, furnish soil analysis and a written report by a qualified soil-testing laboratory.

 1. The soil-testing laboratory shall oversee soil sampling.
 2. Report suitability of tested soil for plant growth.

 a. State recommendations for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
 b. Report presence of problem salts, minerals, or heavy metals; if present, provide additional recommendations for corrective action.

C. Provide quality, size, genus, species, and variety of plants indicated, complying with applicable requirements in ANSI Z60.1.

D. Preinstallation Conference: Conduct conference at Project site.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver bare-root stock plants freshly dug. Immediately after digging up bare-root stock, pack root system in wet straw, hay, or other suitable material to keep root system moist until planting.

B. Do not prune trees and shrubs before delivery. Protect bark, branches, and root systems from sun scald, drying, wind burn, sweating, whipping, and other handling and tying damage. Do not bend or bind-tie trees or shrubs in such a manner as to destroy their natural shape. Provide protective covering of plants during shipping and delivery. Do not drop plants during delivery and handling.

C. Handle planting stock by root ball.

D. Store bulbs, corms, and tubers in a dry place at 60 to 65 deg F until planting.
E. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than six hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.

1.6 WARRANTY

A. Special Warranty: Installer agrees to repair or replace plantings and accessories that fail in materials, workmanship, or growth within specified warranty period.

1. Failures include, but are not limited to, the following:

 a. Death and unsatisfactory growth, except for defects resulting from abuse, lack of adequate maintenance, or neglect by the North Carolina Air National Guard (NCANG), or incidents that are beyond Contractor's control.
 b. Structural failures including plantings falling or blowing over.

2. Warranty Periods from Date of Substantial Completion:

 a. Trees, Shrubs, Vines, and Ornamental Grasses: 12 months.
 b. Ground Covers, Biennials, Perennials, and Other Plants: 12 months.
 c. Annuals: Three months.

1.7 MAINTENANCE SERVICE

A. Initial Maintenance Service: Provide maintenance by skilled employees of landscape Installer. Maintain as required in Part 3. Begin maintenance immediately after plants are installed and continue until plantings are acceptably healthy and well established but for not less than maintenance period below.

1. Maintenance Period for Trees and Shrubs: 12 months from date Substantial Completion.
2. Maintenance Period for Ground Cover and Other Plants: Six months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PLANT MATERIAL

A. General: Furnish nursery-grown plants true to genus, species, variety, cultivar, stem form, shearing, and other features indicated in Plant Schedule or Plant Legend shown on Drawings and complying with ANSI Z60.1; and with healthy root systems developed by transplanting or root pruning. Provide well-shaped, fully branched, healthy, vigorous stock, densely foliated when in leaf and free of disease, pests, eggs, larvae, and defects such as knots, sun scald, injuries, abrasions, and disfigurement.
B. Root-Ball Depth: Furnish trees and shrubs with root balls measured from top of root ball, which shall begin at root flare according to ANSI Z60.1. Root flare shall be visible before planting.

2.2 INORGANIC SOIL AMENDMENTS

A. Lime: ASTM C 602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:

1. Class: T, with a minimum of 99 percent passing through No. 8 sieve and a minimum of 75 percent passing through No. 60 sieve.
2. Class: O, with a minimum of 95 percent passing through No. 8 sieve and a minimum of 75 percent passing through No. 60 sieve.

B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent sulfur, with a minimum of 99 percent passing through No. 6 sieve and a maximum of 10 percent passing through No. 40 sieve.

C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.

D. Aluminum Sulfate: Commercial grade, unadulterated.

E. Perlite: Horticultural perlite, soil amendment grade.

F. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through No. 50 sieve.

G. Sand: Clean, washed, natural or manufactured, and free of toxic materials.

H. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.

I. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.3 ORGANIC SOIL AMENDMENTS

A. Compost: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 7.5; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 5 to 10 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:

B. Sphagnum Peat: Partially decomposed sphagnum peat moss, finely divided or granular texture, with a pH range of 3.4 to 4.8.

C. Manure: Well-rotted, unleached, stable or cattle manure containing not more than 25 percent by volume of straw, sawdust, or other bedding materials; free of toxic substances, stones, sticks, soil, weed seed, debris, and material harmful to plant growth.
2.4 FERTILIZERS

A. Bonemeal: Commercial, raw or steamed, finely ground; a minimum of 4 percent nitrogen and 10 percent phosphoric acid.

B. Slow-Release Fertilizer: Granular or pelleted fertilizer consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium in the following composition:
 1. Composition: 20 percent nitrogen, 10 percent phosphorous, and 10 percent potassium, by weight.

C. Planting Tablets: Tightly compressed chip type, long-lasting, slow-release, commercial-grade planting fertilizer in tablet form. Tablets shall break down with soil bacteria, converting nutrients into a form that can be absorbed by plant roots.
 1. Size: 5-gram tablets.
 2. Nutrient Composition: 20 percent nitrogen, 10 percent phosphorous, and 5 percent potassium, by weight plus micronutrients.

2.5 PLANTING SOILS

A. Planting Soil Existing, native surface topsoil formed under natural conditions with the duff layer retained during excavation process or imported topsoil or manufactured topsoil from approved off-site sources; do not obtain from agricultural land, bogs or marshes. Verify suitability of soil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clods, clay lumps, pockets of coarse sand, concrete slurry, concrete layers or chunks, cement, plaster, building debris, and other extraneous materials harmful to plant growth. Mix soil with the following soil amendments and fertilizers in the following quantities to produce planting soil:
 1. Ratio of Loose Compost to Topsoil by Volume: 1:3
 2. Ratio of Loose Peat to Topsoil by Volume: 1:3
 3. Weight of Lime per 1000 Sq. Ft. per soil lab recommendation.

2.6 MULCHES

A. Organic Mulch: Wood and bark chips free of foreign material such as bits of paper, plastic, or other trash and free of any substance harmful to plants.

B. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings.

2.7 PESTICIDES

A. General: Pesticide registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as
required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PLANTING AREA ESTABLISHMENT

A. Loosen subgrade of planting areas to a minimum depth of 8 inches. Remove stones larger than 1 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off government property.

1. Apply pesticide only if recommended by soil testing laboratory in quantities specified.
2. Thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
3. Spread planting soil to a depth of 6 inches but not less than required to meet finish grades after natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.

B. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades. Slope plantings areas away from buildings.

3.2 EXCAVATION FOR TREES AND SHRUBS

A. Planting Pits and Trenches: Excavate circular planting pits with sides sloping inward at a 45-degree angle. Excavations with vertical sides are not acceptable. Trim perimeter of bottom leaving center area of bottom raised slightly to support root ball and assist in drainage away from center. Do not further disturb base. Ensure that root ball will sit on undisturbed base soil to prevent settling. Scarify sides of planting pit smeared or smoothed during excavation.

1. Excavate so top of hole is approximately three times as wide as ball diameter, bottom at least twice as wide.
2. Excavate at least 12 inches wider than root spread and deep enough to accommodate vertical roots for bare-root stock.
3. Do not excavate deeper than depth of the root ball, measured from the root flare to the bottom of the root ball.

B. Subsoil and topsoil removed from excavations may be used as planting soil.

3.3 TREE, SHRUB, AND GROUNDCOVER/GRASES PLANTING

A. Before planting, verify that root flare is visible at top of root ball according to ANSI Z60.1.

B. Remove stem girdling roots and kinked roots. Remove injured roots by cutting cleanly; do not break.
C. Set stock plumb and in center of planting pit or trench with root flare 1 inch adjacent finish grades.

1. Use planting soil for backfill.
2. Balled and Burlapped: After placing some backfill around root ball to stabilize plant, carefully cut and remove burlap, rope, and wire baskets from tops of root balls and from sides: remove as much as possible without damaging rootballs, but do not remove from under root balls. Remove pallets, if any, before setting. Do not use planting stock if root ball is cracked or broken before or during planting operation.
3. Container-Grown: Carefully remove root ball from container without damaging root ball or plant. Carefully scarify the rootball prior to placing in hole.
4. Fabric Bag-Grown Stock: Carefully remove root ball from fabric bag without damaging root ball or plant. Do not use planting stock if root ball is cracked or broken before or during planting operation.
5. Backfill around root ball in layers, tamping to settle soil and eliminate voids and air pockets. When planting pit is approximately one-half filled, water thoroughly before placing remainder of backfill. Repeat watering until no more water is absorbed.
6. If recommended by soil testing laboratory, place planting tablets in each planting pit when pit is approximately one-half filled; in amounts recommended in soil reports from soil-testing laboratory. Place tablets per manufacturer’s recommendations.
7. Continue backfilling process. Water again after placing and tamping final layer of soil.

D. Bare-Root Stock: Set and support bare-root stock in center of planting pit or trench with root flare 1 inch adjacent finish grade.

1. Use planting soil for backfill.
2. Spread roots without tangling or turning toward surface, and carefully work backfill around roots by hand. Puddle with water until backfill layers are completely saturated. Plumb before backfilling, and maintain plumb while working backfill around roots and placing layers above roots.
3. If recommended by soil testing laboratory, place planting tablets in each planting pit when pit is approximately one-half filled; in amounts recommended in soil reports from soil-testing laboratory. Place tablets beside soil-covered roots about 1 inch from root tips; do not place tablets in bottom of the hole or touching the roots.

E. When planting on slopes, set the plant so the root flare on the uphill side is flush with the surrounding soil on the slope; the edge of the root ball on the downhill side will be above the surrounding soil. Apply enough soil to cover the downhill side of the root ball.

3.4 TREE AND SHRUB

A. Remove only dead, dying, or broken branches. Do not prune for shape.

B. Prune, thin, and shape trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Contracting Officer, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.
3.5 GROUND COVER AND PLANT PLANTING

A. Set out and space ground cover and plants other than trees, shrubs, and vines as indicated in even rows with triangular spacing.

B. Use planting soil for backfill.

C. Dig holes large enough to allow spreading of roots.

D. Work soil around roots to eliminate air pockets and leave a slight saucer indentation around plants to hold water.

E. Water thoroughly after planting, taking care not to cover plant crowns with wet soil.

F. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.

