SPECIFICATIONS

ADD/REPAIR SQ OPS B541
GLOBAL HAWK FOR GSMP
GRAND FORKS AFB, NORTH DAKOTA

CONTRACT NO. FA4659-15-D-A002
PROJECT NO. JFSD201801

1 MARCH 2018
PROJECT MANUAL

ADD/REPAIR SQ OPS B541 GLOBAL HAWK FOR GSMP
GRAND FORKS AFB, NORTH DAKOTA
JFSD201801

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Division</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 0 – Procurement and Contracting Requirements Technical Provisions</td>
<td>01000</td>
<td></td>
</tr>
<tr>
<td>Division 1 - General Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of Work</td>
<td>01 11 00</td>
<td></td>
</tr>
<tr>
<td>Work Restrictions</td>
<td>01 14 00</td>
<td></td>
</tr>
<tr>
<td>Sustainability Reporting</td>
<td>01 33 29</td>
<td></td>
</tr>
<tr>
<td>Air Force Sustainability Requirements Scoresheet</td>
<td>3 Pages</td>
<td></td>
</tr>
<tr>
<td>Sources for Reference Publications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality Control</td>
<td>01 42 00</td>
<td></td>
</tr>
<tr>
<td>Special Inspections</td>
<td>01 45 35</td>
<td></td>
</tr>
<tr>
<td>Total Building Commissioning</td>
<td>01 91 00.15</td>
<td></td>
</tr>
<tr>
<td>Division 2 - Site Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition</td>
<td>02 41 00</td>
<td></td>
</tr>
<tr>
<td>Division 3 - Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete Accessories</td>
<td>03 15 00.00 10</td>
<td></td>
</tr>
<tr>
<td>Concrete Reinforcing</td>
<td>03 20 00.00 10</td>
<td></td>
</tr>
<tr>
<td>Cast-In-Place Concrete</td>
<td>03 30 00.00 10</td>
<td></td>
</tr>
<tr>
<td>Division 4 – Not Used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division 5 – Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Steel</td>
<td>05 12 00</td>
<td></td>
</tr>
<tr>
<td>Steel Decks</td>
<td>05 30 00</td>
<td></td>
</tr>
<tr>
<td>Cold-Formed Metal Framing</td>
<td>05 40 00</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Metal Fabrications</td>
<td>05 50 13</td>
<td></td>
</tr>
<tr>
<td>Prefabricated Railing Assemblies</td>
<td>05 52 00</td>
<td></td>
</tr>
<tr>
<td>Division 6 – Wood, Plastics and Composites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rough Carpentry</td>
<td>06 10 00</td>
<td></td>
</tr>
<tr>
<td>Finish Carpentry</td>
<td>06 20 00</td>
<td></td>
</tr>
<tr>
<td>Architectural Cabinets</td>
<td>06 41 16.00 10</td>
<td></td>
</tr>
<tr>
<td>Solid Surfacing Fabrications</td>
<td>06 61 16</td>
<td></td>
</tr>
<tr>
<td>Division 7 - Thermal and Moisture Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral Fiber Blanket Insulation</td>
<td>07 21 16</td>
<td></td>
</tr>
<tr>
<td>Exterior Insulation and Finish Systems</td>
<td>07 24 00</td>
<td></td>
</tr>
<tr>
<td>Building Air and Water Barrier System</td>
<td>07 27 10.00 10</td>
<td></td>
</tr>
<tr>
<td>Metal Wall Panels</td>
<td>07 42 13</td>
<td></td>
</tr>
<tr>
<td>Sprayed Polyurethane Foam (SPF) Insulation</td>
<td>07 57 13</td>
<td></td>
</tr>
<tr>
<td>Flashing and Sheet Metal</td>
<td>07 60 00</td>
<td></td>
</tr>
<tr>
<td>Firestopping</td>
<td>07 84 00</td>
<td></td>
</tr>
<tr>
<td>Joint Sealants</td>
<td>07 92 00</td>
<td></td>
</tr>
<tr>
<td>Division 8 – Openings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Doors and Frames</td>
<td>08 11 13</td>
<td></td>
</tr>
<tr>
<td>Aluminum Doors and Frames</td>
<td>08 11 16</td>
<td></td>
</tr>
<tr>
<td>Wood Doors</td>
<td>08 14 00</td>
<td></td>
</tr>
<tr>
<td>Sound Control Door Assemblies</td>
<td>08 34 73</td>
<td></td>
</tr>
<tr>
<td>Aluminum Windows</td>
<td>08 51 13</td>
<td></td>
</tr>
</tbody>
</table>

Add/Repair Sq Ops B541 - Global Hawk GSMP
JFSD201527 TC-1 156-025
Division 9 – Finishes

- Schedules for Finishes
- Supports for Gypsum Board
- Gypsum Board
- Ceramic Tiling
- Acoustical Ceilings
- Resilient Flooring
- Carpeting
- Access Flooring

Attachment: RAF Schedule
1 Page

- Acoustical Wall Panels
- Paints and Coatings

Division 10 - Specialties

- Visual Display Units
- Interior Signage
- Toilet Compartments
- Folding Panel Partitions
- Toilet Accessories
- Fire Extinguishers
- Metal Lockers

Division 11 – Not Used

Division 12 – Furnishings

- Roller Window Shades

Divisions 13 thru 20 - Not Used

Division 21 – Fire Suppression

- Fire-Suppression Sprinkler Systems
- Wet Pipe Sprinkler System, Fire Protection

Division 22 – Plumbing

- Plumbing, General Purpose

Division 23 – Heating, Ventilating, and Air Conditioning

- Air Supply, Distribution, Ventilation, and Exhaust Systems
- Basic Mechanical Materials and Methods
- Testing, Adjusting, and Balancing for HVAC
- Thermal Insulation for Mechanical Systems
- Instrumentation and Control for HVAC
- Instrumentation and Control Devices for HVAC
- BACnet Direct Digital Control for HVAC and Other Building Control Systems
- Facility Gas Piping
- Low Temperature Water (LTW) Heating System
- Refrigerant Piping
- Low Pressure Water Heating Boilers (Under 800,000 BTU/Hour Output)
- Chilled, Chilled-Hot, and Condenser Water Piping Systems
- Unitary Air Conditioning Equipment
- Computer Room Air Conditioning Units

Divisions 24 and 25 - Not Used
Division 26 – Electrical
Three-Phase Pad-Mounted Transformers 26 12 19.10
Interior Distribution System 26 20 00
Switchboards 26 24 13
Coordinated Power System Protection 26 28 01.00 10
Variable Frequency Drive Systems Under 600 Volts 26 29 23
Diesel-Generator Set Stationary 100-2500 KW, with Auxiliaries 26 32 15.00 10
Automatic Transfer Switch and By-Pass/Isolation Switch 26 36 00.00 10
Lightning Protection System 26 41 00
Cathodic Protection System (Sacrificial Anode) 26 42 14.00 10
Interior Lighting 26 51 00
Exterior Lighting 26 56 00

Division 27 – Communications
Building Telecommunications Cabling System 27 10 00
Radio and Public Address Systems 27 51 16

Division 28 – Electronic Safety and Security
Interior Fire Alarm and Mass Notification System 28 31 76

Divisions 29 and 30 - Not Used

Division 31 – Earthwork
Earthwork 31 00 00
Geotechnical Report 24 Pages
Geotechnical Report Addendum No. 1 3 Pages

Division 32 – Exterior Improvements
Hot Mix Bituminous Pavement 32 12 17
Concrete Sidewalks and Curbs and Gutters 32 16 13
Sodding 32 92 23

Division 33 – Utilities
Water Utility Distribution Piping and Chilled Water Piping 33 11 00
Sanitary Sewers 33 30 00
Natural-Gas/Liquid Petroleum Gas Distribution 33 51 15
Underground Electrical Distribution 33 71 02

Divisions 34 thru 49 - Not Used
1. SCOPE OF WORK:

1.1. Work to Be Done: The work consists of furnishing all plant, labor and materials to perform all work in strict accordance with these technical provisions and the project drawings.

1.2. Location: The site of the work is Grand Forks Air Force Base, ND.

2. PROJECT DESCRIPTION: The work to be performed includes, but is not limited to, the following:

2.1 Evaluate criteria and provide a comprehensive renovation of Bldg. 541 to comply with Global Hawk Unmanned Aerial System (UAS) Ground Segment Modernization Program (GSMP). The facility shall include the following features:
 a. The flight deck shall have a minimum of ten, four-station cockpits.
 b. The facility will require secure facility construction standards per AFI 31-101 Integrated Defense and DoDM 5200.01 vol. 3.
 c. The entire facility must meet secure facility construction standards per UFC 4-010-05.
 d. Provide new HVAC system, including major system components. HVAC system shall have redundant systems for mission critical areas. Size loads with additional capacity to accommodate future growth as indicated in the FRD.
 e. Provide backup power including UPS system and backup generators.
 f. Modify, block, or remove windows to meet security requirements.
 g. Provide infrastructure to support intrusion detection and access control systems.
 h. Provide new fire detection system and Mass Notification System including Very Early Smoke Detection Apparatus (VESDA) or other special fire protection features.
 i. Repair, replace, or install new of grounding and bonding systems.
 j. Install electrical and communications systems as required.
 k. Replace interior lights, emergency exit lighting, and exterior light fixtures to meet current requirements.
 l. Replace interior finishes and casework in renovated and other areas.
 m. Provide roof and exterior wall repairs.
 n. Install lightning protection system.
 o. Install signage and signal systems as required for operations at security levels.

2.1. All material selections, construction, renovation, repair, and maintenance shall comply with the latest addition of Unified Facilities Criteria UFC 3-600-1, *Fire Protection Engineering for Facilities*.

2.2. Obtain permits, documentation, and apply/execute all other administrative and field requirements for compliance with North Dakota State rules and regulations and the Environmental Protection Agency (EPA) rules and regulations as they apply to Storm Water Pollution Prevention for construction activities.

2.3. The contractor shall coordinate with the appropriate facility mangers, Civil Engineering personnel and Security Forces personnel to the extent necessary to provide area access, develop required plans, traffic control, and to permit ongoing mission requirements. This coordination shall be completed and approved by 319 CES and/or the Contracting Officer (CO) ten days prior to the start of on-site work. Preliminary site investigations to prepare required submittals and plans may have to be complete prior to the ten day requirement of user coordination.
2.4. All work not specifically addressed in this specification or specifications thereafter shall be installed in strict accordance with the latest publications of the National Electric Code, International Building Code, International Mechanical Code, International Plumbing Code, NFPA 101 Life Safety Code, and other codes as implemented by Unified Facilities Criteria UFC 1-200-01 DoD Building Code (General Building Requirements) found at https://www.wbdg.org/ccb/DOD/UFC/ufc_1_200_01.pdf, and Grand Forks Air Force Base Architectural Compatibility Plan. These documents shall constitute the minimum acceptable levels of construction, function, and safety for all projects.

3. STANDARD TESTS, QUALITY, AND GUARANTEES:

3.1. Tests or trials to determine the effectiveness of performance of a completed assembly or fabricated system shall be made by the contractor.

3.2. All articles, supplies and equipment, parts, and assemblies thereof, of standard manufacturers or for which design requirements are not prescribed by these specifications shall be guaranteed against any failure in the proper use or operation caused by defective material, workmanship, or design for the full warranty time which is standard with the manufacturer and/or supplier.

3.3. The contractor shall provide a minimum one year warranty on all work performed. A copy of the warranty shall be submitted to the Contracting Officer before final inspection of the facility.

4. WORK CLEARANCE REQUEST AND OTHER PERMITS:

4.1. Digging Permit: AF Form 103, Base Civil Engineering Work Clearance Request, commonly referred to as a “Digging Permit”. The contractor shall initiate, prepare, and hand carry for signatures an AF Form 103, Work Clearance Request, 14-28 calendar days prior to any work (especially excavation) activities. Base Civil Engineering will assist the contractor by providing points of contact; however, the responsibility for executing and tracking status of the work clearance request and coordinating utility markings with the Base Civil Engineer shops and/or other utility companies is solely that of the contractor. The contractor shall compose and provide sketches/drawings/ and dimensioning details showing the specific location of the intended area of work (especially excavation) when requesting an AF 103. The contractor shall physically stake, flag, or demarcate (in accordance with base civil engineer work clearance manager) to define the boundaries of all required utility locates at the location of proposed work. The contractor should allow 10-20 days for processing the work clearance request between the various activities that must coordinate on the request. The contractor shall submit to the CO and provide the Construction Representative with a copy of the completed AF Form 103 with all attached record utility drawings, and shall comply with all instructions for hand excavation and other methods of safeguarding the buried utilities prior to on-site work. The contractor shall take caution within the area 3 feet to either side of a utility pre-identified to the contractor. If the contractor damages any utility within this six-foot boundary, the contractor is responsible for restoring the utility to its original working condition. Work to repair the damaged utility will commence immediately and will continue uninterrupted until the utility is restored. If the contractor damages a utility that was not identified or is not within the 6-foot boundary of the utility marking, the contractor shall notify the CO and Construction Representative to determine the method of repair (i.e., in-house or by contract). If the damaged utility requires repair by an outside source or someone not in the contractor’s employ (e.g., someone to repair specialty lines) and the contractor is responsible for the damage; the contractor shall coordinate and schedule such persons making the repairs and shall furnish prompt payment for the work to such persons.

4.2. USAF Welding, Cutting, or Brazing Permit: Prior to any soldering, brazing, torch cutting, or welding, the contractor must obtain a signed AF Form 592, Hot Work Permit, from the base Fire Department, Fire Prevention section. It is the primary contractor's responsibility to provide properly trained personnel in safe welding, cutting and open flame operations IAW NFPA 51B, AFI 91-203 and CFR 1910.252. The back of the AF Form 592 explains if conditions requiring a fire watch are warranted. Fire protection systems must remain in service to the maximum extent possible during any hot work operation. If any potential detection device will be affected by the hot work operation, the device should be covered and protected to prevent accidental activation. If hot work
operations will be occurring on a regular basis, the Fire Prevention section can task certify personnel to issue hot work permits. Contact the Fire Prevention section for more information.

4.3. Demolition and Asbestos Notification: Projects Requiring Notification of Demolition and Asbestos Containing Materials Removal. For projects that include building demolition and asbestos removal, the contractor shall perform necessary actions required to fully complete the North Dakota Department of Health (NDDH) Notification of Demolition and Renovation (form SFN 17987). This form must be submitted to the NDDH in accordance with North Dakota Administrative Code (NDAC) 33-15-13-02.6. A copy of the completed Notification of Demolition and Renovation form, the ND State Health Dept. acknowledgment of receipt letter, and all subsequent revisions of ND State Health Dept. acknowledgments shall be submitted to the CO and the CM prior to the start of demolition and/or asbestos removal activities. NOTE: An asbestos assessment determining the presence of asbestos containing materials must be performed by the contractor to determine the correct choice made in section III of the form SFN 17987. The contractor shall be required to complete and retain the services to meet the requirements of section IX of the form SFN 17987 (if applicable). The contractor shall sign the form in section XX as the operator.

4.4. Air Permit: Air Permit Determination for New Emission Sources. Any new air emission source(s) (hoods, volatile substance storage tanks, spray booths, stationary equipment, boilers, furnaces, generators or other similar type items) to be constructed/installed shall be evaluated by the Air Program Manager at 319 CES/CEIE prior to commencement of construction for determination of air permitting requirements. In order to gain a determination, equipment specifications and designs shall be submitted to 319 CES/CEIE through the CO prior to start of work.

5. UTILITIES COORDINATION:

5.1. Utility Interruptions/Outages: The contractor shall perform the work under this contract with a minimum of utility outage time for any facility or system. The contractor shall make every attempt to schedule any work that requires utility outages which will close down or limit normal activities in the building, construction area, or other affected areas (as determined by the contractor with coordination of engineering project management personnel) at a time other than regular work periods of the organization occupying the facility. Whenever outages occur on weekends, holidays or after normal duty hours, the contractor shall perform the work at such times as designated at no additional cost to the Government.

5.1.1. Prior to outage: Wherever possible, portions of the work that can be accomplished without an outage shall be done prior to actual outage. All materials, equipment, and labor required to facilitate work during an outage shall be available on site before the utility service is interrupted.

5.2. Approval for outage: The contractor shall submit requests for utility outages a minimum of ten (10) working days prior to initiating the outage. The contractor must receive approval from the CO and/or the Construction Representative (CR) before interrupting utilities. The contractor shall personally coordinate all utility outages with affected facility users and the Base Civil Engineering Operations Flight shops that oversee/control the system(s). Solely notifying only the Construction Representative (CR) is NOT adequate.

5.3. Contractor’s Responsibility: The contractor is responsible for shutting down the utility using the contractor’s workforce or by requesting the shutdown from the utility company (or Civil Engineer Shop) responsible for the service. The Civil Engineer Shop typically having jurisdiction will shut down the primary utility. Once work begins on an approved outage, work must continue without interruption until utility services to the affected line(s) and/or facility are restored. Exceptions require pre-approval from the CO/CR.

5.4. Procedure: Control of the base electrical system is the responsibility of the Facility Systems Superintendent (CES Operations Flight Bldg 418). All switching of electrical equipment/circuits must be approved by the base Utility Superintendent or designated authorized representative. Work on de-energized high voltage lines or equipment is not permitted until the Base Utility Superintendent or designated authorized representative has issued a safe clearance procedure to the Contractor Superintendent in accordance with AFI 32-1064, (current revision) available at: [http://www.wbdg.org/ccb/AF/AFI/fi_32_1064.pdf](http://www.wbdg.org/ccb/AF/AFI/afi_32_1064.pdf).
5.5. Communications Utilities (Telephone, Fiber Optic, Cable Television): The contractor shall not disturb communication wiring to facilities. Where such facilities require removal of existing, reconfiguration of existing, and/or installation of new communication equipment and wiring to accomplish the work involved, the contractor shall coordinate with the base Communications Squadron prior to actual work to determine the scope of effort and gain authority from the Communications Squadron to work on communications systems. The contractor shall allow for the accomplishment of such removals by the telephone company or communications personnel for the systems they service. If construction activities damage communications equipment or wiring, the contractor shall restore services as soon as possible, but within no more than 24 hours and at no cost to the government.

5.6. Excavating Around or Locating Existing Utilities: Prior to the start of work, the contractor shall identify and locate all valve or utility shut-off locations for use in the event of accidental damage. To preclude accidental damage, the contractor shall locate all known utilities (i.e., communication, natural gas, fuel supply, water, power, etc.) by hand digging or hydro-excavating prior to any excavation with other power equipment. The contractor shall note any utilities discovered during excavations that are missing or incorrectly represented on the AF Form 103 and associated attachments, the contract drawings (including any erroneous dimensions on government record drawings), or those utilities staked by the user; and clearly identify those discoveries on project redline and as-built drawings.

5.7. Existing Utilities/Job Site Verification: Record drawings (as-builts) showing existing facilities and underground utilities are available to the contractor through the Base Civil Engineer Drafting Office and Operations Customer Service. The government does not guarantee the accuracy or adequacy of existing as-built/record drawings. The contractor is responsible for field verifying all dimensions and actual conditions when developing project proposals. Failure to verify the dimensions and locations will be at the contractor’s risk and shall not relieve the contractor from accomplishing the work required by the contract at the price awarded by the government. The contractor shall immediately repair any utility lines shown on a record drawing (or made known to the contractor via ground marking) and damaged during construction work at no cost to the government. Prior to digging, the contractor shall review available drawings and located utilities to determine if all utilities on the drawings have been located. Should the drawings indicate the existence of an underground utility, but no markings exist to indicate the utility has been located, the contractor shall verify all locates are completed prior to below grade excavations.

6. FIRE REGULATIONS: Compliance with local, Air Force, and NFPA 241 (Safeguarding Building Construction and Building Operation) regulations are mandatory. Fire extinguishers rated and approved by the National Fire Protection Association; of sufficient size, type, and quantity to cope with all known hazards shall be available and provided by the contractor during the execution of this contract.

6.1. Fire Reporting - To report a fire, dial 911. It is the responsibility of any person who discovers a fire to report it immediately, even if the fire has been extinguished.

6.2. Blocking of Streets - One lane of traffic must be maintained for passage of emergency vehicles at all times. If situations arise where this is not feasible, the fire department must be notified.

6.3. Fire Protection Systems - Any fire protection system or portion of a fire protection system requiring to be disabled will be coordinated in advance with the applicable Civil Engineer shop and the Fire Department. Certain projects require an entire facility to be vacated for the contractor to perform the required work. When a contractor takes ownership of a facility, the contractor is liable for maintaining a fire-safe environment and it shall be at the contractor's discretion to take down any fire protection system.

6.4. Tobacco Use - All personnel on Grand Forks AFB using tobacco in any way shall utilize designated tobacco areas sited throughout the base.
7. CONTRACTOR USE OF PREMISES:

7.1. GENERAL: The government does not guarantee a lot on Grand Forks Air Force Base for contractor use, but there is the possibility for placement of one in Contractor’s Row.

7.1.1. Storage Area: All contractor storage shall be located in an area located inside the boundary of the project site and shall be properly screened and secured. Indoor storage areas are not guaranteed by the government, and there are no alternate storage areas on base. The contractor may store materials and trailers off base at the contractor’s expense.

7.1.2. A visually acceptable site at Grand Forks Air Force Base is an important construction standard. Contractor storage sites made available on the work site shall be maintained, kept clean and secured by the contractor at the contractor’s expense. The contractor shall maintain trailers and portable storage containers in good condition or must remove them when no longer required. The contractor is solely responsible for the security of contractor property and general housekeeping of the project area(s). This includes, but is not limited to, vegetation (weed control) and height maintenance to base standards, daily trash and refuse debris collection and containerization, and construction materials stacked, neatly palletized or enclosed in trailers.

7.1.3. The government will provide utilities (water and electricity) for project work areas when available. The government will NOT modify points of distribution to accommodate contractor project activities. The contractor may modify points of distribution at contractor expense with prior approval from the CO. The government will not provide utilities solely for construction heating purposes. At remote project work areas where no utilities are available, the contractor shall furnish utility services.

7.1.4. When an on-site water source is required and the only reasonable option, the government will furnish water from a fire hydrant or an adjacent facilities point of distribution selected by the Base Civil Engineer with coordination through the Base Fire Dept and the Contracting Officer (CO). The contractor shall provide and install the proper backflow prevention device, valve and hydrant wrench. The contractor shall be liable for any damage caused to government property resulting from improper operation of fire hydrant(s).

7.1.5. Contractor personnel may use existing toilet facilities if available on the premises and approved by the facility occupants/facility manager unless otherwise instructed by the CO or designated representative. At construction sites where toilet facilities are not readily available, the contractor shall provide chemical sanitary toilets. The contractor shall service the chemical toilets regularly subject to government inspection by the base medical officer. The contractor shall correct all identified sanitary deficiencies within 24 hours of inspection.

7.1.6. Not Used

7.1.7. Explosive Operated Hand Tools: The contractor shall comply with OSHA Standard 1926.302© when utilizing explosive operated hand tools. On the installation, the contractor shall store explosive cartridges in metal containers and limit the quantity to one day’s supply. The contractor shall provide adequate controls to prevent loss/theft of cartridges used and stored on the installation.

7.1.8. Severe Weather: The contractor shall develop and be prepared to implement procedures to evacuate and/or protect people and facilities under the contractor’s control in the event of severe weather. These procedures shall include provisions for securing or repositioning of equipment. The contractor shall notify the CO of any evacuation procedures. Upon receipt of a severe weather warning, the following sequence of actions shall occur.

7.1.8.1. The CO or designated representative will instruct the contractor of the severe weather warning.

7.1.8.2. The contractor shall take immediate action to tie down, remove, protect, or secure contractor materials and equipment to the satisfaction of the Air Force construction representative, providing reasonable assurance that the severe weather will not damage government property. If the contractor fails to secure materials and equipment and
it becomes a hazard, Air Force personnel may accomplish the work and potential charges to the contractor may result thereof.

7.1.9. Temporary Closures: To prevent outside intrusion into a work area, at the end of each day the contractor shall close up each and every exterior fence or security barrier (as applicable) resulting from work. Closure(s) shall remain in place when the contractor is not actively working on the site(s), including each and every day, night, weekends, and holidays to sustain in-place security. Temporary closure(s) shall be constructed of same material as originally removed and anchored in place if necessary, or similar construction as approved by the base civil engineer through the CO.

7.1.10. Access Roads: In accordance with Dirt and Dust Control contained herein, and as required (minimum at the end of each day), the contractor shall inspect for and clear all mud, dirt, debris, foreign objects, or spills of any kind from the contractor’s operations (including subcontractors and suppliers) on streets and parking lots used as access to the work or staging areas. The contractor shall ensure all taxiways, runways, parking aprons and hard surfaces in or around the airfield, used to access the work or staging areas, remain clean at all times.

7.1.11. Contractor-Generated Refuse: Prior to completion of the work each day, the contractor shall handle, transport, store, and dispose of all waste materials and rubbish generated by any work under this contract. If the contractor temporarily stores waste material or rubbish in a dumpster controlled by the contractor, the contractor shall secure the dumpster in such a manner that prevents unauthorized use. Unsecured and unattended dumpsters tend to collect stray refuse from other than contract operations. To avoid this, the contractor shall secure the dumpster during non-working times and post signs (if necessary) on the dumpster(s) noting it as NOT FOR PUBLIC USE. On a regular (minimum weekly) basis, the contractor shall remove and dispose of any waste or excess material resulting from any contract requirement, off base at no expense to the government. The contractor shall dispose of such materials in accordance with applicable federal, state, or local laws, ordinance or regulations. Trucks for hauling refuse and waste materials shall have tight fitting covers to prevent spillage on roadways. The contractor shall use designated haul routes as agreed upon in discussions prior to on-site project work.

7.1.12. Excavations: The government will not allow piles of soil to reside in the work area for unreasonable amounts of time. The contractor shall backfill all excavations, for whatever purpose, within one week or gain approval to have excavations remain open longer by the CM through the CO. The contractor shall temporarily repair road cuts with cold patch asphalt to assure a smooth transition until accomplishing final patching. Loose gravel or fugitive materials that can be carried by traffic shall not be used. For all disturbances to grounds, the contractor shall complete final grading within one week of the disturbance/backfilling. The contractor shall complete final landscaping or seeding within acceptable recognized planting seasons for the GFAFB local area, and/or the nursery of origin written recommendations for subject plantings.

7.1.13. Not Used

7.1.14. Covered Chutes: The contractor shall construct all chutes for refuse with covers. At a minimum, covers shall fully confine the material to prevent dust dissemination.

7.1.15. Contaminated Soils: Work requested of the contractor may include removal and/or dumping of contaminated soils. Contaminated soils are defined as “soils that contain non-hazardous materials such as aircraft fuel, heating fuel oil, solvents, and other materials as identified by the base environmental coordinator.” The contractor shall report any material suspected of containing contaminants to the CO or his/her designated representative. If contaminated soils are discovered, the contractor shall NOT use the contaminated soil/debris for backfill or removed from the base without written approval from the CO, or his/her designated representative. The contractor shall store this soil on an impervious liner, compatible with the contaminant, and covered with the same impervious material. These contaminants shall be tested by the contractor and coordinated with the applicable base environmental program manager (319 CEIE) as necessary. After determining the soil status, the contractor may move the soil as directed by the 319 CEIE through the CO or the appropriate agency (ND State Health Dept, EPA). See paragraph 13.6.9 for additional requirements and information regarding contaminated soils.
7.1.16. Wet Lands: Excavation in areas designated as “wet lands” is strictly prohibited. 319 CES/CEIE has the most recent inventory and location of wet lands. Prior to planning work, the contractor shall coordinate excavation activities with 319 CES/CEIE to avoid wet land conflicts. Should this type of excavation be required, the requirement will be identified in the RPF and the contractor shall be required to coordinate to ensure the proper wet land excavation permits (Army Corp of Engineers Section 404) through 319 CES/CEIE are obtained prior to work. NOTE Section 404 process may take months to gain the proper permissions to proceed with wet land associated work. Any contractor disturbance of a wet land prior to coordination and gaining permission shall be subject to penalties under the laws of the EPA and State of ND. The contractor shall be liable for penalties and restoration actions imposed by the EPA, State of ND, or Grand Forks AFB through CO determination. See paragraph 13.11 for additional requirements and information regarding wetlands.

7.1.17. HAZMAT: The contractor shall handle and store hazardous materials only in areas approved by the agency responsible for the specific material (i.e., fire department, environmental element, etc.), and comply with the contractor’s approved, and the base’s Spill Prevention and Countermeasures Plan (319 CES/CEIE: POC). The contractor shall report any spill of oil or hazardous material to the civil engineer service call desk, and take every reasonable precaution to prevent/contain the spillage of oil or other hazardous substances.

7.1.18. Disposals: The contractor shall control the disposal of fuels, oils, bitumens, calcium chloride, acids, or harmful materials, both on and off government premises and shall comply with applicable federal, state, county, and municipal laws concerning pollution of rivers and streams while performing work under this contract. The contractor shall NOT dispose of any waste or residual material on the ground or in any storm sewer or drainage system. The contractor shall take special measures to prevent chemicals, fuels, oils, greases, bituminous materials, herbicides, and insecticides from entering public waters. Do not allow water used in on-site material processing, concrete curing, foundation and concrete clean-up, and other waste waters to re-enter a stream if an increase in the turbidity of the stream could result. See paragraph 13.6 for additional requirements and information regarding solid waste management and disposal.

7.1.19. Emissions: The contractor shall limit emissions of organic solvents into the atmosphere. This rule applies to use, clean-up, and disposal of organic, photo chemically reactive, and non-photochemically reactive solvents and materials containing these solvents.

7.1.20. VOC: The contractor shall limit the quantity of volatile organic compounds in exterior paint coatings. This applies to any coatings applied to stationary structures and their appurtenances, pavements, and curbs.

7.1.21. Lead Content: The contractor shall NOT use paints or coatings containing lead in excess of 0.009 percent by weight of total non-volatile content in accordance with Title 16 of the Code of Federal Regulations, Part 1303. Pavement paints or coatings within reach of children in housing, recreation, and public areas shall have zero lead content.

7.1.22. PCBs: The contractor shall deliver all items indicated on the drawings or in the specifications containing PCBs and all oil-cooled transformers removed from service for disposal to a storage area on base as directed by the environmental coordinator through the CO. If equipment labels or catalog data does not specify composition, the contractor shall have all electrical equipment cooling liquid tested by a certified laboratory to determine if PCB is present. Drain and properly contain oil from transformers and flush the system to the required level. Clean, seal, and label all drums. Include an original of the certified report to the environmental coordinator. New electric equipment shall not contain PCBs, shall be certified to this effect, and shall be stamped or labeled “NO PCB”.

7.1.23. Noise Control. The contractor shall comply with all applicable state and local laws, ordinances, and regulations relative to noise control.

7.1.24. Recording and Preserving Historical and Archaeological Finds: The contractor shall instruct all employees and subcontractors to carefully preserve all items having any apparent historical or archaeological interest discovered in the course of any construction activities. The contractor shall leave the archaeological finds undisturbed and shall immediately report the find to the CO for reporting to the proper authorities.
7.1.25. Vehicle Control: The contractor shall NOT park or run vehicles on grass areas for shortcuts and/ or convenience. Only equipment required in direct performance of work will be permitted to enter grass areas. The contractor shall repair or replace any damage done to lawns or shrubs caused by construction equipment or related project activities. Contractor personnel shall load all loose debris on trucks leaving the site in a manner that will prevent dropping materials on streets and conform to local ordinances. Fasten a suitable cover such as a tarpaulin over the load before entering surrounding streets. The contractor shall promptly clean up any materials that falls from trucks. The use of cell phones is prohibited on Grand Forks AFB while operating a motorized vehicle. Seat belts are required at all time while driving a vehicle. Base speed limits are strictly enforced and violation(s) may result in suspended base driving privileges.

7.1.26. Equipment Condition: Equipment and vehicles used on base shall be safe and in good operating condition. The contracting officer (CO), CM, Base Safety, or designated representative reserves the right to inspect any on-base equipment and reject such equipment if deemed unsafe, in poor operating condition, or inappropriate for the work being performed.

7.1.27. Government Furnished Equipment: As a rule, the government will NOT furnish equipment/materials (GFE/GFM) except for equipment specified in the solicitation/RFP or elsewhere in these specifications. However, the government reserves the right to provide GFE/GFM for use on any contract or delivery order. In such cases, the contract or delivery order shall contain Schedule D, Schedule of Government Furnished Property listing GFE/GFM that pertain to the project. The contractor shall transport all GFE/GFM, if any, from the government storage area to the work site indicated. Once GFE/GFM is released to the contractor for transportation to the project site, the contractor shall assume the risk and responsibility for the loss or damage to GFE/GFM. The contractor shall follow the instructions of the CO or authorized representative regarding the disposition of GFE/GFM not consumed in performance of this contract.

7.2. PLANS:

7.2.1. Project Site Plan: Prior to starting work, the contractor shall submit an individual Site Plan through the CO to the Construction Manager for approval showing the layout and details of all pertinent attributes used for the project. The base approval authority, normally the Construction Manager and/or Base Civil Engineer, will approve the plan prior to on-site activities. The plan shall include the location of the safety and construction fences, location of all site trailers, equipment and material storage area, construction entrances, trash dumpster locations, temporary sanitary facilities, and worker/construction vehicle parking areas. Overhead site diagrams, and or photographs prior to the start of work may be included with the plan. The CM can provide overhead site photographs to assist the contractor in completion of the project site plan. All areas which may have the potential to tracking of earthen materials shall also be identified. The contractor shall also indicate if the use of a supplemental or other staging area is desired. At completion of work, the contractor shall remove the temporary facilities and restore the site to the original, pre-work condition.

7.2.2. Dirt and Dust Control Plan: As part of the project site plan, or as an individual plan, the contractor shall identify and submit for approval truck and material haul routes leading from the base entry point to the work site. This plan shall include details for controlling fugitive dust, dirt, debris, and rubbish generated on established base haul route/roadway caused by construction activities. As a minimum, the plan shall identify the contractor’s equipment utilized for cleaning along the haul route and measures to prevent and reduce dirt, dust, and debris from being deposited and dispersed along roadways. The plan shall also include frequency of maintenance/cleaning.

7.2.3. Health & Safety Plan: The contractor shall submit a complete health and safety plan for the proposed work. Plan/Program shall be in compliance with EM 385-1-1, OSHA, 29 CFR 1910 for industry, and EM 385-1-1, OSHA, 29 CFR 1926 for construction, and other occupational health and safety requirements of the contract as applicable. Plan shall provide a detailed description of procedures to comply with health and safety requirements.
7.3. CONTRACTOR’S TEMPORARY FACILITIES:

7.3.1. Administrative Field Offices: Contractor's administrative field office shall be in good to new condition, and the exterior color must be subdued and neutral. Locations, if granted, shall be pre-approved by the CM/Base Civil Engineer through the CO. Storage of material/debris under the trailers is prohibited. Power and water will be provided by the government in reasonable quantities, and if they are reasonably available within proximity of the approved location. Connections to existing government utilities shall be made by the contractor at no expense to the government. Modification of existing points of distribution from existing government infrastructure shall be approved prior to, and performed by the contractor at no additional expense to the government. Communication lines and service will not be provided by the government. The contractor shall utilize available commercial services as necessary. The duration of such field office presence will be determined by the government upon request of the contractor.

7.3.2. Dumpsters: Dumpsters shall be painted dark brown and equipped with secure covers. The cover shall be closed at all times, except when being loaded with trash and debris. Locate dumpsters behind the construction fence or out of public view. Empty site dumpsters when they attain 90% of full capacity, or as needed to allow full closure of the covers. All other exterior trash containers utilized in the construction site area shall be dark brown. Locate the trash containers behind the construction fence or out of the public view. Empty trash containers as required to prevent over filling. Large demolition normally requires a large dumpster without lids—these are acceptable but shall not have debris higher than the sides before emptying. Ensure mandated recyclable material (paper, glass, cardboard, etc.) is collected and taken to the recycling center at Building 672.

7.3.3. Temporary Sanitation Facilities: All temporary sewer and sanitation facilities shall be self-contained units with both urinals and stool capabilities. Ventilate the units to control odors and fumes and empty and clean them at least once a week or more often if required by the Contracting Officer. The doors shall be self-closing. The exterior color must be subdued and neutral, unless the facility is behind the construction fence or out of the public view.

7.3.4. Construction Site Maintenance, Safety Fence, Construction Fence, and Barricades:

7.3.4.1. Site Maintenance: The construction site must be kept neat, clean, and free of debris. Clean-up shall be performed at the end of each work day in conjunction with a complete general clean up at the end of the project. Cut grass (to include weeds) within the construction and storage sites to maintain a maximum height of 4 inch or less. Trim grass around fences and other obstructions where a mower cannot reach. Grass and/or weeds allowed to grow on stockpiled earth are not acceptable at any height. Contractor identification signs are not required, however if the contractor chooses to erect signs at construction sites, they will be in compliance with base requirements and color scheme and approved by the CM/Base Civil Engineer before being erected.

7.3.4.2. Safety Fence: The contractor shall also provide a temporary safety fence (with gates as applicable) and warning signs at the construction site prior to the start of work to protect the public from construction activities. The safety fence will match the base standard (dark brown or bright orange where it protects excavated areas), high density polyethylene grid or approved equal, a minimum of 42 inches high, supported and tightly secured to steel posts located on minimum 10 foot centers. The contractor must remove the fence from the work site upon completion of the contract. The fence shall be maintained to avoid sagging and a general state of disrepair while it is deployed on the construction site.

7.3.4.3. Construction Fence: The contractor shall install fences to isolate construction sites as required by the RFP. The construction fence shall be constructed of galvanized chain-link type metal or approved equal, a minimum of 2.13 m (7 feet) high, supported, and tightly secured to steel posts located on minimum 3 m (10 feet) centers.

7.3.5. Indoor Barricades: As necessary, the contractor shall furnish, install, and maintain adequate barricades and warning signs to isolate the construction area from other building entrances, and to block direct access to
entrances where stoops and steps have been removed, areas with tripping and falling hazards, and/or areas with adjacent construction hazards.

7.3.6. Outdoor Barricades: The contractor shall furnish, install, and maintain adequate barricades, warning signs, and warning lights to isolate outdoor construction areas. The contractor shall identify and barricade all open trenches and excavations at the end of each work day. In the vicinity of traveled ways (pedestrian and vehicular), the contractor shall use flashing barricades with spacing not to exceed 25 feet. In other areas, the contractor may use unlit barricades, flagging, rope, fences or other suitable means. The contractor shall comply with all pertinent provisions of the Corps of Engineers EM 385-1-1, *Safety and Health Requirements Manual*, including any revisions.

8. GOVERNMENT FURNISHED SERVICES AND UTILITY AVAILABILITY: All reasonable quantities of utilities (water and electricity) will be made available to the contractor without charge. The Government may not be held responsible for interruptions of utility service and shall not be liable for contractor delays, damages, or increased costs occasioned by any such interruption of service.

8.1. Water: A centrally-located water filling station for contractors is located at Facility 328. This is the preferred location to fill water trucks/portable tanks. For more information regarding the filling station, contact the designated construction representative.

8.2. Refuse Collection: The contractor is responsible for disposing of construction debris and contractor-generated refuse at construction sites safely and properly in accordance with this section. The recycle center is for base residents only, contractors shall dispose of recyclables at own expense off-base.

8.3. Insect and Rodent Control: If the contractor detects an insect or rodent problem, notify the appropriate facility manager or construction representative for entomology services.

8.4. Security Police and Fire Protection: The government will provide security police and fire protection services to the extent necessary to ensure a safe, secure construction site. In return for these services, the contractor shall adhere to the security and fire directives, instructions, and policies of Grand Forks AFB.

8.5. Emergency Medical Services: In the event of a severe emergency, the 319th Medical Facility, during hours of operation, will respond and transport, if necessary, a contractor employee to a local hospital. The contractor shall reimburse the government for these services.

9. WORK SEQUENCE:

9.1. Commencement of Work: Notice To Proceed (NTP) letters shall be the instruction to commencement of work for said contract. Work shall begin within the number of days specified on the contract.

9.2. Project Execution: The work performed under this contract will be adjacent unoccupied facilities/areas. The contractor shall perform all work with continuous daily progress. The government will not accept or permit days of no work or periods of inactivity by the contractor except for drying or curing of previous work or as directed by the CO. In some cases, the government will require the contractor to work around building entrances or make accommodations for facility access within the overall work area to facilitate the contractor’s work and safe access/egress from a facility. The contractor shall protect all government facility exterior appurtenances and landscaping within the work area from overspray, debris, and damage. The government will hold the contractor responsible for any damages caused by contractor operations as a result of lack of adequate protection of government property. NOTE: Once finishes become stained/damaged and cannot be restored, the contractor shall be held responsible to replace such items at no cost to the government. The contractor shall maintain the work site, entry/egress, and vehicular exits free of debris and provide for safe egress at all times. Contractor personnel shall strictly adhere to safety standards (OSHA and AFOSH) and practices at all times during the contract term.
9.3. Forced Work Stoppage: In case of emergency, the contractor shall call 911. The CO, base fire chief, and other base-authorized emergency response personnel, or their representative(s), have the authority to order the contractor to terminate work and clear the area of personnel and equipment. The contractor shall comply with such an order with all possible speed. When such authority figures or representative(s) interrupt the contractor’s operations, the contractor shall immediately notify the contracting officer of the delay.

9.4. Interruption of Utility Services: The contractor shall not hold the government responsible for interruptions of utility service. Nor will the government be liable for contractor delays, damages, or increased costs occasioned by any such interruption of service. The contractor, at his own expense, may provide backup power generation and such in the event of base utility outages.

9.5. Work in Secure Areas: The contractor shall comply with security regulations imposed by the installation commander and/or the agency responsible for the project location. Rules of entry will be established and directed to the contractor at the preconstruction meeting for associated projects. For specifics, refer to Section 17 for Base Entry Procedures and Airfield Requirements.

10. ADMINISTRATION REQUIREMENTS:

10.1. CONTRACTOR PERSONNEL REQUIREMENTS:

10.1.1. Subcontractors and Personnel: Furnish a list of key contact personnel of the contractor and subcontractors including addresses and telephone numbers for use in the event of an emergency. As changes occur and additional information becomes available, update the previous lists as required.

10.1.2. Supervision: Provide at least one qualifying supervisor capable of reading, writing, and conversing fluently in the English language on the job site during working hours. In addition, if a Quality Control (QC) representative is required on the contract, that individual shall also possess fluent English communication skills. The Contractor shall submit a letter to the CO designating both site supervisor for task delivery orders and a project manager for the duration of contract.

10.1.3. Project Management: The contractor shall have available a project construction manager to respond to the requirements of this contract. The contractor’s project manager shall have sufficient authority to effectively manage the contract from the project location or reasonable proximity. The contractor shall notify the CO and the CE Construction Representative when the project manager plans to be absent and/or unavailable to include duration of such absence.

10.2. Records Management Requirements by the Contractor: The contractor shall make available in a timely manner, any permits, reports, or general performance data required in the PWS/SOW. The contractor shall also mark any/all proprietary information in the records submitted to the Air Force/government for Freedom of Information Act purposes. The contractor shall create, handle and maintain records for the Air Force, regardless of medium, (in a pre-agreed medium that can be used by the Air Force) in accordance with the requirements established in AFRIMS Records Disposition Schedule (RDS), AFI 33-322, Records Management program, AFI 33-364, Records Disposition Procedures and Responsibilities, and AFMAN 33-363, Management of Records. Full text versions of these publications are available for download at http://www.e-publishing.af.mil. The contractor’s records person should attend Records Management Orientation Training conducted by the Base Records Manager. Inquiries as to the specific actions necessary to meet the requirements established in the above-referenced publication may be directed to the GFAFB Records Management Office at (701) 747-6143 or 319th CS/SCXK, Bldg 314, GFAFB, ND, 58205-6436.

10.3. PRECONSTRUCTION CONFERENCE: After award of the contract, but prior to commencement of any work at the site, the contractor shall meet with the Contracting Officer to discuss and develop a mutual understanding relative to the administration of the value engineering and safety program, preparation of the schedule prices, shop drawings, and other submittals, scheduling, programming, and prosecution of the work. Major subcontractors who will engage in the work shall also attend.
10.4. AVAILABILITY OF CADD DRAWING FILES: After award and upon request, the electronic “Computer-Aided Drafting and Design (CADD)” drawings files will be made available to the contractor for use in preparation of construction data related to the referenced contract subject to the following terms and conditions. Data contained on these electronic files shall not be used for any purpose other than as a convenience in the preparation of construction data for the referenced project. Any other use or reuse shall be at the sole risk of the contractor and without liability or legal exposure to the Government. The contractor shall make no claim and waives to the fullest extent permitted by law, any claim or cause of action of any nature against the Government, its agents or sub consultants that may arise out of or in connection with the use of these electronic files. The contractor shall, to the fullest extent permitted by law, indemnify and hold the Government harmless against all damages, liabilities or costs, including reasonable attorney’s fees and defense costs, arising out of or resulting from the use of these electronic files. These electronic CADD drawing files are not construction documents. Differences may exist between the CADD files and the corresponding construction documents. The Government makes no representation regarding the accuracy or completeness of the electronic CADD files and the corresponding construction documents. In the event that a conflict arises between the signed and sealed construction documents prepared by the Government and the furnished CADD files, the signed and sealed construction documents shall govern. The contractor is responsible for determining if any conflict exists. Use of these CADD files does not relieve the contractor of duty to fully comply with the contract documents, including and without limitation, the need to check, confirm and coordinate the work of all contractors for the project. If the contractor uses, duplicates and/or modifies these electronic CADD files for use in producing construction data related to this contract, all previous indicia of ownership (seals, logos, signatures, initials and dates) shall be removed.

10.5. ELECTRONIC MAIL (E-MAIL) ADDRESS: The contractor shall establish and maintain electronic mail (e-mail) capability along with the capability to open various electronic attachments in Microsoft, Adobe Acrobat, and other similar formats. Within 10 days after contract award, the contractor shall provide the Contracting Officer a single (only one) e-mail address for electronic communications from the Contracting Officer related to this contract including, but not limited to, contract documents, invoice information, request for proposals, and other correspondence. The Contracting Officer may also use email to notify the contractor of base access conditions when emergency conditions warrant, such as blizzards, terrorist threats, etc. Multiple email address will not be allowed. It is the contractor’s responsibility to make timely distribution of all Contracting Officer initiated e-mail with its own organization including field office(s). The contractor shall promptly notify the Contracting Officer, in writing, of any changes to this e-mail address.

11. NOTIFICATION TO THE CONSTRUCTION MANAGEMENT OFFICE (CMO) AND PROJECT COORDINATION: The contractor shall notify the CMO (Designated Construction Representative) at least seven days in advance of starting all work. This shall include, but is not limited to, notification when the initial work shall begin; when work shall resume after stoppage exceeding five work days; and when work shall begin following all specified exclusion periods. The official Notice to Proceed does not constitute sufficient notification to CMO that work shall begin.

11.1. The contractor shall coordinate all work schedules with the contracting officer (CO) and with the designated Base Civil Engineer Construction Representative (CR) prior to the start of work. The contractor shall participate in progress meetings as directed by the CO and/or the CR. Attendance at these meetings may include the contractor’s corporate management representative(s) at the CO’s discretion.

11.2. Interruption of Activities to Base Personnel: If it becomes necessary to interrupt base activities in buildings and/or areas for construction purposes (except as otherwise described in the contract), the contractor shall request permission, in writing, from the CO five (5) working days in advance. The contractor shall submit written requests for approved street/parking lot closures ten (10) working days prior to closing of the street/parking lot.

11.3. Work Near Medical Facilities: The contractor shall coordinate all work in medical facilities through the CO with medical/dental treatment staff liaisons and the Construction Representative to minimize interruption of care services to their customers.

11.4. Not Used
11.5. Contractor Furnished Equipment Data: Approximately ten days prior to project final inspection, the contractor shall furnish the following data to the Contracting Officer.

11.5.1. Equipment List (If required by specification): An itemized equipment list, showing unit retail value and nameplate data including serial number, model number, size, manufacturer, etc., for all contractor-furnished items of plumbing fixtures, mechanical equipment, and electrical equipment installed under this contract.

11.5.2. Warranty: Provide a list of all equipment items which are specified to be warranted accompanied by a copy of each specific warranty. For each specific warranted item, the list shall include the name, address, and telephone numbers of the subcontractor who installed the item, the supplier or distributor, and the manufacturer. The completion date of the warranty period shall correspond to the applicable specification requirements for each warranted item.

11.5.2.1. Warranty Service Calls: The contractor shall furnish to the Contracting Officer the names of local service representatives and/or contractors that are available for warranty service calls and who will respond to a call within the time periods as follows: Four (4) hours for emergency calls and within 7 days of written notice for all other service calls. The names, addresses, and telephone numbers for day, night, weekend, and holiday service responses shall be furnished to the Contracting Officer and also posted at a conspicuous location in each mechanical and electrical room or close to the unit.

11.6. Work Schedule: Grand Forks Air Force Base standard work hours are 0700 to 1700 hours; Monday through Friday, excluding Federal holidays. Working hours for the contractor will normally align with the base standard hours. If the contractor desires to work during periods other than the base standard work hours, additional Government inspection forces may be required. Therefore, to gain approval to work non-standard hours/days, the contractor shall make a written request to the Contracting Officer a minimum of three working days in advance of the contractor’s intention to work during periods other than standard work hours/days. Additionally, if inspectors are required to perform in excess of normal duty hours/days solely for the benefit of the contractor, the actual cost of inspection at overtime rates may be charged to the contractor. These contract price adjustments may be made as directed by the Contracting Officer. Requests to work non-standard work times that do not meet the three day notification rule will be highly scrutinized and not normally approved.

12. SUBMITTALS:

12.1. Material Submittals: After acknowledgment of Notice to Proceed, the contractor shall submit to the Contracting Officer for approval four hard copies of manufacturer's data, catalog cuts, samples, or other information as required for the items on the Material Submittal Schedule and the Technical Provisions and one electronic copy of the same information. No progress payments will be made until all material submittals are received or other arrangements have been made through the Contracting Officer.

12.2. Submittal Preparation: In preparing submittals, it shall be incumbent upon the contractor to clearly and fully demonstrate that proposed materials, systems, or methods meet or exceed all applicable specific requirements of the Technical Provisions. Whenever possible, parameters such as units of measurement, testing protocols and technical vernacular specified in the text will be those employed or referenced by the contractor or his agent in demonstrating compliance. When not possible, the contractor will clearly and fully demonstrate, by written notation, how other parameters, employed or referenced, compare with those specified.

12.3. Shop Drawing Submittals: Shop drawings, when required, shall consist of a complete list of equipment and materials, including manufacturer's descriptive and technical literature; performance charts and curves; catalog cuts and installation instructions. Shop drawings shall be prepared to graphically demonstrate proposed layout and anchorage of materials, equipment and appurtenances; and material/equipment relationships to other parts of the work including clearances for maintenance and operation. They shall also contain complete wiring and schematic diagrams; and any other details to graphically demonstrate that a system has been fully coordinated and will properly function as a unit. See Material Submittal Schedule.
12.3.1. Manufacturer’s instructions pertaining to the use or installation of submitted and approved products, materials, or equipment used or installed in the execution of work under this contract form a part of these specifications as though specifically set forth herein. These instructions apply whether furnished as a normal, usual, or customary practice of the manufacturer or if furnished in response to a requirement stipulated herein. In the event of conflict between the specification of drawings and manufacturers’ instructions, the contractor shall bring such conflict to the attention of the CO for resolution before proceeding with the work involved.

12.4. Test Submittals: See Material Submittal Schedule for tests required.

12.5. Photographs: Government personnel will photographically document site conditions prior to and throughout the duration of construction operations.

12.5.1. Not Used

12.6. Project Schedule: Prepare for approval a Project Schedule, as specified herein, pursuant to the Contract Clause SCHEDULE FOR CONSTRUCTION CONTRACTS. Show in the schedule the sequence in which the contractor proposes to perform the work and dates on which the contractor contemplates starting and completing all scheduled activities. The scheduling of the entire project construction sequences is required. The scheduling of construction is the responsibility of the contractor. Contractor management personnel shall actively participate in Project Schedule development. Subcontractors and suppliers working on the project shall also contribute in developing and maintaining an accurate Project Schedule. The schedule must be a forward-planning as well as a project monitoring tool. Use the approved Project Schedule to measure the progress of the work and to aid in evaluating time extensions. Make the schedule cost loaded and activity coded. The schedule will provide the basis for all progress payments. If the contractor fails to submit any schedule within the time prescribed, the Contracting Officer may withhold approval of progress payments until the contractor submits the required schedule.

12.6.1. Equipment Delivery Schedule:

12.6.1.1. Initial Schedule: Within 30 calendar days after acceptance of the proposed construction schedule, submit for Contracting Officer acceptance a schedule showing procurement plans for materials and equipment as required on the Schedule of Material Submittals. Submit in the format and content as prescribed by the Contracting Officer, and include as a minimum the following information:

12.6.1.1.1. Description

12.6.1.1.2. Date of the purchasing order

12.6.1.1.3. Promised shipping date

12.6.1.1.4. Name of the manufacturer or supplier

12.6.1.1.5. Date delivery is expected

12.6.1.1.6. Date the material or equipment is required, according to the current construction schedule

12.6.1.2. Updated Schedules: Update the construction schedule and equipment delivery schedule at monthly intervals or when the schedule has been revised. Reflect any changes occurring since the last update. Submit copies of the purchase orders and confirmation or the delivery dates as directed.

12.7. As-Built Drawings:

12.7.1. Exterior Work: All exterior work shall be documented with survey grade GPS as described in 12.10.
12.7.2. Interior Work: All interior work shall be documented with AutoCAD in accordance with the Department of Defense A/E/C CAD Standard.

12.7.3. Redline Markup Drawings: The contractor shall revise 2 sets of paper drawings by red-line process to show the as-built conditions for the duration of the project. These working as-built marked drawings shall be kept current on a weekly basis and at least one set shall be available on the jobsite at all times. Changes from the contract plans which are made in the work or additional information which might be uncovered in the course of construction shall be accurately and neatly recorded as they occur by means of details and notes. Final as-built drawings shall be prepared after the completion of each definable feature of work (Foundations, Utilities, Structural Steel, etc., as appropriate for the project). The working as-built marked prints and final as-built drawings will be jointly reviewed for accuracy and completeness by the Contracting Officer and the contractor prior to submission of each monthly pay estimate. If the contractor fails to maintain the working and final as-built drawings as specified herein, the Contracting Officer will deduct from the monthly progress payment an amount representing the estimated cost of maintaining the as-built drawings. This monthly deduction will continue until an agreement can be reached between the Contracting Officer and the contractor regarding the accuracy and completeness of updated drawings. The working and final as-built drawings shall show, but shall not be limited to, the following information:

12.7.3.1. Utilities: In addition to record drawings, provide for each exterior utility system an electronic drawing set of utility drawings, stamped and signed by a registered professional civil engineer or professional land surveyor, together with two hard copies. Submit within ten working days after each system is in place, but no later than five working days before final inspection. Indicate exterior utilities from the building to the termination point or point of connection to existing system. Include the following:

12.7.3.1.1. Horizontal and vertical controls for new utilities and existing utilities exposed during construction. Reference to station's horizontal and vertical control system.

12.7.3.1.2. Sufficient dimensional control for all important features such as beginning and termination points, points of connection, inverts for sewer lines and drainage collection systems, top of pipe or conduit runs, manholes, cathodic protection appurtenances, valves, valve stem tops, backflow preventers, and other significant features.

12.7.3.1.3. Indicate type and size of all materials used in the construction of the system.

12.7.3.1.4. Indicate bearing and distance on tangent lines. On curves, indicate delta and radius of the curve, also provide X, Y, and Z coordinates at all BC and EC angle points. Indicate horizontal and vertical control for all intersecting and tangent points where utility alignment changes. Indicate X, Y, and Z coordinates at building line and point of connection for straight building laterals or services under 40 feet.

12.7.3.2. The location and dimensions of any changes within the building structure. Correct grade, elevations, cross section, or alignment of roads, earthwork, structures or utilities if any changes were made from contract plans. Changes in details of design or additional information obtained from working drawings specified to be prepared and/or furnished by the contractor; including but not limited to fabrication, erection, installation plans and placing details, pipe sizes, insulation material, dimensions of equipment foundations, etc.

12.7.3.3. The topography, invert elevations and grades of drainage installed or affected as part of the project construction.

12.7.3.4. Changes or modifications which result from the final inspection.

12.7.3.5. Where contract drawings or specifications present options, only the option selected for construction shall be shown on the final as-built prints.

12.7.3.6. If borrow material for this project is from sources on Government property, or if Government property is used as a spoil area, the contractor shall furnish a contour map of the final borrow pit/spoil area elevations.
12.7.3.7. Systems designed or enhanced by the contractor, such as HVAC controls, fire alarm, fire sprinkler, and irrigation systems.

12.7.3.8. Modifications (change order price shall include the contractor's cost to change working and final as-built drawings to reflect modifications) and compliance with the following procedures:

12.7.3.8.1. Directions in the modification for posting descriptive changes shall be followed.

12.7.3.8.2. A Modification Circle shall be placed at the location of each deletion.

12.7.3.8.3. For new details or sections which are added to a drawing, a Modification Circle shall be placed by the detail or section title.

12.7.3.8.4. For minor changes, a Modification Circle shall be placed by the area changed on the drawing (each location).

12.7.3.8.5. For major changes to a drawing, a Modification Circle shall be placed by the title of the affected plan, section, or detail at each location.

12.7.3.8.6. For changes to schedules or drawings, a Modification Circle shall be placed either by the schedule heading or by the change in the schedule.

12.7.3.8.7. The Modification Circle size shall be 1/2 inch diameter unless the area where the circle is to be placed is crowded. Smaller size circle shall be used for crowded areas.

12.8. Final As-Built Drawing Preparation:

12.8.1. The redline markup drawings and GPS survey coordinates shall be submitted 10 days before the final inspection for approval by the Contracting Officer and the Contracting Officer’s technical representative. Upon approval, the redline markup drawings shall be returned to the contractor.

12.8.2. Preparer Qualifications: The contractor shall, at the contractor’s expense, provide a qualified individual or firm to transfer all revisions from the redline markup drawings to the awarded drawings to create the as-built drawings. Upon completion of the transfer, both the redline markup drawings and the as-built drawings shall be submitted to the Contracting Officer for approval. The contractor has 20 calendar days to create the as-built drawings beginning from the day the approved redline markup drawings are returned to the contractor. Work shall be accomplished in a professional manner and comply with the quality standards set forth in the following paragraphs.

12.8.3. Drawing Requirement: One electronic set (AutoCAD .dwg format) of as-built drawings on a CD or DVD shall be provided by the contractor for each submittal requirement. Drawings, paper or electronic, shall comply with the latest version of the A/E/C CADD Standard available at: https://cadbimcenter.erdc.dren.mil/. Electronic drawings shall be created in model space at a scale of one to one (1 to 1). A paper space layout will be set up for each drawing. All external references shall be attached and bound to each affected sheet. Drawings must open in the specified AutoCAD format and be ready to plot without manipulation of files, directories, or other encumbrances. No securities or safeguards that would prevent full control of any drawing will be installed. Changes made or inserted shall be completely drawn in AutoCAD to depict changes. Clouding, notation, or photo insertion to indicate changes are not acceptable unless approved in advance and can only be used on rare occasions. Electronic as-built drawings are to be delivered in AutoCAD 2012 compatible format. The contractor shall provide one CD or DVD containing all drawings properly labeled including awarded original drawings that were not changed. All drawings in the set must be clearly distinguishable from construction drawings. The words “AS-BUILT” or “RECORD DRAWING” must be prominently displayed in the drawing area or inside the revisions block of the border. The CD/DVD must also contain a second drawing set electronically plotted to a raster media such as .TIFF, .PDF, or JPEG for fast viewing.
12.9. **REAL PROPERTY RECORD:** Near the completion of project, but a minimum of 15 days prior to final acceptance of the work, complete, update draft attached to this section, and submit an accounting of all installed property on Form DD1354 "Transfer and Acceptance of Military Real Property." Contact the Contracting Officer for any project specific information necessary to complete the DD Form 1354. For information purposes, a blank DD Form 1354 (fill-able) in Adobe (PDF) may be obtained at: www.dtic.mil/whs/directives/forms/eforms/dd1354.pdf. Submit the completed Checklist for Form DD 1354 of Government-Furnished and Contractor-Furnished/Contractor-Installed items. Attach this list to the updated DD Form 1354. Instructions for completing the form and a blank checklist (fill-able) in Adobe (PDF) may be obtained at: http://www.wbdg.org/ccb/DOD/UFC/ufc_1_300_08.pdf.

12.10. **Geographic Information System (GIS) and Computer Aided Drafting and Design (CADD)**

12.10.1. The survey data shall be collected in the following manner:

12.10.1.2. All survey data collected shall be provided to the Government in digital format with attached Survey Report identifying survey method, equipment list, calibration documentation, survey layout, description of control points, control diagrams, and field survey data.

12.10.1.3. Grand Forks Air Force Base maintains a Trimble base station for survey grade data collection. The contractor may utilize this resource provided they possess the appropriate equipment and chip set for that equipment. The base station runs at 413.25 Mhz and can be used across most of the base without setting up repeaters. This is the preferred methodology for survey grade GPS data collection. Use the established control point located on base. This control point has been verified accurate for survey grade GPS data collection and is the preferred setup location for autonomous base station. Alternatively, a Survey Control Database (consisting of a survey marker database and a survey traverse database) will be produced for all survey control points established under this contract and delivered in ASCII comma-delimited format.

12.10.1.4. The contractor shall use survey grade GPS, at an accuracy level of +/- 2 cm. to collect data to be overlaid onto the installation’s orthophotograph and/or base map. GeoIntegration Office (GIO) will provide support, on a limited basis, to verify survey grade GPS data collection meets Grand Forks Air Force Base survey grade GPS data collection standards.

12.10.2. The contractor shall provide survey grade GPS data feature collection for all new features added as part of this project. Demolished or abandoned features will also be collected using survey grade GPS techniques. Data relating to feature creation and/or demolition shall be provided in non-projected, raw data format when collected. Descriptions of new and abandoned features collected as part of the contract must contain common descriptors and the contractor must provide a key for translation of abbreviated descriptions.

12.10.2.1. **WGS 84**

- **WGS84 Bounds:** -180.0000, -90.0000, 180.0000, 90.0000
- **Projected Bounds:** -180.0000, -90.0000, 180.0000, 90.0000
- **Scope:** Horizontal component of 3D system. Used by the GPS satellite navigation system and for NATO military geodetic surveying.

GEOGCS = WGS 84
DATUM = WGS_1984
SPHEROID = WGS 84, 6378137,298.257223563
12.10.3. The GPS data shall be delivered accordingly in the following media: (Note: No deviations from the Government's established standards will be permitted unless prior written approval of such deviation has been issued by the Government. All linkages of non-graphical data with graphic elements, relationships between data objects and attributes, and report formats shall be maintained.)

12.10.3.1. CD-ROM: Digital media must have an external label listing format and version of the operating system on which the media was created (e.g. Windows Vista), utility (command) used for writing the files to the media, a short description of contents, and a sequence number if there are multiple volumes.

13. ENVIRONMENT PROTECTION:

13.1. Scope: The contractor shall perform all work in such manner as to prevent the polluting of air, water, or land, and shall follow all applicable federal, state, and local regulations and guidelines.

13.2. Implementation: Within 20 calendar days after Notice to Proceed and prior to commencement of the work at the site, the contractor shall submit in writing to the Contracting Officer (CO) the required environmental plans, if applicable, specified within this section. 319 CES/CEIE must review and approve all plans submitted by the contractor prior to beginning work. The required plans include:

13.2.1. Stormwater Protection Plan (13.3)
13.2.2. Preconstruction Survey (13.4)
13.2.3. Solid Waste Management and Disposal Plan (13.6)
13.2.4. Spill Control Plan (13.8)
13.2.5. Dust Control Plan (13.10)
13.2.6. Wetlands Protection Plan (13.11)

13.3.1. Prior to on-site work on all projects (as applicable), the contractor shall accomplish the appropriate action from the options listed below. The contractor shall prepare the required documents and applications and submit such to 319 CES/CEIEC. On the Stormwater Permit application (if needed) the contractor shall complete with the exception of the owner information. Once approved, 319 CES/CC or CD will sign as owner and will submit to the North Dakota Dept. Of Health as appropriate. Information regarding the permit can be found at http://www.ndhealth.gov/WQ/Storm/Construction/ConstructionHome.htm.

13.3.1.1. If Construction Activity (see permit definitions) area is under 1 acre total; contact 319 CES/CEIEC for a copy of the Grand Forks AFB Storm Water Pollution Prevention Plan (SWPPP) and permit. Once SWPPP is completed by contractor, and returned to this office for review and approval, work may begin. Any deviations from these documents must have prior approval from this office.

13.3.1.2. Small Site: If Construction Activity area is between one and five acres; contact 319 CES/CEIEC or visit the North Dakota Department of Health (NDDH) web site to obtain the general small site construction permit, SWPPP forms, and Notice of Intent (NOI) for construction activity. The SWPPP must be completed and approved by this office prior to beginning any site activity. Allow time for this review and approval process. The NOI must be completed by the contractor as 'operator', and then submitted to this office for review. This office will submit the NOI to the NDDH. Please allow time for the State approval process described in the permit. Work may not begin without an approved SWPPP and Permit.
13.3.1.3. Large Site: If the Construction Activity area will total more than five acres but less than 50, the contractor will follow the above (13.3.1.2) process using the 'large site' permit. If the Construction Activity is greater than 50 acres, the SWPPP will need review by this office and the State Health Department, otherwise same as Large site instructions above.

13.3.2. Certain items not required to be submitted by the State of North Dakota to obtain and comply with the NDPDES general permits shall also be submitted to the CO for approval by 319 CES/CEIEC and the CM. These following items are required at a minimum:

13.3.2.1. Application – Notice of Intent
13.3.2.2. Coverage Letter from the State of North Dakota citing permit number and conditions
13.3.2.3. General Permit
13.3.2.4. Storm Water Pollution Prevention Plan (SWPPP). See http://www.ndhealth.gov/WQ/Storm/Construction/ConstructionHome.htm. Also see paragraph 13.5 this section.
13.3.2.5. Self-Monitoring and Reporting Documents (Self-Inspection Records) at 30 day intervals after start of work
13.3.2.6. Amendments to the original SWPPP as they are developed and deployed
13.3.2.7. Transfer of Ownership or Control – permit transfer/modification (if applicable)
13.3.2.8. Notice of Termination (NOT)
13.3.2.9. Noncompliance Notifications to the State of North Dakota
13.3.2.10. Locations of Records Storage if the project site does not have reasonable on-site location
13.3.2.11. Location of Record Retention location for three years

13.3.3. The contractor shall sign and certify (if applicable) all required documents as the operator.

13.3.4. Certain SWPPP requirements may not be readily available to the contractor, such as soil types on base, name of surface waters, name of municipal storm sewer systems at or near disturbed work area, wetland acreage, locations where storm water is discharged to surface waters, etc. These features shall be obtained from Attachment One of this specification section and/or 319 CES/CEIEC prior to completing the SWPPP as necessary.

13.3.5. The base approval authority, 319 CES/CEIEC, has local preferences for storm water protection on Grand Forks AFB. It is highly recommended that the contractor coordinates and obtains such information prior to submitting the SWPPP for approval.

13.4. Preconstruction Survey: Prior to start of any on-site construction activities, the contractor and the Contracting Officer’s representative shall make a joint condition survey after which the contractor shall prepare a brief report indicating on a layout plan the condition of trees, shrubs, and grassed areas immediately adjacent to the site of the work and adjacent to his assigned storage area and access route(s) as applicable. This report will be signed by both the Contracting Officer’s designated representative and contractor upon mutual agreement as to its accuracy and completeness. This product will be used for the determination of restoration of the work sites and for dispute of damaged areas. This report is designed to protect the contractor, and not a convenience to the government. This requirement may be waived by the CO upon request and justification from the contractor.

13.5. Industrial Storm Water Protection Plan: Grand Forks Air Force Base has been issued an Industrial National Pollutant Discharge Elimination System (NPDES) permit for industrial storm water runoff, permit number NDR02-0314. The contractor shall be responsible for strict adherence to the Grand Forks AFB NPDES permit, in addition to the contractor’s permit. The NPDES permit is available for contractor review at 319 CES/CEIEC, 525 Tuskegee Airmen Blvd., Grand Forks AFB, ND. The Contractor shall comply with applicable Federal, State, County, and Municipal laws concerning pollution of rivers and streams while performing work under this contract. Special measures shall be taken to prevent pollutants including rock, sand, sediment, dirt, chemicals, fuels, oils, greases, bituminous materials, herbicides, and insecticides from entering public waters (this includes eliminating sediment from entering the storm drain inlets). Water used in on-site material processing, concrete curing, foundation and concrete cleanup, and other waste waters shall not be allowed to reenter a stream if an increase in the turbidity of stream could result.
13.6. Solid Waste Management and Disposal: As part of the proposed implementation under paragraph 13.2, the contractor must submit a Solid Waste Management and Disposal Plan (Attachment Two) to the Contracting Officer for review and approval by the CO and 319 CES/CEIE for disposing of any and all waste materials resulting from the work under his contract. The contractor must also maintain a Recycled Materials Log (Attachment Two) that must be submitted to the CO and 319 CES/CEIE within 10 working days from the end of each month for all waste materials disposed of as a result of this contract. Disposal documentation (for example, disposal tickets) must accompany the monthly disposal submittal.

13.6.1. Municipal Waste: Municipal waste generated by the contractor and subcontractors can be disposed of in dumpsters available near the work site. The contractor must bag the waste in typical plastic garbage bags prior to disposal. Because municipal waste is not anticipated to be generated in any large quantities, tracking is not required.

13.6.2. Construction and Demolition Debris: Construction waste and demolition debris must be accounted for in the Solid Waste Management and Disposal Plan and also tracked on the Recycled Materials Log.

13.6.3. Hazardous Waste: Hazardous waste generated on GFAFB by the contractor and subcontractors must be managed and disposed of IAW all federal, state, and local regulations. All hazardous waste generated by the contractor must be disposed of off-site. Hazardous waste must be accounted for in the Solid Waste Management and Disposal Plan. The contractor must provide copies of all hazardous waste manifests to the CO and 319 CES/CEIE.

13.6.4. Universal Waste: Universal waste (e.g. used lamps, batteries, mercury devices, etc.) must be managed and disposed of properly IAW all federal, state, and local regulations and guidelines. All universal waste must be disposed of off base at appropriate facilities. All universal waste encountered during the execution of this contract must be accounted for in the Solid Waste Management and Disposal Plan and the Recycled Materials Log.

13.6.5. Asbestos Waste: Asbestos-containing waste must be properly handled and disposed of IAW all federal, state, and local regulations and guidelines. All asbestos waste must be disposed of off base at an appropriate facility. Asbestos waste must be accounted for in the Solid Waste Management and Disposal Plan. An Asbestos Notification of Demolition and Renovation (Attachment Three) must be completed and submitted to the NDDH. Copies of the notification and subsequent NDDH correspondence must be provided to the CO and 319 CES/CEIE. Copies of the all Asbestos Waste Manifests (Attachment Four) must also be provided to the CO and 319 CES/CEIE.

13.6.6. Lead-Based Paint (LBP) Waste: LBP waste generated under this contract must be properly managed and disposed of IAW all federal, state, and local regulations and guidelines. LBP waste must be disposed of off base at an appropriate facility. A copy of all LBP waste manifests must be provided to the CO and 319 CES/CEIE.

13.6.7. PCB Waste: PCB waste must be properly managed and disposed of IAW all federal, state, and local regulations and guidelines. PCB waste includes, but not limited to, contaminated soils, items, articles, containers, and electrical equipment that contain PCBs. PCB waste must be accounted for in the Solid Waste Management and Disposal Plan. Copies of disposal documents and waste manifests must be provided to the CO and 319 CES/CEIE.

13.6.8. Recycling: As previously mentioned in 13.4.1, municipal waste generated by the contractor will not be tracked. However, the Contractor is encouraged to recycle certain municipal waste streams off base that might be generated during the course of this contract. The waste streams that could be recycled include, but limited to, the following:

13.6.8.1. Aluminum and Tin Cans
13.6.8.2. Mixed Plastic (1-7)
13.6.8.3. Glass Bottles and Jars
13.6.8.4. Newspaper
13.6.8.5. Cardboard
13.6.8.6. Magazines
13.6.8.7. Office Paper
13.6.8.8. Junk Mail
13.6.8.9. Paperboard (cereal and soda boxes)

All recycled materials generated from the project (e.g. renovation or demolition debris) must be accounted for on the Recycled Materials Daily Log (Attachment Two). The Daily Log must account for those materials recycled and those recycled commercially off-base.

13.6.9. Petroleum-Contaminated Soil (PCS): Any and all pre-existing petroleum-contaminated soils (PCSs) encountered during the course of this project that requires removal from the project site due to excess soil or inadequate engineering properties must be removed, transported, and disposed of at an off-installation site permitted by the appropriate state agency. Expenses for these actions must be provided for by contract/project funds. The contractor is not obligated nor expected to remove PCS for the sake of "chasing" the PCS for removal and replacement with "clean" soil. The Contracting Officer must be notified of any PCS encountered during the course of this project. Any PCS removed from the project site and transported off-base must be documented (date, quantity, disposition site) and submitted to the Contracting Officer.

13.7.1. IAW FAR Clause 52.223-3, each offeror must provide the Contracting Office with a list of proposed HAZMAT that it plans to use on the installation during the performance of the contract. Per AFI32-7086 paragraph 2.5.5, contractors shall obtain Air Force authorization prior to using HAZMAT on an Air Force installation and must report usage data to the HAZMART. Contractors must submit to the Contracting Office the following information and supporting documentation (including SDSs) necessary to obtain HAZMAT usage authorization:
13.7.1.1. a listing of the anticipated hazardous materials to be used on the installation
13.7.1.2. all material SDSs (formerly referred to as MSDSs) in individual pdf format from the manufacturer
13.7.1.3. all container sizes for each material (16 oz., 5 gallon, 1 pint, etc.)
13.7.1.4. all container types for each material, (plastic bottle, plastic pail, metal can, etc.), and
13.7.1.5. initial inventory of all hazardous material to be brought on base.

13.7.2. The Contracting Office will transmit the contractor submittal to the HAZMART for processing. If the HAZMAT is a Class I ODS, the contracting officer must also have a copy of the applicable and current SAO approval of the Class I ODS requirements (see paragraphs 4.3.1., 4.3.6., and 4.5. of the instruction). NOTE: Contractors are not required to coordinate with a government UEC or Unit Safety Representative.

13.7.3. For each contractor-identified HAZMAT that the HMMP team determines does not meet the Air Force definition of a HAZMAT, the IHMP requirements do not apply. The HMMP team will notify the Contracting Office that the contractor has authorization to bring and use that material on the installation without reporting usage.

13.7.4. If the contractor needs to bring a material on the installation that was not included in the original HAZMAT listing, the contractor must first notify the Contracting Office and then obtain prior authorization, if the HMMP team determines the material to be a HAZMAT.

13.7.5. All hazardous materials must be approved through the above process prior to bringing any hazardous material on the installation.

13.8. Spill Control Plan: The Spill Prevention and Control Plan (Attachment Five) must be submitted to the CO for review and approval by the CO and 319 CES/CEIE. All hazardous material/waste spills must be reported to the
Contracting Officer. Any release of a hazardous material/waste which is beyond the capability of the contractor must be reported to 911 immediately. The contractor will notify and provide complete documentation of spills to the CO and 319 CES/CEIE. Documentation will include the date and time of spill, location, quantity, and an MSDS of the spilled material. It is the contractor’s responsibility to restore the spill area to pre-spill conditions. Spent spill kit materials as well as contaminated soil must be properly disposed of off base IAW federal, state, and local regulations and guidelines. 319 CES/CEIE will file any required reports with appropriate federal, state, and local agencies.

13.9 Air Permit: Any new air emission source(s) (hoods, volatile substance storage tanks, spray booths, stationary equipment, boilers, furnaces, generators, hot mix asphalt/concrete plants or other similar type items) that are to be installed or removed must be evaluated by 319 CES/CEIE prior to commencement of construction and/or purchase for determination of a Permit-to-Construct and potential modification to the installation’s existing Title V Operating Permit. All new sources are subject to NDAC 33-15-12 for air quality compliance.

13.10 Dust Control Plan: The contractor shall comply with NDAC 33-15-17-03, Reasonable Precautions for Abating and Preventing Fugitive Particulate Emissions, and maintain all excavations, stockpiles, access roads, waste areas, and all other work areas to include concrete saw-cutting free from excess dust in accordance with NDAC 33-15-07-03. Approved temporary methods consisting of sprinkling or similar methods will be permitted to control dust. Dust control shall be permitted as the work proceeds and whenever dust nuisance or hazard occurs. The contractor shall be responsible for performing all dust control work in accordance with EPA 832-R-92-005, Chapter 3. The methods the contractor will use to control dust in any areas affected by the project will be addressed in the Dust Control Plan. The Dust Control Plan must be submitted to the CO prior to beginning of work for review and approval by the CO and 319 CES/CEIE.

13.11 Wetlands Protection: Excavation and/or filling in areas designated as “wetlands” is strictly prohibited. Prior to planning work the contractor shall coordinate excavation and/or filling activities with 319 CES/CEIE to avoid wetland conflicts following EO 11990. Type of work may include but is not limited to any trenching/boring, demolition, building of access roads temporary or permanent, and/or installing culverts as required infrastructure for the project that would impact adjacent wetlands. Any work that would disturb wetlands requires Clean Water Act Section 404 permits (through the Army Corp of Engineers), and these are obtained through 319 CES/CEIE prior to work. The application process will require a plan for wetlands restoration and best management practices. The contractor is responsible for completing planned wetland restoration work. The section 404 process may take a few months to gain the proper permissions to proceed with dredging/filling/trenching of wetlands. It is strongly suggested this effort take place, prior to scheduling work. Any contractor disturbance of a wetland prior to coordination and gaining permission shall be subject to penalties under the laws of the EPA, Army Corps of Engineers, and the state of ND. The contractor shall be liable for penalties and restoration actions imposed by the EPA, State of ND, or Grand Forks AFB through CO determination.

13.12 Protection of Endangered, Threatened Plants, Animals and Migratory Birds: Contractor shall obtain approval from the Contracting Officer before removing or relocating any threatened or endangered plants or animals within the construction boundaries. Migratory Birds are protected by the Migratory Bird Treaty Act and EO 13186, “Responsibilities of Federal Agencies to Protect Migratory Birds.” As such, the contractor is not allowed to take any birds listed in 50 CFR 10.13. Take is defined as "to pursue, hunt, shoot, wound, kill, trap, capture, or collect, or any attempt to carry out these activities.” A take does not include habitat destruction or alteration, as long as there is not a direct taking of birds, nests, eggs, or parts thereof. Protected migratory birds include such species as common songbirds, waterfowl, shorebirds, hawks, owls, eagles, ravens, crows, mourning doves, swifts, martins, swallows and others. A permit is required to take a migratory bird including its nest, eggs, and feathers.

13.13 Trees and other natural vegetation: Trees, shrubs and other vegetation are natural resources owned by Grand Forks AFB. Removal of trees as DoD property must comply with 10 USC 2665, DODI 4715.03, and AFI 32-7064. The AF cannot give away, abandon or destroy forest products with marketable value. Marketable value must be appraised by the AF and is a complex decision based on value, demand, ease of access, and other local factors. Sale of forest products must be compatible with the base INRMP. Should any trees that are contained in a
fenced area under the control and maintenance of the contractor become infected with Dutch elm disease or infested with emerald ash borer, the contractor is required to report said condition and work with the base to remove diseased tree. Diseased trees must be disposed by chipping or burial in an approved landfill or IAW with all laws.

13.14. Noxious Weeds: Institute best management practices to limit potential weed seed transport from infested areas to non-infested sites following EO 13112. Avoid activities in or adjacent to heavily infested areas or remove seed sources and propagules from site prior to conducting activities. Should noxious weeds be allowed to grow in fenced and/or contained areas under control of the contractor, the contractor shall be responsible to remove the weeds and return the site area to prior original condition. The contractor shall be liable for penalties and restoration actions imposed by the EPA, State of ND, County Weed Board, or Grand Forks AFB through CO determination.

13.15. Cultural Resource Protection: Prior to any building modification and/or demolition ensure the building is not a historic resource. If the structure is a historic resource, coordinate with 319 CES/CEIE to ensure planned modifications and demolition activities are approved by the State Historical Society. Bones or other historical/cultural artifacts exposed during the course of excavation on the base will be preserved and all work will immediately be halted until the proper authorities have been notified and the bones and/or artifacts have been evaluated as to their nature and relevance. Security Forces and the CRM must be immediately notified to ensure the safety and security of the remains and/or artifacts. The CRM will determine with the aid of the coroner and/or forensic anthropologist if the remains are human and follow all local, state and federal laws.

13.16. Environmental Management System Awareness Training: Contractor will ensure all personnel within 30 days of contract start date contact 319 CES CEIE (Environmental Management) at 747-6153 to take the AF Environmental Management Systems Awareness Training. This training is mandatory and is required to maintain compliance with Executive Order 13423 “Strengthening Federal Environmental, Energy, and Transportation Management”, dated 24 January 2007.

14. CONTRACTOR QUALITY CONTROL (CQC): The contractor shall establish and maintain an effective Quality Control Program as follows:

14.1. General: The contractor is responsible for quality control and shall establish and maintain an effective quality control system in compliance with the contract clause entitled “Inspection of Construction.” The quality control system shall consist of plans, procedures, and organization necessary to manage all delivery orders to produce end products which comply with the contract requirements. The system shall cover all construction operations, both on site and off site, and shall be keyed to the proposed construction sequence. The government will hold the project manager responsible for the quality of work on the job and is subject to removal by the contracting officer (CO) for non-compliance with quality requirements specified in the contract.

14.2. Payment: Separate payment will not be made for providing and maintaining an effective Quality Control program, and all costs associated therewith shall be included in contractor’s price.

14.3. Preconstruction Planning: Prior to starting onsite construction, the contractor shall submit for approval the written QC plan.

14.4. Submittal of CQC Plan: Acceptance of the contractor’s quality control plan is required prior to the start of construction. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Government reserves the right to require the contractor to make changes in his CQC plan and operations as necessary to obtain the quality specified.

14.5. Contractor’s Proposed (QC) Plan: The contractor’s proposed written quality control plan shall include as a minimum:

14.5.1. Weekly Construction Meetings
14.5.1.1. Weekly Minutes

14.5.1.2. Designated Meeting Location

14.5.2. The quality control organization including a chart showing lines of authority

14.5.3. Names, number, and qualifications of personnel to be used for this purpose

14.5.4. Authority and responsibilities of all quality control personnel

14.5.5. Schedule use of inspection personnel by types and phase of work

14.5.6. A list of tests specified to be performed with proposed test methods including specification paragraph number and names of technicians or qualified testing laboratory to be used

14.5.7. Location and availability of test facilities and equipment

14.5.8. Procedures for advance notice and coordination of special inspections and tests where required

14.5.9. Procedures for reviewing all shop drawings, samples, certificates, or other submittals for contract compliance and certifying these for submission to the Government

14.5.10. Method of performing, documenting, and enforcing quality control operations of both prime and subcontract work including inspection and testing both onsite and offsite. Include the proposed forms for approval, and indicate who will prepare, sign, and submit the reports.

14.5.11. Responsibilities and procedures for correcting deficiencies and corrective actions

14.5.12. A copy of a letter of direction to the contractor’s representative responsible for quality control, outlining his duties and responsibilities, and signed by a responsible officer of the firm

14.5.13. Method of documenting and tracking deficiencies and corrective actions

15. FOLLOW-UP INSPECTIONS: Inspections shall be performed continuously as any particular feature of work progresses, to assure compliance with contract requirements including control testing, until completion of that feature of the work.

15.1. Safety Inspections: The contractor shall perform daily safety inspections of the jobsite and the work in progress to assure compliance with EM 385-1-1 and other occupational health and safety requirements of the contract. Daily Quality Control reports as required under paragraph: REPORTING shall be used to document the inspection and shall include a notation of the safety deficiencies observed and the corrective actions taken. The contractor shall use his designated Quality Control Staff to perform the required inspections and shall supplement the staff with additional personnel as required.

15.2. Quality Control Staff: The contractor’s job supervisory staff may be used for quality control supplemented as necessary by additional personnel for the controls required by the specifications. The contractor’s staff member designated as the QC Supervisory Engineer for the contract must be a qualified engineer or technician and be able to demonstrate ability to perform correctly the duties required to the satisfaction of the Contracting Officer and must be available whenever contract work is in progress.

15.3. Testing Procedure: The contractor shall perform tests specified or required to verify that control measures are adequate to provide a product which conforms to contract requirements. The contractor shall procure the services of an industry recognized testing laboratory approved by the Contracting Officer, or may establish an
approved testing laboratory at the project site. The contractor shall perform the following activities and record and provide the following data:

15.3.1. Verify that testing procedures comply with contract requirements.

15.3.2. Check test instrument calibration data against certified standards.

15.3.3. Verify that recording forms, including all of the test documentation requirements, have been prepared.

15.4. Reporting: All inspections and test results shall be recorded daily.

15.4.1. Daily Submittals: The attached sample “Quality Control Daily Report” (Section 19) form or other approved form shall be reproduced and fully executed to show all inspections and tests and submitted in duplicate to the Contracting Officer’s representative on the first work day following the date covered by the report.

15.4.2. Acceptance of the contractor’s daily Control Report does not indicate or imply agreement with the contents.

16. OPERATING MANUALS: See the Material Submittal Schedule for operating manuals required. All operating manuals and test reports contained therein shall be submitted on CD in portable document format (PDF). The contractor shall provide system operating manual(s) to include the following elements:

16.1. Introduction: Includes a general process or system description for each HVAC, refrigeration, plumbing, fire protection, electrical, or other system(s).

16.2. Flow Diagram: Indicates in a single line flow diagram all major components affecting the system performance in operation.

16.3. System Operation: Provides a sequence of operation describing the individual function of each system component, its set point, and resulting action during different conditions or operating cycles. The sequences of operation shall explain manual and automatic start and stop procedures.

16.4. Identified Areas Serviced: Identifies the type of system which is serving a respective area, and enables the operating staff to troubleshoot the system and respond to a complaint in as short a time as possible.

16.5. Troubleshooting Procedures: Shall outline normal troubleshooting procedures as well as troubleshooting efforts that should be followed in response to an alarm.

16.6. Emergency Procedures: Shall outline what action must be taken on a system under emergency conditions in order to assure life safety and prevent physical damage to system components.

17. BASE ENTRY PROCEDURES AND AIRFIELD SECURITY REQUIREMENTS:

17.1. Base Entry Procedures: Security requirements for Air Force facilities under control of Grand Forks Air Force Base are specific and rigidly enforced. Levels of security include Restricted and Controlled areas. Differing degrees of security are enforced at each area. Minimum security requirements, common not only to each of these secure areas, are also required for entry onto Grand Forks AFB. Questions of clarification on locations or procedures for controlled/restricted areas contact Security Forces at 701-747-5351. These minimum requirements are outlined below.