3.6 PLANTING AREA MULCHING

A. Mulch backfilled surfaces of planting areas and other areas indicated.

1. Trees in Turf Areas: Apply organic mulch ring of 3-inch average thickness, with 36-inch radius around trunks or stems. Do not place mulch within 3 inches of trunks or stems.

2. Organic Mulch in Planting Areas: Apply 3-inch average thickness of mulch extending 12 inches, and finish level with adjacent finish grades. Do not place mulch within 3 inches of trunks or stems.

3.7 PLANT MAINTENANCE

A. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring planting saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings. Spray or treat as required to keep trees and shrubs free of insects and disease.

B. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.

C. Apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use practices to minimize the use of pesticides and reduce hazards.

D. Apply pesticides and other chemical products and biological control agents in accordance with authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with NCANG operations and others in proximity to the Work. Notify Contracting Officer before each application is performed.
E. Protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.

END OF SECTION 32 93 00
SECTION 33 41 00 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Pipe and fittings.
 2. Nonpressure transition couplings.
 3. Cleanouts.
 4. Drains.
 5. Manholes.
 6. Catch basins.
 7. Stormwater inlets.
 8. Channel drainage systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

B. Shop Drawings:
 1. Manholes: Include plans, elevations, sections, details, frames, and covers.
 2. Catch basins and stormwater inlets. Include plans, elevations, sections, details, frames, covers, and grates.

1.3 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.

B. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet and vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.

C. Field quality-control reports.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Do not store plastic pipe, and fittings in direct sunlight.
B. Protect pipe, pipe fittings, and seals from dirt and damage.

C. Handle manholes according to manufacturer's written rigging instructions.

D. Handle catch basins and stormwater inlets according to manufacturer's written rigging instructions.

1.5 PROJECT CONDITIONS

A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Government or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:

1. Notify Contracting Officer no fewer than two days in advance of proposed interruption of service.
2. Do not proceed with interruption of service without Contracting Officer’s written permission.

PART 2 - PRODUCTS

2.1 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:

1. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: ASTM D 3034, PVC with bell ends.

2.2 CONCRETE PIPE AND FITTINGS

A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76.

2. Class IV, Wall B.
3. Class V, Wall B.

2.3 NONPRESSURE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.

B. Sleeve Materials:
1. For Concrete Pipes: ASTM C 443, rubber.
2. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
3. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

C. Unshielded, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. Fernco Inc.
 c. Logan Clay Pipe.
 d. Mission Rubber Company; a division of MCP Industries, Inc.
 e. NDS Inc.
 f. Plastic Oddities; a division of Diverse Corporate Technologies, Inc.

2. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.

D. Ring-Type, Flexible Couplings:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fernco Inc.
 b. Logan Clay Pipe.
 c. Mission Rubber Company; a division of MCP Industries, Inc.

2.4 CLEANOUTS

A. Cast-Iron Cleanouts:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MIFAB, Inc.
 d. Tyler Pipe.
 e. Watts Water Technologies, Inc.
 f. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.

2. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
4. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

2.5 DRAINS

A. Cast-Iron Area Drains:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 b. MIFAB, Inc.
 d. Tyler Pipe.
 e. Watts Water Technologies, Inc.
 f. Zurn Specification Drainage Operation; Zurn Plumbing Products Group.
 g. Neenah Foudry

2. Description: ASME A112.6.3 gray-iron round body with anchor flange and round secured grate. Include bottom outlet with inside calk or spigot connection, of sizes indicated.

2.6 MANHOLES

A. Standard Precast Concrete Manholes:

1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
2. Diameter: 48 inches minimum unless otherwise indicated.
3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
5. Riser Sections: 4-inch minimum thickness, and lengths to provide depth indicated.
6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
9. Steps: ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
10. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.

11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Manhole Frames and Covers:

1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch- minimum width flange and 26-inch- diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

2. Material: ASTM A 536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.7 CONCRETE

A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:

1. Cement: ASTM C 150, Type II.

B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.

1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 a. Invert Slope: 1 percent through manhole.

2. Benches: Concrete, sloped to drain into channel.
 a. Slope: 4 percent.

D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.

2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.
2.8 CATCH BASINS

A. Standard Precast Concrete Catch Basins:
 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 2. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 3. Riser Sections: 4-inch minimum thickness, 48-inch diameter, and lengths to provide depth indicated.
 4. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated. Top of cone of size that matches grade rings.
 5. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 6. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
 7. Grade Rings: Include two or three reinforced-concrete rings, of 6- to 9-inch total thickness, that match 24-inch- diameter frame and grate.
 8. Steps: ASTM A 615/A 615M, deformed, 1/2-inch steel reinforcing rods encased in ASTM D 4101, PP, wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of catch basin to finished grade is less than 60 inches.
 9. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.

B. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.
 1. Size: 24 by 24 inches minimum unless otherwise indicated.
 2. Grate Free Area: Approximately 50 percent unless otherwise indicated.

2.9 STORMWATER INLETS

A. Combination Inlets: Made with vertical curb and horizontal gutter openings, of materials and dimensions according to North Carolina Department of Transportation standards. Include heavy-duty frames and grates.

B. Frames and Grates: Heavy duty, according to North Carolina Department of Transportation standards.

2.10 CHANNEL DRAINAGE SYSTEMS

A. Wide, Sloped-Invert, Polymer-Concrete, Channel Drainage Systems:
 1. Description: Modular system of channel sections, grates, and appurtenances; designed so grates fit into channel recesses without rocking or rattling.
a. Channel Sections: Wide, interlocking-joint, precast, polymer-concrete modular units with end caps.
 1) Include flat or rounded bottom, with level invert and with outlets in number, sizes, and locations indicated.
 2) Dimensions: 12-inch inside width and 13-3/4-inch minimum inside depth. Include number of units required to form total lengths indicated.
 3) Frame: Galvanized steel or cast iron for grates.

b. Grates: Manufacturer's designation "heavy duty," with slots and of width and thickness that fit recesses in channel sections.
 1) Material: Ductile iron
 2) Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.

c. Covers: Solid ductile iron, of width and thickness that fit recesses in channel sections, and of lengths indicated.

d. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.

e. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

PART 3 - EXECUTION

3.1 EARTHWORK
 A. Excavation, trenching, and backfilling are specified in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION
 A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

 B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

 C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.

 D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.

F. Assemble channel drainage system components according to manufacturer's written instructions. Install on support devices so that top will be flush with adjacent surface.

G. Install gravity-flow, nonpressure drainage piping according to the following:
 1. Install piping pitched down in direction of flow.
 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 3. Install piping with 30-inch minimum cover.
 4. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.
 5. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure drainage piping according to the following:
 1. Join PVC sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasketed joints.
 3. Join dissimilar pipe materials with nonpressure-type flexible couplings.

3.4 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts and cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.

B. Set cleanout frames and covers in earth in cast-in-place concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding earth grade.

C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 DRAIN INSTALLATION

A. Install type of drains in locations indicated.
1. Use Medium-Duty, top-loading classification drains in paved foot-traffic areas.

B. Embed drains in 4-inch minimum concrete around bottom and sides.

C. Fasten grates to drains if indicated.

D. Set drain frames and covers with tops flush with pavement surface.

3.6 MANHOLE INSTALLATION

A. General: Install manholes, complete with appurtenances and accessories indicated.

B. Install precast concrete manhole sections with sealants according to ASTM C 891.

C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.

D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

3.7 CATCH BASIN INSTALLATION

A. Construct catch basins to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.8 STORMWATER INLET INSTALLATION

A. Construct inlet to sizes and shapes indicated.

B. Set frames and grates to elevations indicated.

3.9 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.10 CONNECTIONS

A. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping; and encase entire wye fitting, plus 6-inch overlap, with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.

3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

 a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
 b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.

4. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

B. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.

 1. Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.

 a. Unshielded flexible couplings for same or minor difference OD pipes.
 b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

3.11 IDENTIFICATION

A. Materials and their installation are specified in Section 31 20 00 "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.

 1. Use warning tape or detectable warning tape over ferrous piping.
 2. Use detectable warning tape over nonferrous piping and over edges of underground structures.

3.12 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
1. Submit separate reports for each system inspection.
2. Defects requiring correction include the following:
 a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 d. Infiltration: Water leakage into piping.
 e. Exfiltration: Water leakage from or around piping.
3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Reinspect and repeat procedure until results are satisfactory.

B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
1. Do not enclose, cover, or put into service before inspection and approval.
2. Test completed piping systems according to requirements of authorities having jurisdiction.
3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
4. Submit separate report for each test.
5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 a. Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
 b. Option: Test plastic piping according to ASTM F 1417.
 c. Option: Test concrete piping according to ASTM C 924.

C. Leaks and loss in test pressure constitute defects that must be repaired.
D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.13 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with potable water.

END OF SECTION 33 41 00
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes Under Running Overhead Electric Crane System and associated equipment required for operation of the crane.