17.1.1. Restricted Areas: Restricted areas are identified in GFAFBI Integrated Defense Plan and include the Command Post (CP) and Mass Parking Area (MPA). Each area is fenced or conspicuously identified by posted signs.
17.1.2. Controlled Areas: Controlled areas include more than forty-four user-controlled base facilities; only a few of which include all hangars, buildings, and communications facilities located within the base aircraft flight-line controlled area. Each of these areas is identified in GFAFBI Integrated Defense Plan and each is conspicuously identified by posted signs.

17.2. Airfield: Special Provisions for Working On or Near the Airfield. By basic definition, all areas within the airfield fence are considered on the airfield. This is a restricted area, and entry can be gained by obtaining a flight line badge or being escorted by person possessing a flight line badge with escort privileges (not to exceed 1 to 5 escort/escortee ratio).

17.2.1. Not Used

17.2.2. Coordination of work: The contractor shall coordinate airfield work (design and construction) through the base operations, Security Forces, CM and the contracting officer (CO). The contractor shall contact Base Operations for daily construction restrictions involving the flight line, taxiway, and runway areas, and shall comply with DOD FAR SUP 252.236-7005, Airfield Safety Precautions, AFI 13-213, Airfield Management and Base Operations, Grand Forks AFBI 24-101.

17.2.3. Closures: All runway or taxiway closures shall require the coordination of Base Operations through the CO not less than fourteen (14) calendar days prior to the requested closure, unless otherwise provided for in these specifications. The contractor shall make the maximum utilization of time during the requested closure period and schedule operations in phases if necessary so as to minimize the effect of construction closures on normal base operations. Upon completing the work requiring the closure, the contractor shall immediately notify the CO so normal operations may resume.

17.2.4. Personnel Safety Precautions: Jet aircraft operating on the runways, taxiways, and aprons make the area of construction a zone of high level noise. The contractor shall take the necessary precautions, such as the use of ear plugs or muffs to prevent injury to the auditory systems of all personnel working in the area.

17.2.5. Vehicles: The government does not allow personal use vehicles inside the flight line fence. The contractor’s employees and subcontractors shall park their personal vehicles in authorized parking lots outside the flight line fence. Personnel requiring entry to the flight line shall be escorted or possess a line badge. Contractor vehicles required in the performance of the work shall have a company sign (minimum size 6 inches by 18 inches) on both front doors. No contractor vehicles, equipment, or personnel shall be on or crossing any active runway or taxiway, except during construction period closures as outlined herein, or when the escort requests and gains clearance from the control tower. Prior to entering the airfield, vehicle operators shall perform a Foreign Object Debris (FOD) check by 1) placing the vehicle in park or neutral and setting the parking brake; 2) exiting the vehicle; 3) inspecting the vehicle tires and undercarriage for objects which may become dislodged (e.g., rocks stuck in tire tread); 4) removing said objects; and 5) reentering the vehicle and proceeding. This inspection must be performed each time the vehicle enters the airfield regardless of prior FOD Checks.

17.2.6. Cleanliness of Work Area: The contractor shall maintain the cleanliness of taxiway, runway, and apron pavements at all times in order to prevent foreign object damage (FOD). The contractor shall remove all materials and equipment to a safe distance from the runway as required by base operations.

17.2.7. Emergencies: There may be periods when the government, due to declared aircraft emergencies, will require the contractor to vacate the work site and move personnel and equipment a distance of several hundred feet away from the work site. Such removals, when ordered, will come on short notice and require expeditious action.

17.2.8. Airfield Security Restrictions: The government will not grant access to restricted areas for the contractor and/or subcontractors without a proper escort. Five (5) work days prior to commencing work, the contractor shall submit, in writing, a list of all personnel who will perform work in the restricted area.
17.2.9. Restricted Areas: The government will not grant access to restricted areas for the contractor and/or subcontractors without a proper escort. Five (5) work days prior to commencing work, the contractor shall submit, in writing, a list of all personnel who will perform work in the restricted area.

17.2.10. Security Forces: Security forces will be included in all contract-related issues.

17.2.11. Excavation: The contractor shall NOT open a trench unless material is on hand and ready for placing in the trench. As soon as practicable after placing material and obtaining approval for the work, the contractor shall backfill and compact trenches as required by the contract.

17.3. Work in Controlled Areas.

17.3.1. Controlled Areas: Contractor’s personnel must be escorted when in the controlled area. Work in this area will require the creation of a free zone so the contractor’s personnel can work in the area without security escorts. The contractor shall work with the Security Forces to establish this area. Contractor personnel may need to be escorted from the perimeter of the controlled area to the free zone and back out.

17.3.1.1. Contractor shall provide plastic channelizer drums with base, spaced no more than 75 feet apart and connected with 5/8 inch nylon rope to delineate the free zone. Warning lights are required where drums are near aircraft traffic.

17.4. Minimum Security Requirements: (All Areas Including Base Entry).

17.4.1. Visitor Passes: The Commercial Visitor Control Center will issue a SFMIS AF Form 75 (Visitor Pass) to the contractor and employees upon completion of screening process for the duration of the contact. The screening process takes time, and the contractor shall visit the Commercial Visitor Control Center prior to expecting base entry to receive required forms and instruction on the application process, to include estimated time of receiving the visitor pass.

17.4.2. Vehicles: Although contractors will not be issued vehicles passes, vehicles are subject to search while on the installation. Employee privately-owned vehicles will not be allowed access to restricted/controlled areas without a free zone being established. Company vehicles will be allowed access to restricted/controlled areas.

17.4.3. All Contractor vehicles shall have markings with the company name for quick identification of ownership and notification if they are involved in an incident.

17.4.4. Conduct Requirements. The contractor shall ensure that all contractor employees comply with all base traffic regulations and properly conduct themselves while on the base.

17.5. Antiterrorism Requirements:

17.5.1. Eagle Eyes: Contractor will post OSI Eagle Eyes posters in the work area. Posters will be made available by the Installation AT Officer.

17.5.2. Training: Shift supervisors and/or Foreman will be required to attend Antiterrorism Level 1 training. Training will be provided by the Installation AT Officer or the Contracting Office.

18. SITE VISITS: A contractor site visit will be arranged. It shall be scheduled by 319 CONF/LGC prior to the established bid opening date.
19. CONSTRUCTION QUALITY CONTROL DAILY REPORT FORM:

CONSTRUCTION QUALITY CONTROL DAILY REPORT
COMPANY/QC Representative:

<table>
<thead>
<tr>
<th>REPORT NO:</th>
<th>CONTRACT NO:</th>
<th>DATE:</th>
</tr>
</thead>
</table>

LOCATION OF WORK:
DESCRIPTION:
WEATHER: RAINFALL: TEMP MIN: TEMP MAX:

1. Work Performed Today by Prime Contractor:

2. Work Performed Today by Subcontractors:

3. Type and Results of Inspection (Follow-up and Include Satisfactory Work Completed or Deficiencies with Action to be Taken):

4. List Type and Location of Tests Performed and Results of These Tests:
5. Verbal Instructions Received from Government Personnel on Construction Deficiencies or Re-Testing Required:

6. Safety Violations Observed and Actions Taken:

7. Remarks:

8. CERTIFICATION: I certify that the above report is complete, correct and that I, or my authorized representative, have inspected all work performed this day by the prime contractor and each subcontractor and have determined that all materials, equipment, and workmanship are in strict compliance with the plans and specifications, except as may be noted above.

Designated Quality Control Representative Signature/Date
21. ATTACHMENT TWO
Solid Waste Management and Disposal
(***Fillable documents can be obtained from 319 CES/CEIE***)

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>_quantity</th>
<th>Collection Method</th>
<th>Disposal Method</th>
<th>Disposal Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood/bond refuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum Cans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead Based Paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landfilled Debris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

December 2017
<table>
<thead>
<tr>
<th>DAY of the Month</th>
<th>CONCRETE (yds)</th>
<th>STEEL (lbs)</th>
<th>ALUMINUM (lbs)</th>
<th>MISC METAL (lbs)</th>
<th>GLASS (lbs)</th>
<th>PAPER (lbs)</th>
<th>CARDBOARD (lbs)</th>
<th>WOOD (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALS:

NOTE: If a recycled material is not listed above (e.g., asphalt), cross out a heading not used and replace it with the material being recycled.
SOLID WASTE MANAGEMENT
AND
DISPOSAL PLAN

Project Title: ___ Project #:________________
Contractor: __ Date: ___________________
Signature: ___

1) Will waste materials be generated during this project? Circle: YES / NO

2) If “YES” for 1), complete the attached table and continue to 4). Include all waste streams on the table except municipal waste.

3) If “NO” for 1), STOP! The Plan is complete and can be submitted as-is.

4) Will waste materials be recycled? Circle: YES / NO

5) The attached Recycled Materials Daily Log must be used to track quantities. The Daily Log must be submitted to the CO and 319 CES/CEIE within ten (10) working days after the end of each month.

6) Section 13.6 of the specification addresses various waste streams that can be generated during the course of a project. All federal, state, and local regulations and guidelines must be followed regarding the proper management and disposal of these and all waste streams.

7) Proof of final disposition: Contractor must provide proof of disposal or recycling to the CO and 319 CES/CEIE. Disposal tickets can be included with the Daily Log submittal.

7) Periodic and random inspections of the project will be made. Noncompliance issues will be noted to the CO. Severity of noncompliance and timeframe to rectify will be at the discretion of 319 CES/CEIE and the CO.
TABLE COMPLETION INSTRUCTIONS:

Column 1) Waste Stream: Some typical waste streams are listed, but add those waste streams that will be generated during the project. Also, include the hazardous waste streams that will be generated in this table.

2) Collection Method: State how that waste stream will be collected (e.g. dumpster, bags, piled on the ground, etc).

3) Securing The Load: State how the load will be secured (e.g. roll-up tarp over truck, bags in cube van, tie-downs on flat bed, etc).

4) Transportation: State how the waste will be transported to the disposal or recycling facility. Include any details regarding placarding the truck.

5) Disposal Site: State the facility by name that will receive each waste stream identified in the table.

6) Permit Number: Include the facility permit number (typically a NDDH or MN MPCA permitted facility). Recycling centers may or may not have a state-issued permit, therefore write “NA” for Not Applicable” if that is the case.
ASBESTOS NOTIFICATION OF DEMOLITION AND RENOVATION

North Dakota Department of Health
Division of Air Quality
SFN 17967 (12/05)

I. Type of Notification

- [] Original
- [] Revised
- [] Cancelled

II. Type of Operation

- [] Demolition
- [] Renovation
- [] Ordered Demolition
- [] Emergency Renovation

III. Is Asbestos Present?

- [] Yes
- [] No

IV. Dates of Asbestos Removal (MM-DD-YY)

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
</table>

V. Dates of Demolition or Renovation (MM-DD-YY)

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop</th>
</tr>
</thead>
</table>

VI. Facility Information (identify owner and operator, if applicable)

<table>
<thead>
<tr>
<th>Owner Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Owner Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact Person</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telephone Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Operator Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Operator Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact Person</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telephone Number</th>
</tr>
</thead>
</table>

VII. Facility Description (include building name, number and floor or room number)

<table>
<thead>
<tr>
<th>Building Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Building Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
<th>County</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Site Location (floor or room number(s))</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Building Size (Sq. Ft)</th>
<th>Number of Floors</th>
<th>Age of Building/Year Built</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Present Use</th>
<th>Prior Use</th>
</tr>
</thead>
</table>

VIII. Asbestos Contractor or Demolition Contractor

<table>
<thead>
<tr>
<th>Contractor Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contractor Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contact Person</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telephone Number</th>
</tr>
</thead>
</table>

IX. Asbestos Inspector or Project Monitoring Firm (if applicable)

<table>
<thead>
<tr>
<th>Firm Name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Firm Address</th>
<th>City</th>
<th>State</th>
<th>Zip Code</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name of Inspector or Onsite Hygienist</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Telephone Number</th>
</tr>
</thead>
</table>

X. Approximate Amount of Asbestos, Including:

<table>
<thead>
<tr>
<th>Regulated Asbestos-Containing Material (RACM) to be Removed</th>
<th>Nonifiable Asbestos-Containing Material to be Removed</th>
<th>Nonifiable Asbestos-Containing Material not to be Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area (Sq. Ft)</td>
<td>Category I</td>
<td>Category II</td>
</tr>
<tr>
<td>Volume from Facility Component(s) (Cu/FL)</td>
<td>Category I</td>
<td>Category II</td>
</tr>
<tr>
<td>Pipe (Linear Ft)</td>
<td>Category I</td>
<td>Category II</td>
</tr>
</tbody>
</table>

22. ATTACHMENT THREE

Demo Notification Plan

(***Fillable documents can be obtained from 319 CES/CEIE***)

23. ATTACHMENT FOUR
I. WASTE GENERATOR (BUILDING OWNER, BUILDING MANAGER, OR PROJECT CONTRACTOR)

<table>
<thead>
<tr>
<th>Operator or Contractor Name</th>
<th>Operator or Contractor Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Zip Code</td>
<td>Phone Number</td>
</tr>
<tr>
<td>Owner Name</td>
<td>Owner Address</td>
<td>City</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Site Name</td>
<td>Work Site Address</td>
<td>City</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Zip Code</td>
<td>Owner Phone Number</td>
</tr>
<tr>
<td>Description of Materials</td>
<td>Number of Containers/Bags</td>
<td>Total Quantity (square yards or pounds)</td>
</tr>
</tbody>
</table>

Special Handling Instruction and/or Additional Information

Owner or Operator’s Certification: I hereby declare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked, and labeled, and are in all respects in proper condition for transport by highway according to applicable international and government regulations.

<table>
<thead>
<tr>
<th>Signature of Owner or Operator</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II. WASTE TRANSPORTER

<table>
<thead>
<tr>
<th>Waste Transporter Name</th>
<th>Transporter Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Zip Code</td>
<td>Phone Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transporter Signature</th>
<th>Date Transported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. WASTE DISPOSAL SITE

<table>
<thead>
<tr>
<th>Name of Disposal Site (landfill)</th>
<th>Landfill Address</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Zip Code</td>
<td>Phone Number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waste Disposal Site Owner or Operator Name</th>
<th>Waste Disposal Site Owner or Operator Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Waste Disposal Site Owner or Operator Certification: To the best of my knowledge, I hereby declare that the contents of this consignment are fully and accurately described on this manifest and there are not discrepancies between the amount listed above and the amount I have received, unless otherwise noted. I also certify there is no improperly enclosed or contained waste.

<table>
<thead>
<tr>
<th>Signature of WDS Owner or Operator</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The owner or operator must submit a copy of this completed form within 10 days of receiving the form from the disposal site operator.

Return completed form to:

Asbestos NESHAP Coordinator:

North Dakota Department of Health
Division of Air Quality, 2nd Floor
518 East Divide Avenue
Bismarck, ND 58501-1947
Phone: 701.328.5188
Fax: 701.328.3183
Project Title: _______________________________ Project #: __________________
Contractor: _______________________________ Date: _________________
Signature: _________________________________

1) Will the project use materials on-site that could cause a spill? YES / NO

2a) If “YES” for 1) above, complete the attached table and continue to 3).

2b) If “NO” for 1) above, STOP! The Plan is complete.

3) Contractor-generated petroleum-contaminated soil (PCS) will be removed and transported to an appropriate off-base facility for proper disposal. The Contractor is also responsible for restoring contaminated site to pre-spill conditions.

4) If unexpected pre-existing PCS is encountered while digging or excavating for the project, the Contractor will contact the Contracting Officer and 319 CES/CEIE for guidance.

5) For spills not petroleum related, contractor will control, contain, and appropriately clean-up the spill site IAW the material SDS. Waste materials must be disposed of off base at an appropriate facility. All cleanup and site restoration is at the Contractors expense. The Contractor is responsible for restoring spill site to pre-existing conditions.

6) Appropriately stocked spill kits will be on-site and readily available where the potential spill(s) may occur.

7) The contractor will notify and provide complete documentation of spills to the CO and 319 CES/CEIE. Documentation will include the date and time of spill, location, quantity, and the material SDS. 319 CES/CEIE will file any required reports with Federal, State, and local agencies.

8) Contractor and all subcontractors will follow all federal, state, local, and GFAFB regulations and policies not directly mentioned above or in the specification. Periodic and random inspections of the project will be made by 319 CES/CEIE. Noncompliance issues will be noted to the CO. Severity of noncompliance and timeframe to rectify will be at the discretion of 319 CES/CEIE and the CO.
TABLE COMPLETION INSTRUCTIONS:

Column 1) Potential Spill Sources: Some typical spill sources are listed, but add those materials that will be job specific and on-site during the project.

2) Prevention Method: Describe what methods you will use to prevent a spill (e.g. bulk storage of fuel in double-walled containers, 55 gallon drums of stuff stored on spill pallets, etc). For some materials, like hydraulic oil in construction equipment, daily inspection of equipment and reservoirs will be the prevention method. If hydraulic oil will be stored in bulk containers on-site, a prevention method could be “stored on spill pallets or pans inside the job trailer”.

3) Control and Cleanup Measures: Describe how you will control a spill and clean it up. Consult the SDS for guidance.

4) SDS On-Site: Circle the appropriate response.
<table>
<thead>
<tr>
<th>1) POTENTIAL SPILL SOURCES</th>
<th>2) PREVENTION MEASURES</th>
<th>3) CONTROL and CLEANUP MEASURES</th>
<th>4) MSDS On-Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Gasoline:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Solvents:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Glues:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Hydraulic Fluid:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Tranny Fluid:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Paint:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td>Antifreeze:</td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES / NO</td>
</tr>
</tbody>
</table>
1.1 WORK COVERED BY CONTRACT DOCUMENTS

1.1.1 Project Description

The work includes interior and exterior work at B541 to renovate the facility for use as unmanned aerial system flight operations facility.

1.2 OCCUPANCY OF PREMISES

The building will not be occupied during performance of work under this Contract.

Before work is started, arrange with the Contracting Officer a sequence of procedure, means of access, space for storage of materials and equipment, and use of approaches.

1.3 EXISTING WORK

In addition to "FAR 52.236-9, Protection of Existing Vegetation, Structures, Equipment, Utilities, and Improvements":

a. Remove or alter existing work in such a manner as to prevent injury or damage to any portions of the existing work which remain.

b. Repair or replace portions of existing work which have been altered during construction operations to match existing or adjoining work, as approved by the Contracting Officer. At the completion of operations, existing work must be in a condition equal to or better than that which existed before new work started.

1.4 LOCATION OF UNDERGROUND UTILITIES

Obtain digging permits prior to start of excavation, and comply with Installation requirements for locating and marking underground utilities. Verify existing utility locations indicated on contract drawings within area of work.

1.4.1 Notification Prior to Excavation

Notify the Contracting Officer at least 15 days prior to starting excavation work.

1.5 GOVERNMENT-INSTALLED WORK

- Fixtures, furniture and equipment (FFE)
- Workstations/seating for Cockpits (except jump seats and adjacent small tables)
- Four workstations/seating for MX Maintenance Room 202
- Weapons Systems Trainer (WST) workstations/seating
- Vending machines
- Safes
- Copy and fax machines
- Shredders
- Network and PC printers
- Scanners
- Office supplies and equipment
- Miscellaneous shelving and cabinets not specifically included as Architectural Casework on the Drawings
- Flashlights
- Security signage
- Televisions/monitors and mounts
- Computer system equipment (PC's, monitors, etc.)
- UPS systems and equipment
- Telephone system equipment
- Government secure network equipment
- Intrusion Detection System (IDS) including Balanced Magnetic Switches (BMS) and Passive Infrared Motion Sensors (PIR) and cabling (rough-in boxes, conduit and power included under this Combined Contract)
- Automated Entry Control System (AECS) equipment and cabling (rough-in boxes, conduit and power included under this Combined Contract)
- Security cameras, equipment, monitors and cabling/terminations (rough-in boxes, conduit and power included under this Combined Contract)
- Videoconference system cameras, equipment and monitors (rough-in boxes, conduit and power included under this Combined Contract)

1.6 SALVAGE MATERIAL AND EQUIPMENT

Items designated by the Contracting Officer to be salvaged remain the property of the Government. Segregate, itemize, deliver and off-load the salvaged property at the Government designated storage area located within three miles of the construction site.

Provide a salvage plan, listing material and equipment to be salvaged, and their storage location. Maintain property control records for material or equipment designated as salvage. Use a system of property control that is approved by the Contracting Officer. Store and protect salvaged materials and equipment until disposition by the Contracting Officer.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
SECTION 01 14 00

WORK RESTRICTIONS

PART 1 GENERAL

The requirements of this section take precedence over, and supersede any similar or conflicting statements within the project documents. Unless otherwise noted, all other security requirements of the project documents and those implemented by 319 SFS apply.

1.1 REFERENCES

Applicable AFI’s for Special Mat’l Check in/Control & Storage Procedures.

1.2 DEFINITIONS

Special security control procedures are developed to provide proper guidance for construction materials handling and storage, designated site controls, site construction and contractor personnel.

1.3 SUBMITTALS

SD-01 Preconstruction Submittals

List of Contact Personnel; G

Site Security Plan; G

Other Submittals

Personnel Lists and Data

Delivery Invoices

1.4 SPECIAL SECURITY CONTROLS AND PROCEDURES

The project site is not a Controlled or Restricted area; no escorts are required. The design and construction methods and materials are not unusual or specifically unique to this facility. However, the secure nature of the facility end-use requires special measures be implemented to ensure all standards are met and risks are minimized. Submit a Site Security Plan describing the procedures that will be implemented to fulfill the requirements of this specification.

1.4.1 Special Material Control and Storage Security Procedures

1.4.1.1 All construction materials installed within the secure areas designated on drawing floor plans must be manufactured in the United States.

1.4.1.2 All construction materials must pass through the commercial gate inspection facility and submit to an inspection from the 319th Security Forces Squadron (SFS) prior to reaching the construction site.
1.4.1.3 To the extent possible, materials shall be transported to the site in unopened/unbroken shipping pallets/bundles in original shipping material.

1.4.1.4 On Grand Forks AFB, all construction materials shall be stored within the site fenced area or within the designated facility.

1.4.1.5 The Contractor may provide and utilize Storage containers and trailers within the fenced area. Storage containers and trailers must be locked and secured when not under the control of designated on-site Contractor personnel.

1.4.1.6 The 69 RG Site Security Manager (SSM) must be notified of, and approve all material deliveries. Provide invoices, or if not invoiced, a summarized list of materials delivered to the site. The SSM will inspect construction materials after delivery to the construction site.

1.4.2 Special Site Control Security Procedures:

1.4.2.1 Security control of the site will be delegated to the Prime Contractor. Locks shall be placed on all gates, trailers, and accessible storage containers. Contractor and Subcontractors shall have a key control plan for locks as part of an overall security plan. The construction site will remain locked during all non-duty/non-work hours.

1.4.2.2 Requests for work outside normal-duty hours or on weekends and holidays must be made no less than two weeks in advance. See section 01000, 11.6 “Work Schedule” for additional information.

1.4.2.3 The Contractor’s designated representative shall inspect the area, equipment, and storage at the beginning of each day. Any irregularities or observation/evidence of suspicious activity shall be immediately reported to the SSM and recorded in daily reports.

1.4.2.4 The Contractor’s designated representative shall inspect the area, equipment, and storage prior to securing the site at the end of work activities for the day. Any irregularities or observation/evidence of suspicious activity shall be immediately reported to the SSM and recorded in daily reports.

1.4.2.5 The Contractor’s designated representative is responsible for verifying that only authorized employees, subcontractor employees, vendor and delivery personnel are allowed on site.

1.4.2.6 Personal vehicles are not allowed within the site fenced area. Only properly identified vehicles owned by Contractor and Subcontractor companies will be allowed to park within the fenced area. Delivery vehicles may operate within the fenced area as required. Vehicles within the fences area are subject to search.

1.4.2.7 The SSM shall have unrestricted access to the site at all times.

1.4.2.8 The following items are prohibited from entering the project site: weapons, illegal drugs.

1.4.2.9 The following items require written approval from the SSM prior to entering the project site: explosives (for construction purposes),
satellite transmission/receiving devices, cameras, cellphones, pagers, tablets, computers, and any other personal electronic devices.

1.4.3 Special Construction Procedures

1.4.3.1 A representative from SSM will inspect, document, and photograph all walls, subfloor and ceiling spaces, and any other space which will become inaccessible prior to being sealed. Coordinate work with SSM as required.

1.4.3.2 The Prime Contractor shall provide a validated list of all personnel who will be performing work on the site for each individual day. The list shall consist of personnel full names, Date of Birth (DOB), last four digits of SSN, and employer. The list shall be provided to the SSO by close-of-business two workdays prior.

1.4.3.3 The SSM must be notified of all visitors prior to entering the site. Visitors are subject to the same requirements as Contractor employees.

1.4.4 Special Security Requirements for Contractor Personnel

1.4.4.1 All personnel on site shall be U.S. citizens cleared for access to Grand Forks AFB by 319 SFS.

1.4.4.2 All personnel must be able to produce photo ID and base pass or temporary pass prior to entering and while on the construction site. The SSM will check personnel against the validated list of employees provided by the Prime Contractor.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

Not used.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

COUNCIL ON ENVIRONMENTAL QUALITY (CEQ) (WHITE HOUSE)

U.S. DEPARTMENT OF AGRICULTURE (USDA)

FSRIA 9002 Farm Security and Rural Investment Act Section 9002 (USDA Biopreferred Program)

U.S. DEPARTMENT OF ENERGY (DOE)

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

SNAP (2016) EPA's Significant New Alternatives Policy Program

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

10 CFR 433.300 Subpart C - Green Building Certification for Federal Buildings

40 CFR 247 Comprehensive Procurement Guideline for Products Containing Recovered Materials

1.2 SUMMARY

This specification includes general requirements and procedures for this project to be constructed and documented per the federally mandated High Performance and Sustainable Building or HPSB Guiding Principles (GP), Third Party Certification (TPC) requirements, UFC 1-200-02, High Performance and Sustainable Building Requirements, and other requirements identified in this specification.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to this section. Submit the following in accordance with Section 01000:

SD-01 Preconstruction Submittals

Preliminary High Performance and Sustainable Building Checklist; G
Sustainability Action Plan; G
Preliminary Sustainability eNotebook; G

SD-11 Closeout Submittals

Final High Performance and Sustainable Building Checklist; G
Final Sustainability eNotebook; G
Amended Final Sustainability eNotebook; G
Amended Final High Performance and Sustainable Building Checklist; G
Third Party Certification Certificates or Validation; G

1.4 GUIDING PRINCIPLES VALIDATION (GPV)

Provide construction related sustainability documentation to verify achievement of HPSB Guiding Principles Validation (GPV). Provide the following for GPV:

a. Refer to Attachment 1, HPSB Checklist at the end of this Section.

b. Obtain approval of any changes to the HPSB Checklist from the Contracting Officer at the Preconstruction Conference. Contracting Officer's approval establishes identified HPSB Guiding Principles Requirements as the project's sustainability goals.

No variations or substitutions to the HPSB Checklist are allowed without written consent from the Contracting Officer. Immediately bring to the attention of the Contracting Officer any changes that impact meeting the approved HPSB Guiding Principles Requirements for this project and demonstrate that change will not incur additional construction cost or increase the life cycle cost.

c. Provide all work, including "S" submittals, required to incorporate the applicable HPSB Guiding Principles Requirements indicated on the HPSB Checklist and in this contract.

d. Provide Sustainability Action Plan

e. Provide construction related documentation for the project Sustainability eNotebook, and keep updated with regularly-scheduled
construction meetings. Include construction related documentation containing the following components;

(1) HPSB Checklist

(2) Sustainability Action Plan

(3) Documentation illustrating HPSB Guiding Principles Requirements compliance (including "S" submittals)

1.4.1 Sustainability Action Plan

Include the following information in the Sustainability Action Plan:

a. Planned method to achieve each construction related GP requirement.

b. For each designated construction related HPSB Guiding Principles Requirements that is not achieved, provide narrative explaining how mission or activity precludes achieving specific sustainability requirement or goal. Provide analysis of particular requirement and level to which project is able to comply. Final government-approved narrative(s) must be included with the HPSB Checklist submittal.

c. Name and contact information for: POC responsible for ensuring sustainability goals are accomplished and documentation is assembled.

d. Include the Indoor Air Quality plan with the Sustainability Action Plan.

1.4.2 Costs

Bear all costs associated with constructing and demonstrating that project complies with approved HPSB Guiding Principles Requirements.

1.4.3 Calculations

Provide calculations, product data, labels and certifications required in this section to demonstrate compliance with the HPSB Guiding Principles Requirements.

1.4.4 Third Party Certification (TPC)

1.4.4.1 TPC Registration Required

Register and achieve Third Party Certification (TPC), by meeting all TPC and project requirements for a level of GBI GP Compliance or Government-approved equivalent TPC sustainability certification or validation. An equivalent TPC organization must demonstrate equivalency for Government consideration and meet the requirements of 10 CFR 433.300, prior to use on the project. Third Party Certification is met when Government receives TPC organization certificate or validation.

Register project with TPC organization using the following format and content:

a. Project Title First Line: Building Owner US Air Force, Building Name
b. Project Title Second Line: DD1391 Project Name

c. Project Address: UIC (Installation code), Category code, RPUID (Real Property Unique Identifier) Number

d. Project Owner Organization: US Air Force

e. Primary Contact, Owner: Agency Project Manager

g. Additional Contact, Building Owner: Public Works Officer, Base Civil Engineer, or Designee

1.4.4.2 TPC Management and Certification

The TPC Certification or validation requires the following:

a. Refer to Attachment 2, TPC Checklist at the end of this Section.

b. Obtain approval of the TPC Checklist from the Contracting Officer at the Pre-Construction Conference.

No variations or substitutions to the approved TPC checklist are allowed without written consent from the Contracting Officer. Immediately bring to the attention of the Contracting Officer any project changes that impact meeting the approved TPC Requirements for this project. Demonstrate that change will not: incur additional construction cost; increase the life cycle cost; impact previous TPC Design Review; impact required TPC certification or validation level.

c. Complete all work required to incorporate the applicable TPC Requirements.

d. Maintain the construction related information, and provide replacement pages, in the Sustainability eNotebook pertaining to additions and changes to the approved sustainability requirements. Maintain the Sustainability eNotebook in electronic format. For more explanation, refer to paragraph SUSTAINABILITY eNOTEBOOK. Provide the following components in the Sustainability eNotebook, in addition to the GPV components above:

 (1) TPC Checklist

 (2) Completed TPC Online forms for each identified requirements

 (3) Copy of all correspondence with the TPC organization including proof of TPC registration

 (4) Documentation illustrating compliance with TPC requirements and additional documentation as requested by the TPC

 (5) TPC Award Certificate or validation

e. Provide the following information in the Sustainability Action Plan. Provide this TPC information in addition to the Sustainability Action Plan items above:

 (1) Planned method to achieve each TPC requirement.
(2) For each TPC requirement that is attempted but not achieved, provide narrative explaining how mission or activity precludes achieving specific sustainability requirement or goal. Provide analysis of particular requirement and level to which project is able to comply.

(3) Provide name and contact information for: Sustainability POC and other names of sustainability professionals responsible for ensuring TPC sustainability goals are accomplished and documentation is assembled. Sustainability POCs are also responsible for ensuring GPV required in paragraph GUIDING PRINCIPLES VALIDATION (GPV) above.

f. Bear all costs associated with constructing and demonstrating that project complies with approved TPC requirements, including but not limited to:

(1) Final TPC review, certification or validation fees.

(2) Online (or offline with secure facilities) TPC management and documentation.

(3) Obtaining TPC certification or validation based on Government-approved sustainability goals.

(4) Construction work required to incorporate TPC requirements.

(5) Submittals required to demonstrate compliance with Government approved TPC checklists.

g. Provide all calculations, product data, and certifications required in this specification to demonstrate compliance with the TPC Requirements.

h. Provide all online (or offline, with secure facilities) TPC management and documentation.

i. Provide all required responses to TPC.

j. Provide TPC Certificates or validation. Use format below to create the Certificate or validation and Letter of Congratulations (when provided). Forward to parties designated by Contracting Officer:

(2) Certificate or Validation:

 Project Title, first line: Form DD1391 Project Name

 Project Title, second line: UIC (Installation code)

(3) Letter of Congratulations (when provided):

 Address letter to Facility's Installation commander Name. Address the letter to an individual person.

k. Once Final TPC is achieved, turn over Administrative rights to online TPC to the Public Works Office, Base Civil Engineer, or designee, provided by the Contracting Officer.
1.5 SUSTAINABILITY SUBMITTALS

Provide HPSB Checklist and other documentation in the Sustainability eNotebook to indicate compliance with the sustainability requirements of the project.

1.5.1 High Performance Sustainable Building (HPSB) Checklist

Provide construction documentation that provides proof of and supports compliance with the completed HPSB Checklist.

1.5.1.1 HPSB Checklist Submittals

Submit updated HPSB Checklist with each Sustainability eNotebook submittal. Attach final HPSB Checklist to draft final DD1354 Real Property Record Submittal.

1.5.2 "S" Submittals for Sustainability Documentation

Submit the GPV and TPC sustainability documentation required in this specification as "S" submittals in all affected UFGS Sections. Highlight GPV and TPC compliance data in "S" submittal.

1.5.3 Sustainability eNotebook

Provide and maintain a comprehensive Sustainability eNotebook to document compliance with the sustainability requirements identified in the approved HPSB and TPC Checklist. Sustainability eNotebook must contain all required data to support full compliance with the HPSB Guiding Principles Requirements, including HPSB checklist, Sustainable Action Plan, calculations, labels, certifications and TPC requirements. Sustainability eNotebook is in the form of an Adobe PDF file; bookmarked at each HPSB Guiding Principles Requirement, TPC requirement, and sub-bookmarked at each document. Match format to HPSB Guiding Principles numbering system indicated herein. Maintain up to date information, spreadsheets, templates, and other required documentation with each current submittal. For TPC projects, provide a second Table of contents using TPC numbering system, for maintaining documentation unique to TPC.

Contracting Officer may deduct from the monthly progress payment accordingly if Sustainability eNotebook information is not current, until information is updated and on track per project goals.

1.5.3.1 Sustainability eNotebook Submittal Schedule

Provide Sustainability eNotebook Submittals at the following milestones of the project:

a. Preliminary Sustainability eNotebook

Submit preliminary Sustainability eNotebook for approval at the Pre-construction conference. Include Preliminary High Performance and Sustainable Building Checklist and TPC checklist.

b. Construction Progress Meetings. Update GP and TPC documentation in the Sustainability eNotebook and TPC Online tool for each meeting.

c. Final Sustainability eNotebook
Submit updated Sustainability eNotebook at the Beneficial Occupancy Date (BOD). Final progress payment retainage may be held by Contracting Officer until final sustainability documentation is complete. Submit three electronic copies of the Final Sustainability eNotebook on DVDs to the Government. Include Final High Performance and Sustainable Building Checklist.

d. Amended Final Sustainability eNotebook

Amend and resubmit the Final Sustainability eNotebook to include post-occupancy corrections, updates, and requirements. Include Amended Final High Performance and Sustainable Building Checklist. Final progress payment retainage may be held by Contracting Officer until amended final sustainability documentation is complete. Submit three final electronic copies of the Amended Final Sustainability eNotebook Submittal on DVDs to the Government no longer than 30 days after the GP, TPC designated data collection period.

1.6 DOCUMENTATION REQUIREMENTS

a. Incorporate each of the following HPSB Guiding Principles Requirements into project construction; and provide documentation that proves compliance with each listed requirement. Items below are organized according to the HPSB Guiding Principles. For life-cycle cost analysis requirements, one document with all analyses is acceptable, with Contracting Officer approval.

b. For each of the following paragraphs that require the use of products listed on Government-required websites, provide documentation of the process used to select products, or process used to determine why listed products do not meet project performance requirements.

1.6.1 Commissioning

Submit approved Final Commissioning Report required by Section 01 91 00.15 TOTAL BUILDING COMMISSIONING as proof of this tracking requirement.

1.6.2 Energy Efficient Products

Provide only energy-using products that are Energy Star rated, or have the Federal Energy Management Program (FEMP) recommended efficiency. Where Energy Star or FEMP recommendations have not been established, provide most efficient products that are life-cycle cost effective. Provide only energy using products that meet FEMP requirements for low standby power consumption. Energy efficient products can be found at: https://energy.gov/eere/femp/federal-energy-management-program and https://www.energystar.gov/. Provide the following documentation:

Proof that products are labeled energy efficient and comply with the cited requirements.

1.6.3 Indoor Water Use

Provide only water-consuming products that are EPA WaterSense labeled, or the most efficient water fixtures available that meet the requirements of ASHRAE 189.1 Section 6.3.2, when EPA WaterSense products are not available. Provide the following documentation:

For products available with EPA WaterSense labeling, proof that fixtures
are labeled EPA WaterSense or Energy Star; for all other fixtures, proof they comply with the cited efficiency requirements.

1.6.4 Reduce Volatile Organic Compounds (VOC) (Low Emitting Materials)

Meet the requirements of Table 3-1 at the end of this specification. Provide the following documentation:

Provide certifications or labels that demonstrate compliance with cited requirements.

1.6.5 Indoor Air Quality During Construction

Prior to construction, create indoor air quality (IAQ) plan. Develop and implement the IAQ construction management plan during construction and flush building air before occupancy.

For new construction and for renovation of unoccupied existing buildings, indoor air quality plan must meet the requirements of ASHRAE 189.1 Section 10.3.1.4. (Indoor Air Quality (IAQ) Construction Management), with maximum outdoor air consistent with achieving relative humidity no greater than 60 percent.

Provide documentation showing that after construction ends and prior to occupancy, HVAC filters were replaced and building air was flushed out in accordance with the cited standard.

1.6.6 Recycled Content

Comply with 40 CFR 247. Refer to https://www.epa.gov/smm/comprehensive-procurement-guideline-cpg-program for assistance identifying products cited in 40 CFR 247. Selected products must comply with non-proprietary requirements of the Federal Acquisition Regulation, and must meet performance requirements. Provide the following documentation:

a. Manufacturers’ documents stating the recycled content by material, or written justification for claiming one of the exceptions allowed on the cited website.

b. Substitutions: Submit for Government approval, proposed alternative products or systems that provide equivalent performance and appearance and have greater contribution to project recycled content requirements. For all such proposed substitutions, submit with the Sustainability Action Plan accompanied by product data demonstrating equivalence.

1.6.7 Bio-Based Products

Provide products and material composed of the highest percentage of biobased materials (including rapidly renewable resources and certified sustainably harvested products), consistent with FSRIA 9002 USDA BioPreferred Program, to the maximum extent possible without jeopardizing the intended end use or detracting from the overall quality delivered to the end user. Use only supplies and materials of a type and quality that conform to applicable specifications and standards.

Comply with FSRIA 9002 USDA BioPreferred Program. Refer to https://www.biopreferred.gov/BioPreferred/ for the product categories and
BioPreferred Catalog. Selected products must comply with non-proprietary requirements of the Federal Acquisition Regulation, and must meet performance requirements. Provide the following documentation:

USDA BioPreferred label for each product; for bio-based products used on project but not listed with BioPreferred program, provide bio-based content and percentage.

1.6.8 Ozone Depleting Substances

Meet the requirements of ASHRAE 189.1 Section 9.3.3 Refrigerants for no CFC-based refrigerants in heating ventilation, air conditioning and refrigeration systems (except for fire suppression system requirements, covered elsewhere in this specification). Where feasible, use products from U.S. EPA Significant New Alternatives Policy (SNAP) (https://www.epa.gov/snap) or meet the criteria of SNAP. Provide the following documentation:

a. SDS sheets for all refrigerants.

b. Provide label for each product meeting the cited standards.

1.6.9 Waste Material Management (Recycling – Construction)

Divert construction debris from landfill disposal where markets or on-site recycling exists, and provide documentation in accordance with Section 01000.

1.6.10 Additional Sustainability Requirements

1.6.10.1 Validation and Certification Restrictions

Purchase of renewable energy certificates (RECs) specifically to meet project sustainability goals is prohibited.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

3.1 SUSTAINABILITY COORDINATION

3.1.1 Coordinating Sustainability Documentation Progress

Provide sustainability focus and coordination at the following meetings to achieve sustainability goals. The designated TPC accredited sustainability professional responsible for GP and TPC documentation must participate in the following meetings to coordinate documentation completion.

a. Pre-Construction Conference: Discuss the following: TPC and HPSB Checklists, Sustainability Action Plan, Construction submittal requirements and schedule, individuals responsible for achieving each Guiding Principle Requirement and TPC prerequisite and credit.

b. Construction Progress Meetings: Review GP and TPC sustainability requirements with project team including contractor and sub-contractor representatives. Demonstrate GP and TPC documentation is being collected and updated to the Sustainability eNotebook and TPC Online tool.
(1) Facility Turnover Meetings: Review Sustainability eNotebook, and TPC Online submission for completeness and identify any outstanding issues relating to final documentation requirements.

(2) Final Sustainability eNotebook Review

3.2 THIRD PARTY CERTIFICATION CERTIFICATES OR VALIDATION

Finalize the sustainability certification or validation process and obtain the TPC Certificate or validation, indicating completion of the projects sustainability goals.
3.3 TABLE 3-1 VOLATILE ORGANIC COMPOUNDS (VOC) (LOW EMITTING MATERIALS) REQUIREMENTS

Refer to following table, based on ASHRAE 189.1 section 8.4.2 (Materials), for compliance criteria.