B. Related Requirements:

1. Division 05 - 051200 “Structural Steel Framing” for Installation of Structural Steel Members.

1.3 GENERAL

1. REFERENCES

a. AMERICAN GEAR MANUFACTURERS ASSOCIATION (AGMA)

5) ANSI/AGMA 2015-1: (2001A; R 2014) Accuracy Classification System - Tangential Measurements for Cylindrical Gears
6) ANSI/AGMA 6013: (2006A; R 2011) Standard for Industrial Enclosed Gear Drives

b. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

c. AMERICAN WELDING SOCIETY (AWS)

1) AWS D1.1/D1.1M: (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

d. ASME INTERNATIONAL (ASME)

1) ASME B1.1: (2003; R 2008) Unified Inch Screw Threads (UN and UNR Thread Form)
2) ASME B18.2.2: (2010) Nuts for General Applications: Machine Screw Nuts, Hex, Square, Hex Flange, and Coupling Nuts (Inch Series)
3) ASME B30.10: (2014) Hooks
5) ASME B30.16: (2012) Overhead Hoists (Underhung)
6) ASME HST-4: (2016) Performance Standard for Overhead Electric Wire Rope Hoists

e. ASTM INTERNATIONAL (ASTM)

2) ASTM A194/A194M: (2016a) Standard Specification for Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both
9) ASTM E125: (1963; R 2013) Photographs for Magnetic Particle Indications on Ferrous Castings
11) ASTM F436: (2011) Hardened Steel Washers
12) ASTM F959: (2013) Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners

f. CRANE MANUFACTURERS ASSOCIATION OF AMERICA (CMAA)

g. NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
 1) NEMA 250: (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)
 2) NEMA ICS 3: (2005; R 2010) Medium-Voltage Controllers Rated 2001 to 7200 V AC
 3) NEMA ICS 6: (1993; R 2011) Industrial Control and Systems: Enclosures
 4) NEMA ICS 8: (2011) Crane and Hoist Controllers
 5) NEMA MG 1: (2016) Motors and Generators

h. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
 1) NFPA 70: (2017) National Electrical Code

i. U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
 1) 29 CFR 1910: Occupational Safety and Health Standards
 2) 29 CFR 1910.147: Control of Hazardous Energy (Lock Out/Tag Out)
 3) 29 CFR 1910.179: Overhead and Gantry Cranes
 4) 29 CFR 1910.306: Specific Purpose Equipment and Installations

j. UNDERWRITERS LABORATORIES (UL)
 1) UL 1004-1: (2012: Reprint Jun 2016) UL Standard for Safety Rotating Electrical Machines - General Requirements

2. DEFINITIONS
 a. Crane Bridge: That part of an overhead crane system consisting of girder(s), end trucks, end ties, walkway, and drive mechanism which carries the trolley(s) and travels along the runway rails parallel to the runway.
 b. Crane Runway: The track system along which the crane operates horizontally, including track hangar rods, track connection devices, and runway structural supports.
 c. Dead Loads: The loads on a structure which remain in a fixed position relative to the structure.
 d. Girder: The principal horizontal beam of the crane bridge. It is supported by the crane end trucks. Normally the crane trolley mounted hoist is suspended from the girder below the crane.
 e. Live Load: A load which moves relative to the structure under consideration.
 f. Rated Load: For the purpose of this specification the rated load is defined as the maximum working load suspended under the load hook.
g. Standard Commercial Cataloged Product: A product which is currently being sold, or previously has been sold, in substantial quantities to the general public, industry or Government in the course of normal business operations. Models, samples, prototypes or experimental units do not meet this definition. The term "cataloged" as specified in this section is defined as "appearing on the manufacturer’s published product data sheets. These data sheets must have been published or copyrighted prior to the issue date of this solicitation and have a Document identification number or bulletin number.

h. Trolley Mounted Hoist: A combined unit consisting of a wheeled trolley that provides horizontal motion along the bridge girder, and a hoist suspended from the trolley, that provides lifting and lowering of a freely suspended load.

i. Underrunning (Underhung) Crane: An electric overhead traveling crane that is supported by crane end trucks suspended below the crane runway. The load is supported by hanging from the lower flange of a beam.

1.4 REQUIREMENTS

1. The requirements for the crane runway and rail supporting structures are specified in Section 05 12 00, STRUCTURAL STEEL, and must conform To AISC 325.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.6 VERIFICATION OF DIMENSIONS

A. The Contractor is responsible for the coordination and proper relation of his work to the building structure and to the work of all trades. Verify all dimensions of the building that relate to fabrication of the crane and notify the Contracting Officer of any discrepancy before finalizing the crane order.

1.7 ACTION SUBMITTALS

A. Product Data: For each type of product.

1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

2. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for Bridge Crane and related equipment including but not limited to the following:

a. Under Running Overhead Electric Crane System:

1) Bridge end trucks.
2) Hoist trolley.
3) Crane controllers.
4) Couplings.
5) Radio Controls.
6) Inverter Duty Motors.
7) Crane Control Parameter Settings.
8) Crane electrification.
9) Motors.
10) Brakes.
11) Overload Protection.
12) Hoist Limit Switches.

B. Design Data:

1. Delegated-Design Submittal: For Under Running Overhead Electric Crane System. Submit calculations verifying the sizing of the bridge girder, end trucks and travel drives. Include seismic analysis of bridge girder and end trucks. Calculations must be reviewed, signed and sealed by a licensed professional engineer. Including but not limited to the following:
 a. Load and sizing calculations.
 b. Crane bridge girder.

C. Shop Drawings:

1. Include plans, elevations, sections, and mounting and attachment details.

2. Include details of equipment assemblies. Indicate dimensions, weights, loads, the required clearances, method of field assembly, components, and location and size of each field connection.

4. Include diagrams for power, signal, and control wiring.

5. Submit shop drawings showing the general arrangement of all components in plan, elevation, and end views: hook approaches on all four sides, clearances and principal dimensions, assemblies of hoist, trolley and bridge drives, motor nameplate data, overcurrent protective device ratings, and electrical schematic drawings. Include weights of components and maximum bridge wheel loads and spacing.

6. Shop drawing quality must be equivalent to the contract drawings accompanying this solicitation. Drawings must be reviewed, signed and sealed by a professional engineer licensed to practice in the State of North Carolina.

7. Provide integral schedule of crane components on each drawing. Provide maximum wheel loads (without impact) and spacing imparted to the runway track beams. Indicate the crane speeds along the runway, the trolley speeds along the bridge girder, and the
hoist lifting speeds; all speeds indicated are speeds with hoist loaded with rated crane capacity load.

1.8 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Under Running Overhead Electric Crane System location and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Steel Erection.
 2. Electrical locations.

B. Qualification Data: For Installer, manufacturer, testing agency, and Design Engineer.

C. Certificates: For Under Running Overhead Electric Crane System, accessories, and components, from manufacturer.
 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 a. Brake Setting Record.
 b. Overload Test Certificate.
 c. Loss of Power (Panic Test) Certificate.
 d. No Hazardous Material Certificate: Stating no asbestos, lead, cadmium, chromium, PCB's, elemental mercury, or any other hazardous materials.
 e. Certificate of Compliance with Listed Standards.

D. Test Reports: For each Under Running Overhead Electric Crane System.
 1. Product Test Reports: For each Under Running Overhead Electric Crane System, for tests performed by manufacturer and witnessed by a qualified testing agency. Including but not limited to:
 a. Hook Proof Test.
 b. Hoisting rope breaking strength.
 c. Load Test.
 d. No-load Test.
 e. Post-erection inspection report.
 f. Operational test report.

E. Sample Warranty: For manufacturer's special warranty.

1.9 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For Under Running Overhead Electric Crane System Data Package 4 to include system, in emergency, operation, operation and maintenance manuals.
1. Submit data package in accordance with Section 01 78 23 OPERATION AND MAINTENANCE DATA including weekly, monthly, semi-annual, and annual required maintenance items.

1.10 QUALITY ASSURANCE

A. Manufacturer Qualifications: Under Running Overhead Electric Crane system, including sub-system components manufactured by vendors, must be designed and manufactured by a company with a minimum of 10 years of specialized experience in designing and manufacturing the type of overhead crane required to meet requirements of the Contract Documents and conforming to ASME B30.16.

B. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

C. Pre-Delivery Inspections: Contractor is responsible for performance of quality control inspections, testing and documentation of steel castings, hook assembly and trolley as follows:

1. Inspection of Steel Castings: Visually inspect and test using ultrasonic testing.
2. All load bearing components, couplings, shafts, and gears, in the hoist drive train must be rolled or forged steel, except brake drums which may be ductile iron. Methods of repairing the discontinuities are subject to review by the Contracting Officer.

D. Inspection of Hook Assembly:

1. Inspect hook and nut by X-ray or magnetic particle inspection prior to delivery. Furnish documentation of hook inspection (Hook Proof Test) to Contracting Officer prior to field operational testing. As part of the acceptance standard, linear indications greater than 1/16 inch are not allowed. Welding repairs of hook are not permitted. A hook showing linear indications, damage or deformation is not acceptable and must be replaced immediately.

E. Certificates

1. Submit a statement that the crane can be periodically load tested to 125 percent (plus 0 minus 5) of rated load.
2. Also provide the certificates called for in Paragraph 1.8C above.
3. Submit a loss of power (panic test) certificate stating that a test may be performed in which power is removed from the crane while the hoist, bridge and trolley are in operation to simulate a loss of power.

F. Welding Qualifications and Procedure

1. Welding must be in accordance with qualified procedures using AWS D14.1/D14.1M as modified. Written welding procedures must specify the Contractor's standard dimensional tolerances for deviation from camber and sweep and not exceed those specified in AWS D14.1/D14.1M and CMAA 74. Welders and welding operators must be qualified in
accordance with AWS D1.1/D1.1M or AWS D14.1/D14.1M. Allowable stress values must comply with CMAA 74.

G. Crane Safety

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide the following:

 a. Provide under running bridge overhead electric crane, with under running trolley mounted hoist, conforming to CMAA 74, Class C (Moderate Service) for indoor service. Crane must be controlled by radio controls.

 b. All components of the crane system must comply with CMAA 74, Class C, except as modified and supplemented in this specification section. The crane span must be as shown on the drawings.

 c. Reference in publications to the "authority having jurisdiction" means the "Contracting Officer."

 d. The crane must operate in an indoor environment having an ambient temperature of 50 to 100 degrees F.

 e. Maximum crane wheel loads (without impact) due to dead and live loads, with the trolley in any position, causing a more severe loading condition in the runway support structure than that produced by the design wheel loads and spacing indicated on the design drawings is not permitted.

2.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design the Under Running Overhead Electric Crane System.

B. Power Characteristics

1. Provide crane operating from a 480 volt AC, 60 Hz, three phase power source.

C. Capacity

1. Provide a crane with a rated capacity of 3 Tons. Mark the rated capacity in both ton and pound units printed in different colors on each side of the crane bridge girders. Capacity marks must be clearly legible to the operator at ground level. Individual hoist units must have their rated capacity clearly marked on their bottom block, and additionally labeled
2. Crane shall be capable of lifting, lowering, and moving the stated capacity over the full range of speeds.

D. Speeds & Crane Control Parameter Settings:

1. Provide the crane with the following rated load speeds plus or minus 15 percent:

a. Hoist - rated speed of 16 feet per minute
b. Trolley - rated speed of 50 feet per minute
c. Bridge - rated speed of 50 feet per minute
d. Hoist - minimum speed of 1.0 feet per minute
e. Trolley - minimum speed of 1.5 feet per minute
f. Bridge - minimum speed of 1.5 feet per minute

E. Crane Bridge

1. Crane Bridge Girder

a. Provide a wide flange (W) or standard (S) I beam in accordance with CMAA 74 for the crane bridge girder. The summation of all normal stresses on a girder section under analysis cannot exceed the allowable stress for tension or compression as stated in CMAA 74.

2. Bridge End Trucks

a. Provide swiveling type wheel assemblies for the crane end trucks so that connections between the end truck and the wheel assemblies have rotational movement in two axes. Further, these connections must ensure contact of all end truck wheels with the runway operating (lower) flange at all times. No hollow stamped steel wheels are permitted.

b. Configure bridge trucks with a feature that limits load movement to one inch in the event of wheel or shaft failure.

3. Bridge Brake

a. Provide bridge drive with an electro-mechanical brake conforming to the requirements of CMAA 74, capable of stopping the motion of the bridge within a distance in feet equal to 10 percent of the full load speed in feet per minute when traveling at full speed with a full load. Provide brake with a minimum torque rating of 50 percent of the drive motor rated torque.

b. Provide brakes with an externally accessible means to manually defeat the brake.

4. Bumpers
a. Provide trolley and bridge bumpers conforming to CMAA 74 guidelines.

F. Hoist Trolley
1. Configure trolley such that the trolley frame contacts the trolley stops and prevents the trolley from dropping more than one inch in the event of an axle or wheel failure. Trolley must be mounted on straight and flat bridge beam. No hollow stamped steel wheels are permitted.

2. Trolley Drive
a. Provide motor-driven trolley.

3. Trolley Brake
a. Provide trolley brake or non-coasting worm drive capable of stopping the trolley within a distance in feet equal to 10 percent of the rated speed in feet per minute when traveling at rated speed with rated load. Provide brakes with an externally accessible means to manually defeat the brake.

G. Hoist
1. ASME HST-4, Class H3, double reeved, except as modified and supplemented in this section. Equip hoist with a spring set, electro-mechanically released brake plus a mechanical load brake.

2. Load Block
a. Construct the load block entirely of steel. The design must preclude the wire rope from being cut, pinched, crushed, or chafed in case of two-blocking.

b. Construct the load block so that the hook and hook nut may be removed from the load block without disassembly of the block. Provide hook and hook nut forged from steel conforming to ASTM A668/A668M. Provide the hook with a safety latch per OSHA requirements. Provide the equalizer bar or sheave perpendicular to the running sheaves. Mark hoist capacity in pounds on both sides of the load blocks.

3. Hook and Hook Nut
a. Provide hook conforming to ASME B30.10, except as modified and supplemented in this specification section. Do not coat, galvanize, or paint hook nut. Provide hook and hook nut capable of complete disassembly that enables access to all surfaces of hook, including shank and hook nut for inspection purposes. Make provision for the hook nut, or other hook-to-block fastener, to be keyed to hook shank by means of a set screw or similar, easily removable, securing device. Provide bearing or bushing as necessary to ensure the hook rotates easily within the hook block when loaded at 131.25 percent of the rated hoist capacity. Do not coat, galvanize, or paint hook.
b. **Weld Repair**: Weld repairs for defects on hooks or hook nuts are not acceptable.

4. **Hoisting Rope**

a. Provide wire rope conforming to ASTM A1023/A1023M, improved or extra improved plow steel as a minimum, regular lay, uncoated, 6 by 37 class construction, with an independent wire rope core. Provide double reeved reeving arrangement. Connect hoisting rope dead end to equalizer bars (if used) by means of zinc-splattered sockets or swaged fittings installed in a manner which develops the full breaking strength of the hoisting rope.

b. Anchor hoisting rope ends on the drum by means of swaged fittings or by clamping. Neatly and securely seize hoisting rope ends with corrosion resistant wire, except where terminated in zinc-splattered sockets or swaged fittings.

c. Provide wire rope minimum safety factor of 5 to 1 based on the ratio of actual minimum wire rope breaking load to the calculated load on rope when hoist is assumed loaded to rated capacity. Certification from rope manufacturer verifying provided wire rope breaking strength, conforming to ASTM A931 must be approved by the Contracting Officer. No paint or coatings are allowed on the wire rope. Minimum length of the wire rope must enable the load hook to operate through its full hook lift range and still have a minimum of two full wraps of wire rope around the rope drum.

5. **Sheaves**

a. Provide steel sheaves. Machine or grind the grooves to contour and rim toughen, flame, or induction harden to not less than 320 BHN. Provide minimum pitch diameters of running sheaves of not less than 16 times the rope diameter. Provide sheave groove depth of not less than 1.15 times the hoisting rope diameter. Do not paint wire rope contact surfaces of sheaves.

6. **Drum**

a. Provide drum with turned helical grooves cut right and left hand to receive, in a single layer, the full winding length of the rope plus not less than two dead wraps on each end.

b. Provide drum of steel construction. Design drum so that not less than two dead wraps of hoisting rope remains on each anchorage when the hook is in its extreme low position. Provide right and left hand drum grooving beginning at the ends of the drum and grooving towards the center of the drum. Minimum drum groove depth, must be 0.375 times the rope diameter.

c. Provide minimum drum groove pitch either 1.14 times the rope diameter, or the rope diameter plus 1/8 inch, whichever is smaller. Minimum drum pitch diameter must be 16 times the rope diameter. Do not paint, coat or galvanize the surface of the drum which comes in contact with wire rope.
7. Hoist Brake
 a. Provide both a mechanical load brake and an electro-mechanical brake (shoe or disc). The mechanical load brake and the electro-mechanical brake must each, independently, stop and hold 131.25 percent of rated capacity. The electro-mechanical brake must be adjustable to 50 percent of its rated capacity, and must have an externally accessible means of manual release.

2.3 STRUCTURAL
 A. Crane runways will be provided by others. Refer to structural drawings for information.
 B. Welding
 1. Use AWS D14.1/D14.1M for welding design and procedures, including pre-weld and post weld heat treatments. However, the minimum classification of electrodes must be the E70 series.
 C. Structural Bolted Connections
 1. Structural bolted connections must be in accordance with CMAA 74, Section 3.8.

2.4 MECHANICAL
 A. Threaded Fasteners
 1. Fasten base-mounted and flange-mounted components and all mechanical connections subjected to calculable loads with ASTM A325 plain uncoated bolts (ASTM A307) with appropriate ASTM A194/A194M or ASTM A563plain nuts; and ASTM F436 plain, through hardened, flat, circular washers. Match bolt and nut threads. Oversize tapping is not permitted. Bolt and nut threads must conform to ASME B18.2.2 and ASME B1.1. Bolts and screws may be installed into tapped holes only in heat treated steel with a minimum hardness of 195 BHN.
 B. Antifriction Bearings
 1. Provide antifriction type bearings, except where bushings are specifically permitted or required. Provide grease lubricated bearings with means for relubrication through easily accessible lubrication fittings or provide permanently lubricated and sealed bearings.
 C. Bushings
 1. Provide manufacturer's standard bronze alloy bushings and thrust washers.
 2. Provide means for relubrication of grease lubricated bushings through easily accessible lubrication fittings or provide oil impregnated type bushings.
 D. Gears

2.5 ELECTRICAL

A. The design, selection, rating, and installation of the electrical portions of the crane and its accessories must conform to the requirements of NEMA ICS 3, NEMA ICS 8, ASME HST-4, and NFPA 70, and other requirements specified herein.

B. The crane manufacturer must furnish and install all electrical equipment on the crane conforming to NEMA ICS 6, including motors, conforming to NEMA MG 1, electrically released brakes, switches, crane controllers, panels, operating station, wiring system, cables, and bridge-to-trolley crane electrification, and the runway electrification.

C. Motors

1. Motors must meet all applicable requirements of NEMA MG 1 and UL 1004-1.

2. Provide insulated inverter duty motors for Variable Frequency Drives (VFD). Motor insulation must be Class H, but with a Class B temperature rise.

3. Provide motor overload protection utilizing a thermal sensitive device embedded in its windings.

D. AC Controls

1. Provide static reversing, adjustable frequency controllers for the hoist, bridge and trolley electric drives. Provide dynamic braking for all electric drives. Speed control must be of the three step infinitely variable type for the hoist function and two step infinitely variable type for the bridge and trolley functions. The hoist, trolley and bridge brakes must set only after the associated controller decelerates the motor to a controlled stop. Drives shall be designed and warranted for bridge crane service.

2. All motors must run smoothly, without torque pulsations at the lowest speed and be energized at a frequency not exceeding 60 HZ at the highest speed. The hoist controller must enable the drive motor to develop full torque continuously at zero speed.

3. The use of definite purpose contactors is prohibited. All contactors must be NEMA rated. Feed control circuits from a single phase, air cooled, double wound transformer with a grounded metal screen between the primary and secondary windings of the transformer.

E. Home Position Sensors

1. Home position is defined as bridge at most western position on runways and trolley at most northern position on bridge.

2. Provide switches and mounting brackets to determine if crane is in home position. Brackets shall be mounted at fixed positions on the runway beam. Contacts shall be
closed in home position and open in any other position. Wiring to switches will be provided by others.

F. Radio Controls
1. The remote radio control system must be designed to meet the requirements of NEMA ICS 8, Part 9. Provide radio control system conforming to FCC Part 15 (unlicensed frequencies)

G. Protection
1. Protection must not be less than that required by NEMA ICS 3, and NFPA 70. Provide enclosed type circuit breaker for crane disconnect. Provide an On/Off button that removes power from the motors, brakes and control circuit on the operator's control pendant station or radio controller. The control circuit must not operate unless the "On" button is depressed. Provide for lockout/tag out of all hazardous energy sources

H. Resistors
1. Provide resistors rated for continuous duty operation based upon 125 percent of the motor nameplate amperes and fabricated of corrosion resistant metal; the use of "wire wound" type resistors is prohibited for segments of 8 ohms or less. Mount resistors in substantial, ventilated enclosures constructed entirely of non-combustible materials. Provide resistors with terminals fitted in the coolest position in the enclosure.