<table>
<thead>
<tr>
<th>MATERIAL CATEGORY</th>
<th>EMISSIONS REQUIREMENT</th>
<th>MATERIALS WITH ADDED VOC REQUIREMENT</th>
<th>MATERIAL CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesives and Sealants</td>
<td>CDPH/EHLB/Standard method V1.1 (California Section 01350) (Use "office" or "classroom" space limits for all applications)</td>
<td>or Adhesives (carpet, resilient, wood flooring; panel; primers) Sealants (acoustical; firestop; HVAC Air duct; primers) Caulks</td>
<td>SCAQMD Rule 1168 (Use "other" category for HVAC duct sealant) (for firestop adhesive, UFC 3-600-01 overrides conflicting requirements)</td>
</tr>
<tr>
<td>Aerosol adhesives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paints and Coatings</td>
<td>CDPH/EHLB/Standard method V1.1 (California Section 01350) (Use "office" or "classroom" space limits for all applications)</td>
<td>or Flat and nonflat topcoats, primers, undercoaters, and anti-corrosive coatings</td>
<td>Green Seal Standard GS-11</td>
</tr>
</tbody>
</table>
TABLE 3-1 Volatile Organic Compounds (VOC) (Low Emitting Materials) Requirements

UFGS 01 33 29, Para 1.6.5 Submittal Requirements (Interior Applications Only)

<table>
<thead>
<tr>
<th>MATERIAL CATEGORY</th>
<th>EMISSIONS REQUIREMENT</th>
<th>MATERIALS WITH ADDED VOC REQUIREMENT</th>
<th>MATERIAL CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints and Coatings</td>
<td>CDPH/EHLB/Standard method V1.1 (California Section 01350) (Use "office" or "classroom" space limits for all applications)</td>
<td>Concrete/masonry sealers (waterproofing concrete/masonry sealers), concrete curing compounds, dry fog coatings, faux finishing coatings, fire resistive coatings, floor coatings, graphic arts (sign) coatings, industrial maintenance coatings, mastic texture coatings, metallic pigmented coatings, multicolor coatings, pretreatment wash primers, reactive penetrating sealers, recycled coatings, shellacs (clear and opaque), specialty primers, stains, wood coatings (clear wood finishes), wood preservatives, and zinc primers</td>
<td>California Air Resources Board (CARB) Suggested Control Measure for Architectural Coatings or SCAQMD Rule 1113</td>
</tr>
</tbody>
</table>
TABLE 3-1 Volatile Organic Compounds (VOC) (Low Emitting Materials) Requirements

UFGS 01 33 29, Para 1.6.5 Submittal Requirements (Interior Applications Only)

<table>
<thead>
<tr>
<th>MATERIAL CATEGORY</th>
<th>EMISSIONS REQUIREMENT</th>
<th>MATERIALS WITH ADDED VOC REQUIREMENT</th>
<th>MATERIAL CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paints and Coatings</td>
<td>CDPH/EHLB/Standard method V1.1 (California Section 01350) (Use "office" or "classroom" space limits for all applications)</td>
<td>or Basement specialty coatings, high-temperature coatings, low solids coatings, stone consolidants, swimming-pool coatings, tub-and tile-refining coatings, and waterproofing membranes</td>
<td>California Air Resources Board (CARB) Suggested Control Measure for Architectural Coatings</td>
</tr>
<tr>
<td>Floor Covering Materials</td>
<td>For carpet, all locations: CDPH/EHLB/Standard Method V1.1 (California Section 01350) or label for Section 9 of CDPH/EHLB/Standard Method V1.1 (California Section 01350)</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>MATERIAL CATEGORY</td>
<td>EMISSIONS REQUIREMENT</td>
<td>MATERIALS WITH ADDED VOC REQUIREMENT</td>
<td>MATERIAL CATEGORY</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Composite Wood, Wood Structural Panel, and Agrifiber Products</td>
<td>Third-party certification (approved by CARB) of California Air Resource Board's (CARB) regulation Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>CDPH/EHLB/Standard method V1.1 (California Section 01350) (Use "office" or "classroom" space limits for all applications) (except: Structural panel components such as plywood, particle board, wafer board, and oriented strand board identified as "EXPOSURE 1," "EXTERIOR," or "HUD-APPROVED" are considered acceptable for interior use.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite Wood, Wood Structural Panel, and Agrifiber Products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>particleboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medium density fiberboard (MDF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wheatboard strawboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>panel substrates door cores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no added urea-formaldehyde resins including laminating adhesives for composite wood and agrifiber assemblies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-1 Volatile Organic Compounds (VOC) (Low Emitting Materials) Requirements

UFGS 01 33 29, Para 1.6.5 Submittal Requirements (Interior Applications Only)

<table>
<thead>
<tr>
<th>MATERIAL CATEGORY</th>
<th>EMISSIONS REQUIREMENT</th>
<th>MATERIALS WITH ADD ED VOC REQUIREMENT</th>
<th>MATERIAL CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling and Wall Systems</td>
<td>CDPH/EHLB/Standard method V1.1 (California Section 01350) (Use "office" or "classroom" space limits for all applications)</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>

-- End of Section --
General Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JFSD201801</td>
<td>Project ID (e.g. ABCD12345)</td>
</tr>
<tr>
<td>B541</td>
<td>Facility Number</td>
</tr>
<tr>
<td>ACC Global Hawk GSMP</td>
<td>Building Name</td>
</tr>
<tr>
<td>Grand Forks AFB</td>
<td>Installation</td>
</tr>
<tr>
<td>Grand Forks</td>
<td>City</td>
</tr>
<tr>
<td>ND</td>
<td>State</td>
</tr>
<tr>
<td>Yes</td>
<td>CONUS</td>
</tr>
<tr>
<td>AMC</td>
<td>MAJCOM</td>
</tr>
<tr>
<td>BCE</td>
<td>Construction Agent</td>
</tr>
<tr>
<td>AFCEC DM/CM (Last Name, First Name)</td>
<td>PA</td>
</tr>
<tr>
<td>40,000</td>
<td>Building Size (SF)</td>
</tr>
<tr>
<td>2018</td>
<td>Program Year (FY####)</td>
</tr>
<tr>
<td>Design Complete</td>
<td>Project Phase</td>
</tr>
<tr>
<td>Design Started (MM/DD/YY)</td>
<td></td>
</tr>
<tr>
<td>BOD (MM/DD/YY)</td>
<td></td>
</tr>
<tr>
<td>Not Certifying</td>
<td>Guiding Principles Compliance Certification Method</td>
</tr>
<tr>
<td>Date Project Registered (MM/DD/YY)</td>
<td>5/9/2018</td>
</tr>
<tr>
<td>Date Project Certified (MM/DD/YY)</td>
<td>1</td>
</tr>
</tbody>
</table>

Scoresheet

- **100% HPSB Compliant**
- **25% Energy Efficiency Achieved (% below ANSI/ASHRAE/IESNA Standard 90.1-2010)**
- **2017V1 Scoresheet version**
Air Force Sustainability Requirements Scoresheet

HPSB COMPLIANCE (Updated Jan 2017)

* required entry

Color Coding: See Instructions Tab for more detail

- **Drop-Down Box**: Yes or N/A
- **No Entry Required**: No
- **Custom Entry**: Recommended not Required

90.1-2013

HPSB I: Employ Integrated Design Principles (UFC 1-200-02 para 2-2)

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

| HPSB I.1 Integrated Design | 1 |
| HPSB I.2 Commissioning | 1 |

HPSB II: Optimize Energy Performance (UFC 1-200-02 para 2-3)

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>INCOMPLETE</td>
</tr>
</tbody>
</table>

| HPSB II.1 Energy Efficiency | 1 |
| ____________________________|---|
| **Yes** Reduce energy use 30% below ANSI/ASHRAE/IESNA Standard 90.1-2010 or IECC, or if not - achieve maximum energy efficiency that is lifecycle cost effective |
| **25.0%** Insert percentage below ANSI/ASHRAE/IESNA Standard 90.1-2010 or IECC, in terms of energy use (e.g. 32) |
| **Roof Attributes (Recommended)** Select roof types (Check below) |

Energy Efficient Products

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
</table>

| **Yes** On-site Renewable Energy |
| __________________________________|

On-site Renewable Energy - Solar Hot Water Heater System

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
</table>

On-site Renewable Energy

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
</table>

Metering

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
</table>

HPSB III: Protect and Conserve Water (UFC 1-200-02 para 2-4)

<table>
<thead>
<tr>
<th>Total Points</th>
<th>Possible Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>INCOMPLETE</td>
</tr>
</tbody>
</table>

HPSB III.1 Indoor Water	1
HPSB III.2 N/A	1
HPSB III.3 N/A	1
HPSB III.4 Yes	1

Stormwater Management (LID Documentation per UFC 3-210-10)

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
</table>

| **Yes** Project addressed EISA 438 |

EISA Technical Constraints

- Retaining stormwater impact receiving water flow
- Shallow bedrock, contaminated soil, high ground water table, underground utilities
- Soil infiltration capacity limited
- Site too small to infiltrate significant volume
- Structural, plumbing, and other mods not feasible
- Non-potable water demand to small
- State or local restrict use of green infrastructure or LID

LID Features Locations

| 0.0% | Percent Increase in Stormwater Runoff for 95 Percentile Storm (%) - or - Percent Increase in Stormwater Runoff from continuous simulation model, published data, studies, or other established tools (Reference UFC 3-210-10 Figure 2-1 Implementation of EISA Section 438) |

5/9/2018

Attachment 1, FA465918R0005
HPSB IV: Enhance Indoor Environmental Quality (UFC 1-200-02 para 2-5)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
<th>Possible Points</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPSB IV.1 Thermal Comfort</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB IV.2 Ventilation</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB IV.3 Daylighting</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>HPSB IV.4 Moisture Control</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB IV.5 Low Emitting Materials</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB IV.6 Protect Indoor Air Quality during Construction</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB IV.7 Environmental Tobacco Smoke Control</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB IV.8 Occupant Health and Wellness</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

HPSB V: Reduce Environmental Impact of Materials (UFC 1-200-02 para 2-6)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
<th>Possible Points</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPSB V.1 Recycled Content</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB V.2 Biologically-based Products</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB V.3 Ozone Depleting Substances</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB V.4 Waste and Materials Management - Recycling</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>HPSB V.5 Waste and Materials Management - Divert 60% from Disposal</td>
<td>1</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
<th>Possible Points</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address Climate Change Risk</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Points</th>
<th>Possible Points</th>
<th>Yes/No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Requirements - Yes or N/A</td>
<td>27</td>
<td>27</td>
<td>Federal Requirements - Yes or N/A</td>
</tr>
<tr>
<td>Federal Requirements - No</td>
<td>0</td>
<td>0</td>
<td>Federal Requirements - No</td>
</tr>
</tbody>
</table>

100% Percentage of Federal Requirements Met
PART 1 GENERAL

1.1 REFERENCES

Various publications are referenced in other sections of the specifications to establish requirements for the work. These references are identified in each section by document number, date and title. The document number used in the citation is the number assigned by the standards producing organization (e.g. ASTM B564 Standard Specification for Nickel Alloy Forgings). However, when the standards producing organization has not assigned a number to a document, an identifying number has been assigned for reference purposes.

1.2 ORDERING INFORMATION

The addresses of the standards publishing organizations whose documents are referenced in other sections of these specifications are listed below, and if the source of the publications is different from the address of the sponsoring organization, that information is also provided.

ACOUSTICAL SOCIETY OF AMERICA (ASA)
1305 Walt Whitman Road, Suite 300
Melville, NY 11747-4300
Ph: 516-576-2360
Fax: 631-923-2875
E-mail: asa@aip.org
Internet: http://asa.aip.org

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)
30 West University Drive
Arlington Heights, IL 60004-1893
Ph: 847-394-0150
Fax: 847-253-0088
E-mail: amca@amca.org
Internet: http://www.amca.org

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)
2111 Wilson Blvd, Suite 500
Arlington, VA 22201
Ph: 703-524-8800
Fax: 703-562-1942
Internet: http://www.ahrinet.org

ALUMINUM ASSOCIATION (AA)
National Headquarters
1525 Wilson Boulevard, Suite 600
Arlington, VA 22209
Ph: 703-358-2960
E-Mail: info@aluminum.org
Internet: http://www.aluminum.org
Fax: 847-934-8803
E-mail: aha@hardboard.org
Internet: http://domensino.com/AHA/

AMERICAN INDUSTRIAL HYGIENE ASSOCIATION (AIHA)
3141 Fairview Park Dr, Suite 777
Falls Church, VA 22042
Tel: 703-849-8888
Fax: 703-207-3561
E-mail: infonet@aiha.org
Internet: http://www.aiha.org

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)
One East Wacker Drive, Suite 700
Chicago, IL 60601-1802
Ph: 312-670-2400
Fax: 312-670-5403
Bookstore: 800-644-2400
E-mail: aisc@ware-pak.com
Internet: http://www.aisc.org

AMERICAN IRON AND STEEL INSTITUTE (AISI)
25 Massachusetts Avenue, NW Suite 800
Washington, DC 20001
Ph: 202-452-7100
Internet: http://www.steel.org

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)
P.O. Box 210
Germantown, MD 20875-0210
Ph: 301-972-1700
Fax: 301-540-8004
E-mail: alsc@alsc.org
Internet: http://www.alsc.org

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)
1899 L Street, NW, 11th Floor
Washington, DC 20036
Ph: 202-293-8020
Fax: 202-293-9287
E-mail: storemanager@ansi.org
Internet: http://www.ansi.org/

AMERICAN PETROLEUM INSTITUTE (API)
Internet: http://www.api.org

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)
1801 Alexander Bell Drive
Reston, VA 20191
Ph: 703-295-6300; 800-548-2723
E-mail: member@asce.org
Internet: http://www.asce.org

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING
ENGINEERS (ASHRAE)
1791 Tullie Circle, NE
Atlanta, GA 30329
Ph: 800-527-4723 or 404-636-8400
Fax: 404-321-5478
E-mail: ashrae@ashrae.org
Internet: http://www.ashrae.org

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)
1800 East Oakton Street
Des Plaines, IL 60018
Ph: 847-699-2929
Internet: http://www.asse.org

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)
18927 Hickory Creek Drive, Suite 220
Mokena, IL 60448
Ph: 708-995-3019
Fax: 708-479-6139
E-mail: staffengineer@asse-plumbing.org
Internet: http://www.asse-plumbing.org

AMERICAN WATER WORKS ASSOCIATION (AWWA)
6666 West Quincy Avenue
Denver, CO 80235-3098
Ph: 303-794-7711
E-mail: distribution@awwa.org
Internet: http://www.awwa.org

AMERICAN WELDING SOCIETY (AWS)
13301 NW 47 Ave
Miami, FL 33054
Ph: 888-WELDING, 305-824-1177, 305-826-6192
Fax: 305-826-6195
E-mail: customer.service@awspubs.com
Internet: http://www.aws.org

AMERICAN WOOD COUNCIL (AWC)
222 Catoctin Circle SE, Suite 201
Leesburg, VA 20175
Ph: 800-890-7732
Fax: 412-741-0609
E-mail: publications@awc.org
Internet: http://www.awc.org

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)
P.O. Box 361784
Birmingham, AL 35236-1784
Ph: 205-733-4077
Fax: 205-733-4075
Internet: http://www.awpa.com

APA - THE ENGINEERED WOOD ASSOCIATION (APA)
7011 South 19th St.
Tacoma, WA 98466-5333
Ph: 253-565-6600
Fax: 253-565-7265
Internet: http://www.apawood.org

ARCHITECTURAL WOODWORK INSTITUTE (AWI)
46179 Westlake Drive, Suite 120
Potomac Falls, VA 20165
Ph: 571-323-3636
GYPSUM ASSOCIATION (GA)
6525 Belcrest Road, Suite 480
Hyattsville, MD 20782
Ph: 301-277-8686
Fax: 301-277-8747
E-mail: info@gypsum.org
Internet: http://www.gypsum.org

HYDRAULIC INSTITUTE (HI)
6 Campus Drive, First Floor North
Parsippany, NJ 07054-4406
Ph: 973-267-9700
Fax: 973-267-9055
Internet: http://www.pumps.org

ICC EVALUATION SERVICE, INC. (ICC-ES)
3060 Saturn Street, Suite 100
Brea, CA 92821
Ph: 800-423-6587 ext. 66546
Fax: 562-695-4694
E-mail: es@icc-es.org
Internet: http://www.icc-es.org

ILLUMINATING ENGINEERING SOCIETY (IES)
120 Wall Street, 17th Floor
New York, NY 10005-4001
Ph: 212-248-5000
Fax: 212-248-5018
E-mail: IES@IES.org
Internet: http://www.IES.org

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)
445 and 501 Hoes Lane
Piscataway, NJ 08854-4141
Ph: 732-981-0060 or 800-701-4333
Fax: 732-562-9667
E-mail: onlinesupport@ieee.org
Internet: http://www.ieee.org

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)
P.O. Box 1568
Carrollton, GA 30112
E-mail: http://www.icea.net/Public_Pages/Contact/Email_CONTACT.html
Internet: http://www.icea.net

INSULATING GLASS MANUFACTURERS ALLIANCE (IGMA)
27 N. Wacker Dr. Suite 365
Chicago, IL 60606-2800
Ph: 613-233-1510
Fax: 613-482-9436
E-mail: enquiries@igmaonline.org
Internet: http://www.igmaonline.org

SECTION 01 42 00 Page 8
Fax: 1-888-211-8708
E-mail: info@paintinfo.com or techservices@mpi.net
Internet: http://www.mpi.net/

METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)
1300 Sumner Avenue
Cleveland, OH 44115-2851
Ph: 216-241-7333
Fax: 216-241-0105
E-mail: mbma@mbma.com
Internet: http://www.mbma.com

MIDWEST INSULATION CONTRACTORS ASSOCIATION (MICA)
16712 Elm Circle
Omaha, NE 68130
Ph: 800-747-6422
Fax: 402-330-9702
Internet: http://www.micainsulation.org

NACE INTERNATIONAL (NACE)
Houston, TX 77084-4906
Ph: 281-228-6223
Fax: 281-228-6300
E-mail: firstservice@nace.org
Internet: http://www.nace.org

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA)
Superintendent of Documents at
U.S. Government Printing Office
732 North Capitol Street, NW
Washington, DC 20401-0001
Ph: 202-783-3238
Fax: 202-512-1800
E-mail: ContactCenter@gpo.gov
Internet: http://www.nasa.gov or http://www.gpoaccess.gov

NATIONAL ASSOCIATION OF ARCHITECTURAL METAL MANUFACTURERS (NAAMM)
800 Roosevelt Road, Bldg C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-942-6591
Fax: 630-790-3095
E-mail: wlewis7@cox.net (Wes Lewis, technical consultant)
Internet: http://www.naamm.org

NATIONAL BOARD OF BOILER AND PRESSURE VESSEL INSPECTORS (NBBI)
1055 Crupper Avenue
Columbus, OH 43229-1183
Ph: 614-888-8320
Fax: 614-888-0750
E-mail: information@nationalboard.org
Internet: http://www.nationalboard.org

NATIONAL ELECTRICAL CONTRACTORS ASSOCIATION (NECA)
3 Bethesda Metro Center, Suite 1100
Bethesda, MD 20814
Ph: 301-657-3110
Fax: 301-215-4500
Internet: http://www.necanet.org/
NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
1300 North 17th Street, Suite 900
Arlington, VA 22209
Ph: 703-841-3200
Internet: http://www.nema.org/

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)
8575 Grovemont Circle
Gaithersburg, MD 20877
Ph: 301-977-3698
Fax: 301-977-9589
Internet: http://www.nebb.org

NATIONAL FENESTRATION RATING COUNCIL (NFRC)
6305 Ivy Lane, Suite 140
Greenbelt, MD 20770
Ph: 301-589-1776
Fax: 301-589-3884
E-Mail: info@nfrc.org
Internet: http://www.nfrc.org

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
1 Batterymarch Park
Quincy, MA 02169-7471
Ph: 617-770-3000
Fax: 617-770-0700
Internet: http://www.nfpa.org

NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET)
1420 King Street
Alexandria, VA 22314-2794
Ph: 888-476-4238 (1-888 IS-NICET)
E-mail: tech@nicet.org
Internet: http://www.nicet.org

NATIONAL READY MIXED CONCRETE ASSOCIATION (NRMCA)
Manager, Customer Service
900 Spring Street
Silver Spring, MD 20910
Ph: 240-485-1165
E-mail: jjenkins@nrmca.org (Jacques Jenkins)
Internet: http://www.nrmca.org

NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)
272 Tuttle Road
Cumberland, ME 04021
Ph: 207-829-6901
Fax: 207-829-4293
E-mail: info@nelma.org
Internet: http://www.nelma.org

NSF INTERNATIONAL (NSF)
789 North Dixboro Road
P.O. Box 130140
Ann Arbor, MI 48105
Ph: 734-769-8010 or 800-NSF-MARK
Fax: 734-769-0109
E-mail: info@nsf.org
Internet: http://www.nsf.org

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD)
2, rue Andre Pascal
75775 Paris Cedex 16, France
Ph: + 33 1 45 24 82 00
Fax: 33 1 45 24 85 00
Internet: http://www.oecd.org
U.S. Contact Center
OECD Washington Center
2001 L Street, NW, Suite 650
Washington, DC 20036-4922
Ph: 202-785-6323
Fax: 202-785-0350
E-mail: washington.contact@oecd.org

PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA)
800 Roosevelt Road
Building C, Suite 312
Glen Ellyn, IL 60137
Ph: 630-858-6540
Fax: 630-790-3095
Internet: http://www.ppfahome.org

PLUMBING AND DRAINAGE INSTITUTE (PDI)
800 Turnpike Street, Suite 300
North Andover, MA 01845
Ph: 978-557-0720 or 800-589-8956
E-Mail: pdi@PDIonline.org
Internet: http://www.pdionline.org

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)
2000 Powell Street, Suite 600
Emeryville, CA 94608
Ph: 800-326-3228
E-mail: info@SCSGlobalServices.com
Internet: http://www.scsglobalservices.com/

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
4201 Lafayette Center Drive
Chantilly, VA 20151-1219
Ph: 703-803-2980
Fax: 703-803-3732
Internet: http://www.smacna.org

SOCIETY FOR PROTECTIVE COATINGS (SSPC)
40 24th Street, 6th Floor
Pittsburgh, PA 15222
Ph: 412-281-2331
Fax: 412-281-9992
E-mail: info@sspc.org
Internet: http://www.sspc.org

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)
400 Commonwealth Drive
Warrendale, PA 15096
Ph: 724-776-4970
Fax: 877-606-7323
E-mail: customerservice@sae.org
Internet: http://www.sae.org

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD)
21865 Copley Drive
Diamond Bar, CA 91765
Ph: 909-396-2000
E-mail: webinquiry@aqmd.gov
Internet: http://www.aqmd.gov

STEEL DECK INSTITUTE (SDI)
P.O. Box 426
Glenshaw, PA 15116
Ph: 412.487.3325
Fax: 412.487.3326
E-mail: bob@sdi.org
Internet: http://www.sdi.org

STEEL DOOR INSTITUTE (SDI/DOOR)
30200 Detroit Road
Westlake, OH 44145
Ph: 440-899-0010
Fax: 440-892-1404
E-mail: info@steeldoor.org
Internet: http://www.steeldoor.org

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)
1320 N. Courthouse Rd., Suite 200
Arlington, VA 22201
Ph: 703-907-7700
Fax: 703-907-7727
Internet: http://www.tiaonline.org

TILE COUNCIL OF NORTH AMERICA (TCNA)
100 Clemson Research Boulevard
Anderson, SC 29625
Ph: 864-646-8453
Fax: 864-646-2821
E-mail: info@tileusa.com
Internet: http://www.tcnatile.com/

TRIDIUM, INC (TRIDIUM)
3951 Westerre Parkway, Suite 350
Richmond, VA 23233
Ph: 804-747-4771
Fax: 804-747-5204
Internet: http://www.tridium.com

TURFGRASS PRODUCERS INTERNATIONAL (TPI)
2 East Main Street
East Dundee, IL 60118
Ph: 847-649-5555
Fax: 847-649-5678
E-mail: info@turfgrasssod.org
Internet: http://www.turfgrasssod.org
U.S. ARMY CORPS OF ENGINEERS (USACE)
CRD-C DOCUMENTS available on Internet:
http://www.wbdg.org/ccb/browse_cat.php?c=68
Order Other Documents from:
USACE Publications Depot
Attn: CEHEC-IM-PD
2803 52nd Avenue
Hyattsville, MD 20781-1102
Ph: 301-394-0081
Fax: 301-394-0084
E-mail: pubs-army@usace.army.mil
Internet: http://www.publications.usace.army.mil/
or
http://www.hnc.usace.army.mil/Missions/Engineering/TECHINFO.aspx

U.S. DEFENSE LOGISTICS AGENCY (DLA)

Fort Belvoir, VA

Internet: http://www.dla.mil

U.S. DEPARTMENT OF AGRICULTURE (USDA)
Order AMS Publications from:
AGRICULTURAL MARKETING SERVICE (AMS)
Seed Regulatory and Testing Branch
801 Summit Crossing Place, Suite C
Gastonia, NC 28054-2193
Ph: 704-810-8871
Fax: 704-852-4189
E-mail: seed.ams@usda.gov
Internet: http://www.ams.usda.gov/lsg/seed.htm
Order Other Publications from:
U.S. Department of Agriculture, Rural Utilities Program
USDA Rural Development, Room 4051-S
Mail Stop 1510
1400 Independence Avenue SW
Washington, DC 20250-1510
Phone: (202) 720-9540
TTY: (800) 877-8339 (Federal Relay Service)
Fax: (202) 720-1725
Internet: http://www.rurdev.usda.gov/utilities_lp.html

U.S. DEPARTMENT OF DEFENSE (DOD)
Order DOD Documents from:
Room 3A750-The Pentagon
1400 Defense Pentagon
Washington, DC 20301-1400
Ph: 703-571-3343
FAX: 215-697-1462
E-mail: customerservice@ntis.gov
Internet: http://www.ntis.gov
Obtain Military Specifications, Standards and Related Publications from:
Acquisition Streamlining and Standardization Information System (ASSIST)
Department of Defense Single Stock Point (DODSSP)
Document Automation and Production Service (DAPS)
Building 4/D
700 Robbins Avenue
Philadelphia, PA 19111-5094
Ph: 215-697-6396 - for account/password issues
Internet: http://assist.daps.dla.mil/online/start/; account registration required

Obtain Unified Facilities Criteria (UFC) from:
Whole Building Design Guide (WBDG)
National Institute of Building Sciences (NIBS)
1090 Vermont Avenue NW, Suite 700
Washington, DC 20005
Ph: 202-289-7800
Fax: 202-289-1092
Internet: http://www.wbdg.org/references/docs_refs.php

U.S. DEPARTMENT OF ENERGY (DOE)
1000 Independence Avenue Southwest
Washington, D.C. 20585
Internet: www.eere.energy.gov

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)
Ariel Rios Building
1200 Pennsylvania Avenue, N.W.
Washington, DC 20004
Ph: 202-272-0167
Internet: http://www2.epa.gov/libraries
--- Some EPA documents are available only from:
National Technical Information Service (NTIS)
5301 Shawnee Road
Alexandria, VA 22312
Ph: 703-605-6050 or 1-688-584-8332
Fax: 703-605-6900
E-mail: info@ntis.gov
Internet: http://www.ntis.gov

U.S. FEDERAL COMMUNICATIONS COMMISSION (FCC)
445 12th Street SW
Washington, DC 20554
Ph: 888-225-5322
TTY: 888-835-5322
Fax: 866-418-0232
Internet: http://www.fcc.gov
Order Publications From:
Superintendent of Documents
U.S. Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401-0001
Ph: 202-512-1800
Fax: 866-418-0232
E-mail: gpoweb@gpo.gov
Internet: http://www.gpoaccess.gov/

U.S. GENERAL SERVICES ADMINISTRATION (GSA)
General Services Administration
1275 First St. NE
Washington, DC 20417
Ph: 202-501-1231
Internet: http://www.gsaelibrary.gsa.gov/ElibMain/home.do
Obtain documents from:
Acquisition Streamlining and Standardization Information System (ASSIST)

SECTION 01 42 00 Page 15
Internet: https://assist.dla.mil/online/start/; account registration required

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)
8601 Adelphi Road
College Park, MD 20740-6001
Ph: 866-272-6272
Fax: 301-837-0483
Internet: http://www.archives.gov
Order documents from:
Superintendent of Documents
U.S.Government Printing Office (GPO)
710 North Capitol Street, NW
Washington, DC 20401
Ph: 202-512-1800
Fax: 202-512-2104
E-mail: contactcenter@gpo.gov
Internet: http://www.gpoaccess.gov

UL ENVIRONMENT (ULE)
2211 Newmarket Parkway, Suite 106
Marietta, GA 30067
Ph: 770-933-0638
Fax: 770-980-0072
E-mail: environment@ul.com
Internet: http://www.ul.com/environment

UNDERWRITERS LABORATORIES (UL)
2600 N.W. Lake Road
Camas, WA 98607-8542
Ph: 877-854-3577
E-mail: CEC.us@us.ul.com
Internet: http://www.ul.com/
UL Directories available through IHS at http://www.ihs.com

UNI-BELL PVC PIPE ASSOCIATION (UBPPA)
2711 LBJ Freeway, Suite 1000
Dallas, TX 75234
Ph: 972-243-3902
Fax: 972-243-3907
E-mail: info@uni-bell.org
Internet: http://www.uni-bell.org

WESTERN WOOD PRODUCTS ASSOCIATION (WWPA)
1500 SW First Ave., Suite 870
Portland, OR 97201
Ph: 503-224-3930
Fax: 503-224-3934
E-mail: info@wwpa.org
Internet: http://www.wwpa.org

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)
330 N Wabash Avenue, Suite 2000
Chicago, IL 60611
Ph: 312-321-6802
E-mail: wdma@wdma.com
Internet: http://www.wdma.com
PART 2 PRODUCTS
 Not used

PART 3 EXECUTION
 Not used

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

1.2 PAYMENT

Separate payment will not be made for providing and maintaining an effective Quality Control program. Include all associated costs in the applicable Bid Schedule item.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-01 Preconstruction Submittals

Contractor Quality Control (CQC) Plan; G

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system that complies with the Contract Clause titled "Inspection of Construction." QC consists of plans, procedures, and organization necessary to produce an end product which complies with the Contract requirements. The QC system covers all construction operations, both onsite and offsite, and shall be keyed to the proposed construction sequence. The project superintendent
will be held responsible for the quality of work and is subject to removal by the Contracting Officer for non-compliance with the quality requirements specified in the Contract. In this context the highest level manager responsible for the overall construction activities at the site, including quality and production, is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CONTRACTOR QUALITY CONTROL (CQC) PLAN

Submit no later than 30 days after receipt of notice to proceed, the Contractor Quality Control (CQC) Plan proposed to implement the requirements of the Contract Clause titled "Inspection of Construction." The Government will consider an interim plan for the first 30 days of operation. Construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an interim plan applicable to the particular feature of work to be started. Work outside of the accepted interim plan will not be permitted to begin until acceptance of a CQC Plan or another interim plan containing the additional work.

3.2.1 Content of the CQC Plan

Include, as a minimum, the following to cover all construction-operations, both onsite and offsite, including work by subcontractors, fabricators, suppliers and purchasing agents:

a. A description of the quality control organization, including a chart showing lines of authority and acknowledgment that the CQC staff will implement the three phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.

b. The name, qualifications (in resume format), duties, responsibilities, and authorities of each person assigned a CQC function.

c. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will be issued by the CQC System Manager. Furnish copies of these letters to the Contracting Officer.

d. Procedures for scheduling, reviewing, certifying, and managing submittals, including those of subcontractors, offsite fabricators, suppliers, and purchasing agents. These procedures must be in accordance with Section 01000.

e. Control, verification, and acceptance testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer are required to be used.)

f. Procedures for tracking preparatory, initial, and follow-up control phases and control, verification, and acceptance tests including documentation.
g. Procedures for tracking construction deficiencies from identification through acceptable corrective action. Establish verification procedures that identified deficiencies have been corrected.

h. Reporting procedures, including proposed reporting formats.

i. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks, has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different environment. Although each section of the specifications can generally be considered as a definable feature of work, there are frequently more than one definable features under a particular section. This list will be agreed upon during the coordination meeting.

j. Coordinate scheduled work with Special Inspections required by Section 01 45 35 SPECIAL INSPECTIONS, the Statement of Special Inspections and the Schedule of Special Inspections. Where the applicable Code issue by the International Code Council (ICC) calls for inspections by the Building Official, the Contractor must include the inspections in the Quality Control Plan and must perform the inspections required by the applicable ICC. The Contractor must perform these inspections using independent qualified inspectors. Include the Special Inspection Plan requirements in the QC Plan.

3.2.2 Acceptance of Plan

Acceptance of the Contractor's plan is required prior to the start of construction. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Government reserves the right to require the Contractor to make changes in the Contractor Quality Control (CQC) Plan and operations including removal of personnel, as necessary, to obtain the quality specified.

3.2.3 Notification of Changes

After acceptance of the CQC Plan, notify the Contracting Officer in writing of any proposed changes. Proposed changes are subject to acceptance by the Contracting Officer.

3.3 COORDINATION MEETING

After the Preconstruction Conference, before start of construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer and discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 14 calendar days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be developed, including the forms for recording the CQC operations, control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting will be prepared by the Government, signed by both the Contractor and the Contracting Officer and will become a part of the contract file. There can be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.
3.4 QUALITY CONTROL ORGANIZATION

3.4.1 Personnel Requirements

The requirements for the CQC organization are a Safety and Health Manager, CQC System Manager, and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager reports directly to a senior project (or corporate) official independent from the CQC System Manager. The Safety and Health Manager will also serve as a member of the CQC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer. Provide adequate office space, filing systems and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawing submittals, schedules and all other project documentation to the CQC organization. The CQC organization is responsible to maintain these documents and records at the site at all times, except as otherwise acceptable to the Contracting Officer.

3.4.2 CQC System Manager

Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC System Manager is required to be a graduate engineer, graduate architect, or a graduate of construction management, with a minimum of 5 years construction experience on construction similar to this Contract, or a construction person with a minimum of 10 years in related work. This CQC System Manager is on the site at all times during construction and is employed by the prime Contractor. The CQC System Manager is assigned as CQC System Manager but has duties as project superintendent in addition to quality control. Identify in the plan an alternate to serve in the event of the CQC System Manager's absence. The requirements for the alternate are the same as the CQC System Manager.

3.4.3 CQC Personnel

In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist the CQC System Manager for the following areas: electrical, mechanical or submittals clerk. These individuals or specialized technical companies are employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the experience matrix listed herein. These individuals can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality control duties as described in the Quality Control Plan. A single person can cover more than one area provided that the single person is qualified to perform quality control activities in each designated and that workload allows.
Experience Matrix

<table>
<thead>
<tr>
<th>Area</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>Graduate Mechanical Engineer with 2 yrs experience or person with 5 years of</td>
</tr>
<tr>
<td></td>
<td>experience supervising mechanical features of work in the field with a</td>
</tr>
<tr>
<td></td>
<td>construction company</td>
</tr>
<tr>
<td>Electrical</td>
<td>Graduate Electrical Engineer with 2 years related experience or person 5 yrs</td>
</tr>
<tr>
<td></td>
<td>of experience supervising electrical features of work in the field with a</td>
</tr>
<tr>
<td></td>
<td>construction company</td>
</tr>
<tr>
<td>Submittals</td>
<td>Submittal Clerk with 1 year experience</td>
</tr>
<tr>
<td>Testing, Adjusting and Balancing</td>
<td>Specialist must be a member of AABC or an experienced technician of the firm</td>
</tr>
<tr>
<td>(TAB) Personnel</td>
<td>certified by the NEBB</td>
</tr>
</tbody>
</table>

3.4.4 Additional Requirement

In addition to the above experience and education requirements, the Contractor Quality Control (CQC) System Manager and Alternate CQC System Manager are required to have completed the Construction Quality Management (CQM) for Contractors course. If the CQC System Manager does not have a current certification, obtain the CQM for Contractors course certification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer for information on the next scheduled class.

The Construction Quality Management Training certificate expires after 5 years. If the CQC System Manager's certificate has expired, retake the course to remain current.

3.4.5 Organizational Changes

Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer for acceptance.

3.5 SUBMITTALS AND DELIVERABLES

Submittals, if needed, have to comply with the requirements in Section 01000. The CQC organization is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements. When Section 01 91 00.15 TOTAL BUILDING COMMISSIONING are included in the contract, the submittals required by those sections have to be coordinated with Section 01000 to ensure adequate time is allowed for each type of submittal required.

3.6 CONTROL

CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are
required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:

3.6.1 Preparatory Phase

This phase is performed prior to beginning work on each definable feature of work, after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase includes:

a. A review of each paragraph of applicable specifications, reference codes, and standards. Make available during the preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.

c. Check to assure that all materials and equipment have been tested, submitted, and approved.

d. Review of provisions that have been made to provide required control inspection and testing.

e. Review Special Inspections required by Section 01 45 35 SPECIAL INSPECTIONS, the Statement of Special Inspections and the Schedule of Special Inspections.

f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.

g. Examination of required materials, equipment, and sample work to assure that they are on hand, conform to approved shop drawings or submitted data, and are properly stored.

h. Review of the appropriate activity hazard analysis to assure safety requirements are met.

i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards for that feature of work.

j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.

k. Discussion of the initial control phase.

l. The Government must be notified at least 72 hours in advance of beginning the preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the preparatory phase actions by separate minutes prepared by the CQC System Manager and attach to the daily CQC report. Instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.
3.6.2 Initial Phase

This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:

a. Check work to ensure that it is in full compliance with contract requirements. Review minutes of the preparatory meeting.

b. Verify adequacy of controls to ensure full contract compliance. Verify required control inspection and testing are in compliance with the contract.

c. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.

d. Resolve all differences.

e. Check safety to include compliance with and upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.

f. The Government needs to be notified at least 72 hours in advance of beginning the initial phase for definable feature of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with follow-up phases.

g. The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.

h. Coordinate scheduled work with Special Inspections required by Section 01 45 35 SPECIAL INSPECTIONS, the Statement of Special Inspections and the Schedule of Special Inspections.

3.6.3 Follow-up Phase

Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements, until completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final follow-up checks and correct all deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Coordinate scheduled work with Special Inspections required by Section 01 45 35 SPECIAL INSPECTIONS, the Statement of Special Inspections and the Schedule of Special Inspections.

3.6.4 Additional Preparatory and Initial Phases

Conduct additional preparatory and initial phases on the same definable features of work if: the quality of on-going work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity; or if other problems develop.
3.7 TESTS

3.7.1 Testing Procedure

Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance tests when specified. Procure the services of an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:

a. Verify that testing procedures comply with contract requirements.

b. Verify that facilities and testing equipment are available and comply with testing standards.

c. Check test instrument calibration data against certified standards.

d. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.

e. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the sequential control number identifying the test. If approved by the Contracting Officer, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test facility directly to the Contracting Officer. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.

3.7.2 Testing Laboratories

All testing laboratories must be validated by the USACE Material Testing Center (MTC) for the tests to be performed. Information on the USACE MTC with web-links to both a list of validated testing laboratories and for the laboratory inspection request for can be found at:

3.7.2.1 Capability Check

The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt, and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.

3.7.2.2 Capability Recheck

If the selected laboratory fails the capability check, the Contractor will be assessed a charge of $500.00 to reimburse the Government for each succeeding recheck of the laboratory or the checking of a subsequently selected laboratory. Such costs will be deducted from the Contract amount due the Contractor.
3.7.3 Onsite Laboratory

The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

3.8.1 Punch-Out Inspection

Conduct an inspection of the work by the CQC System Manager near the end of the work, or any increment of the work established by a time stated in the SPECIAL CONTRACT REQUIREMENTS Clause, "Commencement, Prosecution, and Completion of Work", or by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications, as required by paragraph DOCUMENTATION. Include within the list of deficiencies the estimated date by which the deficiencies will be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is accomplished, notify the Government that the facility is ready for the Government Pre-Final inspection.

3.8.2 Pre-Final Inspection

The Government will perform the pre-final inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final inspection with the customer can be scheduled. Correct any items noted on the Pre-Final inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate completion dates.

3.8.3 Final Acceptance Inspection

The Contractor's Quality Control Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Representative is required to be in attendance at the final acceptance inspection. Additional Government personnel including, but not limited to, those from Base/Post Civil Facility Engineer user groups, and major commands can also be in attendance. The final acceptance inspection will be formally scheduled by the Contracting Officer based upon results of the Pre-Final inspection. Notify the Contracting Officer at least 14 days prior to the final acceptance inspection and include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the Contract, will be complete and acceptable by the date scheduled for the final acceptance inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with the Contract clause titled "Inspection of Construction".
3.9 DOCUMENTATION

3.9.1 Quality Control Activities

Maintain current records providing factual evidence that required quality control activities and tests have been performed. Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:

a. The name and area of responsibility of the Contractor/Subcontractor.

b. Operating plant/equipment with hours worked, idle, or down for repair.

c. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.

d. Test and control activities performed with results and references to specifications/drawings requirements. Identify the control phase (Preparatory, Initial, Follow-up). List of deficiencies noted, along with corrective action.

e. Quantity of materials received at the site with statement as to acceptability, storage, and reference to specifications/drawings requirements.

f. Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.

g. Offsite surveillance activities, including actions taken.

h. Job safety evaluations stating what was checked, results, and instructions or corrective actions.

i. Instructions given/received and conflicts in plans and specifications.

3.9.2 Verification Statement

Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily within 72 hours after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, prepare and submit one report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work will be for that day only. Reports need to be signed and dated by the Contractor Quality Control (CQC) System Manager. Include copies of test reports and copies of reports prepared by all subordinate quality control personnel within the CQC System Manager Report.

3.10 SAMPLE FORMS

Sample forms enclosed at the end of this section.
3.11 NOTIFICATION OF NONCOMPLIANCE

The Contracting Officer will notify the Contractor of any detected noncompliance with the foregoing requirements. Take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

-- End of Section --
SECTION 01 45 35

SPECIAL INSPECTIONS

02/15

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INTERNATIONAL CODE COUNCIL (ICC)

1.2 GENERAL REQUIREMENTS

Perform Special Inspections in accordance with the Statement of Special Inspections, Schedule of Special Inspections and Chapter 17 of ICC IBC. The Statement of Special Inspections and Schedule of Special Inspections are included as an attachment to this specification. Special Inspections are to be performed by an independent third party and are intended to ensure that the work of the prime contractor is in accordance with the Contract Documents and applicable building codes. Special inspections do not take the place of the three phases of control inspections performed by the Contractor's QC Manager or any testing and inspections required by other sections of the specifications.

Structural observations will be performed by the Government. The contractor must provide notification to the Contracting Officer 14 days prior to the following points of construction:

a. After installation of foundation reinforcement, but prior to foundation concrete or grout placement.

1.3 DEFINITIONS

1.3.1 Periodic Special Inspections

Periodic Special Inspections is Special Inspections by the special inspector who is intermittently present where the work to be inspected has been or is being performed.

1.3.2 Perform

Perform these Special Inspections tasks for each welded joint or member.

1.3.3 Observe

Observe these Special Inspections items on a random daily basis. Operations need not be delayed pending these inspections.

1.3.4 Special Inspector (SI)

A qualified person retained by the contractor and approved by the
Contracting Officer as having the competence necessary to inspect a particular type of construction requiring Special Inspections. The SI must be an independent third party hired directly by the Prime Contractor.

1.3.5 Associate Special Inspector (ASI)

A qualified person who assists the SI in performing Special Inspections but must perform inspection under the direct supervision of the SI and cannot perform inspections without the SI on site.

1.3.6 Third Party

A third party inspector must not be company employee of the Contractor or any Sub-Contractor performing the work to be inspected.

1.3.7 Contracting Officer

The Government official having overall authority for administrative contracting actions. Certain contracting actions may be delegated to the Contracting Officer's Representative (COR).

1.3.8 Contractor's Quality Control (QC) Manager

An individual retained by the prime contractor and qualified in accordance with the Section 01 45 00.00.10 QUALITY CONTROL having the overall responsibility for the contractor's QC organization.

1.3.9 Designer of Record (DOR)

A registered design professional contracted by the Government as an A/E responsible for the overall design and review of submittal documents prepared by others. The DOR is registered or licensed to practice their respective design profession as defined by the statutory requirements of the professional registration laws in state in which the design professional works. The DOR is also referred to as the Engineer of Record (EOR) in design code documents.

1.3.10 Statement of Special Inspections (SSI)

A document developed by the DOR identifying the material, systems, components and work required to have Special Inspections.

1.3.11 Schedule of Special Inspections

A schedule which lists each of the required Special Inspections, the extent to which each Special Inspections is to be performed, and the required frequency for each in accordance with ICC IBC Chapter 17.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-06 Test Reports
Special Inspections Weekly Reports
SD-07 Certificates

Special Inspector Qualifications; G Qualification Records for NDT technicians

SD-11 Closeout Submittals

Interim Final Report of Special Inspections
Comprehensive Final Report of Special Inspections; G

Reports shall be supplied in both paper copy and PDF file formats.

1.5 SPECIAL INSPECTOR QUALIFICATIONS

Submit qualifications for each special inspector.

Certifying Associations

<table>
<thead>
<tr>
<th>Speciality</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>ICC</td>
<td>International Code Council</td>
</tr>
<tr>
<td>NDT</td>
<td>Nondestructive Testing</td>
</tr>
<tr>
<td>NICET</td>
<td>National Institute for Certification in Engineering Technologies</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories</td>
</tr>
</tbody>
</table>

1.5.1 Steel Construction and High Strength Bolting

1.5.1.1 Special Inspector

a. ICC Structural Steel and Bolting Special Inspector certificate with one year of related experience, or

b. Registered Professional Engineer with related experience

1.5.1.2 Associate Special Inspector

Engineer-In-Training with one year of related experience.

1.5.2 Welding Structural Steel

1.5.2.1 Special Inspector

a. ICC Structural Welding Special Inspector certificate with one year of related experience, or

b. AWS Certified Welding Inspector

1.5.2.2 Associate Special Inspector

AWS Certified Associate Welding Inspector
1.5.3 Nondestructive Testing of Welds

1.5.3.1 Special Inspector

NDT Level III Certificate

1.5.3.2 Associate Special Inspector

NDT Level II Certificate plus one year of related experience

1.5.4 Concrete Construction

1.5.4.1 Special Inspector

a. ICC Reinforced Concrete Special Inspector Certificate with one year of related experience, or

b. ACI Concrete Construction Special Inspector, or

c. NICET Concrete Technician Level III Certificate in Construction Materials Testing, or

d. Registered Professional Engineer with related experience

1.5.4.2 Associate Special Inspector

a. ACI Concrete Construction Special Inspector in Training, or

b. Engineer-In-Training with one year of related experience

PART 2 PRODUCTS

2.1 FABRICATOR SPECIAL INSPECTIONS

Special Inspections of fabricator's work performed in the fabricator's shop is required to be inspected in accordance with the Statement of Special Inspections and the Schedule of Special Inspections unless the fabricator is certified by the approved agency to perform such work without Special Inspections. Submit the following certification to the Contracting Officer for information to allow work performed in the fabricator's shop to not be subjected to Special Inspections.

American Institute of Steel Construction (AISC) Certified Fabrication Plant, Category STD.

PART 3 EXECUTION

3.1 RESPONSIBILITIES

3.1.1 Quality Control Manager

a. Supervise all Special Inspectors required by the contract documents and the IBC.

b. Verify the qualifications of all of the Special Inspectors.

c. Verify the qualifications of fabricators.

d. Maintain a 3-ring binder for the Special Inspector's daily and
biweekly reports. This file must be located in a conspicuous place in the project trailer/office to allow review by the Contracting Officer and the DOR.

e. Maintain a rework items list that includes discrepancies noted on the Special Inspectors daily report.

3.1.2 Special Inspectors

a. Inspect all elements of the project for which the special inspector is qualified to inspect and are identified in the Schedule of Special Inspections.

b. Attend preparatory phase meetings related to the Definable Feature of Work (DFOW) for which the special inspector is qualified to inspect.

c. Submit Special Inspections agency's written practices for the monitoring and control of the agency's operations to include the following:

 (1) The agency's procedures for the selection and administration of inspection personnel, describing the training, experience and examination requirements for qualifications and certification of inspection personnel.

 (2) The agency's inspection procedures, including general inspection, material controls, and visual welding inspection.

d. Submit qualification records for nondestructive testing (NDT) technicians designated for the project.

e. Submit NDT procedures and equipment calibration records for NDT to be performed and equipment to be used for the project.

f. Submit a copy of the daily reports to the QC Manager.

g. Discrepancies that are observed during Special Inspections must be reported to the QC Manager for correction. If discrepancies are not corrected before the special inspector leaves the site the observed discrepancies must be documented in the daily report.

h. Submit a weekly Special Inspection Report until all inspections are complete. A report is required for each weekly period in which Special Inspections activity occurs, and must include the following:

 (1) A brief summary of the work performed during the reporting time frame.

 (2) Changes and/or discrepancies with the drawings, specifications that were observed during the reporting period.

 (3) Discrepancies which were resolved or corrected.

 (4) A list of nonconforming items requiring resolution.

 (5) All applicable test result including nondestructive testing reports.

i. At the completion of each DFOW requiring Special Inspections, submit an
The interim final report of Special Inspections that documents the Special Inspections completed for that DPOW. Identify the inspector responsible for each item inspected and corrections of all discrepancies noted in the daily reports. The interim final report of Special Inspections must be signed, dated and indicate the certification of the special inspector qualifying them to conduct the inspection.

j. At the completion of the project submit a comprehensive final report of Special Inspections that documents the Special Inspections completed for the project and corrections of all discrepancies noted in the daily reports. The comprehensive final report of Special Inspections must be signed, dated and indicate the certification of the special inspector qualifying them to conduct the inspection.

3.2 DEFECTIVE WORK

Check work as it progresses, but failure to detect any defective work or materials must in no way prevent later rejection if defective work or materials are discovered, nor obligate the Contracting Officer to accept such work.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

Commission the building systems listed herein. Employ the services of an independent Commissioning Firm. The Commissioning Firm must be a 1st tier subcontractor of the General or Prime Contractor and must be financially and corporately independent of all other subcontractors. The Commissioning Firm must employ a Lead Commissioning Specialist that coordinates all aspects of the commissioning process. Conform to the commissioning procedures outlined in this specification.

1.2 SYSTEMS TO BE COMMISSIONED

Commission the following systems:

- Heating, Ventilating, Air Conditioning, and Refrigeration Systems (HVAC)
- Building Automation System
- Lighting Systems
- Power Distribution Systems
- Power Generation Systems
- Service Water Heating Systems
- Plumbing Systems
- Natural Gas Systems
- Water Pumping and Mixing Systems
- Energy and Water Utility Metering Systems and Sub-Meters

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASSOCIATED AIR BALANCE COUNCIL (AABC)

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)

1.4 COMMUNICATION WITH THE GOVERNMENT

The Lead Commissioning Specialist (CxC) must submit all plans, schedules, reports, and documentation directly to the Contracting Officer Representative Contracting Officer's Technical Representative concurrent with submission to the CQC System Manager QC Manager. The Lead Commissioning Specialist must have direct communication with the Contracting Officer's Representative Contracting Officer's Technical Representative regarding all elements of the commissioning process; however, the Government has no direct contract authority with the Lead Commissioning Specialist.

1.5 SEQUENCING AND SCHEDULING

1.5.1 Sequencing

Complete Functional Performance Tests of HVAC systems prior to Performance Verification Tests required by Specification Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC. Complete the following prior to starting Functional Performance Tests of mechanical systems:

a. All equipment and systems have been completed, cleaned, flushed, disinfected, calibrated, tested, and operate in accordance with contract documents and construction plans and specifications.

b. Performance Verification Tests of the controls systems have been completed and the Performance Verification Test Report has been submitted and approved in accordance with Specification Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

c. Testing, Adjusting, and Balancing has been completed and the Testing, Adjusting, and Balancing Report, and all TAB and DALT related submittals prerequisite to the TAB Report, have has been submitted and approved in accordance with Specification Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.

d. The building envelope is enclosed according to contract documents with final construction completed.

e. The Pre-Functional Checklists have been submitted and approved.

f. The Certificate of Readiness for mechanical systems has been submitted and approved.

Complete the following prior to starting Functional Performance Tests of the electrical systems:

a. All electrical, power generation, and lighting equipment and systems have been completed, calibrated, tested, and operate in accordance with contract documents and construction plans and specifications.

b. The building envelope is enclosed according to contract documents with.
final construction completed.

c. Ceiling tiles, floor coverings, and window coverings are in place.

d. The Certificate of Readiness for electrical systems has been submitted and approved.

1.5.2 Project Schedule

Include the following tasks in the project schedule required by Section 01 32 01.00 10 PROJECT SCHEDULE. Ensure sufficient time is scheduled to accommodate the requirements of this specification section. The order of items listed below is not intended to imply a specified sequence:

a. Submission and approval of the Commissioning Firm and Commissioning Specialist

b. Submission and approval of the Testing, Adjusting, and Balancing (TAB) Firm and TAB Specialist specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

d. Submission of the Design Review Report specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.

f. Installation of permanent utilities (gas, water, electric)

g. Building Envelope Construction

h. Submission and approval of the Building Envelope Inspection Checklists

j. Drainage and Vent, Building Sewers, Water Supply Systems and Backflow Prevention Assembly Tests specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE

k. Factory Acceptance Testing for each of the systems to be commissioned as required by technical specifications

l. Manufacturer's Equipment Start-Up for each of the systems to be commissioned.

m. Potable Water System Flushing specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE

n. Operational Tests of the plumbing system specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE.

o. Potable Water System Disinfection specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE

p. Submission and approval of the TAB Schematic Drawings, Report Forms, and Procedures specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.

q. Submission and approval of Duct Air Leakage Test Procedures specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

r. Duct Air Leakage Test Execution specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC
s. Submission and approval of the Final Duct Air Leakage Test Report specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

t. Testing, Adjusting, and Balancing (TAB) Field Work required by Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

u. Submission and approval of the TAB Report specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

v. TAB Field Acceptance Testing required by Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

w. Submission and approval of the Start-Up Testing Report specified in Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

x. Submission and approval of the Performance Verification Test Procedures specified in Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

y. Performance Verification Tests required by Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC

z. Performance Verification Test Report specified in Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC

aa. Pre-Functional Checklist Submittal

bb. Functional Performance Testing for each system to be commissioned

cc. Integrated Systems Tests

dd. Post-Test Deficiency Correction for each system to be commissioned

e. Re-Testing

gg. Training for each of the systems to be commissioned

hh. Systems Manual, Maintenance Plan, and Service Life Plan submission and approval

ii. Seasonal Testing

1.6 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Commissioning Firm; G

Lead Commissioning Specialist; G

Technical Commissioning Specialists; G

Commissioning Firm's Contract; G
SD-05 Design Data

SD-06 Test Reports

Interim Construction Phase Commissioning Plan; G
Final Construction Phase Commissioning Plan; G
Template Building Envelope Inspection Checklists; G
Building Envelope Inspection Checklists; G
Pre-Functional Checklists; G
Issues Log

Commissioning Report; G

SD-07 Certificates

Certificate of Readiness; G

SD-10 Operation and Maintenance Data

Training Plan; G
Training Attendance Rosters; G
Systems Manual; G
Maintenance and Service Life Plans; G

SD-11 Closeout Submittals

Construction Phase Commissioning Plan; S
Final Commissioning Report; S

1.7 COMMISSIONING FIRM

Provide a Commissioning Firm that is certified in commissioning by one of the following: the AABC Commissioning Group (ACG); the National Environmental Balancing Bureau (NEBB); the International Certification Board/Testing, Adjusting, and Balancing Bureau (ICB/TABB), the Building Commissioning Association (BCA); the Association of Energy Engineers (AEE).

The Commissioning Firm may employ a commissioning professional certified by the University of Wisconsin-Madison or the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) as required in paragraph LEAD COMMISSIONING SPECIALIST as an alternative to certification of the Commissioning Firm. The Commissioning Firm must be certified in all systems to be commissioned to the extent such certifications are available from the certifying body. Describe any lapses in certification or disciplinary action taken by the certifying body against the proposed Commissioning Firm or Lead Commissioning Specialist in detail. Any firm or commissioning professional that has been the subject of disciplinary action by the certifying body within the five years preceding contract award is not eligible to perform any duties related to commissioning.
a. Submit the Commissioning Firm's certification of qualifications including the name of the firm and certifications no later than 30 calendar days after Notice to Proceed. Submit four hard copy and an electronic copy.

b. The Commissioning Firm's and Commissioning Specialists' certifications must be maintained for the entire duration of the duties specified herein. If, for any reason, the firm or a specialist loses a certification during this period, immediately notify the Contracting Officer's Representative/Contracting Officer's Technical Representative and submit another Commissioning Firm or Commissioning Specialist for approval. All work specified in this specification section performed by the Commission Firm or associated Commissioning Specialists is invalid if the Commissioning Firm or Commissioning Specialist loses its certification prior to contract completion and must be performed by an approved successor.

c. The Commissioning Firm must oversee and assist the General or Prime Contractor with the work specified herein. Submit the Commissioning Firm's Contract including the Scope of Work associated with the paragraph POST-CONSTRUCTION SUPPORT no later than 30 calendar days after approval of the Commissioning Firm. Submit four hard copy and an electronic copy.

1.7.1 Lead Commissioning Specialist

The Commissioning Firm must provide a Lead Commissioning Specialist (CxC) that has a minimum of five years of commissioning experience, including two projects of similar size and complexity, and that is one of the following:

- NEBB qualified Systems Commissioning Administrator (SCA)
- ACG Certified Commissioning Authority (CxA)
- ICB/TABB Certified Commissioning Supervisor
- BCA Certified Commissioning Professional (CCP)
- AEE Certified Building Commissioning Professional (CBCP)
- University of Wisconsin-Madison Qualified Commissioning Process Provider (QCxP)
- ASHRAE Commissioning Process Management Professional (CPMP)

a. Submit the Lead Commissioning Specialist's certification of qualifications including the name of the specialist and firm; certifications; years of experience; and a listing of representative projects of similar size and complexity no later than 30 calendar days after Notice to Proceed. Submit four hard copy and an electronic copy.

b. The Lead Commissioning Specialists certifications must be maintained for the entire duration of the duties specified herein. If, for any reason, the specialist loses a certification during this period, immediately notify the Contracting Officer's Representative/Contracting Officer's Technical Representative and submit another Lead Commissioning Specialist for approval. All work specified in this specification section to be performed by the Lead Commissioning Specialist is invalid if the Lead Commissioning Specialist loses its certification prior to contract completion and must be performed by an approved successor.

c. The Lead Commissioning Specialist must lead and oversee the commissioning work specified herein and be the primary point of contact for the Government regarding the commissioning work.
1.7.2 Technical Commissioning Specialists

Technical Commissioning Specialists, employed by the Commissioning Firm and that have the following qualifications, must perform the technical work specified herein associated with each system to be commissioned:

a. The technical work associated with mechanical systems including Heating, Ventilating, Air Conditioning, and Refrigeration Systems; Building Automation System; Service Water Heating Systems; Plumbing Systems; Water Pumping and Mixing Systems; Compressed Air and Vacuum Systems; Energy and Water Utility Metering Systems must be performed by a Commissioning Specialist certified by NEBB, ACG, ICB/TAB, AEE, University of Wisconsin-Madison, ASHRAE, or BCA in the commissioning of HVAC systems with five years of experience in the commissioning of HVAC systems.

b. The technical work associated with electrical systems including Lighting Systems; Power Distribution Systems; Power Generation Systems must be performed by an engineering technician certified by the InterNational Electrical Testing Association (NETA) or the National Institute for Certification in Engineering Technologies (NICET) with five years of experience inspecting, testing, and calibrating electrical distribution and generation equipment, systems, and devices.

c. Submit the Technical Commissioning Specialist's certification of qualifications including the name of the specialist and firm; certifications; years of experience; and a listing of representative projects of similar size and complexity no later than 30 calendar days after Notice to Proceed. Submit four hard copy and an electronic copy.

1.7.3 Commissioning Standard

Comply with the requirements of the commissioning standard under which the Commissioning Firm and Specialists qualifications are approved. When the firm and specialists are certified by BCA, AEE, ASHRAE, or the University of Wisconsin-Madison, comply with the requirements of one of the acceptable standards unless otherwise stated herein. The acceptable standards are ACG Commissioning Guideline, NEBB Commissioning Standard, SMACNA 1429, or ASHRAE 202. Comply with applicable NETA and NICET testing standards for electrical systems.

a. Implement all recommendations and suggested practices contained in the Commissioning Standard and electrical test standards.

b. Use the Commissioning Standard for all aspects of Commissioning, including calibration of instruments.

c. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the Commissioning Standard, adhere to the manufacturer calibration recommendations.

d. All quality assurance provisions of the Commissioning Standard such as performance guarantees are part of this contract.

e. The Commissioning Specialists must develop commissioning procedures for any systems or system components not covered in the Commissioning Standard.

SECTION 01 91 00.15 Page 7
f. Use any new requirements, recommendations, and procedures published or adopted prior to contract solicitation by the body responsible for the Commissioning Standard.

1.8 SUSTAINABILITY THIRD PARTY CERTIFICATION (TPC)

The Commissioning Specialists must execute and document the commissioning activities required of the Commissioning Authority for the purposes of complying with the Third Party Certification (TPC) requirements for the project in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Provide all commissioning documentation required to meet the TPC requirements.

1.9 ISSUES LOG

The Lead Commissioning Specialist must develop and maintain an Issues Log for tracking and resolution of all deficiencies discovered through commissioning review, inspection, and testing. Include the date of final resolution of issues as confirmed by the Commissioning Specialist. Submit the Issues Log to the Contracting Officer's Technical Representative on a monthly basis at a minimum, and provide an electronic copy to the Government Acceptance Engineer concurrently. At any point during construction, any commissioning team member finding deficiencies may communicate those deficiencies in writing to the Commissioning Specialist for inclusion into the Issues Log.

1.10 CERTIFICATE OF READINESS

Prior to scheduling Functional Performance Tests for each system, issue a Certificate of Readiness for the system certifying that the system is ready for Functional Performance Testing. The Certificate of Readiness must include, for each system to be commissioned, all equipment and system start-up reports; Performance Verification Test Reports; completed Building Envelope Inspection Checklists; completed Pre-Functional Checklists; Testing, Adjusting, and Balancing (TAB) Report; HVAC Controls Start-Up Reports; and the Air Leakage Test Reports and Diagnostic Test Reports to the extent applicable to the system. The Contractor; the Lead Commissioning Specialist; the Contractor's Quality Control Representative; the Mechanical, Electrical, Controls, and TAB subcontractor representatives must sign and date the Certificate of Readiness. Submit the Certificate of Readiness for each system no later than 14 calendar days prior to Functional Performance Tests of that system. Submit four hard copy and an electronic copy. Do not schedule Functional Performance Tests for a system until the Certificate of Readiness for that system receives approval by the Government.

PART 2 PRODUCTS

Not used

PART 3 EXECUTION

3.1 CONSTRUCTION PHASE

3.1.1 Construction Commissioning Coordination Meeting

The Lead Commissioning Specialist must lead a Construction Commissioning Coordination Meeting no later than 14 days after approval of the
Commissioning Firm and Commissioning Specialists 30 days following construction notice to proceed to discuss the commissioning process including contract requirements, lines of communication, roles and responsibilities, schedules, documentation requirements, inspection and test procedures, and logistics as specified in this specification section. The Contractor's Superintendent or Project Manager, the Contractor's Quality Control Representative, and the Government must attend this meeting. Invite the User and a Base Civil Engineer Office Representative a Public Works Division Representative, to attend this meeting.

3.1.2 Construction Phase Commissioning Plan

3.1.2.1 Interim Construction Phase Commissioning Plan

The Lead Commissioning Specialist (CxC) must prepare the Interim Construction Phase Commissioning Plan. Submit the Interim Construction Phase Commissioning Plan no later than 30 calendar days after the Construction Commissioning Coordination Meeting and no later than 14 days prior to the start of construction of the building envelope. Submit four hard copy and an electronic copy.

Identify the commissioning and testing standards and outline the overall commissioning process, the commissioning schedule, the commissioning team members and responsibilities, lines of communication, documentation requirements for the construction phase of the project, and Template Building Envelope Inspection Checklists in the Interim Construction Phase Commissioning Plan.

3.1.2.1.1 Checklists

Download example Building Envelope Inspection Checklists, Pre-Functional Checklists, Functional Performance Test Checklists, and Integrated Systems Test Checklists for specification section 01 91 00.15 TOTAL BUILDING COMMISSIONING at the following location: http://www.wbdg.org/FFC/NAVGRAPH/graphptoc.pdf. The checklists submitted in the interim and Final Construction Phase Commissioning Plans must contain the same level of detail shown in the examples. The submitted checklists are not required to match the format of the examples.

3.1.2.1.2 Contents

In addition to the requirements listed above, include the information provided for the Design Phase Commissioning Plan, updated, and including the following: In addition, include the following in the Interim Construction Phase Commissioning Plan:

a. Listing of all equipment to be commissioned

b. Contact information for the Government Acceptance Engineer, the Contracting Officer's Technical Representative, and the Commissioning Team listed in paragraph Commissioning Team.

c. Basis of Design

d. Templates for site observation reports and the issues log. a. Plan purpose

b. Commissioning scope
c. Systems to be commissioned

d. Examples and description of development of pre-functional, integrated systems test, and functional performance test checklists

e. Building information

f. Contact information for the Commissioning Specialists, the Government Acceptance Engineer, the Contracting Officer's Technical Representative, and the Commissioning Team listed in paragraph Commissioning Team

g. Roles and responsibilities

h. Management plan

i. Owner's Project Requirements

j. Basis of Design

k. Description of design reviews by the Commissioning Specialists

l. Description of design review by Acceptance Engineer

m. Description and templates for site observation reports and the issues log

n. Listing and description of required meetings

o. Identification and sequence of commissioning and acceptance tasks for incorporation into the Project Schedule

p. Listing of required submittals to Government, Government Acceptance Engineer, and Commissioning Specialists

r. Description of Endurance Tests

s. Acceptance testing of critical systems as identified in contract specifications

t. Operation and maintenance manual requirements

u. Description of training requirements

v. Description of required Systems Manual

w. Description of the Commissioning Report

3.1.2.1.3 Template Building Envelope Inspection Checklists

The Building Envelope Technical Commissioning Specialist must develop the Template Building Envelope Inspection Checklists. Include items that verify the building materials and construction maintain the required thermal and moisture integrity and air tightness of the building envelope system in the Building Envelope Inspection Checklists.
3.1.2.2 Final Construction Phase Commissioning Plan

The Lead Commissioning Specialist (CxC) must prepare the Final Construction Phase Commissioning Plan. Submit the Final Construction Phase Commissioning Plan no later than 30 calendar days prior to the start of Pre-Functional Checks. Submit four hard copy and an electronic copy.

Include the information provided in the Interim Construction Phase Commissioning Plan. In addition, the Technical Commissioning Specialist must develop the Pre-Functional Checklists, Integrated Systems Test Checklists, and Functional Performance Test Checklists for each building, for each system required to be commissioned, and for each component for inclusion in the Final Construction Phase Commissioning Plan.

3.1.2.2.1 Pre-Functional Checklists

The Pre-Functional Checklists must include items for physical inspection or testing that demonstrate that installation and start-up of equipment and systems is complete. See paragraph Pre-Functional Checks for more information. Functional Performance and Integrated Systems Test test procedures must explain, step-by-step, the actions and expected results that will demonstrate that the system performs in accordance with the contract in the Functional Performance Test and Integrated Systems Test Checklists. See paragraph Functional Performance and Integrated Systems Tests for more information.

3.1.2.2.2 Functional Performance Test Checklists

Functional Performance Test Checklists must include procedures that explain, step-by-step, the actions and expected results that will demonstrate that the system performs in accordance with the contract. See paragraph Functional Performance and Integrated Systems Tests for more information. Include the following sections and details appropriate to the systems being tested in the Functional Performance Test Checklists:

a. Notable system features including information about such attributes as system sizing and controls to facilitate understanding of system operation

b. Conclusions and recommendations based on control system feature, point-to-point, actuator, and system operation observations. Conclusions must clearly indicate if system does or does not perform in accordance with contract requirements. Recommendation must clearly indicate that the system should or should not be accepted by the Government.

c. Test conditions including date, beginning and ending time, and beginning and ending outdoor air conditions

d. Attendees present throughout the entire system test

e. Identification of the equipment involved in the test

f. Control system feature identification including control point description, embedded/visible type, adjustable/monitoring type, actual value, and setpoint value/alarm range

g. Point-to-point observations including demonstrating system flow meters and sensors have been calibrated and are correctly displayed on the
Operator work station

h. Actuator operation observations demonstrating actuator responses to commands from the control system

i. As-found condition of the system operation

j. List of test items with step numbers along with the corresponding feature or control operation, intended test procedure, expected system response, and pass/fail indication.

k. Space for comments for each test item.

i. System operation observations for system-based tests demonstrating each control algorithm, operation mode, and alarm condition resulting from control point(s) manipulation. System operation observations must contain the following:

 (1) introduction identifying testing methodology

 (2) as-found conditions prior to control point(s) manipulation

 (3) clear list of test items (step numbers)

 (4) control algorithm (design control sequence) segmented by unique functions

 (5) intended test procedures following each segmented control algorithm identifying control point(s) required to be manipulated to initiate system response

 (6) expected system response

 (7) space for comments for each test item complete including resulting control signal such as 0-volts, 10-volts, active, or inactive

 (8) pass or fail indication for each test item

3.1.2.2.3 Integrated Systems Test Checklists

Integrated Systems Test Checklists must include test procedures that explain, step-by-step, the actions and expected results that will demonstrate that the system performs in accordance with the contract. See paragraph Functional Performance and Integrated Systems Tests for more information. Include the following sections in the Integrated Systems Test Checklists:

a. Notable features of the interconnected systems organized by discipline including information to facilitate understanding of system operation

b. Conclusions and recommendations based on observations of interconnected system operation. Conclusions must clearly indicate if the systems do or do not perform in accordance with contract requirements. Recommendation must clearly indicate that the systems should or should not be accepted by the Government

c. Test conditions including date and beginning and ending time

d. Attendees present throughout the entire system test
e. Identification of the equipment and systems involved in the test

f. List of test items with step numbers along with the corresponding feature or control operation, intended test procedure, expected system response, and pass/fail indication.

g. Space for comments for each test item.

f. Identification of dates for the completion and approval of relevant functional performance test checklists, and identify the Contractor's Quality Control Personnel that accepted and signed the related functional performance test checklists.

g. Interconnected system operation observations for tests demonstrating each operation resulting from system manipulation. System operation observations must contain the following:

(1) introduction identifying testing methodology

(2) as-found conditions prior to system manipulation

(3) clear list of test items (step numbers)

(4) design control sequences or interlocks segmented by unique functions

(5) intended test procedures following each segmented sequence or interlock identifying the system manipulation required to initiate system response

(6) expected system responses

(7) space for comments for each test item

(8) pass or fail indication for each test

3.1.3 Construction Submittals

Provide all submittals associated with the systems to be commissioned, including shop drawings; equipment submittals; test plans, procedures, and reports; and resubmittal's to the Commissioning Specialists. The Technical Commissioning Specialist must review the submittals to the extent necessary verify that the equipment and system installation will comply with the contract requirements, the Unified Facilities Criteria (UFC) referenced by the design-build contract, and the requirements of the Basis of Design and the Owner's Project Requirements.

3.1.4 Inspection and Testing

Demonstrate that all system components have been installed, that each control device and item of equipment operates, and that the systems operate and perform, including interactive operation between systems, in accordance with contract documents and the Owner's Project Requirements. Requirements in related specification sections are independent from the requirements of this section and do not satisfy any of the requirements specified in this specification section. Provide all materials, services, and labor required to perform the Pre-Functional Checks, Integrated Systems Tests, and Functional Performance Tests.
3.1.4.1 Commissioning Team

Provide a commissioning representative for each sub-contractor associated with the systems to be commissioned. Each commissioning representative is responsible for coordination of their respective sub-contractor's execution of the commissioning activities and participation in the inspection and testing required by this specification section. The designers listed below are the designers of record for their respective systems. Substitutes must be approved by the Contracting Officer's Representative Contracting Officer's Technical Representative.

3.1.4.1.1 Mechanical System Pre-Functional Checks Team

The following team members must participate in Pre-Functional checks of mechanical systems:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CxM</td>
<td>Mechanical System Technical Commissioning Specialist</td>
</tr>
<tr>
<td>QAR</td>
<td>Contracting Officer's Quality Assurance Representative</td>
</tr>
<tr>
<td>CQC</td>
<td>Contractor's Quality Control Personnel</td>
</tr>
<tr>
<td>MC</td>
<td>Contractor's Mechanical Commissioning Representative</td>
</tr>
<tr>
<td>EC</td>
<td>Contractor's Electrical Commissioning Representative</td>
</tr>
<tr>
<td>CC</td>
<td>Contractor's Controls Commissioning Representative</td>
</tr>
<tr>
<td>TABC</td>
<td>Contractor's TAB Commissioning Representative</td>
</tr>
<tr>
<td>PC</td>
<td>Contractor's Plumbing Commissioning Representative</td>
</tr>
<tr>
<td>IC</td>
<td>Contractor's Irrigation Commissioning Representative</td>
</tr>
</tbody>
</table>

3.1.4.1.2 Electrical System Pre-Functional Checks Team

The following team members must participate in Pre-Functional checks of electrical systems:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CxE</td>
<td>Mechanical System Technical Commissioning Specialist</td>
</tr>
<tr>
<td>QAR</td>
<td>Contracting Officer's Quality Assurance Representative</td>
</tr>
<tr>
<td>CQC</td>
<td>Contractor's Quality Control Personnel</td>
</tr>
<tr>
<td>EC</td>
<td>Contractor's Electrical Commissioning Representative</td>
</tr>
</tbody>
</table>
3.1.4.1.3 Mechanical Systems Test Team

The following team members must participate in Functional Performance, Seasonal, and Integrated Systems Testing of mechanical systems:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CxM</td>
<td>Mechanical System Technical Commissioning Specialist</td>
</tr>
<tr>
<td>QAR</td>
<td>Contracting Officer's Quality Assurance Representative</td>
</tr>
<tr>
<td>CQC</td>
<td>Contractor's Quality Control Personnel</td>
</tr>
<tr>
<td>MC</td>
<td>Contractor's Mechanical Commissioning Representative</td>
</tr>
<tr>
<td>EC</td>
<td>Contractor's Electrical Commissioning Representative</td>
</tr>
<tr>
<td>CC</td>
<td>Contractor's Controls Commissioning Representative</td>
</tr>
<tr>
<td>TABC</td>
<td>Contractor's TAB Commissioning Representative</td>
</tr>
<tr>
<td>PC</td>
<td>Contractor's Plumbing Commissioning Representative</td>
</tr>
<tr>
<td>IC</td>
<td>Contractor's Irrigation Commissioning Representative</td>
</tr>
</tbody>
</table>

3.1.4.1.4 Electrical Systems Test Team

The following team members must participate in Functional Performance and Integrated Systems Testing of electrical systems:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CxE</td>
<td>Mechanical System Technical Commissioning Specialist</td>
</tr>
<tr>
<td>QAR</td>
<td>Contracting Officer's Quality Assurance Representative</td>
</tr>
<tr>
<td>CQC</td>
<td>Contractor's Quality Control Personnel</td>
</tr>
<tr>
<td>EC</td>
<td>Contractor's Electrical Commissioning Representative</td>
</tr>
</tbody>
</table>

3.1.4.1.5 Other Pre-Functional and Functional Performance Participants

The following may participate as team members during Pre-Functional Checks and Functional Performance Testing:
3.1.4.2 Pre-Functional Checks

Pre-Functional Checklists from the approved Final Construction Phase Commissioning Plan must be completed by the commissioning team. Complete one Pre-Functional Checklist for each individual item of equipment or system for each system required to be commissioned including, but not limited to, ductwork, piping, equipment, fixtures (lighting and plumbing), and controls. Indicate commissioning team member inspection and acceptance of each Pre-Functional Checklist item by initials. Acceptance of each Pre-Functional Checklist item by each team member indicates that item conforms to the construction contract and accepted design requirements in their area of responsibility. Technical Commissioning Specialist acceptance of each Pre-Functional Checklist item indicates that each item has been installed correctly and in accordance with contract documents and the Owner's Project Requirements. Submit the completed and initialed Pre-Functional Checklists no later than 7 calendar days after completion of inspection of all checklists items for each system. Submit four hard copy and an electronic copy. Include manufacturer start-up checklists associated with equipment with the submission of the Pre-Functional Checklists.

3.1.4.3 Testing, Adjusting, and Balancing (TAB) Report and Field Acceptance Testing

The Mechanical System Technical Commissioning Specialist must review the pre-final TAB Report required by Specification Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC. Identify any deficiencies to the Contracting Officer's Representative Contracting Officer's Technical Representative and the Contractor's Quality Control Personnel. Resolve all deficiencies prior to TAB Field Acceptance Testing.

The Mechanical System Technical Commissioning Specialist must witness the TAB Field Acceptance Testing specified by Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC. Include a certification by the Mechanical Technical Specialist that no outstanding deficiencies exist in the systems relative to Testing, Adjusting, and Balancing with the final TAB Report submittal.

3.1.4.4 HVAC Controls Test Reports

The Mechanical System Technical Commissioning Specialist must review the Start-Up Testing Report and the PVT Procedures and Reports required by Specification Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC. Include a certification by the Mechanical System Technical Commissioning Specialist that the submittals contain no deficiencies or that the...
3.1.4.5 Tests

3.1.4.5.1 Functional Performance and Integrated Systems Tests

Schedule Functional Performance Tests for each system only after the Certificate of Readiness has been approved by the Government for the system. Correct all deficiencies identified through any prior review, inspection, or test activity before the start of Functional Performance Tests. Perform Integrated Systems Tests only after the Functional Performance Tests for each associated system are completed with all deficiencies resolved and after the related Functional Performance Test Checklists have been signed by each commissioning team member.

a. Functional Performance Tests and Integrated Systems Tests must be performed with the Contracting Officer's Quality Assurance Representative present.

b. Abort Functional Performance Tests or Integrated Systems Tests when any system deficiency prevents the successful completion of the test.

c. Technical Commissioning Specialists must lead and document all Functional Performance Tests and Integrated Systems Tests for the systems to be commissioned with the Contractor and appropriate sub-contractors performing the Functional Performance Tests and Integrated Systems Tests. The representatives listed in the paragraph Commissioning Team must attend the tests. Abort Functional Performance Tests or Integrated Systems Tests when any required commissioning team member is not present for the test.

3.1.4.5.1.1 Checklist

Use the Functional Performance Test and Integrated Systems Test Checklists from the approved Final Construction Phase Commissioning Plan to guide the Functional Performance Tests and Integrated Systems Tests. Functional Performance Tests must be performed for each item of equipment and each system required to be commissioned and verify all sensor calibrations, control responses, safeties, interlocks, operating modes, sequences of operation, capacities, lighting levels, and all other performance requirements comply with construction contract and accepted design requirements regardless of the specific items listed within the Functional Performance Test and Integrated Systems Test Checklists provided. Testing must progress from equipment or components to subsystems to systems to interlocks and connections between systems. Integrated Systems Tests must be performed for the interactive operation between systems such as HVAC systems, fire protection systems, back-up electrical supply, energy generation systems, and other systems, and verify correct interactive operation, acceptable speed of response, and other contract requirements for both normal and failure modes. Examples of Integrated Systems Tests include the correct operation of HVAC systems during emergency system activation, correct operation of uninterruptible power supplies or energy generators and connected systems, or lighting system operation during power outage or emergency system activation. The order of components and systems to be tested must be determined by the Technical Commissioning Specialists.
3.1.4.5.1.2 Acceptance

Indicate acceptance of each item of equipment and systems tested by signature of each commissioning team member for each Functional Performance Test or Integrated Systems Test Checklist. The Contractor's Quality Control Representative and the Technical Commissioning Specialists must indicate acceptance after the equipment and systems are free of deficiencies.

3.1.4.5.2 HVAC Test Methods

Perform Functional Performance Tests in accordance with the following:

3.1.4.5.2.1 Prior to Testing

Prior to testing operating modes, sequences of operation, interlocks, and safeties, complete control point-to-point observations, test sensor calibrations, and test actuator commands. Prior to system testing, complete control system feature, point-to-point, and actuator observations.

3.1.4.5.2.2 Simulating Conditions

Over-writing control input (actual) values through the controls system is not acceptable, unless approved by the Contracting Officer's Representative or the Contracting Officer's Technical Representative. Identify proposed exceptions in a protocol submitted to the Contracting Officer's Representative or the Contracting Officer's Technical Representative for approval.

Before simulating conditions, overwriting values (if approved), or changing set-points, calibrate all sensors, transducers and devices. Below are several examples of exceptions that would be considered acceptable:

a. When varying static pressures inside ductwork can not be simulated within the duct, and where a sensor signals the controls system to initiate sequences at various duct static pressures, it is acceptable to simulate the various pressures with a Pneumatic Squeeze-Bulb Type Signaling Device with gauge temporarily attached to the sensing tube leading to the transmitter. It is not acceptable to reset the various set-points, nor to simulate an electric analog signal (unless approved as noted above).

b. Dirty filter pressure drops can be simulated using sheets of cardboard at filter face.

c. Freeze-stat safeties can be simulated by packing portion of sensor with ice.

d. High outside air temperatures can be simulated with a hair blower.

e. High entering cooling coil temperatures can be used to simulate entering cooling coil conditions.

f. Do not use signal generators to simulate sensor signals unless approved by the Contracting Officer's Representative or the Contracting Officer's Technical Representative, as noted above, for special cases.

g. Control set points can be altered. For example, to see the air conditioning compressor lockout work at an outside air temperature below 55 degrees F, when the outside air temperature is above 55 degrees F, temporarily change the lockout set point to be 0 degrees F above the
current outside air temperature. Caution: Set points are not to be raised or lowered to a point such that damage to the components, systems, or the building structure and/or contents will occur.

h. Test duct mounted smoke detectors in accordance with the manufacturer's recommendations. Perform the tests with air system at minimum airflow condition in ductwork.

i. Test current sensing relays used for fan and pump status signals to control system to indicate unit failure and run status by resetting the set point on the relay to simulate a lost belt or unit failure while the unit is running. Confirm that the failure alarm was generated and received at the control system. After the test is conducted, return the set point to its original set-point or a set-point as indicated by the Contracting Officer's Representative Contracting Officer's Technical Representative.

3.1.4.5.2.3 Setup

Perform each test under conditions that simulate actual conditions as close as is practically possible. Provide all necessary materials and system modifications to produce the necessary flows, pressures, temperatures, and other conditions necessary to execute the test according to the specified conditions. At completion of the test, return the affected building equipment and systems to their pre-test condition.

3.1.4.5.3 Sample Strategy

Perform Functional Performance Tests using the following sample strategy. Prepare and complete a Functional Performance Test Checklist for each item of equipment or system to be tested. For sample sizes less than 100 percent for all similar equipment, the Government will select the specific equipment or system to be tested during testing. Equipment Identifiers are as indicated on the design drawings:

<table>
<thead>
<tr>
<th>Equipment Identifier</th>
<th>Sample Size (Percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHU</td>
<td>100</td>
</tr>
<tr>
<td>VAV</td>
<td>25</td>
</tr>
<tr>
<td>CUH</td>
<td>100</td>
</tr>
<tr>
<td>CWP</td>
<td>100</td>
</tr>
<tr>
<td>DWH</td>
<td>100</td>
</tr>
<tr>
<td>Lighting Controls</td>
<td>100</td>
</tr>
<tr>
<td>Renewable Energy Systems/Equipment</td>
<td>100</td>
</tr>
</tbody>
</table>

Perform Integrated Systems Tests for all systems and equipment having interactive operation.
3.1.4.5.4 Endurance Test

Following successful completion of Functional Performance Tests for HVAC systems and prior to the Performance Verification Test, perform an Endurance Test of the HVAC systems in accordance with the paragraph Endurance Test in Specification Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC. Use the Temporary Trending Hardware, if necessary, in accordance with Specification Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC. Perform the test with all equipment and systems in full automatic mode. Restart the test if the equipment and systems or setpoints are overridden to manual mode at any time during the test. Poll all points shown in the project schedules with an alarm condition at 5 minute intervals. Poll all points shown in the Point Schedule required for trending, overrides, or graphical displays at 15 minute intervals. Provide an Endurance Test Report with the Commissioning Report that includes a graphical representation of all trends with all trend data clearly identified. Following successful completion of Functional Performance Tests for HVAC systems and prior to the Performance Verification Test, perform a seven day Endurance Test of the HVAC systems using the building control system to trend all points shown as requiring a trend on the project controls points schedules. If insufficient buffer capacity exists to trend the entire endurance test, upload trend logs during the course of the endurance test to ensure that no trend data is lost. Perform the test with all equipment and systems in full automatic mode. Restart the test if the equipment and systems or setpoints are overridden to manual mode at any time during the test. Poll all points shown in the project controls point schedules with an alarm condition at 5 minute intervals. Poll all points shown in the project controls points schedules required for trending, overrides, or graphical displays at 15 minute intervals. Provide an Endurance Test Report with the Commissioning Report that includes a graphical representation of all trends with all trend data clearly identified.

3.1.4.5.5 Seasonal Tests

3.1.4.5.5.1 Initial Functional Performance Tests

Perform Initial Functional Performance Tests as soon as all contract work is completed, regardless of the season. Develop and implement means of artificial loading to demonstrate, to a reasonable level of confidence, the ability of the HVAC systems to handle peak seasonal loads.

3.1.4.5.5.2 Full-Load Conditions

In addition to the Initial Functional Performance Tests, perform Functional Performance Tests of HVAC systems under full-load conditions during peak heating and cooling seasons during outdoor air condition design extremes. Test cooling equipment and systems with the building fully occupied when performing the Functional Performance Tests during peak cooling season.

Schedule Seasonal Functional Performance Tests in coordination with the Government.

3.1.4.5.5.3 System Acceptance

Systems may be partially accepted prior to seasonal testing if they comply with all construction contract and accepted design requirements that can be tested during initial Functional Performance Tests. All Functional Performance Test procedures must be completed prior to full systems
acceptance.

3.1.4.5.6 Aborted Tests and Re-Testing

Abort Functional Performance Tests, Integrated Systems Tests, or Seasonal Tests if any deficiency prevents successful completion of the test or if any required commissioning team member is not present for the test. Reimburse the Government for all costs associated with effort lost due to re-testing due to test failures and aborted tests. These costs must include salary, travel costs, and per diem for Government commissioning team members. Re-test only after all deficiencies identified during the original tests have been corrected.

3.1.4.5.6.1 100 Percent Sample

Systems or equipment for which 100 percent sample size are tested fail if one or more of the test procedures results in discovery of a deficiency and the deficiency cannot be resolved within 5 minutes during the test.

Re-test to the extent necessary to confirm that the deficiencies have been corrected without negatively impacting the performance of the rest of the system.

3.1.4.5.6.2 Less than 100 Percent Sample

For systems tests with a sample size less than 100 percent, if one or more of the test procedures for an item of equipment or a system results in discovery of a deficiency, regardless of whether the deficiency is corrected during the sample tests, the item of equipment or system fails the test.

a. If the system failure rate is 5 percent or less, meaning that 5 percent or less of the equipment or systems had at least one deficiency, re-test only on the items which experienced the initial failures.

b. If the system failure rate is higher than 5 percent, meaning that more than 5 percent of equipment or systems tested had at least one deficiency, re-test the items which experienced the initial failures to the extent necessary to confirm that the deficiencies have been corrected. In addition, test another random sample of the same size as the initial sample for the first time. If the second random sample set has any failures, re-test those failed items and all remaining equipment and systems to complete 100 percent testing of that system type.

3.1.5 Training Plan

The Technical Commissioning Specialists must develop training plans which identify required training by specification sections associated with commissioned systems. Include a matrix listing each training requirement, content of the training, the trainer name, trainer contact information, and schedule and location of training. Submit four hard copy and an electronic copy of the Training Plan to the Commissioning Specialists and the Government no later than 30 calendar days prior to the associated training.

Document training attendance using training attendance rosters and provide completed attendance rosters to the Commissioning Specialists and the Government no later than 7 calendar days following the completion of
training for each system to be commissioned. Submit four hard copy and an electronic copy.

3.1.6 Systems Manual

The Technical Commissioning Specialists must prepare and submit a Systems Manual including, for all commissioned systems, the Basis of Design, system single line diagrams, as-built sequences of operation and controls drawings, as-built control setpoints, recommended schedule for sensor and actuator calibration, recommended schedule of maintenance when not in the O&M manuals, recommended re-testing schedule with proposed testing forms, and full equipment warranty information. Update and resubmit the Systems Manual based on any corrective action taken during the warranty period. The Technical Commissioning Specialists must review the Systems Manual. Include a signed certification or letter from the Lead Commissioning Specialist stating that the Systems Manual is complete, clear, and accurate with the submittal.

Submit Systems Manual no later than 30 calendar days following completion of Functional Performance Tests. Submit four hard copies and an electronic copy.