I. Limit Switches
1. Provide primary upper and lower geared limit switches. Geared limits must allow reversing direction to back out of the limit without resetting. Provide a backup mechanical hook block activated upper limit switch wired independent of the directional controllers and the primary upper limit switch that removes power from the hoist motor, hoist brake and hoist controls. The backup limit must require hoist resetting prior to operation of the hoist in any direction. Provide a three position keyed switch on the pendant control with positions for bypass of the primary upper limit (to allow testing of the backup upper limit) and bypass of the backup upper limit in the lower direction only.

J. Overload Protection
1. Provide overload protection for bridge, runway, and hoist systems. Hoist overload protection must be adjustable between 80 and 150 percent of hoist capacity.

K. Reactors
1. Provide line reactors rated for continuous duty operation based upon the motor nameplate amperes. Select reactors for 60 Hz operation and having taps for field adjustment of inductance so as to permit achievement of the optimum acceleration characteristics for the drive. For a drive motor branch circuit that exceeds 100 feet in length, a reactor must also be connected in series with the controller load (output) terminals to provide standing wave protection
L. Warning Devices
 1. Provide a warning horn that is operable from a push button at the radio control station. Provide a warning strobe that is illuminated at all times during movement of the hoist, trolley, or bridge function.

M. Indicator Lights
 1. Place indicator lights in an enclosure mounted on the bottom of the bridge with lights sized and positioned to be visible from the ground. The lights must be the dual-lamp type. Provide a white light to indicate that power is available on the load side of the crane disconnect and a blue light to indicate that the main contactor is energized. Voltage of the lights must be 115 VAC.
 2. Provide nameplates that are legible from ground level. The nameplates must read, in their respective order. "POWER AVAILABLE" and "CRANE ENERGIZED". Energization of the "POWER AVAILABLE" light must be supplied by a separate, fused transformer.

N. Enclosures
 1. Provide enclosures for control panels, controls, and brakes in accordance with NEMA 250 and NEMA ICS 6, Classification Type 1 indoor, general purpose.

O. Electrification
 1. Provide runway electrification of the flat festooned type enclosed safety bar type with four continuous conductors. Provide electrical work for the crane system in accordance with NFPA 70.

2.6 GENERAL FINISH REQUIREMENTS
A. Crane Painting
 1. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
 2. Factory paint electrical and mechanical equipment in accordance with the manufacturer's best standard practice (for the specified environment), except that electrical equipment doors, which expose current-carrying electrical conductors when opened, must be orange.
 3. Paint exposed portions of the crane and girders in accordance with CMAA 74. Desired color is brilliant yellow.
 4. Coat faying surfaces of bolted connections per AISC 325, but do not apply finish paint.
 5. Paint the load block brilliant yellow with black diagonal striping, one inch wide diagonal black stripes located on 2 inch centers.

B. Identification Plates
1. Furnish and install identification plates. Provide non-corrosive metal identification plates with clearly legible permanent lettering giving the manufacturer's name, model number, serial number, capacity in both kilogram and pound units printed in different colors, and other essential information or identification.

 a. Markings on Crane, Trolley, and Hook.

 1) Markings include:

 a) Bridge motion direction arrows on both sides of the bridge.

 b) Trolley motion direction arrows on both sides of trolley.

 c) Markings must be visible from push button station and from the loading point, corresponding to the push button labeling on the radio control station.

 d) Mark the hook rated capacity on both sides of the hoist and hoist load block in tons and in pounds.

PART 3 - EXECUTION

3.1 EXAMINATION

 A. Examine the Under Running Overhead Electric Crane System before installation. Reject any parts or systems that are wet, moisture damaged, or mold damaged.

 B. Examine walls, floors, roofs, and Structural Steel for suitable conditions where the Under Running Overhead Electric Crane System will be installed.

 C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance.

 D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

 A. Equipment Installation: Install the Under Running Overhead Electric Crane System in accordance with the Manufacturers documents and recommendations.

3.3 POST-ERECTION INSPECTION

 A. After erection, the Contractor, and the Contracting Officer must jointly inspect the crane bridge and hoist systems and components to verify compliance with specifications and approved shop drawings and manufacturer's data. Notify the Contracting Officer 15 days before the inspection.

 1. Document the results of this inspection and submit the post-erection inspection report to the Contracting Officer for approval.
3.4 OPERATIONAL TEST

A. After erection and inspection, test the hoist, bridge, and trolley as specified herein. All tests must be witnessed by a technical representative of the Contracting Officer.

1. Perform the 125 percent rated load test with the bridge and trolley located to obtain maximum loads on the runway and bridge girders. Test the systems in service to determine that each component of the system operates as specified, is properly installed and adjusted, and is free from defects in material, manufacture, installation, and workmanship.

2. Rectify all deficiencies disclosed by testing and retest the system or component to prove the crane meets the specified requirements.

3. Provide all personnel and equipment required to meet the specified test requirements. This includes test loads, rigging gear, crane operating personnel, instruments, and all other necessary apparatus.

B. Operational Test Report

1. Record crane test data on appropriate test record forms suitable for retention for the life of the crane. Include in the test records:
 a. Test date.
 b. Crane identification number.
 c. Weather conditions (temperature, humidity, barometric pressure, dew point, and crane orientation).
 d. Identification of each test performed.
 e. Results of each test performed.
 f. Data collected during testing.
 g. Remarks.

2. Record operating and startup current and motor terminal voltage measurements for electrical equipment (motors) using appropriate instrumentation (e.g., clamp-on ammeters). Compare recorded values with design specifications or manufacturer's recommended values; abnormal differences (i.e., greater than 10 percent from manufacturer's or design values) must be justified or appropriate adjustments performed. In addition, note, investigate, and correct any high temperatures or abnormal operation of any equipment or machinery. Record hoist, trolley, and bridge speeds during each test cycle. Ensure that any energized drive motor initially rotates only in the direction selected by the operator by depressing the corresponding pushbutton; i.e., is not overhauled.

C. Hook

1. Measure hook for hook throat spread before and after load test. Establish a throat dimension base measurement by installing two tram points and measuring the distance between these tram points (plus or minus 1/64 inch). Record this base dimension. Measure the distance between tram points before and after load test. Any increase in throat opening from the base measurement is cause for rejection.
D. No-Load Test

1. Check entire clearance envelope to ensure there are no obstructions. Raise and lower the hook through the full range of normal travel at rated speed for three complete cycles. Then raise and lower the hook through the full range of normal travel in slow speed. Verify proper operation of hoist limit switches. Operate the bridge and trolley in each direction the full distance between end stops; bring bumpers into contact with bumper stops at each end of travel. Perform one complete cycle to check each speed point and verify proper brake operation.

E. Hoist Load Test

1. Perform the following tests, as specified, with test loads of 100 percent (plus 0 minus 10 percent) and 125 percent (plus 0 minus 5) of rated load.

 a. Static Load Test (125 percent only): Check entire structure, holding brake and hoisting components as follows:

 1) With the trolley in the center of the bridge span, raise the test load approximately one foot. Hold the load for 10 minutes. Rotate load and hook a full 360 degrees to check bearing operation. Ensure there is no vertical movement of the load. Verify beam and girder deflections do not exceed CMAA 74 design limits.

 b. Dynamic Load Test (100 percent only):

 1) Raise and lower the test load through the full lift height to test limit switches. Check speed points during raising and lowering.

 2) Lower the load to the floor, operate continuously for 5 minutes, then raise and lower the load through two more cycles, in order to demonstrate proper operation and repeatability of all functions without component overheating or malfunction. Completely stop the machinery at least once in each direction during each cycle to ensure proper brake operation.

 c. Hoist Load Brake (125 percent only):

 1) Raise test load approximately 5 feet. With neither pushbutton depressed, release (by hand) the holding brake. The load brake must hold the test load.

 2) Again with the holding brake in the released position, start the test load down (first point) and then release the pushbutton as the test load lowers. The load brake must prevent the test load from accelerating. Submit 3 copies of the brake setting record.

 d. Hoist Loss of Power (Panic Test) Certificate (125 percent only):
1) Raise the test load to approximately 8 feet. While slowly lowering the test load, disconnect the crane's power source. Verify that the test load does not lower and that the brake is set.

F. Trolley/Hoist Load Test

1. Operate the trolley/hoist the full distance of the bridge rails in each direction with a test load of 125 percent of rated load on the hook (one cycle). Check proper functioning of all drive speed control points.
 a. Verify proper brake action.

G. Bridge Load Test

1. With a test load of 125 percent of rated load on the hook, operate the bridge for the full length of the runway in one direction with the trolley/hoist at the extreme end of the bridge, and in the opposite direction with the trolley at the opposite extreme end of the bridge (one cycle). Check proper functioning of all drive speed control points. Check for any binding of the bridge end trucks and verify proper brake action. Record deficiencies. Secure from testing if deficiencies are found.

H. Rated Travel Test

1. Repeat travel tests for trolley/hoist and bridge with a test load of 100 percent of rated load. Repeat the test for 2 cycles to demonstrate proper operation and repeatability of all functions without the overheating or malfunction of any components. Check speed points during each cycle. Completely stop the machinery at least once in each direction during each cycle to ensure proper brake action.

3.5 DEMONSTRATION AND TRAINING

A. Engage a factory-authorized service representative to train owner’s operator and maintenance personnel. Refer to Section 01 79 00, “Demonstration and Training.”

1. Provide minimum two hour operator training covering crane operation and controls, crane safety, and daily inspection requirements. Include time for each student to operate the crane.

2. Provide additional two hour maintenance and troubleshooting training for maintenance personnel.

END OF SECTION 41 22 13.15
SECTION 41 22 23.19 - MONORAIL HOISTS

PART 1 - GENERAL

1.1 SUMMARY

A. Provide a monorail system with electric powered hoist and electric powered trolley complete, tested and ready for operation. Monorail, hoist, trolley, equipment, materials, installation, examination, inspection, and workmanship shall conform to the applicable requirements of NFPA 70, ASME B30.11, ASME B30.16, and ASME HST-1 as modified and supplemented by this specification. Reference in these publications to the "authority having jurisdiction" means the "Contracting Officer."

B. Coordination work with all trades involved and as it relates to the building structure. Verify all building dimensions that relate to fabrication of the monorail system, and notify Contracting Officer of discrepancy prior to ordering the monorail.