3.1.7 Maintenance and Service Life Plans

3.1.7.1 Maintenance Plan

Prepare and submit a Maintenance Plan for the project mechanical, electrical, plumbing, and fire protection systems. Prepare the HVAC and refrigeration sections of the Maintenance Plan in accordance with ASHRAE 180. Develop required inspection and maintenance tasks similar to Section 5 of ASHRAE 180 for the other commissioned systems and fire protection systems.

Submit the Maintenance Plan no later than 30 calendar days following the completion of Functional Performance tests. Submit four hard copies and an electronic copy.

3.2 COMMISSIONING REPORT

Following the completion of Functional Performance Tests and Integrated Systems Tests, with the exception of Seasonal Tests, and following the Endurance Tests the Lead Commissioning Specialist must prepare a Commissioning Report.

a. Include an executive summary describing the overall commissioning process, the results of the commissioning process, any outstanding deficiencies and recommended resolutions, and any seasonal testing that must be scheduled for a later date. Indicate, in the executive summary, whether the systems meet the requirements of the construction contract and accepted design and the Owner’s Project Requirements.

b. Detail any deficiencies discovered during the commissioning process and the corrective actions taken in the report. Include the completed Pre-Functional Checklists, Functional Performance Test Checklists, Integrated Systems Test Checklists, the Endurance Test Report, the Commissioning Plans, the Issues Log, Performance Verification Test Reports, Training Attendance Rosters, the final TAB Report.

c. Submit the Commissioning Report no later than 14 calendar days following commissioning team acceptance of all Functional Performance
Tests and Integrated Systems Tests with the exception of Seasonal Tests and following completion of the Endurance Test. Submit four hard copies and an electronic copy.

d. Following any Seasonal Tests or Post-Construction Activities, update the Final Commissioning Report to reflect any changes and resubmit.
OWNER'S PROJECT REQUIREMENTS DOCUMENT

Project: Project, Location, PN ######

Approved:

<table>
<thead>
<tr>
<th>Name</th>
<th>Design Agent's Representative</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Owner's Representative</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OWNER'S PROJECT REQUIREMENTS DOCUMENT

Contents

1. Owner and User Requirements
 a. Primary Purpose, Program, and Use
 b. Project History
 c. Broad Goals
 i. Future Expansion
 ii. Flexibility
 iii. Quality of Materials
 iv. Construction Costs
 v. Operational Costs

2. Environmental and Sustainability Goals
 a. LEED or Green Globes Goal
 b. Other

3. Energy Efficiency Goals
 a. Goals/Policy
 b. Systems and Feature Energy Impact

4. Indoor Environmental Quality Requirements
 a. Space Type 1
 i. Intended Use
 ii. Occupancy Schedule
 iii. Environmental Requirements
 iv. Occupant System Control Ability
 v. Type of Lighting
 vi. After-hour Use Accommodation
 b. Space Type 2
 i. Intended Use
 ii. Occupancy Schedule
 iii. Environmental Requirements
 iv. Occupant System Control Ability
 v. Type of Lighting
 vi. After-hour Use Accommodation

5. Equipment and System Expectations
 a. HVAC Systems
 i. Quality and Reliability
 ii. Type
 iii. Automation
 iv. Flexibility
 v. Maintenance Requirements
 b. Lighting Systems
 i. Quality and Reliability
 ii. Type
 iii. Automation
 iv. Flexibility
 v. Maintenance Requirements
 c. Domestic Hot Water Systems
 i. Quality and Reliability
 ii. Type
 iii. Automation
 iv. Flexibility
 v. Maintenance Requirements

Contents (continued)
d. On-site Power Systems
 i. Quality and Reliability
 ii. Type
 iii. Automation
 iv. Flexibility
 v. Maintenance Requirements

e. Other Systems
 i. Quality and Reliability
 ii. Type
 iii. Automation
 iv. Flexibility
 v. Maintenance Requirements

6. Building Occupant and O&M Personnel Requirements
 a. Facility Operation
 b. UMCS (EMCS or FMCS)
 c. Occupant Training and Orientation
 d. O&M Staff Training and Orientation
1. Owner and User Requirements

 a. Primary Purpose, Program, and Use

 Explain the purpose, program, and use of the facility. (i.e. Army Reserve Center used for training reserve units. Training includes spaces such as weapons, medical, vehicle repair, cooking, etc.)

 b. Project History

 Explain the history of the project related to design/construction (i.e. D/B/B, D/B, IDIQ, JOC, COE in-house, A/E, etc.). Explain any additional project background that would impact energy/sustainability goals.

 c. Broad Goals

 i. Future Expansion: Explain goals related to potential future expansion.

 ii. Flexibility: Explain goals related to flexibility for layout and use of the building. (i.e. high rate of office churn, expected frequency of renovation, etc.)

 iii. Quality of Materials: Explain goals related to quality of materials. (i.e. highest quality materials, 50 yr life, 25 yr life, highest quality within budget, etc.)

 iv. Construction Costs: Explain goals related to construction costs. (i.e. how low can you go, set project amount, select simplest systems for low cost, etc.)

 v. Operational Costs: Explain goals related to operational costs. (i.e. low utilities based on water and energy conservation, trade-off allowable on maintenance costs to reduce utility cost, utility cost unimportant compared to construction cost, etc.)
2. Environmental and Sustainability Goals

 a. LEED/Green Globes Goal

 Set LEED/Green Globes goal and explain sustainable features permissible or preferred to be incorporated. Explain relative importance of LEED/Green Globes goal within project scope. Indicate requirement from service or agency specific criteria and policy.

 b. Other

 Explain any special sustainability or environmental goals associated with the project. Identify specific sustainability features that may be required or desired. (i.e. hydro-power, solar power, on-site water treatment, on-site water infiltration, impervious cover reduction, parking capacity, etc.)
3. Energy Efficiency Goals

a. Goals/Policy

 Explain the specific project goals and requirements regarding energy efficiency. Incorporate the requirements of UFC 1-200-02 High Performance and Sustainable Building Requirements and/or other relevant agency policies.

b. Systems and Feature Energy Impacts

 Identify and explain envelope, system, or site and building features that will be incorporated to maximize energy efficiency. Identify features that must be incorporated that will reduce or limit energy efficiency.
4. Indoor Environmental Quality Requirements

 a. Space Type 1

 i. Intended Use: Explain how the space will be used (i.e. classroom occasionally used as conference room).

 ii. Occupancy Schedule: Describe the occupancy including number of people at various times (i.e. drill weekend-maximum capacity, weekdays-20 percent; or 0700-0900 - none, 0900-1400 - 30 people, 1400-1600 - none).

 iii. Environmental Requirements: Describe the environmental requirements of the space. Include description of temperatures, humidity levels, ventilation rates, air quality, lighting levels, or any other specific parameters desired (i.e. 75 deg F, 50 percent rh, 30 fc, etc.).

 iv. Occupant System Control Ability: Describe the desired level of control the occupants will have over the thermal comfort and lighting systems. (i.e. adjustable thermostat for every person, adjustable thermostat in all private offices, no adjustable thermostats, adjustable thermostat in senior rank also controlling other offices, occupancy sensors for lighting, adjustable dimming, etc.)

 v. Type of Lighting: Describe the type of lighting desired (i.e. task lighting with minimal overhead, maximize daylight with dimming on overhead, accent lighting, particular fixtures, etc.).

 vi. After-hour Use Accommodations: Describe whether and how often the space may be used after hours. Describe the systems that activate when an occupant uses the building after-hours. Describe the level of control of after-hour use HVAC.

 (Example: Space is rarely used after-hours by few occupants. HVAC and lighting system should activate when occupants enter after-hours. The HVAC operation will be limited to that required to provide heating, A/C, and ventilation to the occupied space alone.)

 b. Space Type 2
5. Equipment and System Expectations

a. HVAC Systems

i. Quality and Reliability: Explain the level of quality and reliability required of the HVAC systems.

(Example: Equipment efficiency should meet ASHRAE 90.1 and FEMP/Energy Star requirements. Due to critical nature of facility, additional redundancy in the cooling and heating systems is required, i.e. multiple chillers, boilers, and pumps.) (Example: No specific quality or reliability requirements specified. Equipment should remain serviceable over life of building or to the extent typical of the type of equipment.)

ii. Type: Explain the type of equipment desired.

(Example: Boilers should be condensing type. Use hydronic heating and cooling. Use self-contained A/C units in computer rooms.)

iii. Automation: Explain the level of automation in the HVAC System desired.

(Example: Single loop HVAC systems permissible. Use packaged controls only.) (Example: Control HVAC systems from DDC system connected to the base UMCS.) (Example: Boilers should have packaged controls connected to the DDC system.)

iv. Flexibility: Describe the desired level of flexibility of the HVAC system.

(Example: System should accommodate frequent office layout changes including private office wall movement.) (Example: Layout will remain mostly unchanged; no flexibility required.) (Example: Accommodate potential for conference and classrooms to change to offices.)

v. Maintenance Requirements: Describe the level of maintenance available or the requirements of the equipment regarding maintainability.

(Example: Equipment should be located to allow easy maintenance access. Equipment vendors or repair service should be able to respond within 24 hrs.)

b. Lighting Systems

i. Quality and Reliability: Explain the level of quality and reliability required of the lighting system controls.

(Example: The building lighting system should meet ASHRAE 90.1 - IP requirements.)

ii. Type: Explain the type of lighting or control equipment desired.

(Example: High-efficiency fluorescent lamps with high-efficiency ballasts will be specified. Indirect lighting will be used in all office and classroom spaces. Lighting foot-candle levels may be reduced to 45 foot-candles in lieu of the typical 50 foot-candles when indirect lighting is used.)

iii. Automation: Explain the level of automation in the lighting control
system desired.

(Example: Provide occupancy sensors in restrooms, corridors, and storage areas.)

iv. Flexibility: Describe the desired level of flexibility of the lighting system and control systems.

(Example: Provide dual level switching in classrooms and conference rooms.)

v. Maintenance Requirements: Describe the level of maintenance available or the requirements of the equipment regarding maintainability.

(Example:)

c. Domestic Hot Water Systems

i. Quality and Reliability: Explain the level of quality and reliability required of the domestic hot water systems.

(Example: Equipment efficiency should meet ASHRAE and FEMP/Energy Star requirements. Due to critical nature of facility, additional redundancy in the water heating systems is required, i.e. multiple hot water heaters and circulation pumps.) (Example: No specific quality or reliability requirements specified. Equipment should remain serviceable over life of building or to the extent typical of the type of equipment.)

ii. Type: Explain the type of equipment desired.

(Example: Gas-fired storage tank water heater with mixing valve for temperature control.) (Example: Instantaneous electric water heater at lavatories.) (Example: Instantaneous electric water heater with integral control system for eyewash/showers.)

iii. Automation: Explain the level of automation in the domestic hot water control system desired.

(Example: Occupancy schedule control for recirculation loop and gas burner. Connect package controls to DDC system.)

iv. Flexibility: Describe the desired level of flexibility of the domestic hot water systems.

(Example: No anticipated changes to restroom layout; no additional flexibility required.)

v. Maintenance Requirements: Describe the level of maintenance available or the requirements of the equipment regarding maintainability.

(Example: Equipment should be located to allow easy maintenance access. Equipment vendors or repair service should be able to respond within 24 hrs.)

d. On-site Power Systems

i. Quality and Reliability: Explain the level of quality and reliability required of the on-site power system.
ii. Type: Explain the type of on-site power system desired.

iii. Automation: Explain the level of automation in the on-site power system desired.

iv. Flexibility: Describe the desired level of flexibility of the on-site power system.

v. Maintenance Requirements: Describe the level of maintenance available or the requirements of the on-site power system regarding maintainability.

e. Other Systems

i. Quality and Reliability: Explain the level of quality and reliability required of the system.

ii. Type: Explain the type of system desired.

iii. Automation: Explain the level of automation in the system desired.

iv. Flexibility: Describe the desired level of flexibility of the system.

v. Maintenance Requirements: Describe the level of maintenance available or the requirements of the system regarding maintainability.
6. Building Occupant and O&M Personnel Requirements

 a. Facility Operation

 Describe how the facility will be operated. Who operates the facility? Who maintains the facility? Who pays the utility bills?

 b. UMCS (EMCS or FMCS)

 Will the building be tied to an UMCS/EMCS/FMCS? What system will be connected to? Provide information regarding connection requirements, protocols, and control, scheduling and monitoring points.

 c. Occupant Training and Orientation

 How much training and orientation is desired for building occupants? Will training need to be provided for all systems? To what extent do the occupants need to understand and use the systems?

 d. O&M Staff Training and Orientation

 How much training and orientation is desired for building occupants? Will training need to be provided for all systems? To what extent do the occupants need to understand and use the systems?
APPENDIX B - BASIS OF DESIGN
APPENDIX C - DESIGN PHASE COMMISSIONING PLAN

-- End of Section --
SECTION 02 41 00

DESTRUCTION

05/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI Guideline K

(2009) Guideline for Containers for Recovered Non-Flammable Fluorocarbon Refrigerants

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 145

AASHTO T 180

(2015) Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop

AMERICAN SOCIETY OF SAFETY ENGINEERS (ASSE/SAFE)

ASSE/SAFE A10.6

(2006) Safety Requirements for Demolition Operations

CARPET AND RUG INSTITUTE (CRI)

CRI CIS

(2011) Carpet Installation Standard

U.S. ARMY CORPS OF ENGINEERS (USACE)

EM 385-1-1

U.S. DEFENSE LOGISTICS AGENCY (DLA)

DLA 4145.25

(Jun 2000; Reaffirmed Oct 2010) Storage and Handling of Liquefied and Gaseous Compressed Gases and Their Full and Empty Cylinders

U.S. DEPARTMENT OF DEFENSE (DOD)

DOD 4000.25-1-M

SECTION 02 41 00 Page 1
1.2 PROJECT DESCRIPTION

1.2.1 Demolition Plan

Prepare a Demolition Plan and submit proposed salvage, demolition, and removal procedures for approval before work is started. Include in the plan procedures for careful removal and disposition of materials specified to be salvaged, coordination with other work in progress, a disconnection schedule of utility services, a detailed description of methods and equipment to be used for each operation and of the sequence of operations. Identify components and materials to be salvaged for reuse or recycling with reference to paragraph Existing Facilities to be Removed. Append tracking forms for all removed materials indicating type, quantities, condition, destination, and end use. Coordinate with Waste Management Plan.

Provide procedures for safe conduct of the work in accordance with EM 385-1-1. Plan shall be approved by Contracting Officer prior to work beginning.

1.2.2 General Requirements

Do not begin demolition until authorization is received from the Contracting Officer. The work of this section is to be performed in a manner that maximizes the value derived from the salvage and recycling of materials. Remove rubbish and debris from the project site; do not allow accumulations inside or outside the buildings. The work includes demolition, salvage of identified items and materials, and removal of resulting rubbish and debris. Remove rubbish and debris from Government property daily, unless otherwise directed. Store materials that cannot be removed daily in areas specified by the Contracting Officer. In the interest of occupational safety and health, perform the work in accordance with EM 385-1-1, Section 23, Demolition, and other applicable Sections.

1.3 ITEMS TO REMAIN IN PLACE

Take necessary precautions to avoid damage to existing items to remain in place, to be reused, or to remain the property of the Government. Repair or replace damaged items as approved by the Contracting Officer. Coordinate the work of this section with all other work indicated. Construct and maintain shoring, bracing, and supports as required. Ensure that structural elements are not overloaded. Increase structural supports or add new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal work. Repairs, reinforcement, or structural replacement require approval by the
Contracting Officer prior to performing such work.

1.3.1 Existing Construction Limits and Protection

Do not disturb existing construction beyond the extent indicated or necessary for installation of new construction. Provide temporary shoring and bracing for support of building components to prevent settlement or other movement. Provide protective measures to control accumulation and migration of dust and dirt in all work areas. Remove snow, dust, dirt, and debris from work areas daily.

1.3.2 Weather Protection

For portions of the building to remain, protect building interior and materials and equipment from the weather at all times. Where removal of existing roofing is necessary to accomplish work, have materials and workmen ready to provide adequate and temporary covering of exposed areas.

1.3.3 Trees

Protect trees within the project site which might be damaged during demolition and which are indicated to be left in place, by a 6 foot high fence. Erect and secure fence a minimum of 5 feet from the trunk of individual trees or follow the outer perimeter of branches or clumps of trees. Replace any tree designated to remain that is damaged during the work under this contract with like-kind or as approved by the Contracting Officer.

1.3.4 Utility Service

Maintain existing utilities indicated to stay in service and protect against damage during demolition operations. Prior to start of work, utilities serving each area of alteration or removal will be shut off by the Government and disconnected and sealed by the Contractor.

1.3.5 Facilities

Protect electrical and mechanical services and utilities. Where removal of existing utilities and pavement is specified or indicated, provide approved barricades, temporary covering of exposed areas, and temporary services or connections for electrical and mechanical utilities. Floors, roofs, walls, columns, pilasters, and other structural components that are designed and constructed to stand without lateral support or shoring, and are determined to be in stable condition, must remain standing without additional bracing, shoring, or lateral support until demolished or deconstructed, unless directed otherwise by the Contracting Officer. Ensure that no elements determined to be unstable are left unsupported and place and secure bracing, shoring, or lateral supports as may be required as a result of any cutting, removal or demolition work performed under this contract.

1.4 BURNING

The use of burning at the project site for the disposal of refuse and debris will not be permitted.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When
used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-01 Preconstruction Submittals
- Demolition Plan; G
- Existing Conditions

SD-07 Certificates
- Notification; G
- Notification of Demolition and Renovation Form

SD-11 Closeout Submittals
- Receipts; G
- Receipts shall be supplied in both paper copy and PDF file formats.

1.6 QUALITY ASSURANCE

Submit timely notification of demolition and renovation projects to Federal, State, regional, and local authorities in accordance with 40 CFR 61, Subpart M. Notify the Regional Office of the United States Environmental Protection Agency (USEPA) and the Contracting Officer in writing 10 working days prior to the commencement of work in accordance with 40 CFR 61, Subpart M. Comply with federal, state, and local hauling and disposal regulations. In addition to the requirements of the "Contract Clauses," conform to the safety requirements contained in ASSE/SAFE A10.6. Comply with the Environmental Protection Agency requirements specified. Use of explosives will not be permitted.

1.6.1 Dust and Debris Control

Prevent the spread of dust and debris on airfield pavements and avoid the creation of a nuisance or hazard in the surrounding area. Do not use water if it results in hazardous or objectionable conditions such as, but not limited to, ice, flooding, or pollution. Sweep pavements as often as necessary to control the spread of debris that may result in foreign object damage potential to aircraft.

1.7 PROTECTION

1.7.1 Traffic Control Signs

a. Where pedestrian and driver safety is endangered in the area of removal work, use traffic barricades with flashing lights.

1.7.2 Protection of Personnel

Before, during and after the demolition work continuously evaluate the condition of the structure being demolished and take immediate action to protect all personnel working in and around the project site. No area, section, or component of floors, roofs, walls, columns, pilasters, or other structural element will be allowed to be left standing without sufficient bracing, shoring, or lateral support to prevent collapse or failure while workmen remove debris or perform other work in the immediate area.
1.8 FOREIGN OBJECT DAMAGE (FOD)

Aircraft and aircraft engines are subject to FOD from debris and waste material lying on airfield pavements. Remove all such materials that may appear on operational aircraft pavements due to the Contractor's operations. If necessary, the Contracting Officer may require the Contractor to install a temporary barricade at the Contractor's expense to control the spread of FOD potential debris. The barricade shall include a fence covered with a fabric designed to stop the spread of debris. Anchor the fence and fabric to prevent displacement by winds or jet/prop blasts. Remove barricade when no longer required.

1.9 RELOCATIONS

Perform the removal and reinstallation of relocated items as indicated with workmen skilled in the trades involved. Repair or replace items to be relocated which are damaged by the Contractor with new undamaged items as approved by the Contracting Officer.

1.10 EXISTING CONDITIONS

Before beginning any demolition work, survey the site and examine the drawings and specifications to determine the extent of the work. Record existing conditions in the presence of the Contracting Officer showing the condition of structures and other facilities adjacent to areas of alteration or removal. Photographs sized 4 inch will be acceptable as a record of existing conditions. Include in the record the elevation of the top of foundation walls, finish floor elevations, possible conflicting electrical conduits, plumbing lines, alarms systems, the location and extent of existing cracks and other damage and description of surface conditions that exist prior to before starting work. It is the Contractor's responsibility to verify and document all required outages which will be required during the course of work, and to note these outages on the record document. Submit survey results.

PART 2 PRODUCTS

2.1 FILL MATERIAL

a. Comply with excavating, backfilling, and compacting procedures for soils used as backfill material to fill voids, depressions or excavations resulting from demolition of structures. Fill material shall be waste products from demolition until all waste appropriate for this purpose is consumed.

b. Fill material shall conform to the definition of satisfactory soil material as defined in AASHTO M 145, Soil Classification Groups A-1, A-2-4, A-2-5 and A-3. In addition, fill material shall be free from roots and other organic matter, trash, debris, frozen materials, and stones larger than 2 inches in any dimension.

c. Proposed fill material must be sampled and tested by an approved soil testing laboratory, as follows:

<table>
<thead>
<tr>
<th>Soil classification</th>
<th>AASHTO M 145</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 02 41 00 Page 5
Moisture-density relations | AASHTO T 180, Method B or D

PART 3 EXECUTION

3.1 EXISTING FACILITIES TO BE REMOVED

Inspect and evaluate existing structures onsite for reuse. Existing construction scheduled to be removed for reuse shall be disassembled. Dismantled and removed materials are to be separated, set aside, and prepared as specified, and stored or delivered to a collection point for reuse, remanufacture, recycling, or other disposal, as specified. Materials shall be designated for reuse onsite whenever possible.

3.1.1 Structures

a. Remove existing structures indicated to be removed to top of foundation walls. Interior walls shall be removed to top of concrete slab on ground. Remove sidewalks, curbs, gutters and street light bases as indicated.

b. Demolish structures in a systematic manner from the top of the structure to the ground. Complete demolition work above each tier or floor before the supporting members on the lower level are disturbed. Demolish concrete and masonry walls in small sections. Remove structural framing members and lower to ground by means of derricks, platforms hoists, or other suitable methods as approved by the Contracting Officer.

c. Locate demolition equipment throughout the structure and remove materials so as to not impose excessive loads to supporting walls, floors, or framing.

3.1.2 Utilities and Related Equipment

3.1.2.1 General Requirements

Do not interrupt existing utilities serving occupied or used facilities, except when authorized in writing by the Contracting Officer. Do not interrupt existing utilities serving facilities occupied and used by the Government except when approved in writing and then only after temporary utility services have been approved and provided. Do not begin demolition work until all utility disconnections have been made. Shut off and cap utilities for future use, as indicated.

3.1.2.2 Disconnecting Existing Utilities

Remove existing utilities as indicated and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer. When utility lines are encountered but are not indicated on the drawings, notify the Contracting Officer prior to further work in that area. Remove meters and related equipment and deliver to a location on the Base as directed by the Contracting Officer.

3.1.3 Paving and Slabs

Remove sawcut concrete and asphaltic concrete paving and slabs to a depth of three inches below existing adjacent grade. Provide neat sawcuts at limits of pavement removal as indicated. Pavement and slabs designated to
be recycled and utilized in this project shall be moved, ground and stored as directed by the Contracting Officer. Pavement and slabs not to be used in this project shall be removed from the Installation at Contractor's expense.

3.1.4 Masonry

Sawcut and remove masonry so as to prevent damage to surfaces to remain and to facilitate the installation of new work. Where new masonry adjoins existing, the new work shall abut or tie into the existing construction as indicated. Provide square, straight edges and corners where existing masonry adjoins new work and other locations. Masonry removed in pieces shall be crushed for use as aggregate.

3.1.5 Concrete

Saw concrete along straight lines to a depth of a minimum 2 inch. Make each cut in walls perpendicular to the face and in alignment with the cut in the opposite face. Break out the remainder of the concrete provided that the broken area is concealed in the finished work, and the remaining concrete is sound. At locations where the broken face cannot be concealed, grind smooth or saw cut entirely through the concrete. Salvage removed concrete.

3.1.6 Miscellaneous Metal

Salvage shop-fabricated items such as access doors and frames, steel gratings, metal ladders, wire mesh partitions, metal railings, metal windows and similar items as whole units. Salvage light-gage and cold-formed metal framing, such as steel studs, steel trusses, metal gutters, roofing and siding, metal toilet partitions, toilet accessories and similar items. Scrap metal shall become the Contractor's property. Recycle scrap metal as part of demolition operations. Provide separate containers to collect scrap metal and transport to a scrap metal collection or recycling facility, in accordance with the Waste Management Plan.

3.1.7 Carpet

Remove existing carpet for reclamation in accordance with manufacturer recommendations and as follows. Remove used carpet in large pieces, roll tightly, and pack neatly in a container. Remove adhesive according to recommendations of the Carpet and Rug Institute (CRI). Adhesive removal solvents shall comply with CRI CIS. Recycle removed carpet cushion.

3.1.8 Acoustic Ceiling Tile

Remove, neatly stack, and recycle acoustic ceiling tiles. Recycling may be available with manufacturer. Otherwise, priority shall be given to a local recycling organization. Recycling is not required if the tiles contain or may have been exposed to asbestos material.

3.1.9 Patching

Where removals leave holes and damaged surfaces exposed in the finished work, patch and repair these holes and damaged surfaces to match adjacent finished surfaces, using on-site materials when available. Where new work is to be applied to existing surfaces, perform removals and patching in a manner to produce surfaces suitable for receiving new work. Finished surfaces of patched area shall be flush with the adjacent existing surface.
and shall match the existing adjacent surface as closely as possible as to
texture and finish.

3.1.10 Air Conditioning Equipment

Recover all refrigerants prior to removing air conditioning, refrigeration,
and other equipment containing refrigerants and dispose of in accordance
with the paragraph entitled "Disposal of Ozone Depleting Substance (ODS)."

3.1.11 Mechanical Equipment and Fixtures

Disconnect mechanical hardware at the nearest connection to existing
services to remain, unless otherwise noted. Disconnect mechanical
equipment and fixtures at fittings. Remove service valves attached to the
unit. Salvage each item of equipment and fixtures as a whole unit; listed,
indexed, tagged, and stored.

3.1.11.1 Piping

Disconnect piping at unions, flanges and valves, and fittings as required
to reduce the pipe into straight lengths for practical storage. If the
piping that remains can become pressurized due to upstream valve failure,
end caps, blind flanges, or other types of plugs or fittings with a
pressure gage and bleed valve shall be attached to the open end of the pipe
to ensure positive leak control. Carefully dismantle piping that
previously contained gas, gasoline, oil, or other dangerous fluids, with
precautions taken to prevent injury to persons and property. Store piping
outdoors until all fumes and residues are removed. Classify piping not
designated for salvage, or not reusable, as scrap metal.

3.1.11.2 Ducts

Classify removed duct work as scrap metal.

3.1.11.3 Fixtures, Motors and Machines

Remove fixtures, motors and machines associated with plumbing, heating, air
conditioning, refrigeration, and other mechanical system installations.

3.1.12 Electrical Equipment and Fixtures

Remove motors, motor controllers, and operating and control equipment that
are attached to the driven equipment. Salvage wiring systems and
components. Disconnect primary, secondary, control, communication, and
signal circuits at the point of attachment to their distribution system.

3.1.12.1 Fixtures

Remove electrical fixtures. Salvage incandescent, mercury-vapor, and
fluorescent lamps and fluorescent ballasts manufactured prior to 1978,
boxed and tagged for identification, and protected from breakage.

3.1.12.2 Electrical Devices

Remove switches, switchgear, transformers, conductors including wire and
nonmetallic sheathed and flexible armored cable, regulators, meters,
instruments, plates, circuit breakers, panelboards, outlet boxes, and
similar items.
3.1.12.3 Wiring Ducts or Troughs

Remove wiring ducts or troughs. Dismantle plug-in ducts and wiring troughs into unit lengths.

3.1.12.4 Conduit and Miscellaneous Items

Remove conduit except where embedded in concrete or masonry. Consider corroded, bent, or damaged conduit as scrap metal. Sort straight and undamaged lengths of conduit according to size and type. Classify supports, knobs, tubes, cleats, and straps as debris to be removed and disposed.

3.1.13 Items With Unique/Regulated Disposal Requirements

Remove and dispose of items with unique or regulated disposal requirements in the manner dictated by law or in the most environmentally responsible manner.

3.2 DISPOSITION OF MATERIAL

3.2.1 Title to Materials

Except for salvaged items specified in related Sections, and for materials or equipment scheduled for salvage, all materials and equipment removed and not reused or salvaged, shall become the property of the Contractor and shall be removed from Government property. Title to materials resulting from demolition, and materials and equipment to be removed, is vested in the Contractor upon approval by the Contracting Officer of the Contractor's demolition and removal procedures, and authorization by the Contracting Officer to begin demolition. The Government will not be responsible for the condition or loss of, or damage to, such property after contract award. Showing for sale or selling materials and equipment on site is prohibited.

3.2.2 Reuse of Materials and Equipment

Remove and store materials and equipment listed in the Demolition Plan to be reused or relocated to prevent damage, and reinstall as the work progresses.

3.2.3 Disposal of Ozone Depleting Substance (ODS)

Class I and Class II ODS are defined in Section, 602(a) and (b), of The Clean Air Act. Prevent discharge of Class I and Class II ODS to the atmosphere. Place recovered ODS in cylinders meeting AHRI Guideline K suitable for the type ODS (filled to no more than 80 percent capacity) and provide appropriate labeling. Recovered ODS shall be turned over to the Contracting Officer. Products, equipment and appliances containing ODS in a sealed, self-contained system (e.g. residential refrigerators and window air conditioners) shall be disposed of in accordance with 40 CFR 82. Submit Receipts or bills of lading, as specified. Submit a shipping receipt or bill of lading for all containers of ozone depleting substance (ODS) shipped to the Defense Depot, Richmond, Virginia.

3.2.3.1 Special Instructions

No more than one type of ODS is permitted in each container. A warning/hazardous label shall be applied to the containers in accordance
with Department of Transportation regulations. All cylinders including but not limited to fire extinguishers, spheres, or canisters containing an ODS shall have a tag with the following information:

a. Activity name and unit identification code
b. Activity point of contact and phone number
c. Type of ODS and pounds of ODS contained
d. Date of shipment
e. National stock number (for information, call (804) 279-4525).

3.2.4 Transportation Guidance

Ship all ODS containers in accordance with MIL-STD-129, DLA 4145.25 (also referenced one of the following: Army Regulation 700-68, Naval Supply Instruction 4440.128C, Marine Corps Order 10330.2C, and Air Force Regulation 67-12), 49 CFR 173.301, and DOD 4000.25-1-M.

3.3 CLEANUP

Remove debris and rubbish from excavations. Remove and transport the debris in a manner that prevents spillage on streets or adjacent areas. Apply local regulations regarding hauling and disposal.

3.4 DISPOSAL OF REMOVED MATERIALS

3.4.1 Regulation of Removed Materials

Dispose of debris, rubbish, scrap, and other nonsalvageable materials resulting from removal operations with all applicable federal, state and local regulations as contractually specified off of Government property in accordance with the Waste Management Plan. Storage of removed materials on the project site is prohibited.

3.4.2 Burning on Government Property

Burning of materials removed from demolished and deconstructed structures will not be permitted on Government property.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN HARDBOARD ASSOCIATION (AHA)

AHA A135.4 (1995; R 2004) Basic Hardboard

ASTM INTERNATIONAL (ASTM)

ASTM C919 (2012) Use of Sealants in Acoustical Applications

1.2 DELIVERY, STORAGE, AND HANDLING

Protect material delivered and placed in storage off the ground from moisture, dirt, and other contaminants. Deliver sealants in the manufacturer's original unopened containers. Remove sealants from the site whose shelf life has expired.

PART 2 PRODUCTS

2.1 CONTRACTION JOINT STRIPS

Use 1/8 inch thick tempered hardboard contraction joint strips conforming to AHA A135.4, Class 1. In lieu of hardboard strips, rigid polyvinylchloride (PVC) or high impact polystyrene (HIPS) insert strips specifically designed to induce controlled cracking in slabs on grade may be used. Such insert strips must have removable top section.

2.2 PREFORMED EXPANSION JOINT FILLER

Use preformed expansion joint filler material conforming to ASTM D1751 or
ASTM D1752, Type I, or resin impregnated fiberboard conforming to the physical requirements of ASTM D1752. Submit certified manufacturer's test reports for premolded expansion joint filler strips, compression seals and lubricant, and metallic waterstops to verify compliance with applicable specification. Unless otherwise indicated, filler material must be 3/8 inch thick and of a width applicable for the joint formed. Backer material, when required, must conform to ASTM D5249.

PART 3 EXECUTION

3.1 INSTALLATION

Provide joint locations and details, including materials and methods of installation of joint fillers and waterstops, as specified and indicated. In no case may any fixed metal be continuous through an expansion or contraction joint.

3.1.1 Contraction Joints

Contraction joints may be constructed by inserting tempered hardboard strips or rigid PVC or HIPS insert strips into the plastic concrete using a steel parting bar, when necessary, or by cutting the concrete with a saw after concrete has set. Make joints 1/8 inch to 3/16 inch wide and extend into the slab one-fourth the slab thickness, minimum, but not less than 1 inch.

3.1.1.1 Joint Strips

Provide strips of the required dimensions and as long as practicable. After the first floating, groove the concrete with a tool at the joint locations. Insert the strips in the groove and depress them until the top edge of the vertical surface is flush with the surface of the slab. Float and finish the slab as specified. Work the concrete adjacent to the joint the minimum necessary to fill voids and consolidate the concrete. Where indicated, saw out the top portion of the strip after the curing period to form a recess for sealer. Discard the removable section of PVC or HIPS strips and leave the insert in place. Maintain true alignment of the strips during insertion.

3.1.1.2 Sawed Joints

Saw joints early enough to prevent uncontrolled cracking in the slab, but late enough that this can be accomplished without appreciable spalling. Start cutting as soon as the concrete has hardened sufficiently to prevent raveling of the edges of the saw cut. Complete cutting before shrinkage stresses become sufficient to produce cracking. Use concrete sawing machines that are adequate in number and power, and with sufficient replacement blades to complete the sawing at the required rate. Cut joints to true alignment and in sequence of concrete placement. Remove sludge and cutting debris. Form reservoir for joint sealant.

3.1.1.3 Bond Breaker

Coat joints requiring a bond breaker with curing compound or with bituminous paint. Protect waterstops during application of bond breaking material to prevent them from being coated.
3.1.2 Expansion Joints

Use preformed expansion joint filler in expansion and isolation joints in slabs around columns and between slabs on grade and vertical surfaces where indicated. Extend the filler to the full slab depth, unless otherwise indicated. Neatly finish the edges of the joint with an edging tool of 1/8 inch radius, except where a resilient floor surface will be applied. Where the joint is to receive a sealant, install the filler strips at the proper level below the finished floor with a slightly tapered, dressed and oiled wood strip temporarily secured to the top to form a recess to the size shown on the drawings. Remove the wood strip after the concrete has set. Contractor may opt to use a removable expansion filler cap designed and fabricated for this purpose in lieu of the wood strip. Thoroughly clean the groove of laitance, curing compound, foreign materials, protrusions of hardened concrete, and any dust. If blowing out the groove use oil-free compressed air.

3.1.3 Joint Sealant

Fill sawed contraction joints and expansion joints in slabs with joint sealant, unless otherwise shown. Joint surfaces must be clean, dry, and free of oil or other foreign material which would adversely affect the bond between sealant and concrete. Apply joint sealant as recommended by the manufacturer of the sealant.

3.1.3.1 Joints With Field-Molded Sealant

Do not seal joints when the sealant material, ambient air, or concrete temperature is less than 40 degrees F. When the sealants are meant to reduce the sound transmission characteristics of interior walls, ceilings, and floors follow the guidance provided in ASTM C919. Coat joints requiring a bond breaker with curing compound or with bituminous paint. Install bond breaker and back-up material where required. Prime joints and fill flush with joint sealant in accordance with the manufacturer's recommendations.

3.2 CONSTRUCTION JOINTS

Treat construction joints coinciding with expansion and contraction joints as expansion or contraction joints as applicable.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 117
(2010; Errata 2011) Specifications for Tolerances for Concrete Construction and Materials and Commentary

ACI 318
(2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016) Building Code Requirements for Structural Concrete and Commentary

ACI SP-66

ASTM INTERNATIONAL (ASTM)

ASTM A1035/A1035M
(2016a) Standard Specification for Deformed and Plain, Low-carbon, Chromium, Steel Bars for Concrete Reinforcement

ASTM A1064/A1064M
(2017) Standard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete

ASTM A370
(2016) Standard Test Methods and Definitions for Mechanical Testing of Steel Products

ASTM A53/A53M

ASTM A615/A615M
(2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM A675/A675M

ASTM A706/A706M
(2016) Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
 Reinforcement; G
SD-03 Product Data
 Reinforcing Steel; G

1.3 DELIVERY, STORAGE, AND HANDLING

Store reinforcement and accessories off the ground on platforms, skids, or other supports.

PART 2 PRODUCTS

2.1 DOWELS

Provide dowels conforming to ASTM A675/A675M, Grade 80. Steel pipe conforming to ASTM A53/A53M, Schedule 80, may be used as dowels provided the ends are closed with metal or plastic inserts or with mortar.

2.2 REINFORCING STEEL

Reinforcing steel of deformed bars conforming to ASTM A615/A615M, ASTM A706/A706M, or ASTM A1035/A1035M grades and sizes as indicated. Cold drawn wire used for spiral reinforcement must conform to ASTM A1064/A1064M.

2.3 WIRE TIES

Use wire ties that are 16 gauge or heavier black annealed steel wire.

2.4 SUPPORTS

Design bar supports for formed surfaces in accordance with CRSI 10MSP and fabricate of steel or precast concrete blocks. Provide precast concrete blocks with wire ties and not less than 4 inches square when supporting reinforcement on ground. Precast concrete block must have compressive strength equal to that of the surrounding concrete. Coat steel supports for coated or galvanized bars with electrically compatible material for a distance of at least 2 inches beyond the point of contact with the bar. Where concrete formed surfaces will be exposed to weather or where surfaces are to be painted, use galvanized, plastic protected or stainless steel supports within 1/2 inch of concrete surface. Concrete supports used in concrete exposed to view must have the same color and texture as the finish surface. For slabs on grade and topping slabs on steel deck, supports use precast concrete blocks, plastic coated steel fabricated with bearing plates, or specifically designed wire-fabric supports fabricated of...
plastic.

2.5 TESTS, INSPECTIONS, AND VERIFICATIONS

Perform material tests, specified and required by applicable standards, by an approved laboratory and certified to demonstrate that the materials are in conformance with the specifications. Perform and certify tests, inspections, and verifications and certify. Submit certified tests reports of reinforcement steel showing that the steel complies with the applicable specifications for each steel shipment and identified with specific lots prior to placement. Submit three copies of the heat analyses for each lot of steel furnished certifying that the steel conforms to the heat analyses.

2.5.1 Reinforcement Steel Tests

Perform mechanical testing of steel in accordance with ASTM A370 except as otherwise specified or required by the material specifications. Perform tension tests on full cross-section specimens using a gage length that spans the extremities of specimens with welds or sleeves included. From chemical analyses of steel heats report the percentages of carbon, phosphorous, manganese, sulphur and silicon present in the steel.

PART 3 EXECUTION

3.1 REINFORCEMENT

Fabricate and place reinforcement steel and accessories as specified, as indicated, and as shown on approved shop drawings. Fabrication and placement details of steel and accessories not specified or shown must be in accordance with ACI SP-66 and ACI 318. Cold bend reinforcement unless otherwise authorized. Bending may be accomplished in the field or at the mill. Do not bend bars after embedment in concrete. Place safety caps on all exposed ends of vertical concrete reinforcement bars that pose a danger to life safety. Face wire tie ends away from the forms. Submit detail drawings showing reinforcing steel placement, schedules, sizes, grades, and splicing and bending details. Show support details including types, sizes and spacing.

3.1.1 Placement

Reinforcement must be free from loose rust and scale, dirt, oil, or other deleterious coating that could reduce bond with the concrete. Place reinforcement in accordance with ACI 318 at locations indicated plus or minus one bar diameter. Do not continue reinforcement through expansion joints and place as indicated through construction or contraction joints. Cover with concrete coverage as indicated or as required by ACI 318. If bars are moved more than one bar diameter to avoid interference with other reinforcement, conduits or embedded items, the resulting arrangement of bars, including additional bars required to meet structural requirements, requires approval before concrete is placed.

3.1.2 Placing Tolerances

Conform bar spacing and concrete cover to ACI 117.

3.1.3 Splicing

Conform splices of reinforcement to ACI 318 and make only as required or indicated. Bars may be spliced at alternate or additional locations at no
additional cost to the Government subject to approval. Splicing must be by lapping or by mechanical or welded butt connection; except that lap splices must not be used for bars larger than No. 11 unless otherwise indicated.

3.1.3.1 Lap Splices

Place lapped bars in contact and securely tied or spaced transversely apart to permit the embedment of the entire surface of each bar in concrete. Do not space lapped bars farther apart than 1/5 the required length of lap or 6 inches.

3.2 DOWEL INSTALLATION

Install dowels in slabs on grade at locations indicated and at right angles to joint being doweled. Accurately position and align dowels parallel to the finished concrete surface before concrete placement. Rigidly support dowels during concrete placement. Coat one end of dowels with a bond breaker.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 117 (2010; Errata 2011) Specifications for Tolerances for Concrete Construction and Materials and Commentary

ACI 214R (2011) Evaluation of Strength Test Results of Concrete

ACI 301 (2010; Errata 2011) Specifications for Structural Concrete

ACI 304.2R (1996; R 2008) Placing Concrete by Pumping Methods

ACI 305.1 (2014) Specification for Hot Weather Concreting

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016) Building Code Requirements for Structural Concrete and Commentary

ASTM INTERNATIONAL (ASTM)

ASTM C172/C172M (2014a) Standard Practice for Sampling Freshly Mixed Concrete

ASTM C192/C192M (2016a) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory

ASTM C231/C231M (2014) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

Air-Entraining Admixtures for Concrete

ASTM C31/C31M (2015a; E 2016) Standard Practice for Making and Curing Concrete Test Specimens in the Field

ASTM C311/C311M (2013) Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland-Cement Concrete

ASTM C618 (2012a) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

ASTM C78/C78M (2016) Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)

ASTM C937 (2016) Grout Fluidifier for Preplaced-Aggregate Concrete

and Clean Coal Combustion Fly Ash for Potential Uses

ASTM E1643 (2011) Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs

ASTM E1745 (2011) Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill Under Concrete Slabs

CONCRETE REINFORCING STEEL INSTITUTE (CRSI)

NATIONAL READY MIXED CONCRETE ASSOCIATION (NRMCA)

NRMCA CPMB 100 (2000; R 2006) Concrete Plant Standards

NRMCA TMMB 100 (2001; R 2007) Truck Mixer, Agitator and Front Discharge Concrete Carrier Standards

1.2 Definitions

1.2.1 Cementitious Material

As used herein, includes all portland cement, pozzolan, fly ash, ground granulated blast-furnace slag, and silica fume.

1.2.2 Chemical Admixtures

Materials in the form of powder or fluids that are added to the concrete to give it certain characteristics not obtainable with plain concrete mixes.

1.2.3 Complementary Cementing Materials (CCM)

Coal fly ash, silica fume, granulated blast-furnace slag, natural or calcined pozzolans, and ultra-fine coal ash when used in such proportions to replace the portland cement that result in considerable improvement to sustainability, durability.
1.2.4 Design Strength (f'c)

The specified compressive strength of concrete at time(s) specified in this section to meet structural design criteria.

1.2.5 Mass Concrete

Any concrete system that approaches a maximum temperature of 158 degrees F within the first 72 hours of placement. In addition, it includes all concrete elements with a section thickness of 3 feet or more regardless of temperature.