1.2 ACTION SUBMITTALS

A. Product Data: For each:

1. Electric Chain Hoist.
2. Trolley.
5. Festoon System.
7. Bumpers.
8. End Stops.
9. Manufacturer's Published Tables.

B. Shop Drawings: For monorail system, signed and sealed by professional engineer registered in the State of North Carolina, including attachments to existing building structure.

1. Include plans, elevations, sections, and mounting details.
2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
3. Include diagrams for power, signal, and control wiring signed and sealed by professional engineer registered in the State of North Carolina.

C. Design Data: Structural design calculations and structural / load capacity calculation signed and sealed by professional engineer registered in the State of North Carolina.
1.3 INFORMATIONAL SUBMITTALS

A. Product test reports: Provide tests and inspection reports.
 1. Magnetic particle inspection of hook and hook nut.
 2. 125 percent rated load test.
 3. No-load test.
 4. Post-erection inspection.
 5. Operational tests.
 7. Chain rated capacity and breaking strength.
 8. Hook NDT report.
 9. Hook tram measurement.

B. Certificates: Provide certificates for the following:
 1. Compliance with all listed Standards.
 4. Runway Straightness/Levelness.
 5. Loss of Power Test.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data. Provide information for monorail with hoist system, all components, and Data Package information.

1.5 QUALITY ASSURANCE

A. Pre-Erection Inspection: Before erection, the Contractor and the manufacturer's representative shall jointly inspect the monorail and hoist systems and components at the job site to determine compliance with specifications and manufacturer's data and shop drawings as approved. Notify the Contracting Officer 14 days before the inspection.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Delivery and Storage: Inspect materials delivered to site for damage; unload and store with minimum handling. Store materials on-site in enclosures or under protective coverings. Protect materials not suitable for outdoor storage to prevent damage or corrosion during periods of inclement weather, including subfreezing temperatures, precipitation, and high winds. Store materials susceptible to deterioration by direct sunlight under cover and avoid damage due to high temperatures. Do not store materials directly on ground. When special precautions are required, prominently and legibly stencil instructions for such precautions on outside of equipment or its crating.
B. Handling: Handle materials in such a manner as to ensure delivery to final location in undamaged condition. Make repairs to damaged materials at no cost to Government.

1.7 MAINTENANCE

A. Submit Monorail with hoist system, all components, Data Package 3 for the entire monorail system in accordance with Section 01 78 23 “Operation and Maintenance Data.”

PART 2 - PRODUCTS

2.1 IDENTIFICATION PLATES

A. Provide manufacturer installed identification plates of non-corrosive metal showing, in clearly legible permanent lettering, the manufacturer's name, model number, capacity rating in pounds, and other essential information. Also provide monorail track beam identification plates showing the capacity of the system, in pounds, legible from the floor and from either side of the monorail track beam.

2.2 OVERHEAD MONORAIL SYSTEM

A. Provide overhead monorail system conforming to ASME B30.11, for indoor service, with an overhead electric chain hoist mounted on a movable trolley. Provide motor operated trolley. The hoist and trolley shall meet the design requirements specified in ASME HST-1, Duty Class H3.

B. Capacity and Speed: Provide monorail system with a rated capacity of 500 pounds. The hook lift maximum speed shall be at least 16 fpm. The hook lift maximum height limit is 34” – 6” above the finished floor, and at its lowest point ZERO feet above the finished floor. Trolley maximum speed shall be at least 30 fpm.

C. Material and Design Requirements: Monorail hoist system shall include the following design requirements:

1. Powered hoists shall include a brake and a controlled braking means, and an overload limiting device.
2. Directional contactors shall include electrical and mechanical interlocks. Design the mainline contactor, along with the power-off/power-on circuitry to remove power from the drive motors, brakes and control circuit. The control circuit shall not operate unless a power-on button is depressed.
3. Overcurrent protection for the control circuit and control circuit transformer; fuse or circuit breaker protection for branch circuit short circuit and ground fault protection; and overload protection for each motor, motor controller, and branch circuit conductor shall all conform to the NFPA 70.
4. Provide safety (drop) lugs or a functional equivalent on the trolley frame to prevent derailment in the event of wheel failure.
5. The hoist and trolley shall be capable of general service working conditions.
6. Provide monorail system operating on 480 Volts, 3 phase, 60 Hz power supply.
7. Provide a non-resettable hour meter, connected across the main line contactor, readable from the exterior of the main control panel, to indicate the elapsed number of hours the crane is energized.

D. Safety: Comply with the mandatory and advisory safety requirements of ASME B30.11, ASME B30.16, and 29 CFR 1910.179. The Contractor is responsible for checking the proper operation and condition of safety devices, electrical components, mechanical equipment, and structural assemblies prior to installation. Immediately report any observed defective components and replace. Submit structural and load capacity calculations verifying a design safety factor of 5 to 1 to ultimate strength of weakest material (steel) used for any track suspension device or support which is not a standard cataloged product of the beam manufacturer.

2.3 MONORAIL TRACK SYSTEM
A. Track system will be provided by others. Refer to structural drawings for information.
B. Track Stops: Provide trolley stops at both open end locations. The stops shall retain the hoist on the track. The stop near the center of the hangar, approximately midway between grid lines HC and HD, shall permit the hoist hook to be positioned directly above the centerline of the nominal aircraft position.

2.4 ELECTRIC CHAIN HOIST
A. Electric chain hoist shall conform to ASME HST-1, Class H3 and NEMA ICS 8, NEMA MG 2 and NEMA ESPG except as modified herein. Provide load chain proof test results. Provide a load chain bucket.

2.5 MOTORS AND DRIVES
A. Motors shall conform to NEMA MG 1. All motors shall be minimum 60 minute duty rating. Motor insulation shall be Class H with a Class B temperature rise. Equip all motors with thermal trip type over-temperature protection. Maximum motor speed shall not exceed 1800 RPM. Provide single speed magnetic control for the hoist and trolley.
B. Trolley Motors: Trolley drive motor shall be AC inverter duty, totally enclosed non-ventilated (TENV), squirrel cage induction type.
C. Hoist Motors: Provide AC inverter duty, totally enclosed non-ventilated (TENV), squirrel cage induction type hoist motors.
D. Adjustable Frequency Drive Controls:
1. Trolley Electric Drive: Provide static reversing, adjustable frequency controllers.
2. Hoist Electric Drive: Provide a static reversing, adjustable frequency, speed regulated, closed loop flux vector controller with encoder feedback. The hoist drive shall ensure that adequate motor torque is available to suspend the load before the brakes are released. For a hoist with one brake, two independent drive outputs energizing separate brake contactors, whose contacts are in series with the brake coil, are required to release the brake; or an additional separate brake contactor independent of the drive whose contact is in series with the drive controlled brake contactor. For hoists with two brakes, connect the secondary brake to a different output from the primary brake.

3. Electric Drive Speed Control: Each electric drive shall be infinitely variable. Provide speed control of the three step infinitely variable type for the hoist function, and two step infinitely variable type for the trolley function, controlled via radio controlled unit.

4. Dynamic Braking: Provide dynamic braking for both hoist and trolley electric drives. The hoist and trolley brakes shall set after the associated controller decelerates motor to a controlled stop. Size the hoist and trolley controllers to provide sufficient starting torque to initiate motion of the drive mechanism from standstill with 0 to 131.25 percent of rated load on the hook and not produce any rollback. The hoist controller shall enable the drive motor to develop full torque continuously at zero speed. Drive motors shall run smoothly, without torque pulsations at the lowest speed and be energized at a frequency not exceeding 60 HZ for the trolley, and 120 HZ for the hoist drive, with less than full capacity on the hook.

2.6 CONTROLS

A. Provide control of electric hoist and trolley from an Unlicensed Radio Remote Control System. Arrange pushbuttons in accordance with ASME B30.11 recommendations.

B. Handheld remote radio control shall be intrinsically safe due to possible operation in Class 1, Division 2 Area near the floor and certain areas of the aircraft.

2.7 LIMIT SWITCHES

A. Equip hoists with adjustable limit stops for chain to prevent over-travel in both the raising and lowering directions.

2.8 BRAKES

A. Hoist Load Brake: Provide hoist load brake that is capable of stopping and holding a 131.25 percent test load. If dynamic braking is not included, provide a hoist mechanical load brake that is capable of stopping and holding a 131.25 percent test load. If the hoist has more than one brake, each brake shall independently stop and hold 131.25 percent of rated capacity.

B. Spring Applied Hoist Brake: Provide spring applied hoist brake, electrically released, and capable of being adjusted to 50 percent of its full rating. Provide the hoist brake with a manual lever type, self return to ON, release mechanism so that it may be partially released by hand and the lifted load allowed to gradually descend by gravity and brake friction. Screw type,
maintained OFF, release mechanisms are not permitted. Mount the brake on the end of the motor opposite the gear case. Design shall permit easy access for inspection and adjustment.

C. Trolley Brake: Provide trolley with either a non-coasting worm drive or with an electro mechanical brake that is spring applied, electrically released. Trolley brake shall have a torque rating equal to or greater than 50 percent of the drive motor rated torque and be adjustable from 85 percent to 100 percent of its torque rating. Equip trolley brake with a manual release. Design to permit easy access for wear, inspection and setting.

2.9 LOAD BLOCK AND HOOK

A. Provide safety hook fitted with self-closing, spring loaded steel safety latch, and with hook nuts keyed to hook shanks by means of a setscrew installed in a plane parallel to the longitudinal axis of the hook shank, or by any other similar easily removable securing device. Provide unpainted hook and hook nut, permanently marked with an identification number. Clearly mark the hook and hook nut with a unique identification number corresponding to the number used in non-destructive test (NDT) reports.

B. Load block and hook shall be non-sparking materials due to operation in Class 1, Division 2 areas near the floor and certain areas of the aircraft.

C. Non-Destructive Testing: The following requirements apply:

1. The Hook NDT Report supplier shall provide a letter certifying that the requirements of ASTM E543 are met.
2. The NDT supplier shall develop, and submit for review, procedures, including technique sheets specific to the types, shapes, and sizes of the parts being examined (e.g., shank hook, eye hook, duplex hook, eye bar nut). For the magnetic particle method, the procedures shall adequately describe the orientation of the hook or nut, or pin with the magnetizing equipment.
3. These procedures shall be reviewed by a Level III examiner who is independent of the NDT supplier and is certified in the applicable NDT method.

D. Hook and Hook Nut Magnetic Particle Inspections: The hook and hook nut shall be magnetic-particle inspected in compliance with ASTM E709 over the entire area in accordance with ASTM A275/A275M, with the following restrictions: Do not use DC yokes (including switchable AC/DC yokes used in the DC mode) and permanent magnet yokes. Do not use automatic powder blowers or any other form of forced air other than from a hand-held bulb for the application or removal of dry magnetic particles. Remove arc strikes. Equipment ammeters shall have an accuracy of plus or minus 5 percent of full scale (equipment ammeter accuracy other than that stated is acceptable provided the MT procedure states that a magnetic field indicator is used to establish and verify adequate field strength for the aspects of the inspection). The acceptance standard is no linear indications greater than 1.59 mm 1/16 inch.

2.10 BEARINGS
A. All bearings except those subject to a small rocker motion shall be anti-friction type. Provide a means for lubrication for bearings not considered to be lifetime lubricated by the manufacturer.

2.11 ELECTRIFICATION

A. Provide runway electrification of the flat festooned type. Provide electrical work for the monorail system in accordance with NFPA 70.

2.12 PAINTING SYSTEM

A. Provide manufacturer's standard painting brilliant yellow of components. Provide a primer and a finish coat. Blast clean all components prior to painting. Primer shall be inorganic zinc type. Paint coats shall be smooth and even, free of runs, sags, orange peel, or other defects.

PART 3 - EXECUTION

3.1 ERECTION AND INSTALLATION

A. Erect and install the monorail system, complete in accordance with the approved submittals and in condition to perform the operational and acceptance tests.

3.2 ERECTION SERVICES

A. Provide supervisory erection services from the monorail system manufacturer.

3.3 FIELD QUALITY CONTROL

A. Post-Erection Inspection: After erection, the Contractor, the Contracting Officer, and a representative of the activity maintaining organization, shall jointly inspect the monorail and hoist systems and components to determine compliance with specifications and approved submittals. Notify the Contracting Officer 15 days before the inspection. A list of deficient items, including a determination of criticality will be provided to the Contractor for corrective action. Outstanding items shall be noted for correction during the inspection. Items considered critical (load bearing, load controlling, or operational safety devices) shall be corrected prior to further testing. Upon correction, provide a report of the inspection indicating the monorail system is considered ready for operational tests.

B. Operational Tests:

1. After erection and inspection, test the monorail system, hoist, and trolley as specified herein. Test the systems in service to determine that each component of the system operates as specified, is properly installed and adjusted, and is free from defects in material, manufacturing, installation, and workmanship. Rectify all deficiencies
disclosed by testing and retest the system or component to prove the monorail system is operational.

2. Furnish loads for testing, operating personnel, instruments, and all other necessary apparatus.

C. Test Data: Record test data on appropriate test record forms suitable for retention for the life of the monorail system. Record operating and startup current measurements for electrical equipment (motors and coils) using appropriate instrumentation (i.e., clamp-on ammeters). Compare recorded values with design specifications or manufacturer's recommended values. Abnormal differences (i.e., greater than 10 percent from manufacturer's or design values) shall be justified or appropriate adjustments performed. In addition, note any high temperatures or abnormal operation of any equipment or machinery, investigate and correct. Record hoist and trolley speeds during each test cycle.

D. Hook Tram Measurement: Measure hook for hook throat spread before and after load test. Establish a throat dimension base measurement by installing two tram points and measuring the distance between these tram points (plus or minus 0.4 mm 1/64 inch). Record this base dimension. Measure the distance between tram points before and after load test. An increase in the throat opening from the base measurement is cause for rejection.

E. No-Load Test:

1. Hoist: Raise the load hook the full operating lift distance and verify satisfactory operation of hoist, upper limit switches, lower limit switch, and the hoisting and lowering speeds. Operate the hoist at low and high speed in both directions.

2. Trolley: Operate trolley assembly the full length of the monorail in both directions. Operate trolley at low and high speed in each direction. Verify satisfactory operation and verify trolley speed.

F. 125 percent Rated Load Test: 125 Percent (plus 5 percent minus 0) of rated capacity

1. Hoist Static Test: Raise test load approximately one foot above the floor and hold for 10 minutes. Observe load lowering that may occur which indicates malfunction of hoisting component or brake. Lower the test load to the floor until the hoist line is slack.

2. Hoist Dynamic Test: Raise the test load to approximately 5 feet above the floor using a range of speed points in the process. Lower the load back to the floor using a range of speed points. Stop the test load at least once while lowering at high speed and observe proper brake operation. Wait 5 minutes, then repeat the above cycle.

3. Load Brake Test (if equipped): Raise test load approximately 5 feet. With the hoist controller in the neutral position, release the holding brake. The load brake must hold the test load. Again with the holding brake in the released position, start the test load down at low speed and return the controller to off position as the test load lowers. The load brake must stop and hold the test load. If the load brake does not stop the test load, but prevents the test load from accelerating, activities will contact the OEM or activity engineering organization to ensure that the load brake is operating as designed.

4. Loss of Power Test: Raise the test load approximately 3 feet and while lowering test load at low speed, cut main power to hoist. The load must stop.

5. Trolley Test: With test load hoisted to a height of one foot above the floor, operate trolley the full distance of the monorail in both directions using a range of speed points in
the process. Observe for any malfunctioning of the trolley assembly and monorail system.

G. Rated Load Speed Test: With the hoist loaded to rated capacity, raise and lower the load verifying that the hoisting and lowering speeds are provided as specified. With the hoist loaded to rated capacity, operate trolley along the monorail beam verifying that the trolley speed is provided as specified. Further, verify that the trolley stops in each direction within a distance (in feet) equal to 10 percent of rated capacity high speed (in feet per minute) when initially traveling at high speed and carrying the rated capacity load. Record voltage, amperage, hoisting and lowering speeds, trolley travel speed, and motor speed for each motor.

3.4 TRAINING

A. Provide operational and maintenance training class of at least two hours for operators and maintenance technicians that includes crane safety and review of manuals.

END OF SECTION 41 22 23.19
SECTION 41 34 23.33 – SPRAY PAINTING BOOTH AND SANDING ROOM SYSTEM

PART 1 - GENERAL

1.1 SUMMARY

A. This Section includes Spray Painting Booth and Sanding Room System with the following features:

1. Full Downdraft type spray painting booth including exhaust filters, exhaust fan, recirculation fan, makeup air unit, compressor/condenser unit, ductwork, and controls.
2. Cross flow sanding room system including exhaust filtration/dust separation system, exhaust fan, recirculation fan, makeup air unit, ductwork, and controls.
3. Paint mixing room with exhaust.
4. Air shower.
5. Vestibule, shower room, and decontamination room.

1.2 PERFORMANCE REQUIREMENTS

A. Delegated Design: System shall be designed by a Professional Engineer(s) experience in the design of paint booths, sanding rooms, paint mixing rooms, ventilation, and controls.

1.3 DEFINITIONS

A. Three stage NESHAP filters: Multi stage filter system that complies with National Emissions Standard for Hazardous Air Pollutants (NESHAP) requirements for new spray booths that complies with the functional requirements of three stage filtration for spray painting and sanding in the aerospace industry that operate with chromates.

1.4 SUBMITTALS

A. Product Data:

1. Spray booth complying with NFPA 33.
2. Spray booth NESHAP exhaust filter system.
3. Sanding room
4. Sanding room NESHAP exhaust filter system.
5. Tube-axial fans.
6. Makeup air units.
7. Gravity ventilators.
8. Air shower.
9. Water shower
10. Wall panels
11. Compressor-condenser for cooling.
12. Other ventilation equipment and accessories
13. Plumbing fixtures: faucets, showerhead, floor drain
14. Light fixtures: vestibule, shower room, decontamination room

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Dimensioned outline plan and elevation drawings of Spray Painting Booth System, Sanding Room System, and other components specified including ductwork and stacks.
 2. Drawings showing size, locations, and details of paint booth floor trenches and underfloor tunnels for paint booth exhaust.
 3. Drawings showing ladders and platforms for maintenance access.
 5. Electrical one line diagram.

C. Control information including screen diagrams and ladder diagrams or other control logic documentation.

D. Delegated Design Submittal
 1. Design Calculations: Signed and sealed by a qualified professional engineer for booth air flows, heating, cooling, and humidification requirements, structural design, and electrical design.
 2. Coordination drawings for all building interfaces including:
 a. Paint booth trench and inserts
 b. Roof penetrations
 c. Guys, if any, for stacks.
 d. Electrical points of connection and loads
 e. Compressed air connections
 f. Breathing air connections
 g. Hot and cold water connections
 h. Drain connections
 i. Weights of items located on or hung from the roof structure

E. Qualification Data: For manufacturer, installer and testing agency.

F. Field quality-control test reports.

G. Operation and Maintenance Data: For all equipment, components, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

H. Warranty: Special warranty specified in this Section.

I. All test results shall be a required submittal to the Government.
J. Contractor shall submit qualifications of any required Independent Testing and Inspection Agent in advance for Government approval.

1.5 QUALITY ASSURANCE

A. Manufacturer Qualifications: A qualified manufacturer or distributor with experience providing similar systems. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

B. Comply with NFPA 33 – Spray Application Using Flammable or Combustible Materials.

C. Comply with NFPA 70.

D. Comply with ANSI/AIHA Z9.3 Spray Finishing Operations

E. Comply with ASSE standards regarding sanding and recirculation of air.

1.6 PROJECT CONDITIONS

A. Electrical power will be provided as 480 volts, 3 phase, 60 Hz with one connection to the paint booth panel, one connection to the sanding room panel, and one connection to the mixing room panel. All lighting and equipment power shall be distributed from these panels by the contractor.

B. The interior area where this system is to be installed is classified as electrically hazardous Class I, Division 2 up to 18” above to floor. Electrical devices and wiring should be above this level if possible. They must conform to NFPA 70 requirements if below this elevation.