1.2.6 Mixture Proportioning

The process of designing concrete mixture proportions to enable it to meet the strength, service life and constructability requirements of the project.

1.2.7 Mixture Proportions

The masses or volumes of individual ingredients used to make a unit measure (cubic yard) of concrete.

1.2.8 Pozzolan

Siliceous or siliceous and aluminous material, which in itself possesses little or no cementitious value but will, in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds possessing cementitious properties.

1.2.9 Workability or Consistency

The ability of a fresh (plastic) concrete mix to fill the form/mould properly with the desired work (vibration) and without reducing the concrete's quality. Workability depends on water content, chemical admixtures, aggregate (shape and size distribution), cementitious content and age (level of hydration).

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-01 Preconstruction Submittals
 Quality Control Plan
 Laboratory Accreditation

SD-03 Product Data
 Cementitious Materials
 Chemical Admixtures

SD-05 Design Data
 Mixture Proportions; G
1.4 QUALITY ASSURANCE

Submit qualifications for Contractor Quality Control personnel assigned to concrete construction as American Concrete Institute (ACI) Certified Workmen in one of the following grades or show written evidence of having completed similar qualification programs:

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Field Testing Technician</td>
<td>Grade I</td>
</tr>
<tr>
<td>Concrete Laboratory Testing Technician</td>
<td>Grade I or II</td>
</tr>
<tr>
<td>Concrete Construction Inspector</td>
<td>Level II</td>
</tr>
<tr>
<td>Foreman or Lead Journeyman of the flatwork finishing crew</td>
<td>Similar qualification for ACI Concrete Flatwork Technician/Finisher or equal, with written documentation</td>
</tr>
</tbody>
</table>

1.4.1 Laboratory Accreditation

Provide laboratory and testing facilities. The laboratories performing the tests must be accredited in accordance with ASTM C1077, including ASTM C78/C78M and ASTM C1260. The accreditation must be current and must include the required test methods, as specified. Furthermore, the testing must comply with the following requirements:

1.4.1.1 Aggregate Testing and Mix Proportioning

Perform aggregate testing and mixture proportioning studies in an accredited laboratory, under the direction of a registered professional engineer in a U.S. state or territory who is competent in concrete materials. This person is required to sign all reports and designs.

1.4.1.2 Acceptance Testing

Furnish all materials, labor, and facilities required for molding, curing, testing, and protecting test specimens at the site and in the laboratory. Furnish and maintain boxes or other facilities suitable for storing and curing the specimens at the site while in the mold within the temperature range stipulated by ASTM C31/C31M.

1.4.1.3 Contractor Quality Control

All sampling and testing must be performed by an approved, onsite, independent, accredited laboratory.
1.4.2 Quality Control Plan

Submit a concrete quality control program in accordance with the guidelines of ACI 121R and as specified herein. Identify the approved laboratories. Provide direct oversight for the concrete qualification program inclusive of associated sampling and testing. Provide all quality control reports to the Quality Manager, Concrete Supplier and the Contracting Officer. Maintain a copy of ACI SP-15 and CRSI 10MSP at the project site.

1.4.3 Government Assurance Inspection and Testing

Day-to-day inspection and testing is the responsibility of the Contractor Quality Control (CQC) staff. However, representatives of the Contracting Officer can and will inspect construction as considered appropriate and will monitor operations of the CQC staff. Government inspection or testing will not relieve any CQC responsibilities.

1.4.3.1 Materials

The Government will sample and test aggregates, cementitious materials, other materials, and concrete to determine compliance with the specifications as considered appropriate. Provide facilities and labor as may be necessary for procurement of representative test samples. Samples of aggregates will be obtained at the point of batching in accordance with ASTM D75/D75M. Other materials will be sampled from storage at the jobsite or from other locations as considered appropriate. Samples may be placed in storage for later testing when appropriate.

1.4.3.2 Fresh Concrete

Fresh concrete will be sampled as delivered in accordance with ASTM C172/C172M and tested in accordance with these specifications, as considered necessary.

1.4.3.3 Hardened Concrete

Tests on hardened concrete will be performed by the Government when such tests are considered necessary.

1.4.3.4 Inspection

Concrete operations may be tested and inspected by the Government as the project progresses. Failure to detect defective work or material will not prevent rejection later when a defect is discovered nor will it obligate the Government for final acceptance.

1.5 DELIVERY, STORAGE, AND HANDLING

Follow ACI 301 and ACI 304R requirements and recommendations. Store cement and other cementitious materials in weathertight buildings, bins, or silos that exclude moisture and contaminants and keep each material completely separated. Arrange and use aggregate stockpiles in a manner to avoid excessive segregation and to prevent contamination with other materials or with other sizes of aggregates. Do not store aggregate directly on ground unless a sacrificial layer is left undisturbed. Store reinforcing bars and accessories above the ground on platforms, skids or other supports. Store other materials in a manner to avoid contamination and deterioration. Admixtures which have been in storage at the project site for longer than 6
months or which have been subjected to freezing cannot be used unless retested and proven to meet the specified requirements. Materials must be capable of being accurately identified after bundles or containers are opened.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide concrete composed of portland cement, other cementitious and pozzolanic materials as specified, aggregates, water and admixtures as specified.

2.1.1 Proportioning Studies-Normal Weight Concrete

Trial design batches, mixture proportions studies, and testing requirements for various types of concrete specified are the responsibility of the Contractor. Base mixture proportions on compressive strength as determined by test specimens fabricated in accordance with ASTM C192/C192M and tested in accordance with ASTM C39/C39M. Obtain mix design approval from the Contracting Officer prior to concrete placement.

a. Samples of all materials used in mixture proportioning studies must be representative of those proposed for use in the project and be accompanied by the manufacturer's or producer's test reports indicating compliance with these specifications.

b. Make trial mixtures having proportions, consistencies, and air content suitable for the work based on methodology described in ACI 211.1, using at least three different water-cementitious material ratios for each type of mixture, which produce a range of strength encompassing those required for each type of concrete required on the project.

c. The maximum water-cementitious material ratios allowed in subparagraph WATER-CEMENTITIOUS MATERIAL RATIO below will be the equivalent water-cementitious material ratio as determined by conversion from the weight ratio of water to cement plus pozzolan by the weight equivalency method as described in ACI 211.1. In the case where silica fume or GGBF slag is used, include the weight of the silica fume and GGBF slag in the equations in ACI 211.1 for the term P, which is used to denote the weight of pozzolan. If pozzolan is used in the concrete mixture, the minimum pozzolan content is 15 percent by weight of the total cementitious material, and the maximum is 35 percent.

d. Design laboratory trial mixtures for maximum permitted slump and air content. Make separate sets of trial mixture studies for each combination of cementitious materials and each combination of admixtures proposed for use. No combination of either may be used until proven by such studies, except that, if approved in writing and otherwise permitted by these specifications, an accelerator or a retarder may be used without separate trial mixture study. Separate trial mixture studies must also be made for concrete for any conveying or placing method proposed which requires special properties and for concrete to be placed in unusually difficult placing locations. For previously approved concrete mix designs used within the past twelve months, the previous mix design may be re-submitted without further trial batch testing if accompanied by material test data conducted within the last six months.
e. Report the temperature of concrete in each trial batch. For each water-cementitious material ratio, make at least three test cylinders for each test age, cure in accordance with ASTM C192/C192M and test at 7 and 28 days in accordance with ASTM C39/C39M. From these test results, plot a curve showing the relationship between water-cementitious material ratio and strength for each set of trial mix studies. In addition, plot a curve showing the relationship between 7 and 28 day strengths. Design each mixture to promote easy and suitable concrete placement, consolidation and finishing, and to prevent segregation and excessive bleeding.

f. Submit the results of trial mixture design studies along with a statement giving the maximum nominal coarse aggregate size and the proportions of ingredients that will be used in the manufacture of each strength of concrete, at least 60 days prior to commencing concrete placing operations. Base aggregate weights on the saturated surface dry condition. Accompany the statement with test results from an approved independent commercial testing laboratory, showing that mixture design studies have been made with materials proposed for the project and that the proportions selected will produce concrete of the qualities indicated. No substitutions may be made in the materials used in the mixture design studies without additional tests to show that the quality of the concrete is satisfactory.

2.1.2 Average Compressive Strength

The mixture proportions selected during mixture design studies must produce a required average compressive strength (f'cr) exceeding the specified compressive strength (f'c) by the amount indicated below, but may not exceed the specified strength at the same age by more than 20 percent. This required average compressive strength, f'cr, will not be a required acceptance criteria during concrete production. However, whenever the daily average compressive strength at 28 days drops below f'cr during concrete production, or daily average 7-day strength drops below a strength correlated with the 28-day f'cr, adjust the mixture, as approved, to bring the daily average back up to f'cr. During production, the required f'cr must be adjusted, as appropriate, based on the standard deviation being attained on the job.

2.1.3 Computations from Test Records

Where a concrete production facility has test records, establish a standard deviation in accordance with the applicable provisions of ACI 214R. Test records from which a standard deviation is calculated must represent materials, quality control procedures, and conditions similar to those expected; must represent concrete produced to meet a specified strength or strengths (f'c) within 1000 psi of that specified for proposed work; and must consist of at least 30 consecutive tests. A strength test must be the average of the strengths of two cylinders made from the same sample of concrete and tested at 28 days. Required average compressive strength f'cr used as the basis for selection of concrete proportions must be in accordance with ACI 318 Chapter 5.

2.1.4 Tolerances

Except as otherwise specified herein, tolerances for concrete batching, mixture properties, and construction as well as definition of terms and application practices must be in accordance with ACI 117. Take level and grade tolerance measurements of slabs as soon as possible after finishing;
when forms or shoring are used, the measurements must be made prior to removal.

2.1.5 Floor Finish

Floor finish shall be in accordance with ACI 301, Chapter 5. Troweled finish as described below shall be used unless otherwise noted. After floating, begin first trowel finish operation using a power-driven trowel. Begin final troweling when surface produces a ringing sound as trowel is moved over the surface. Consolidate concrete surface by final hand-troweling operation, free of trowel marks, uniform in texture and appearance, and with a surface plane tolerance not exceeding 1/4" in 10' when tested with a 10' straightedge.

2.1.6 Strength Requirements

Specified compressive strength (f'c) shall be as indicated on the Drawings.

2.1.6.1 Evaluation of Concrete Compressive Strength

Fabricate five compressive strength specimens, 4 inch by 8 inch cylinders, laboratory cure them in accordance with ASTM C31/C31M and test them in accordance with ASTM C39/C39M. Test two cylinders at 7 days, two cylinders at 28 days, and hold one cylinder in reserve. The strength of the concrete is considered satisfactory so long as the average of all sets of three consecutive test results do not exceed the specified compressive strength f'c by 20 percent and no individual test result falls below the specified strength f'c by more than 500 psi), unless approved by the Contracting Officer. A "test" is defined as the average of two companion cylinders, or if only one cylinder is tested, the results of the single cylinder test. Additional analysis or testing, including taking cores and/or load tests may be required when the strength of the concrete in the structure is considered potentially deficient.

2.1.6.2 Investigation of Low-Strength Compressive Test Results

When any strength test of standard-cured test cylinders falls below the specified strength requirement by more than 500 psi or if tests of field-cured cylinders indicate deficiencies in protection and curing, take steps to assure that the load-carrying capacity of the structure is not jeopardized. When the strength of concrete in place is considered potentially deficient, obtain cores and test in accordance with ASTM C42/C42M. Take at least three representative cores from each member or area of concrete in place that is considered potentially deficient. The location of cores will be determined by the Contracting Officer to least impair the strength of the structure. Concrete in the area represented by the core testing will be considered adequate if the average strength of the cores is equal to at least 85 percent of the specified strength requirement and if no single core is less than 75 percent of the specified strength requirement. Non-destructive tests (tests other than test cylinders or cores) may not be used as a basis for acceptance or rejection. Perform the coring and repair the holes; cores will be tested by the Government.

2.1.6.3 Load Tests

If the core tests are inconclusive or impractical to obtain or if structural analysis does not confirm the safety of the structure, load tests may be directed by the Contracting Officer in accordance with the requirements of ACI 318. Correct concrete work evaluated by structural
analysis or by results of a load test as being understrength in a manner satisfactory to the Contracting Officer. Perform all investigations, testing, load tests, and correction of deficiencies approved by the Contracting Officer, except that if all concrete is found to be in compliance with the drawings and specifications, the cost of investigations, testing, and load tests will be at the expense of the Government.

2.1.7 Water-Cementitious Material Ratio

Maximum water-cementitious material ratio (w/c) for normal weight concrete shall be as shown on the Drawings.

2.1.8 Air Entrainment

Air entrain normal weight concrete as shown on the Drawings.

Attain specified air content at point of placement into the forms within plus or minus 1.5 percent. Determine air content for normal weight concrete in accordance with ASTM C231/C231M.

2.1.9 Slump

Slump of the concrete, as delivered to the point of placement into the forms, must be within the limits shown on the Drawings. Determine slump in accordance with ASTM C143/C143M.

When use of a plasticizing admixture conforming to ASTM C1017/C1017M or when a Type F or G high range water reducing admixture conforming to ASTM C494/C494M is permitted to increase the slump of concrete, concrete must have a slump of 2 to 4 inches before the admixture is added and a maximum slump of 8 inches at the point of delivery after the admixture is added.

2.1.10 Concrete Temperature

The temperature of the concrete as delivered must not exceed 90 degrees F. When the ambient temperature during placing is 40 degrees F or less, or is expected to be at any time within 6 hours after placing, the temperature of the concrete as delivered must be between 55 and 75 degrees F.

2.1.11 Size of Coarse Aggregate

Use the largest feasible nominal maximum size aggregate (NMSA), specified in PART 2 paragraph AGGREGATES, in each placement. However, do not exceed nominal maximum size of aggregate for any of the following: three-fourths of the minimum cover for reinforcing bars, three-fourths of the minimum clear spacing between reinforcing bars, one-fifth of the narrowest dimension between sides of forms, or one-third of the thickness of slabs or toppings.

2.2 CEMENTITIOUS MATERIALS

Cementitious Materials must be portland cement, or portland cement in combination with or ground granulated blast furnace slag conforming to appropriate specifications listed below. Restrict usage of cementitious materials in concrete that will have surfaces exposed in the completed structure so there is no change in color, source, or type of cementitious material.
2.2.1 Portland Cement

ASTM C150/C150M, Type I low alkali including false set requirements with a maximum 10 percent amount of tricalcium aluminate, and a maximum cement-alkali content of 0.80 percent Na2Oe (sodium oxide) equivalent.

2.2.2 Blended Cements

Conform blended cement to ASTM C595/C595M and ASTM C1157/C1157M, Type IP or IS, including the optional requirement for mortar expansion and consist of a mixture of ASTM C150/C150M Type I, or Type II cement and a complementary cementing material. The slag added to the Type IS blend must be ASTM C989/C989M ground granulated blast-furnace slag. The pozzolan added to the Type IP blend must be ASTM C618 Class F and must be interground with the cement clinker. Provide a manufacturer's statement that the amount of pozzolan in the finished cement will not vary more than plus or minus 5 mass percent of the finished cement from lot-to-lot or within a lot. Do not change the percentage and type of mineral admixture used in the blend from that submitted for the aggregate evaluation and mixture proportioning.

2.2.3 Fly Ash

Conform fly ash to ASTM C618, Class F, except that the maximum allowable loss on ignition cannot exceed 3 percent. If pozzolan is used, it must never be more than 15 percent by weight of the total cementitious material. Report the chemical analysis of the fly ash in accordance with ASTM C311/C311M. Evaluate and classify fly ash in accordance with ASTM D5759.

2.2.4 Raw or Calcined Natural Pozzolan

Natural pozzolan must be raw or calcined and conform to ASTM C618, Class N, including the optional requirements for uniformity and effectiveness in controlling Alkali-Silica reaction and must have an on ignition loss not exceeding 3 percent. Class N pozzolan for use in mitigating Alkali-Silica Reactivity must have a Calcium Oxide (CaO) content of less than 13 percent and total equivalent alkali content less than 3 percent.

2.2.5 Ultra Fine Fly Ash and Ultra Fine Pozzolan

Conform Ultra Fine Fly Ash (UFFA) and Ultra Fine Pozzolan (UFP) ASTM C618, Class F or N, and the following additional requirements:

a. The strength activity index at 28 days of age is at least 95 percent of the control specimens.

b. The average particle size does not exceed 6 microns.

c. The sum of SiO2 + Al2O3 + Fe2O3 is greater than 77 percent.

2.2.6 Ground Granulated Blast-Furnace (GGBF) Slag

ASTM C989/C989M, Grade 100. Slag content must be a maximum of 25 percent by weight of cementitious material. Submit test results in accordance with ASTM C989/C989M for GGBF slag. Submit test results performed within 6 months of submittal date.
2.2.7 Silica Fume

Conform silica fume to ASTM C1240. Conform available alkalis to the optimal limit given in Table 2 of ASTM C1240. Silica fume may be furnished as a dry, densified material or as a slurry. Proper mixing is essential to accomplish proper distribution of the silica fume and avoid agglomerated silica fume which can react with the alkali in the cement resulting in premature and extensive concrete damage. In accordance with paragraph Technical Service for Specialized Concrete in PART 1, provide the services of a manufacturer's technical representative experienced in mixing, proportioning, placement procedures, and curing of concrete containing silica fume. This representative must be present on the project prior to and during at least the first 4 days of concrete production and placement using silica fume. Use a High Range Water Reducer (HRWR) with silica fume.

2.3 AGGREGATES

Test and evaluate fine and coarse aggregates for alkali-aggregate reactivity in accordance with ASTM C1260. Evaluate the fine and coarse aggregates separately and in combination, which matches the proposed mix design proportioning. All results of the separate and combination testing must have a measured expansion less than 0.10 percent at 16 days after casting. Should the test data indicate an expansion of 0.10 percent or greater, reject the aggregate(s) or perform additional testing using ASTM C1260 and ASTM C1567.

2.3.1 Fine Aggregate

Conform to the quality and gradation requirements of ASTM C33/C33M.

2.3.2 Coarse Aggregate

2.4 CHEMICAL ADMIXTURES

When required or permitted, conform to the appropriate specification listed. Furnish admixtures in liquid form and of suitable concentration for easy, accurate control of dispensing.

2.4.1 Air-Entraining Admixture

ASTM C260/C260M and must consistently entrain the air content in the specified ranges under field conditions.

2.4.2 Accelerating Admixture

ASTM C494/C494M, Type C or E, except that calcium chloride or admixtures containing calcium chloride cannot be used.

2.4.3 Water-Reducing or Retarding Admixture

ASTM C494/C494M, Type A, B, or D, except that the 6-month and 1-year compressive strength tests are waived.

2.4.4 High-Range Water Reducer

ASTM C494/C494M, Type F or G, except that the 6-month and 1-year strength requirements are waived. Use the admixture only when approved in writing,
such approval being contingent upon particular mixture control as described in the Contractor's Quality Control Plan and upon performance of separate mixture design studies.

2.4.5 Expanding Admixture

Aluminum powder type expanding admixture conforming to ASTM C937.

2.4.6 Other Chemical Admixtures

Provide chemical admixtures for use in producing flowing concrete in compliance with ASTM C1017/C1017M, Type I or II. Use these admixtures only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor's Quality Control Plan and upon performance of separate mixture design studies.

2.5 WATER

Provide water complying with the requirements of ASTM C1602/C1602M.

Provide potable water for mixing, free of injurious amounts of oil, acid, salt, or alkali. Submit test report showing water complies with ASTM C1602/C1602M.

2.6 NONSHRINK GROUT

Provide nonshrink grout conforming to ASTM C1107/C1107M, and a commercial formulation suitable for the proposed application.

2.7 EMBEDDED ITEMS

Provide the size and type indicated or as needed for the application.

2.8 PERIMETER INSULATION

Polystyrene conforming to ASTM C578, Type II; polyurethane conforming to ASTM C591, Type II; or cellular glass conforming to ASTM C552, Type I or IV.

2.9 VAPOR BARRIER

Polyethylene sheeting, ASTM E1745 Class A, with a minimum thickness of 15 mils or ASTM E1993/E1993M bituminous membrane or other equivalent material having a vapor permeance rating not exceeding 0.01 perms as determined in accordance with ASTM E96/E96M.

2.10 JOINT MATERIALS

2.10.1 Joint Fillers and Sealers

Provide materials for expansion joint fillers in accordance with Section 03 15 00.00 10 CONCRETE ACCESSORIES. Provide materials for and sealing of joints conforming to the requirements of Section 07 92 00 JOINT SEALANTS.

2.10.2 Contraction Joints in Slabs

Provide materials for contraction joint inserts in accordance with Section 03 15 00.00 10 CONCRETE ACCESSORIES.
PART 3 EXECUTION

3.1 PREPARATION FOR PLACING

Before commencing concrete placement, perform the following: Clean surfaces to receive concrete, free from frost, ice, mud, and water. Place, clean, tie, and support reinforcing steel in accordance with Section 03 20 00.00 10 CONCRETE REINFORCEMENT. Transporting and conveying equipment is in-place, ready for use, clean, and free of hardened concrete and foreign material. Equipment for consolidating concrete is at the placing site and in proper working order. Equipment and material for curing and for protecting concrete from weather or mechanical damage is at the placing site, in proper working condition and in sufficient amount for the entire placement. When hot, windy conditions during concreting appear probable, equipment and material is at the placing site to provide windbreaks, shading, fogging, or other action to prevent plastic shrinkage cracking or other damaging drying of the concrete.

3.1.1 Foundations

3.1.1.1 Concrete on Earth Foundations

Earth (subgrade, base, or subbase courses) surfaces upon which concrete is to be placed is clean, damp, and free from debris, frost, ice, and standing or running water. Prior to placement of concrete, the foundation must be well drained, satisfactorily graded and uniformly compacted.

3.1.1.2 Excavated Surfaces in Lieu of Forms

Concrete for footings may be placed directly against the soil provided the earth has been carefully trimmed, is uniform and stable, and meets the compaction requirements of Section 31 00 00 EARTHWORK. Place the concrete without becoming contaminated by loose material, and outlined within the specified tolerances.

3.1.2 Previously Placed Concrete

Prepare concrete surfaces to which additional concrete is to be bonded for receiving the next horizontal lift by cleaning the construction joint surface with either air-water cutting, sandblasting, high-pressure water jet, or other approved method. Prepare concrete at the side of vertical construction joints as approved by the Contracting Officer. Do not use air-water cutting on formed surfaces or surfaces congested with reinforcing steel. Regardless of the method used, the resulting surfaces must be free from all laitance and inferior concrete so that clean surfaces of well bonded coarse aggregate are exposed and make up at least 10-percent of the surface area, distributed uniformly throughout the surface. Do not undercut the edges of the coarse aggregate. Keep the surface of horizontal construction joints continuously wet for the first 12 hours during the 24-hour period prior to placing fresh concrete. Wash the surface completely clean as the last operation prior to placing the next lift.

3.1.2.1 Air-Water Cutting

Perform air-water cutting of a fresh concrete surface at the proper time and only on horizontal construction joints. The air pressure used in the jet must be 100 psi, plus or minus 10 psi, and the water pressure must be just sufficient to bring the water into effective influence of the air pressure. When approved by the Contracting Officer, a surface retarder
complying with the requirements of ASTM C309 may be applied to the surface of the lift in order to prolong the period of time during which air-water cutting is effective. After cutting, wash and rinse the surface as long as there is any trace of cloudiness of the wash water. Where necessary to remove accumulated laitance, coatings, stains, debris, and other foreign material, use high-pressure waterjet or sandblasting as the last operation before placing the next lift.

3.1.2.2 High-Pressure Water Jet

Use a stream of water under a pressure of not less than 3,000 psi for cutting and cleaning. Delay its use until the concrete is sufficiently hard so that only the surface skin or mortar is removed and there is no undercutting of coarse-aggregate particles. If the waterjet is incapable of a satisfactory cleaning, clean the surface by sandblasting.

3.1.2.3 Waste Disposal

Dispose of waste water employed in cutting, washing, and rinsing of concrete surfaces in a manner that the waste water does not stain, discolor, or affect exposed surfaces of the structures, or damage the environment of the project area. The method of disposal is subject to approval.

3.1.2.4 Preparation of Previously Placed Concrete

Abrade concrete surfaces to which other concrete is to be bonded in an approved manner that exposes sound aggregate uniformly without damaging the concrete. Remove laitance and loose particles. Thoroughly wash surfaces, leaving them moist but without free water when concrete is placed.

3.1.3 Vapor Barrier

Provide vapor barrier beneath the interior on-grade concrete floor slabs installed in accordance with ASTM E1643. Use the greatest widths and lengths practicable to eliminate joints wherever possible. Lap joints a minimum of 12 inches. Remove torn, punctured, or damaged vapor barrier material and provide new vapor barrier prior to placing concrete. For minor repairs, patches may be made using laps of at least 12 inches. Seal lapped joints and patch edges with pressure-sensitive adhesive or tape not less than 2 inches wide and compatible with the membrane. Place vapor barrier directly on underlying subgrade, base course, or capillary water barrier, unless it consists of crushed material or large granular material which could puncture the vapor barrier. In this case, a thin layer of approximately 1/2 inch of fine graded material should be rolled or compacted over the fill before installation of the vapor barrier to reduce the possibility of puncture. Control concrete placement so as to prevent damage to the vapor barrier.

3.1.4 Perimeter Insulation

Install perimeter insulation at locations indicated. Use adhesive where insulation is applied to the interior surface of foundation walls and may be used for exterior application.

3.1.5 Embedded Items

Before placement of concrete, determine that all embedded items are firmly and securely fastened in place as indicated on the drawings, or required.
Conduit and other embedded items must be clean and free of oil and other foreign matter such as loose coatings or rust, paint, and scale. The embedding of wood in concrete is permitted only when specifically authorized or directed. Temporarily fill voids in sleeves, inserts, and anchor slots with readily removable materials to prevent the entry of concrete into voids. Do not Weld on embedded metals within 12 inches of the surface of the concrete. Do not tack weld on or to embedded items.

3.2 CONCRETE PRODUCTION, SMALL PROJECTS

Use batch-type equipment for producing concrete. Batch, mix and transport ready-mixed concrete in accordance with ASTM C94/C94M, except as otherwise specified. Use truck mixers, agitators, and nonagitating transporting units in compliance with NRMCA TMMB 100. Ready-mix plant equipment and facilities must be certified in accordance with NRMCA QC 3. Furnish approved batch tickets for each load of ready-mixed concrete. Produce site-mixed concrete in accordance with ACI 301, with plant conforming to NRMCA CPMB 100.

3.3 TRANSPORTING CONCRETE TO PROJECT SITE

Transport concrete to the placing site in truck mixers, agitators, nonagitating transporting equipment conforming to NRMCA TMMB 100 or by approved pumping equipment or conveyors.

3.4 PLACING CONCRETE

Discharge mixed concrete within 1.5 hours or before the mixer drum has revolved 300 revolutions, whichever comes first after the introduction of the mixing water to the cement and aggregates. When the concrete temperature exceeds 85 degrees F, reduce the time to 45 minutes. Place concrete within 15 minutes after it has been discharged from the transporting unit. Handle concrete from mixer or transporting unit to forms in a continuous manner until the approved unit of operation is completed. Provide adequate scaffolding, ramps and walkways so that personnel and equipment are not supported by in-place reinforcement. Placing will not be permitted when the sun, heat, wind, or limitations of facilities prevent proper consolidation, finishing and curing. Provide sufficient placing capacity so that concrete can be kept free of cold joints.

3.4.1 Depositing Concrete

Deposit concrete in accordance with ACI 301 Section 5 and ACI 304.2R.

3.4.2 Consolidation

Immediately after placing, consolidate each layer of concrete in accordance with ACI 301 Section 5 and ACI 309R.

3.4.3 Cold Weather Requirements

Perform cold weather concreting in accordance with ACI 306.1. Use special protection measures, approved by the Contracting Officer, if freezing temperatures are anticipated before the expiration of the specified curing period. The ambient temperature of the air where concrete is to be placed and the temperature of surfaces to receive concrete must be not less than 40 degrees F. The temperature of the concrete when placed must be not less than 50 degrees F nor more than 75 degrees F. Heat the mixing water or aggregates to regulate the concrete placing temperature.
entering the mixer must be free from ice, snow, or frozen lumps. Do not incorporate salt, chemicals or other materials in the concrete to prevent freezing. Upon written approval, an accelerating admixture conforming to ASTM C494/C494M, Type C or E may be used, provided it contains no calcium chloride. Do not use calcium chloride.

3.4.4 Hot Weather Requirements

When job-site conditions are present or anticipated that accelerate the rate of moisture loss or rate of cement hydration of freshly mixed concrete, including an ambient temperature of 80 degrees F or higher, and an evaporation rate that exceeds 0.2 lb/ft²/h, conform concrete work to all requirements of ACI 305.1.

3.4.5 Prevention of Plastic Shrinkage Cracking

During hot weather with low humidity, and particularly with appreciable wind, as well as interior placements when space heaters produce low humidity, be alert to the tendency for plastic shrinkage cracks to develop and institute measures to prevent this. Take particular care if plastic shrinkage cracking is potentially imminent and especially if it has developed during a previous placement. Conform with the requirement of ACI 305.1. In addition further protect the concrete placement by erecting shades and windbreaks and by applying fog sprays of water, sprinkling, ponding or wet covering. Fill plastic shrinkage cracks that occur by injection of epoxy resin as directed, after the concrete hardens. Never trowel over plastic shrinkage cracks or fill with slurry.

3.4.6 Placing Concrete in Congested Areas

Use special care to ensure complete filling of the forms, elimination of all voids, and complete consolidation of the concrete when placing concrete in areas congested with reinforcing bars, embedded items and other tight spacing. Use an appropriate concrete mixture, with the nominal maximum size of aggregate (NMSA) meeting the specified criteria when evaluated for the congested area. Use vibrators with heads of a size appropriate for the clearances available, and closely supervise the consolidation operation to ensure complete and thorough consolidation at all points. Where necessary, alternate splices of reinforcing bars to reduce congestion. Where two mats of closely spaced reinforcing are required, place the bars in each mat in matching alignment to reduce congestion. Reinforcing bars may be temporarily crowded to one side during concrete placement provided they are returned to exact required location before concrete placement and consolidation are completed.

3.5 JOINTS

Locate and construct joints as indicated or approved. Locate and construct joints not indicated to minimize the impact on the strength of the structure. Locate joints in walls and columns at the tops of footings or floor slabs, unless otherwise approved. Construct joints perpendicular to the main reinforcement. Continue and develop all reinforcement across joints; except that reinforcement or other fixed metal items must not be continuous through expansion joints, or through construction or contraction joints in slabs on grade. Reinforcement must be 2 inches clear from each joint. Except where otherwise indicated, construction joints between interior slabs on grade and vertical surfaces consist of preformed expansion joint filler extending for the full depth of the slab. The perimeters of the slabs must be free of fins, rough edges, spalling, or
other unsightly appearance. Form reservoir for sealant for construction and contraction joints in slabs to the dimensions indicated by removing snap-out joint-forming inserts, by sawing sawable inserts, or by sawing to widen the top portion of sawed joints. Clean joints to be sealed and seal as indicated and in accordance with Section 07 92 00 JOINT SEALANTS.

3.5.1 Construction Joints

For concrete other than slabs on grade, locate construction joints so that the unit of operation does not exceed twelve feet. Place concrete continuously so that each unit is monolithic in construction. Do not place fresh concrete against adjacent hardened concrete until it is at least 24 hours old. Locate construction joints as indicated or approved. Where concrete work is interrupted by weather, end of work shift or other similar type of delay, location and type of construction joint is subject to approval of the Contracting Officer. Unless otherwise indicated and except for slabs on grade, extend reinforcing steel through construction joints. Key or dowel construction joints in slabs on grade as indicated. Terminate other lifts at such levels to conform to structural requirements or architectural details. Where horizontal construction joints in walls are required, tack a strip of 1 inch square-edge lumber, beveled and oiled to facilitate removal, to the inside of the forms at the construction joint. Place concrete to a point 1 inch above the underside of the strip. Remove the strip 1 hour after the concrete has been placed, level off any irregularities in the joint line with a wood float, and remove all laitance. Prior to placing additional concrete, prepare horizontal construction joints as specified in paragraph PREVIOUSLY PLACED CONCRETE.

3.5.2 Contraction Joints in Slabs on Grade

Locate and detail contraction joints as indicated. Produce contraction joints by forming a weakened plane in the concrete slab using materials and procedures specified in Section 03 15 00.00 10 CONCRETE ACCESSORIES.

3.5.3 Expansion Joints

Conform installation of expansion joints and sealing of these joints to the requirements of Section 03 15 00.00 10 CONCRETE ACCESSORIES and Section 07 92 00 JOINT SEALANTS.

3.5.4 Dowels and Tie Bars

Install dowels and tie bars at the locations shown on the drawings and to the details shown, using materials and procedures specified in Section 03 20 00.00 10 CONCRETE REINFORCEMENT and herein. Install conventional smooth "paving" dowels in slabs using approved methods to hold the dowel in place during concreting within a maximum alignment tolerance of 1/8 inch in 12 inches. Install "structural" type deformed bar dowels, or tie bars, to meet the specified tolerances. Take care during placing adjacent to and around dowels and tie bars to ensure there is no displacement of the dowel or tie bar and that the concrete completely embeds the dowel or tie bar and is thoroughly consolidated.

3.6 REINFORCED EXTERIOR SLABS AND PIERS

3.6.1 Pavements

Construct reinforced slabs and piers at generator platform where shown on the drawings. After forms are set and underlying material prepared as
specified, place the concrete uniformly throughout the area and thoroughly vibrated. As soon as placed and vibrated, strike off the concrete and screed to the crown and cross section and to such elevation above grade that when consolidated and finished, the surface of the pavement is at the required elevation. Tamp the entire surface with the strike off, or consolidated with a vibrating screed, and continue this operation until the required compaction and reduction of internal and surface voids are accomplished. Take care to prevent bringing excess paste to the surface.

3.7 SETTING BASE PLATES AND BEARING PLATES

After being properly positioned, set column base plates and similar structural members, and machinery and equipment base plates to the proper line and elevation with damp-pack bedding mortar, except where nonshrink grout is indicated. The thickness of the mortar or grout must be approximately 1/24 the width of the plate, but not less than 1 1/2 inch. Concrete and metal surfaces in contact with grout must be clean and free of oil and grease, and concrete surfaces in contact with grout damp and free of laitance when grout is placed.

3.7.1 Damp-Pack Bedding Mortar

Damp-pack bedding mortar consists of 1 part cement and 2-1/2 parts fine aggregate having water content such that a mass of mortar tightly squeezed in the hand will retain its shape but will crumble when disturbed. Pack the space between the top of the concrete and bottom of the bearing plate or base with the bedding mortar by tamping or ramming with a bar or rod until it is completely filled.

3.7.2 Nonshrink Grout

Ready-mixed material requiring only the addition of water. Water content must be the minimum that will provide a flowable mixture and completely fill the space to be grouted without segregation, bleeding, or reduction of strength.

3.7.2.1 Mixing and Placing of Nonshrink Grout

Mix and place in conformance with the material manufacturer's instructions and as specified therein. Thoroughly dry-mix ingredients before adding water. After adding water, mix the batch for 3 minutes. Size batches to allow continuous placement of freshly mixed grout. Discard grout not used within 30 minutes after mixing. Fill the space between the top of the concrete or machinery-bearing surface and the plate solid with the grout. Use wood forms or other equally suitable material for completely retain the grout on all sides and on top, remove forms after the grout has set. Carefully work the placed grout by rodding or other means to eliminate voids; however, avoid overworking and breakdown of the initial set. Do not subject grout to retempering or to vibration from any source. Where clearances are unusually small, place under pressure with a grout pump. Maintain the temperature of the grout, and of surfaces receiving the grout, at 65 to 85 degrees F until after setting.

3.7.2.2 Treatment of Exposed Surfaces

For metal-oxidizing nonshrink grout, cut back exposed surfaces 1 inch and immediately cover with a parge coat of mortar consisting of 1 part portland cement and 2-1/2 parts fine aggregate by weight, with sufficient water to make a plastic mixture. Smooth finish the parge coat. For other mortars
or grouts, exposed surfaces must have a smooth-dense finish and be left untreated.

3.8 TESTING AND INSPECTION FOR CQC

Perform the inspection and tests described below and, based upon the results of these inspections and tests, take the action required. Submit certified copies of laboratory test reports, including mill tests and all other test data, for portland cement, blended cement, pozzolan, ground granulated blast furnace slag, silica fume, aggregate, admixtures, and curing compound proposed for use on this project.

a. When, in the opinion of the Contracting Officer, the concreting operation is out of control, cease concrete placement and correct the operation.

b. The laboratory performing the tests must be onsite and conform with ASTM C1077. Materials may be subjected to check testing by the Government from samples obtained at the manufacturer, at transfer points, or at the project site.

c. The Government will inspect the laboratory, equipment, and test procedures prior to start of concreting operations for conformance with ASTM C1077.

3.8.1 Grading and Corrective Action

3.8.1.1 Fine Aggregate

At least once during each shift when the concrete plant is operating, there must be one sieve analysis and fineness modulus determination in accordance with ASTM C136/C136M for the fine aggregate or for each fine aggregate if it is batched in more than one size or classification. Select the location at which samples are taken as the most advantageous for control. However, the Contractor is responsible for delivering fine aggregate to the mixer within specification limits. When the amount passing on any sieve is outside the specification limits, immediately resample and retest the fine aggregate. If there is another failure on any sieve, immediately report the failure to the Contracting Officer, stop concreting, and take immediate steps to correct the grading.

3.8.1.2 Coarse Aggregate

At least once during each shift in which the concrete plant is operating, there must be a sieve analysis in accordance with ASTM C136/C136M for each size of coarse aggregate. Select the location at which samples are taken as the most advantageous for control. However, the Contractor is responsible for delivering the aggregate to the mixer within specification limits. A test record of samples of aggregate taken at the same locations must show the results of the current test as well as the average results of the five most recent tests including the current test. Limits may be adopted for control coarser than the specification limits for samples taken other than as delivered to the mixer to allow for degradation during handling. When the amount passing any sieve is outside the specification limits, immediately resample and retest the coarse aggregate. If the second sample fails on any sieve, report that failure to the Contracting Officer. Where two consecutive averages of 5 tests are outside specification limits, the operation is be considered out of control and must be reported to the Contracting Officer. Stop concreting and take
immediate steps to correct the grading.

3.8.2 Quality of Aggregates

Thirty days prior to the start of concrete placement, perform all tests for aggregate quality required by ASTM C33/C33M. In addition, after the start of concrete placement, perform tests for aggregate quality at least every three months, and when the source of aggregate or aggregate quality changes. Take samples for testing after the start of concrete placement immediately prior to entering the concrete mixer.

3.8.3 Scales, Batching and Recording

Check the accuracy of the scales by test weights prior to start of concrete operations and at least once every three months. Also conduct such tests as directed whenever there are variations in properties of the fresh concrete that could result from batching errors. Once a week check the accuracy of each batching and recording device during a weighing operation by noting and recording the required weight, recorded weight, and the actual weight batched. At the same time, test and ensure that the devices for dispensing admixtures are operating properly and accurately. When either the weighing accuracy or batching accuracy does not comply with specification requirements, do not operate the plant until necessary adjustments or repairs have been made. Immediately correct discrepancies in recording accuracies.

3.8.4 Batch-Plant Control

Continuously control the measurement of concrete materials, including cementitious materials, each size of aggregate, water, and admixtures. Adjust the aggregate weights and amount of added water as necessary to compensate for free moisture in the aggregates. Adjust the amount of air-entraining agent to control air content within specified limits. Prepare a report indicating type and source of cement used, type and source of pozzolan or slag used, amount and source of admixtures used, aggregate source, the required aggregate and water weights per cubic yard amount of water as free moisture in each size of aggregate, and the batch aggregate and water weights per cubic yard for each class of concrete batched during each day's plant operation.

3.8.5 Concrete Mixture

3.8.5.1 Air Content Testing

Perform air content tests when test specimens are fabricated. In addition, make at least two tests for air content on randomly selected batches of each separate concrete mixture produced during each 8-hour period of concrete production. Perform additional tests when excessive variation in workability is reported by the placing foreman or Government inspector. Conduct tests in accordance with ASTM C231/C231M.

3.8.5.2 Air Content Corrective Action

Whenever points on the control chart for percent air reach either warning limit, immediately make an adjustment in the amount of air-entraining admixture batched. As soon as practical after each adjustment, make another test to verify the result of the adjustment. Whenever a point on the secondary control chart for range reaches the warning limit, recalibrate the admixture dispenser to ensure that it is operating.
accurately and with good reproducibility. Whenever a point on either control chart reaches an action limit line, the air content is considered out of control and the concreting operation immediately halted until the air content is under control. Make additional air content tests when concreting is restarted.

3.8.5.3 Slump Testing

In addition to slump tests which are made when test specimens are fabricated during concrete placement/discharge, make at least four slump tests on randomly selected batches in accordance with ASTM C143/C143M for each separate concrete mixture produced during each 8-hour or less period of concrete production each day. Also, make additional tests when excessive variation in workability is reported by the placing foreman or Government inspector.

3.8.5.4 Slump Corrective Action

Whenever points on the control charts for slump reach the upper warning limit, make an adjustment immediately in the batch weights of water and fine aggregate. The adjustments are to be made so that the total water content does not exceed that amount allowed by the maximum w/c ratio specified, based on aggregates which are in a saturated surface dry condition. When a single slump reaches the upper or lower action limit, deliver no further concrete to the placing site until proper adjustments have been made. Immediately after each adjustment, make another test to verify the correctness of the adjustment. Whenever two consecutive individual slump tests, made during a period when there was no adjustment of batch weights, produce a point on the control chart for range at or above the upper action limit, halt the concreting operation immediately, and take appropriate steps to bring the slump under control. Make additional slump tests as directed.

3.8.5.5 Temperature

Measure the temperature of the concrete when compressive strength specimens are fabricated in accordance with ASTM C1064/C1064M. Report the temperature along with the compressive strength data.

3.8.5.6 Strength Specimens

Perform on at least one set of test specimens, for compressive strength as appropriate, on each different concrete mixture placed during the day for each 500 cubic yards or portion thereof of that concrete mixture placed each day. Perform on additional sets of test specimens, as directed by the Contracting Officer, when the mixture proportions are changed or when low strengths have been detected. Develop a truly random (not haphazard) sampling plan for approval by the Contracting Officer prior to the start of construction. Show in the plan that sampling is done in a completely random and unbiased manner.

a. A set of test specimens for concrete with a 28-day specified strength in accordance with paragraph STRENGTH REQUIREMENTS in PART 2 consists of five specimens, two to be tested at 7 days, two at 28 days, and one cylinder held in reserve.

b. A strength test is the average of the strengths of at least two 6 inch by 12 inch cylinders or at least three 4 inch by 8 inch cylinders made for the same sample of concrete.
c. Mold and cure test specimens in accordance with ASTM C31/C31M, and test in accordance with ASTM C39/C39M for test cylinders. Immediately report results of all strength tests to the Contracting Officer.

d. Maintain quality control charts for individual strength "tests", ("test" as defined in paragraph STRENGTH REQUIREMENTS) moving average of last 3 "tests" for strength, and moving average for range for the last 3 "tests" for each mixture. Provide charts similar to those found in ACI 214R.

3.8.6 Inspection Before Placing

Inspect foundations, construction joints, forms, and embedded items in sufficient time prior to each concrete placement in order to certify to the Contracting Officer that they are ready to receive concrete. Report the results of each inspection in writing.