C. Mechanical design shall be based on 0.4% Charlotte, NC ambient data.
 1. Summer: 94 deg F DB/74 deg F WB
 2. Winter: 18 deg F DB

1.7 COORDINATION

A. Contractor is responsible for coordination and proper relation of all work to the building structure and to the work of all trades. The Contractor shall verify all dimensions of the building that relate to fabrication of all equipment and notify the Contracting Officer of any discrepancy before the order for the equipment is finalized.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of all equipment in this specification for a period of one year from date of substantial completion.
PART 2 - PRODUCTS

2.1 SPRAY PAINTING BOOTH AND SANDING ROOM SYSTEM

A. The items covered by this Section are to be provided by a single supplier that will be responsible for delegated design, all items listed in specification, and overall performance of system and subsystems.

B. Suppliers: Subject to compliance with requirements available suppliers offering these systems include, but are not limited to, the following:
 1. Global Finishing Solutions, Osseo, WI. Contact: Alan B. McLaughlin, 715-797-9757, amclaughlin@globalfinishing.com
 2. Metal Prep, Inc., High Point, NC. Contact: Robert Smith, 336-841-8047, Robert.mith@metalprep.net

2.2 PAINT SPRAY BOOTH SYSTEM

A. Full down draft design spray booth. Air shall flow from ceiling plenum to exhaust chambers in the floor. Floor trenches and underfloor tunnels will be by other contractors. Paint Booth contractor shall supply drawings showing size, locations, and required details. Paint booth manufacturer shall supply floor grating, underfloor filters, and filter supports.

B. Average velocity of air shall be 50 fpm evenly distributed throughout the booth working area.

C. Booth size, interior:
 1. 35 ft. long.
 2. 17 ft. wide.
 3. 14 ft. high.

D. Doors:
 1. Main door shall be double bifold doors with windows for observing booth operation and personnel inside the booth.
 2. Three personnel single doors as indicated on system drawing. These shall be manually operated with weather stripping, sweep seals, and FM approved panic hardware.
 3. All doors shall have open door sensing connected to the system control panel.

E. Booth shall be constructed of galvanized steel not less than 18 ga. Metal surfaces inside the booth shall be covered with white strippable coating. Glass surfaces shall be covered with clear strippable coating. Booth shall be self-supporting.

F. Booth shall be assembled with screws and nuts. Tek screw or other fasteners with exposed sharp points are prohibited.

G. Provide permanent ladders for access to any equipment mounted above the paint booth or sanding room.
H. Provide strippable coating for interior of paint booth, clear coating for windows and white for other surfaces.

I. Booth shall provide three modes of operation.
 1. Paint Mode: 30,000 CFM airflow with temperature held within range of 70 to 90 deg F and humidity between 50 and 70% RH. Recirculation will be allowed for up to 70% of the air flow.
 2. Cure Mode: 15,000 CFM airflow with temperature held to 120 +/- deg F.
 3. Preparation Mode: 30,000 CFM airflow

J. Coordinate sprinkler head locations with sprinkler contactor. Provide openings in ceiling as required for “Extra Hazard Occupancy.

K. Compressed air piping and fittings and breathing air piping and fittings will be provided by other subcontractor to the GC. Refer to Plumbing drawings.

L. Provide compressed air shutoff solenoid for installation in piping and connect to control system.

M. Provide LED lighting to provide 70 fc illuminations. Two fixtures shall have battery backup ability to provide emergency lighting in case of power failure.

N. Provide tube-axial exhaust fan that meets NFPA 33 requirements. Exhaust fan may be installed above the roof and should be weather proof design.

O. Provide exhaust stack with gravity ventilator and ductwork to assure exhaust is 6 ft. above building parapet. If guy wires are required, coordinate anchorage with build Structural Engineer of record and the building Architect of Record.

P. Provide low vibration and low noise recirculation fan.

Q. Exhaust filters shall comply with NESHAP 3-stage performance standards that meet to exceed EPA Method 319 emissions stands.

R. Provide direct-fired, natural gas heated make-up air unit with DX cooling coil and filter section. Unit shall be suitable for roof mounting.

S. Provide condenser/compressor package unit for roof top mounting.

T. Provide evaporative humidifier to provide minimum humidification requirement.

U. Provide PLC controls with touch screen operator interface. Control panel shall control all parts of the system. All fans shall have VFD drives.

V. Provide ladders and platforms to access overhead components that require maintenance.

2.3 SANDING ROOM SYSTEM

A. Cross draft design sanding booth.
B. Average velocity of air shall be 100 fpm evenly distributor throughout the booth working area.

C. Booth size, interior:
 1. 35 ft. long.
 2. 17 ft. wide.
 3. 14 ft. high.

D. Doors:
 1. Main door shall be trifold door with windows for observing booth operation and personnel inside the booth.
 2. Two personnel single doors as indicated on system drawing. These shall be manually operated with weather stripping, sweep seals, and FM approved panic hardware.
 3. All doors shall have open door sensing connected to the system control panel.

E. Booth shall be constructed of galvanized steel not less than 18 ga.

F. Booth shall be assembled with screws and nuts. Tek screw or other fasteners with exposed sharp points are prohibited.

G. Airflow shall be 24,000 CFM with recirculation up to 80%. Temperature shall be maintained above 55 deg F.

H. Coordinate sprinkler head locations with sprinkler contactor. Provide openings in ceiling as required for “Extra Hazard Occupancy.

I. Compressed air piping and fittings and breathing air piping and fittings will be provided by other subcontractor to the GC. Refer to Plumbing drawings.

J. Provide LED lighting to provide 70 fc illumination. Two fixtures shall have battery backup ability to provide emergency lighting in case of power failure.

K. Provide tube-axial exhaust fan that meets NFPA 33 requirements. Exhaust fan may be installed above the roof and should be weather proof design.

L. Provide exhaust stack with gravity ventilator and ductwork to assure exhaust is 6 ft. above building parapet. If guy wires are required, coordinate anchorage with building Structural Engineer of record and the building Architect of Record.

M. Provide low vibration and low noise recirculation fan.

N. Exhaust filters shall comply with NESHAP 3-stage performance standards that meet to exceed EPA Method 319 emissions stands.

O. Provide direct-fired, natural gas heated make-up air unit with filter section. Unit shall be suitable for roof mounting.

P. Provide PLC controls with touch screen operator interface. Control panel shall control all parts of the system. All fans shall have VFD drives.
Q. Provide ladders and platforms to access overhead components that require maintenance.

2.4 PAINT MIXING ROOM

A. Comply with NFPA 33.

B. Size:
 1. 12 ft. long
 2. 8 ft. wide
 3. 8 ft. high

C. Room shall be constructed of galvanized steel not less than 18 ga.

D. Room shall have 4” deep containment base built in.

E. Exhaust system shall provide 900 CFM exhaust

2.5 AIR SHOWER

A. Air shower shall be used to remove surface particles from personnel when leaving controlled environment booths were they may have been exposed to particles containing chromates and other hazardous materials before they pass into a decontamination room where they will remove outer protective clothing.

B. The air shower shall be a pass through unit for one person at a time. Doors shall be interlocked so that shower operates with both doors closed and persons passing through must be subjected to the shower for a period of time adjustable in the control panel initially set to 15 seconds.

C. Size shall be as shown on the drawings.

D. Shower walls shall be constructed of hard, durable, non-particulating surface.

E. Exhaust air shall be filtered through a HEPA filters.

F. Airflow should be high velocity, low pressure flow with velocity that has proven effective removing particles form clothing and skin.

G. Equipment should be located above the air shower compartment. Provide removable ceiling panels in adjacent area for maintenance access.

2.6 VESTIBULES, SHOWER ROOM, AND DECONTAMINATION ROOM

A. Shower room shall be provided with FRP walls and ceiling. Provide complete plumbing system including pipes and fixtures from point of connection to building hot water and cold water supply. Connect shower drain to building drain.
B. Vestibules and decontamination rooms shall be hard surface, easily cleanable walls, floors, and ceiling. Ventilation will be by others. Provide built in LED lighting at 50 fc illumination.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, floor trenches and underfloor tunnels, and other conditions, with Installer present, for compliance with requirements for installation and other conditions affecting performance.

B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturers' written installation instructions and drawings.

B. The Contractor is responsible for interconnecting all control components and devices required for a complete working system. He shall provide all wiring and conduit to and from all devices even if not shown on the electrical drawings. Electrical equipment shall be installed per the requirements of Division 26.

C. It is essential that the paint booth environment be kept clean. The Contractor is responsible for maintaining a clean project. On a regular basis, the Contractor shall clean up construction dust and debris, and properly dispose of it. Also, at various stages of completion the Contractor shall perform a general clean-up. For instance, at the completion of the erection of the shell and before filters are installed. Cover all important surfaces to protect them from construction dirt, especially glass and filters. Any cleaning or replacement required due to inadequate cleaning or protection of materials shall be at the expense of the Contractor. Near the completion of the project, the Contractor shall perform a final clean-up. It shall entail cleaning all surfaces to the satisfaction of the Contracting Officer's Representative. Repair or repaint any surface that has been damaged during construction.

3.3 CONNECTIONS

A. Drawings indicate general arrangement of piping and specialties.

B. Connect fuel, water, and drain piping to allow service and maintenance.

C. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
D. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.4 IDENTIFICATION

A. Identify system components according to Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations. Report results in writing.

B. Test and adjust all systems to ensure proper operation. Correct any excessive vibration or noise. Lubricate all equipment as recommended by the manufacturer.

C. Test and adjust doors to open wide without binding or dragging.

D. Balance airflows to required quantities.

E. After testing and balancing systems and before final acceptance, the Contractor shall replace all filters with new clean filters.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Government maintenance personnel to adjust, operate, and maintain the Paint Booth and Sanding Room System. Refer to Section 01 79 00 "Demonstration and Training."

B. Provide on-site training for Operations and Maintenance Personnel. Course should include at least 16 hours of classroom and hands-on. The session outline shall cover the following items:

2. Review of As-built Drawings.
3. Overview of system components.
4. System operation under normal conditions.
5. System operation under abnormal conditions.
7. Troubleshooting procedures.
8. Maintenance and Repair procedures.

C. Provide handouts in bound format and in sufficient quantity to provide each attendee with a copy.

END OF SECTION 41 34 23.33