3.8.7 Placing

The placing foreman must supervise placing operations, determine that the correct quality of concrete or grout is placed in each location as specified and as directed by the Contracting Officer, and be responsible for measuring and recording concrete temperatures and ambient temperature hourly during placing operations, weather conditions, time of placement, volume placed, and method of placement. The placing foreman must not permit batching and placing to begin until it has been verified that an adequate number of vibrators in working order and with competent operators are available. Do not continue placing if any pile of concrete is inadequately consolidated. If any batch of concrete fails to meet the temperature requirements, take immediate steps to improve temperature controls.

3.8.8 Cold-Weather Protection

At least once each shift and once per day on non-work days, inspect all areas subject to cold-weather protection. Note any deficiencies, correct, and report.

3.8.9 Mixer Uniformity

3.8.9.1 Stationary Mixers

Prior to the start of concrete placing and once every 6 months when concrete is being placed, or once for every 75,000 cubic yards of concrete placed, whichever results in the shortest time interval, determine uniformity of concrete mixing in accordance with ASTM C94/C94M.

3.8.9.2 Truck Mixers

Prior to the start of concrete placing and at least once every 6 months when concrete is being placed, determine uniformity of concrete mixing in accordance with ASTM C94/C94M. Select the truck mixers randomly for testing. When satisfactory performance is found in one truck mixer, the performance of mixers of substantially the same design and condition of the blades may be regarded as satisfactory.
3.8.9.3 Mixer Uniformity Corrective Action

When a mixer fails to meet mixer uniformity requirements, either increase the mixing time, change the batching sequence, reduce the batch size, or adjust the mixer until compliance is achieved.

3.8.10 Reports

Report all results of tests or inspections conducted, informally as they are completed and in writing daily. Prepare a weekly report for the updating of control charts covering the entire period from the start of the construction season through the current week. During periods of cold-weather protection, prepare daily reports of pertinent temperatures. These requirements do not relieve the Contractor of the obligation to report certain failures immediately as required in preceding paragraphs. Confirm such reports of failures and the action taken in writing in the routine reports. The Contracting Officer has the right to examine all contractor quality control records.

3.9 REPAIR, REHABILITATION AND REMOVAL

Before the Government accepts the structure and final payment is made, inspect the structure for cracks, damage and substandard concrete placements that may adversely affect the service life of the structure. Submit a report documenting these defects, which includes recommendations for repair, removal and/or remediation to the Contracting Officer for approval before any corrective work is accomplished.

3.9.1 Crack Repair

Prior to final acceptance, document and repair all cracks in excess of 0.02 inches wide. Submit the proposed method and materials to repair the cracks to the Contracting Officer for approval. Address the amount of movement expected in the crack due to temperature changes and loading.

3.9.2 Repair of Weak Surfaces

Weak surfaces are defined as mortar-rich, rain-damaged, uncured, or containing exposed voids or deleterious materials. Diamond grind concrete surfaces with weak surfaces less than 1/4 inch thick to remove the weak surface. Remove and replace surfaces containing weak surfaces greater than 1/4 inch thick, or mitigate in a manner acceptable to the Contracting Officer.

3.9.3 Failure of Quality Assurance Test Results

Do not proceed with proposed mitigation efforts to restore the service life until approved by the Contracting Officer.

-- End of Section --
SECTION 05 12 00

STRUCTURAL STEEL

05/14

PART 1 GENERAL

1.1 SCOPE

The work of this Section includes the following work items:
- Steel tube/angle/plate assemblies for exterior window support frames
- Steel tubes and beams to support two panel folding partitions in the south west portion of the second floor
- Steel tubes at large louver opening at the south end of the building

1.2 RELATED WORK SPECIFIED ELSEWHERE

All other miscellaneous metal fabrications (for floor infills, exterior window support frames, etc.) are included under Section 05 50 13 MISCELLANEOUS METAL FABRICATIONS.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)

AISC 326 (2009) Detailing for Steel Construction

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel
AWS D1.8/D1.8M (2009) Structural Welding Code—Seismic Supplement
ASME INTERNATIONAL (ASME)

ASME B46.1 (2009) Surface Texture, Surface Roughness, Waviness and Lay

ASTM INTERNATIONAL (ASTM)

ASTM A500/A500M (2013) Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

ASTM F436 (2011) Hardened Steel Washers

ASTM F844 (2007a; R 2013) Washers, Steel, Plain (Flat), Unhardened for General Use

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC PA 1 (2016) Shop, Field, and Maintenance Coating of Metals
SSPC Paint 29 (2002; E 2004) Zinc Dust Sacrificial Primer, Performance-Based
SSPC SP 3 (1982; E 2004) Power Tool Cleaning
SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. DEPARTMENT OF DEFENSE (DOD)
UFC 3-301-01 (2013; with Change 1) Structural Engineering
UFC 3-310-04 (2013) Seismic Design for Buildings

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
 Fabrication Drawings Including Description of Connections; G
SD-03 Product Data
 Shop Primer
 Non-Shrink Grout
SD-07 Certificates
 Steel
 Bolts, Nuts, and Washers
 AISC Fabrication Plant Quality Certification
 AISC Erector Quality Certification
 Welding Procedures and Qualifications

1.5 AISC QUALITY CERTIFICATION

Work must be fabricated in an AISC Certified Fabrication Plant, Category Std. Submit AISC fabrication plant quality certification.

Work must be erected by an AISC Certified Erector, Category CSE. Submit AISC erector quality certification.
1.6 QUALITY ASSURANCE

1.6.1 Preconstruction Submittals

1.6.1.1 Erection Drawings

Submit for record purposes. Indicate the sequence of erection, temporary shoring and bracing. The erection drawings must conform to AISC 303. Erection drawings must be reviewed, stamped and sealed by a registered professional engineer.

1.6.2 Fabrication Drawing Requirements

Submit fabrication drawings for approval prior to fabrication. Prepare in accordance with AISC 326 and AISC 325. Fabrication drawings must not be reproductions of contract drawings. Sign and seal fabrication drawings by a registered professional engineer. Include complete information for the fabrication and erection of the structure's components, including the location, type, and size of bolts, welds, member sizes and lengths, connection details, blocks, copes, and cuts. Use AWS A2.4 standard welding symbols. Any deviations from the details shown on the contract drawings must be clearly highlighted on the fabrication drawings. Explain the reasons for any deviations from the contract drawings.

1.6.3 Certifications

1.6.3.1 Welding Procedures and Qualifications

Conform to all requirements specified in AWS D1.1/D1.1M and AWS D1.8/D1.8M.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide the structural steel system, including shop primer, complete and ready for use. Structural steel systems including design, materials, installation, workmanship, fabrication, assembly, erection, inspection, quality control, and testing must be provided in accordance with AISC 360, AISC 341, UFC 3-301-01 and UFC 3-310-04 except as modified in this contract.

2.2 STEEL

2.2.1 Structural Steel

Wide flange shapes, ASTM A992/A992M. Angles and Plates, ASTM A36/A36M.

2.2.2 Structural Steel Tubing

ASTM A500/A500M, Grade B.

2.3 BOLTS, NUTS, AND WASHERS

Submit the certified manufacturer's mill reports which clearly show the applicable ASTM mechanical and chemical requirements together with the actual test results for the supplied fasteners.
2.3.1 High-Strength Bolts

2.3.1.1 Bolts
ASTM A325, Type 1 ASTM A490, Type 1 or 2.

2.3.1.2 Nuts
ASTM A563, Grade and Style as specified in the applicable ASTM bolt standard.

2.3.1.3 Washers
ASTM F436, plain carbon steel.

2.3.2 Foundation Anchorage

2.3.2.1 Anchor Rods
ASTM F1554 Gr 36, Class 1A.

2.3.2.2 Anchor Nuts
ASTM A563, Grade A, hex style.

2.3.2.3 Anchor Washers
ASTM F844.

2.3.2.4 Anchor Plate Washers
ASTM A36/A36M.

2.4 STRUCTURAL STEEL ACCESSORIES

2.4.1 Welding Electrodes and Rods
AWS D1.1/D1.1M.

2.4.2 Non-Shrink Grout
ASTM C1107/C1107M, with no ASTM C827/C827M shrinkage. Grout must be nonmetallic.

2.4.3 Welded Shear Stud Connectors
ASTM A29/A29M, Type B. AWS D1.1/D1.1M.

2.5 FABRICATION

Fabrication must be in accordance with the applicable provisions of AISC 325. Fabrication and assembly must be done in the shop to the greatest extent possible. Punch, subpunch and ream, or drill bolt holes perpendicular to the surface of the member.

Compression joints depending on contact bearing must have a surface roughness not in excess of 500 micro inch as determined by ASME B46.1, and ends must be square within the tolerances for milled ends specified in ASTM A6/A6M.
Shop splices of members between field splices will be permitted only where indicated on the Contract Drawings. Splices not indicated require the approval of the Contracting Officer.

2.5.1 Markings

Prior to erection, members must be identified by a painted erection mark. Connecting parts assembled in the shop for reaming holes in field connections must be match marked with scratch and notch marks. Do not locate erection markings on areas to be welded. Do not locate match markings in areas that will decrease member strength or cause stress concentrations.

2.5.2 Shop Primer

SSPC Paint 20 or SSPC Paint 29, (zinc rich primer). Shop prime structural steel, except as modified herein, in accordance with SSPC PA 1. Do not prime steel surfaces embedded in concrete or surfaces within 0.5 inch of the toe of the welds prior to welding (except surfaces on which metal decking is to be welded). If flash rusting occurs, re-clean the surface prior to application of primer. Apply primer to a minimum dry film thickness of 2.0 mil.

Slip critical surfaces must be primed with a Class B coating in accordance with AISC 325. Submit test report for Class B coating.

Prior to assembly, prime surfaces which will be concealed or inaccessible after assembly. Do not apply primer in foggy or rainy weather; when the ambient temperature is below 45 degrees F or over 95 degrees F; or when the primer may be exposed to temperatures below 40 degrees F within 48 hours after application, unless approved otherwise by the Contracting Officer. Repair damaged primed surfaces with an additional coat of primer.

2.5.2.1 Cleaning

SSPC SP 6/NACE No.3, except steel exposed in spaces above ceilings, attic spaces, furred spaces, and chases that will be hidden to view in finished construction may be cleaned to SSPC SP 3 when recommended by the shop primer manufacturer. Maintain steel surfaces free from rust, dirt, oil, grease, and other contaminants through final assembly.

2.5.3 Surface Finishes

ASME B46.1 maximum surface roughness of 125 for pin, pinholes, and sliding bearings, unless indicated otherwise.

2.6 DRAINAGE HOLES

Adequate drainage holes must be drilled to eliminate water traps. Hole diameter must be 1/2 inch and location must be indicated on the detail drawings. Hole size and location must not affect the structural integrity.

PART 3 EXECUTION

3.1 ERECTION

a. Erection of structural steel, except as indicated in item b. below, must be in accordance with the applicable provisions of AISC 325.
b. For low-rise structural steel buildings (60 feet tall or less and a maximum of 2 stories), the structure must be erected in accordance with AISC DESIGN GUIDE 10.

After final positioning of steel members, provide full bearing under base plates and bearing plates using nonshrink grout. Place nonshrink grout in accordance with the manufacturer's instructions.

3.1.1 STORAGE

Material must be stored out of contact with the ground in such manner and location as will minimize deterioration.

3.2 CONNECTIONS

Except as modified in this section, connections not detailed must be designed in accordance with AISC 360. Build connections into existing work. Do not tighten anchor bolts set in concrete with impact torque wrenches. Holes must not be cut or enlarged by burning. Bolts, nuts, and washers must be clean of dirt and rust, and lubricated immediately prior to installation.

3.2.1 High-Strength Bolts

Provide direct tension indicator washers in all ASTM A325 and ASTM A490 bolted connections. Bolts must be installed in connection holes and initially brought to a snug tight fit. After the initial tightening procedure, bolts must then be fully tensioned, progressing from the most rigid part of a connection to the free edges.

3.3 GAS CUTTING

Use of gas-cutting torch in the field for correcting fabrication errors will not be permitted on any major member in the structural framing. Use of a gas cutting torch will be permitted on minor members not under stress only after approval has been obtained from the Contracting Officer.

3.4 WELDING

Welding must be in accordance with AWS D1.1/D1.1M. Provide AWS D1.1/D1.1M qualified welders, welding operators, and tackers.

Develop and submit the Welding Procedure Specifications (WPS) for all welding, including welding done using prequalified procedures. Prequalified procedures may be submitted for information only; however, procedures that are not prequalified must be submitted for approval.

3.4.1 Removal of Temporary Welds, Run-Off Plates, and Backing Strips

Removal is not required.

3.5 SHOP PRIMER REPAIR

Repair shop primer in accordance with the paint manufacturer's recommendation for surfaces damaged by handling, transporting, cutting, welding, or bolting.
3.5.1 Field Priming

Steel exposed to the weather, or located in building areas without HVAC for control of relative humidity must be field primed. After erection, the field bolt heads and nuts, field welds, and any abrasions in the shop coat must be cleaned and primed with paint of the same quality as that used for the shop coat.

3.6 FIELD QUALITY CONTROL

Perform field tests, and provide labor, equipment, and incidentals required for testing. The Contracting Officer must be notified in writing of defective welds, bolts, nuts, and washers within 7 working days of the date of the inspection.

3.6.1 Welds

3.6.1.1 Visual Inspection

AWS D1.1/D1.1M. Furnish the services of AWS-certified welding inspectors for fabrication and erection inspection and testing and verification inspections.

3.6.2 High-Strength Bolts

3.6.2.1 Testing Bolt, Nut, and Washer Assemblies

Test a minimum of 3 bolt, nut, and washer assemblies from each mill certificate batch in a tension measuring device at the job site prior to the beginning of bolting start-up. Demonstrate that the bolts and nuts, when used together, can develop tension not less than the provisions specified in AISC 360, depending on bolt size and grade. The bolt tension must be developed by tightening the nut. A representative of the manufacturer or supplier must be present to ensure that the fasteners are properly used, and to demonstrate that the fastener assemblies supplied satisfy the specified requirements. Submit bolt testing reports.

3.6.2.2 Inspection

Inspection procedures must be in accordance with AISC 360. Confirm and report to the Contracting Officer that the materials meet the project specification and that they are properly stored. Confirm that the faying surfaces have been properly prepared before the connections are assembled. Observe the specified job site testing and calibration, and confirm that the procedure to be used provides the required tension. Monitor the work to ensure the testing procedures are routinely followed on joints that are specified to be fully tensioned.

Inspect calibration of torque wrenches for high-strength bolts.

3.6.2.3 Testing

The Government has the option to perform nondestructive tests on 5 percent of the installed bolts to verify compliance with pre-load bolt tension requirements. Provide the required access for the Government to perform the tests. The nondestructive testing will be done in-place using an ultrasonic measuring device or any other device capable of determining in-place pre-load bolt tension. The test locations must be selected by the Contracting Officer. If more than 10 percent of the bolts tested contain
defects identified by testing, then all bolts used from the batch from which the tested bolts were taken, must be tested at the Contractor's expense. Retest new bolts after installation at the Contractor's expense.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

STEEL DECK INSTITUTE (SDI)

ANSI/SDI C (2011; Int 1 2012; Errata 1 2012) Standard for Composite Steel Floor Deck - Slabs

ANSI/SDI QA/QC (2011) Standard for Quality Control and Quality Assurance for Installation of Steel Deck

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1926 Safety and Health Regulations for Construction
1.2 QUALITY ASSURANCE

1.2.1 Qualifications for Welding Work

Submit qualified Welder Qualifications in accordance with AWS D1.3/D1.3M for sheet steel and AWS D1.1/D1.1M for stud welding, or under an equivalent approved qualification test. Perform tests on test pieces in positions and with clearances equivalent to those actually encountered. Test specimens shall be made in the presence of Contracting Officer and shall be tested by an approved testing laboratory at the Contractor's expense. If a test weld fails to meet requirements, perform an immediate retest of two test welds until each test weld passes. Failure in the immediate retest will require the welder be retested after further practice or training, performing a complete set of test welds.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver deck units to the site in a dry and undamaged condition. Store and handle steel deck in a manner to protect it from corrosion, deformation, and other types of damage. Do not use decking for storage or as working platform until units have been fastened into position. Exercise care not to damage material or overload decking during construction. The maximum uniform distributed storage load must not exceed the design live load. Stack decking on platforms or pallets and cover with weathertight ventilated covering. Elevate one end during storage to provide drainage. Maintain deck finish at all times to prevent formation of rust. Repair deck finish using touch-up paint. Replace damaged material.

PART 2 PRODUCTS

2.1 DECK UNITS

Submit manufacturer's design calculations, or applicable published literature for the structural properties of the proposed deck units.

Recycled content of steel products: provide products with an average recycled content of steel products so postconsumer recycled content plus one half of preconsumer recycled content not less than 25 percent.

2.1.1 Composite Deck

Steel design thickness shall be as shown on the Drawings. Zinc coat in conformance with ASTM A653/A653M, G90 coating class.

2.1.2 Length of Deck Units

Provide deck units of sufficient length to fill in the floor openings as shown on the Drawings.

2.2 ACCESSORIES

Provide accessories of same material as deck, unless specified otherwise. Provide manufacturer's standard type accessories, as specified.
2.2.1 Adjusting Plates

Provide adjusting plates, or segments of deck units, of same thickness and configuration as deck units in locations too narrow to accommodate full size units. Provide factory cut plates of predetermined size where possible.

2.2.2 Mechanical Fasteners

Provide mechanical fasteners, such as powder actuated fasteners, pneumatically driven fasteners or self-drilling screws, for anchoring the deck to structural supports and adjoining units as indicated.

2.2.3 Miscellaneous Accessories

Furnish the manufacturer's standard accessories to complete the deck installation. Furnish metal accessories of the same material as the deck and with the minimum design thickness as follows: saddles, 0.0474 inch welding washers, 0.0598 inch other metal accessories, 0.0358 inch unless otherwise indicated.

PART 3 EXECUTION

3.1 EXAMINATION

Prior to installation of decking units and accessories, examine worksite to verify that as-built structure will permit installation of decking system without modification.

3.2 INSTALLATION

Install steel deck units in accordance with 29 CFR 1926, Subpart R - Steel Erection, ANSI/SDI QA/QC, ANSI/SDI C and approved shop drawings. Place units on structural supports, properly adjusted, leveled, and aligned at right angles to supports before permanently securing in place. Damaged deck and accessories including material which is permanently stained or contaminated, deformed, or with burned holes shall not be installed. Report inaccuracies in alignment or leveling to the Contracting Officer and make necessary corrections before permanently anchoring deck units. Locate deck ends over supports only. Do not use unanchored deck units as a work or storage platform. Do not fill unanchored deck with concrete. Permanently anchor units placed by the end of each working day. Do not support suspended ceilings, light fixtures, ducts, utilities, or other loads by steel deck unless indicated. Distribute loads by appropriate means to prevent damage.

3.2.1 Attachment

Immediately after placement and alignment, and after correcting inaccuracies, permanently fasten steel deck units to structural supports by welding with normal 5/8 inch diameter puddle welds, fastened with screws as indicated on the design drawings and in accordance with manufacturer's recommended procedure and ANSI/SDI C. Clamp or weight deck units to provide firm contact between deck units and structural supports while performing welding or fastening. Anchoring the deck to structural supports with powder-actuated fasteners or pneumatically driven fasteners is prohibited.
3.2.1.1 Welding

Perform welding in accordance with AWS D1.3/D1.3M using methods and electrodes recommended by the manufacturers of the base metal alloys being used. Ensure only operators previously qualified by tests prescribed in AWS D1.3/D1.3M make welds. Immediately recertify, or replace qualified welders, that are producing unsatisfactory welding. Conform to the recommendations of the Steel Deck Institute and the steel deck manufacturer for location, size, and spacing of fastening. Do use welding washers at the connections of the deck to supports. Do not use welding washers at sidelaps. Holes and similar defects will not be acceptable. Attach all partial or segments of deck units to structural supports in accordance with Section 2.5 of SDI DDMO3. Immediately clean welds by chipping and wire brushing. Heavily coat welds, cut edges and damaged portions of coated finish with zinc-dust paint conforming to ASTM A780/A780M.

3.2.1.2 Mechanical Fastening

Anchor deck to structural supports and adjoining units with mechanical fasteners. Drive screws to properly clamp desk to supporting steel.

3.2.1.3 Sidelap Fastening

Lock sidelaps between adjacent floor deck units together by welding or screws as indicated.

3.2.2 Deck Damage

SDI MOC2, for repair of deck damage.

3.2.3 Touch-Up Paint

3.2.3.1 Floor Deck

For floor decking installation, wire brush, clean, and touchup paint the scarred areas on the top and bottom surfaces of the metal floor decking and on the surface of supporting steel members. Include welds, weld scars, bruises, and rust spots for scarred areas. Touched up the galvanized surfaces with galvanizing repair paint.

3.2.4 Accessory Installation

3.2.4.1 Adjusting Plates

Provide in locations too narrow to accommodate full-size deck units and install as shown on shop drawings.

3.2.5 Concrete Work

Prior to placement of concrete, inspect installed decking to ensure that there has been no permanent deflection or other damage to decking. Replace decking which has been damaged or permanently deflected as approved by the Contracting Officer. Place concrete on metal deck in accordance with Construction Practice of ANSI/SDI C or ANSI/SDI NC.
3.3 FIELD QUALITY CONTROL

3.3.1 Headed Stud Inspection

In addition to visual inspection, test and inspect shop-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:

a. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.

b. Conduct tests according to requirements in AWS D1.1/D1.1M on additional shear connectors if weld fracture occurs on shear connectors already tested.

3.3.2 Deck Weld Inspection

Visual inspect welds in accordance with AWS D1.3/D1.3M.

-- End of Section --
SECTION 05 40 00
COLD-FORMED METAL FRAMING
05/15

PART 1 GENERAL

1.1 SCOPE

The Section includes cold-formed metal framing at exterior wall infills as shown on the Drawings.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016) Building Code Requirements for Structural Concrete and Commentary

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI S100 (2012) North American Specification for the Design of Cold-Formed Steel Structural Members

AISI S110 (2007; Suppl 1; Reaffirmed 2012) Standard for Seismic Design of Cold-Formed Steel Structural Systems - Special Bolted Moment Frames

AISI S200 (2007) North American Standard for Cold-Formed Steel Framing - General Provision

AISI S201 (2007) North American Standard for Cold-Formed Steel Framing - Product Data

AISI S202 (2011) Code of Standard Practice for Cold-formed Steel Structural Framing

AISI S211 (2007) North American Standard for Cold-Formed Steel Framing - Wall Stud Design

AISI S212 (2007) North American Standard for Cold-Formed Steel Framing - Header Design

AISI S213 (2007; Suppl 1 2009) North American Standard for Cold-Formed Steel Framing - Lateral Design
ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C1007 (2011a) Standard Specification for Installation of Load Bearing (Transverse and Axial) Steel Studs and Related Accessories

ASTM C1513 (2013) Standard Specification for Steel Tapping Screws for Cold-Formed Steel Framing Connections

ASTM C955 (2015; E2015) Load-Bearing (Transverse and Axial) Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Application of Gypsum Panel Products and Metal Plaster Bases

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data
Steel Studs, Tracks, Bracing, Bridging and Accessories; G

1.4 DELIVERY, STORAGE, AND HANDLING

Steel framing and related accessories shall be stored and handled in accordance with the AISI S202, "Code of Standard Practice for Cold-Formed Steel Structural Framing".

1.5 COLD-FORMED METAL FRAMING

Include top and bottom tracks, bracing, fastenings, and other accessories necessary for complete installation. Framing members shall have the structural properties indicated. Where physical structural properties are not indicated, they shall be as necessary to withstand all imposed loads. Design framing in accordance with AISI S100. Light gauge interior metal framing, furring, and ceiling suspension systems are specified in Section 09 22 00 SUPPORTS FOR PLASTER AND GYPSUM BOARD. Metal suspension systems for acoustical ceilings are specified in Section 09 51 00 ACOUSTICAL CEILINGS.

Submit mill certificates or test reports from independent testing agency, qualified in accordance with ASTM E329, showing that the steel sheet used in the manufacture of each cold-formed component complies with the minimum yield strengths and uncoated steel thickness specified. Test reports shall be based on the results of three coupon tests in accordance with ASTM A370.

1.6 MAXIMUM DEFLECTION

Deflections of structural members shall not exceed the more restrictive of the limitations of ICC IBC and UFC 3-301-01.

1.7 QUALITY ASSURANCE

b. Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, qualified according to ASTM E329 for testing indicated.

c. Product Tests: Mill certificates or data from a qualified independent testing agency indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.

e. Fire-Test-Response Characteristics: Where indicated, provide cold-formed metal framing identical to that of assemblies tested for fire resistance per ASTM E119 by, and displaying a classification label from, a testing and inspecting agency acceptable to authorities having jurisdiction.

f. AISI Specifications and Standards: Comply with:

 (1) AISI S100, "North American Specification for the Design of Cold-Formed Steel Structural Members".

 (2) AISI S110, "Standard for Seismic Design of Cold-Formed Steel Structural Systems - Special Bolted Moment Frames".

 (3) AISI S200, "North American Standard for Cold-Formed Steel Framing - General Provision".

 (4) AISI S201, "North American Standard for Cold-Formed Steel Framing - Product Data".

 (5) AISI S202, "Code of Standard Practice for Cold-Formed Steel Structural Framing".

 (6) AISI S211, "North American Standard for Cold-Formed Steel Framing - Wall Stud Design".

 (7) AISI S212, "North American Standard for Cold-Formed Steel Framing - Header Design".

 (8) AISI S213, "North American Standard for Cold-Formed Steel Framing - Lateral Design".

1.7.1 Drawing Requirements

Submit framing components to show sizes, thicknesses, layout, material designations, methods of installation, and accessories including the following:

a. Cross sections, plans, and/or elevations showing component types and locations for each framing application; including shop coatings and material thicknesses for each framing component.

b. Connection details showing fastener type, quantity, location, and other information to assure proper installation.

c. Drawings depicting panel configuration, dimensions, components, locations, and construction sequence if the Contractor elects to install prefabricated/prefinished frames.
PART 2 PRODUCTS

2.1 STEEL STUDS, TRACKS, BRACING, BRIDGING AND ACCESSORIES

Framing components shall comply with ASTM C955 and the following.

a. Recycled Content of Steel Products: Provide products with an average recycled content of steel products so postconsumer recycled content plus one half of preconsumer recycled content not less than 25 percent.

b. Steel Sheet: ASTM A1003/A1003M, Structural Grade, Type H, metallic coated, of grade and coating weight as follows:
 (1) Grade: ST33H (ST230H) ST50H (ST340H).
 (2) Coating: G60 (Z180).

c. Steel Studs: Manufacturer's standard C-shaped steel studs, of web depths indicated, punched, with stiffened flanges, and as follows:
 (1) Minimum Base-Metal Thickness: 0.0428 inch.
 (2) Flange Width: 1-5/8 inches.

d. Steel Track: Manufacturer's standard U-shaped steel track, of web depths indicated, unpunched, with straight flanges, and as follows:
 (1) Minimum Base-Metal Thickness: 0.0428 inch.
 (2) Flange Width: 1-1/4 inches.

2.1.1 Studs of 54 mils (0.054 Inch) and Heavier

2.1.2 Studs of 43 mils (0.043 Inch) and Lighter
Studs of 43 mils (0.043 Inch) and Lighter, Track, and Accessories (All thicknesses): Galvanized steel, ASTM A653/A653M and ASTM A1003/A1003M, SS, Grade 33 33,000 psi G60.

2.1.3 Sizes, Thickness, Section Modulus, and Other Structural Properties
Size and thickness as indicated.

2.2 MARKINGS

Studs and track shall have product markings stamped on the web of the section. The markings shall be repeated throughout the length of the member at a maximum spacing of 4 feet on center and shall be legible and easily read. The product marking shall include the following:

a. An ICC number.

b. Manufacturer's identification.

c. Minimum delivered uncoated steel thickness.

d. Protective coating designator.
2.3 CONNECTIONS

2.3.1 Steel-To-Concrete Connections

a. Post-Installed Concrete Anchors: Adhesive or expansion anchors fabricated from corrosion-resistant materials with allowable load capacities in accordance with ICC-ES AC193 and ACI 318 greater than or equal to the design load as determined by testing per ASTM E488/E488M conducted by a qualified testing agency.

b. Power-Actuated Fasteners: Fabricated from corrosion-resistant materials with allowable load capacities in accordance with ICC-ES AC70 greater than or equal to the design load as determined by testing per ASTM E1190 conducted by a qualified testing agency.

2.3.2 Steel-To-Steel Connections

a. Screws: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping steel screws of the type and size indicated. Provide low-profile head beneath sheathing and manufacturer's standard elsewhere. Electroplated to a minimum of 5 micron zinc coating per ASTM F1941 or hot-dipped galvanized per ASTM A123/A123M or ASTM A153/A153M.

b. Bolts: ASTM A307 coated by hot-dip process per ASTM F2329 or zinc-coated by mechanical-deposition process per ASTM B695, Class 55.

2.4 PLASTIC GROMMETS

Supply plastic grommets for stud webs as recommended by stud manufacturer, to protect electrical wires and plumbing piping. Prevent metal-to-metal contact between wiring/piping and studs.

2.5 SEALER GASKET

Closed-cell neoprene foam, 1/4-inch thick, selected from manufacturer's standard widths to match width of bottom track on concrete slab or foundation.

PART 3 EXECUTION

3.1 FASTENING

Fasten framing members together by welding or by using self-drilling, self-tapping screws.

3.1.1 Screws

Screws shall be of the self-drilling self-tapping type, size, and location as indicated. Screw penetration through joined materials shall not be less than three exposed threads. Minimum spacings and edge distances for screws shall be as specified in AISI S100. Screws covered by sheathing materials shall have low profile heads.
3.1.2 Anchors

Anchors shall be of the type, size, and location as indicated.

3.1.3 Powder-Actuated Fasteners

Powder-actuated fasteners shall be of the type, size, and location as indicated.

3.2 INSTALLATION

Install cold-formed framing in accordance with ASTM C1007 and AISI S200.

Install cold-formed steel framing according to AISI S202 and to manufacturer's written instructions unless more stringent requirements are indicated.

3.2.1 Tracks

Provide accurately aligned runners at top and bottom of studs. Install sealer gasket under bottom of track on concrete slab or foundation. Anchor tracks as indicated in design calculations. Butt weld joints in tracks or splice with stud inserts. Fasteners shall be at least 3 inches from the edge of concrete slabs.

3.2.2 Studs

Cut studs square and set with firm bearing against webs of top and bottom tracks. Position studs vertically in tracks and space as indicated in design. Do not splice studs. Provide at least two studs at jambs of doors and other openings 2 feet wide or larger. Provide jack studs over openings, as necessary, to maintain indicated stud spacing. Provide tripled studs at corners, positioned to receive interior and exterior finishes. Fasten studs to top and bottom tracks by welding or screwing both flanges to the tracks. Framed wall openings shall include headers and supporting components as shown on the drawings. Headers shall be installed in all openings that are larger than the stud spacing in a wall. In curtain wall construction, provide for vertical movement where studs connect to the structural frame. Provide horizontal bracing in accordance with AISI S100. Bracing shall be not less than the following:

<table>
<thead>
<tr>
<th>LOAD</th>
<th>HEIGHT</th>
<th>BRACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind load only</td>
<td>Up to 10 feet</td>
<td>One row at mid-height</td>
</tr>
<tr>
<td></td>
<td>Over 10 feet</td>
<td>Rows 5'-0" o.c. maximum</td>
</tr>
<tr>
<td>Axial load</td>
<td>Up to 10 feet</td>
<td>Two rows at 1/3 points</td>
</tr>
<tr>
<td></td>
<td>Over 10 feet</td>
<td>Rows 3'-4" o.c. maximum</td>
</tr>
</tbody>
</table>

3.2.3 Erection Tolerances

a. Framing members which will be covered by finishes such as wallboard,
plaster, or ceramic tile set in a mortar setting bed, shall be within the following limits:

(1) Layout of walls and partitions: 1/4 inch from intended position;

(2) Plates and runners: 1/4 inch in 8 feet from a straight line;

(3) Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and

(4) Face of framing members: 1/4 inch in 8 feet from a true plane.

b. Framing members which will be covered by ceramic tile set in dry-set mortar, latex-portland cement mortar, or organic adhesive shall be within the following limits:

(1) Layout of walls and partitions: 1/4 inch from intended position;

(2) Plates and runners: 1/8 inch in 8 feet from a straight line;

(3) Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and

(4) Face of framing members: 1/8 inch in 8 feet from a true plane.

-- End of Section --
PART 1 GENERAL

1.1 SCOPE

The work of this Section includes the following work items:
- Steel angles for floor infills
- Steel pipe bollards
- Expansion joint covers
- Exterior ramp/landing assembly at Server Rooms 163/164 exterior doors

1.2 RELATED WORK SPECIFIED ELSEWHERE

All other miscellaneous metal fabrications (for panel folding partition supports and exterior wall, window and louver supports, etc.) are included under Section 05 12 00 STRUCTURAL STEEL.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016)
Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

ASTM A500/A500M (2013) Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

MASTER PAINTERS INSTITUTE (MPI)

MPI 79 (Oct 2009) Alkyd Anti-Corrosive Metal Primer

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

1.4 QUALIFICATION OF WELDERS

Qualify welders in accordance with AWS D1.1/D1.1M. Use procedures, materials, and equipment of the type required for the work.

1.5 DELIVERY, STORAGE, AND PROTECTION

Protect from corrosion, deformation, and other types of damage. Store items in an enclosed area free from contact with soil and weather. Remove and replace damaged items with new items.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Structural Carbon Steel

ASTM A36/A36M.

2.1.2 Structural Tubing

ASTM A500/A500M.

2.1.3 Steel Pipe

ASTM A53/A53M, Type E or S, Grade B.

2.1.4 Fittings for Steel Pipe

Standard malleable iron fittings ASTM A47/A47M.
2.2 FABRICATION FINISHES

2.2.1 Galvanizing

Hot-dip galvanize items specified to be zinc-coated, after fabrication where practicable. Galvanizing: ASTM A123/A123M, ASTM A153/A153M, ASTM A653/A653M or ASTM A924/A924M, G90, as applicable.

2.2.2 Galvanize

Anchor bolts, grating fasteners, washers, and parts or devices necessary for proper installation, unless indicated otherwise.

2.2.3 Repair of Zinc-Coated Surfaces

Repair damaged surfaces with galvanizing repair method and paint conforming to ASTM A780/A780M or by application of stick or thick paste material specifically designed for repair of galvanizing, as approved by Contracting Officer. Clean areas to be repaired and remove slag from welds. Heat surfaces to which stick or paste material is applied, with a torch to a temperature sufficient to melt the metallics in stick or paste; spread molten material uniformly over surfaces to be coated and wipe off excess material.

2.2.4 Shop Cleaning and Painting

2.2.4.1 Surface Preparation

Blast clean surfaces in accordance with SSPC SP 6/NACE No.3. Surfaces that will be exposed in spaces above ceiling or in attic spaces, crawl spaces, furred spaces, and chases may be cleaned in accordance with SSPC SP 3 in lieu of being blast cleaned. Wash cleaned surfaces which become contaminated with rust, dirt, oil, grease, or other contaminants with solvents until thoroughly clean. Wash cleaned surfaces which become contaminated with rust, dirt, oil, grease, or other contaminants with solvents until thoroughly clean. Wash cleaned surfaces which become contaminated with rust, dirt, oil, grease, or other contaminants with solvents until thoroughly clean. Clean areas to be repaired and remove slag from welds. Heat surfaces to which stick or paste material is applied, with a torch to a temperature sufficient to melt the metallics in stick or paste; spread molten material uniformly over surfaces to be coated and wipe off excess material.

2.2.4.2 Pretreatment, Priming and Painting

Apply pretreatment, primer, and paint in accordance with manufacturer's printed instructions.

2.2.5 Nonferrous Metal Surfaces

Protect by plating, anodic, or organic coatings.

2.3 INTERIOR EXPANSION JOINT COVERS

Provide expansion joint covers constructed of extruded aluminum with anodized satin aluminum finish for walls and ceilings. Furnish plates, backup angles, expansion filler strip and anchors as indicated.

2.4 BOLLARDS

Provide 6 inch galvanized standard weight steel pipe as specified in ASTM A53/A53M. Anchor posts in concrete as indicated and fill solidly with concrete with minimum compressive strength of 2500 psi.
2.5 MISCELLANEOUS PLATES AND SHAPES

Provide for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings and frames. Provide lintels fabricated from structural steel shapes over openings in masonry walls and partitions as indicated and as required to support wall loads over openings. Provide with connections and fasteners. Construct to have at least 8 inches bearing on masonry at each end.

Provide angles and plates, ASTM A36/A36M, for embedment as indicated. Galvanize embedded items exposed to the elements according to ASTM A123/A123M.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Install items at locations indicated, according to manufacturer's instructions. Verify all measurements and take all field measurements necessary before fabrication. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and harmonize with the material to which fastenings are applied. Include materials and parts necessary to complete each item, even though such work is not definitely shown or specified. Poor matching of holes for fasteners shall be cause for rejection. Conceal fastenings where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Form joints exposed to the weather shall be formed to exclude water. Items listed below require additional procedures.

3.2 WORKMANSHIP

Provide miscellaneous metalwork that is well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Provide continuous welding along the entire area of contact except where tack welding is permitted. Do not tack weld exposed connections of work in place and ground smooth. Provide a smooth finish on exposed surfaces of work in place and unless otherwise approved, flush exposed riveting. Mill joints where tight fits are required. Corner joints shall be coped or mitered, well formed, and in true alignment. Accurately set work to established lines and elevations and securely fastened in place. Install in accordance with manufacturer's installation instructions and approved drawings, cuts, and details.

3.3 ANCHORAGE, FASTENINGS, AND CONNECTIONS

Provide anchorage where necessary for fastening miscellaneous metal items securely in place. Include for anchorage not otherwise specified or indicated slotted inserts, expansion shields, and powder-driven fasteners, when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; through bolts, lag bolts, and screws for wood. Do not use wood plugs in any material. Provide non-ferrous attachments for non-ferrous metal. Make exposed fastenings of compatible materials, generally matching in color and finish, to which fastenings are applied. Conceal fastenings where practicable.

3.4 BUILT-IN WORK

Form for anchorage metal work built-in with concrete or masonry, or provide with suitable anchoring devices as indicated or as required. Furnish metal
work in ample time for securing in place as the work progresses.

3.5 WELDING

Perform welding, welding inspection, and corrective welding, in accordance with AWS D1.1/D1.1M. Use continuous welds on all exposed connections. Grind visible welds smooth in the finished installation.

3.6 FINISHES

3.6.1 Dissimilar Materials

Where dissimilar metals are in contact, protect surfaces with a coat conforming to MPI 79 to prevent galvanic or corrosive action.

3.6.2 Field Preparation

Remove rust preventive coating just prior to field erection, using a remover approved by the rust preventive manufacturer. Surfaces, when assembled, shall be free of rust, grease, dirt and other foreign matter.

3.6.3 Environmental Conditions

Do not clean or paint surface when damp or exposed to foggy or rainy weather, when metallic surface temperature is less than 5 degrees F above the dew point of the surrounding air, or when surface temperature is below 45 degrees F or over 95 degrees F, unless approved by the Contracting Officer.

3.7 ACCESS PANELS

Install a removable access panel not less than 12 by 12 inches directly below each valve, flow indicator, damper, or air splitter that is located above the ceiling, other than an acoustical ceiling, and that would otherwise not be accessible.

3.8 INSTALLATION OF BOLLARDS

Set pipe guards vertically in concrete piers. Construct piers of, and the hollow cores of the pipe filled with, concrete having a compressive strength of 3000 psi.

-- End of Section --
PART 1 GENERAL

1.1 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

- SD-02 Shop Drawings
 Fabrication Drawings; G
- SD-03 Product Data
 Glass Guardrail System; G
 Anchorage and Fastening Systems; G

1.2 QUALITY ASSURANCE

1.2.1 Manufacturer

Manufacturer shall have produced the type of glass guardrail system required for not less than ten (10) years, with not less than five (5) similar projects that have been in successful use for not less than five (5) years.

1.2.2 Installer

Installer shall have a minimum of five (5) years experience in the successful installation of glass guardrail system of the type indicated for this project.

1.2.3 Field Measure

Take field measurements prior to preparation of Shop Drawings and fabrication, where possible.

1.2.4 Shop Fabricate

Fabricate, fit and assemble glass guardrail assembly items in the shop, where possible. Work that cannot be permanently shop-assembled shall be completely assembled, marked, and disassembled before shipment to ensure proper assembly in the field.

1.3 PERFORMANCE REQUIREMENTS

Manufacturer shall engineer and fabricate glass guardrail assemblies capable of withstanding the following structural loads without exceeding the allowable design working stresses of the materials involved, including anchors and connections:
1. Top Rail:
 a. Concentrated load of 200 lbf applied at any point and in any direction.
 b. Uniform load of 50 lbf/ft. applied horizontally and concurrently with
 uniform load of 50 lbf/ft applied vertically downward.

1.4 WARRANTY

Provide manufacturer's written warranty that its standard products are free
from defects in material and workmanship for the life of the building and
agreeing to repair or replace items proven to be defective.

1.5 DELIVERY, STORAGE AND HANDLING

Deliver materials to the job site in good condition and properly protected
against damage to finished surfaces.

Store materials in a location and in a manner to avoid damage. Stacking
shall be done in a way which will prevent bending. Store materials in a
clean, dry location away from uncured concrete and masonry. Cover with
waterproof paper, tarpaulin, or polyethylene sheeting in a manner that will
permit circulation of air inside the covering.

Keep handling on site to a minimum. Exercise particular care to avoid
damage to finishes of material.

PART 2 PRODUCTS

2.1 FABRICATION

Pre-assemble items in the shop to the greatest extent possible.
Disassemble units only to the extent necessary for shipping and handling.
Clearly mark units for reassembly and coordinated installation.

For the fabrication of work exposed to view, use only materials that are
smooth and free of surface blemishes, including pitting, seam marks, roller
marks, rolled trade names, and roughness. Remove blemishes by grinding, or
by welding and grinding, prior to cleaning, treating, and application of
surface finishes, including zinc coatings.

Use materials of size and thicknesses indicated or, if not indicated, of
required size and thickness to produce adequate strength and durability in
finished product for intended use. Work materials to dimensions indicated
on approved detail drawings, using proven details of fabrication and
support. Use type of materials indicated or specified for the various
components of work.

Form exposed connections with hairline joints that are flush and smooth,
using concealed fasteners wherever possible. Use exposed fasteners of the
type indicated or, if not indicated, use Phillips flathead (countersunk)
screws or bolts.

Provide anchorage of the type indicated and coordinated with the supporting
structure. Fabricate anchoring devices and space as indicated and as
required to provide adequate support for the intended use of the work.

2.2 GLASS GUARDRAIL SYSTEM

Glass guardrail system shall be fabricated of stainless steel and glass
components as shown on the Drawings.
Guardrail top rail shall be 1-1/2" dia. stainless steel.
Finish for stainless steel shall be circular grain satin finish.
Form all changes in rail direction by miter elbows.
Internal connector sleeves shall be of extruded metal, with faces serrated for drive fit into pipes.
Glazing shall be minimum 3/8" thick clear tempered glass.

Glazing accessories:
- Glass clamps shall be of stainless steel
- Setting blocks shall be of polyvinyl chloride (PVC)
- Protective inserts shall be of polyvinyl chloride (PVC)
- Filler material shall meet manufacturer's recommendations.

2.3 FABRICATION
Form exposed work true to line and level. Ease exposed edges to a 1/32-inch radius. Form bent metal corners to smallest radius possible without causing grain separation or otherwise impairing work with exposed faces flat, smooth and free of deformation or distortion.
Form exposed connections with hairline joints, flush and smooth. Use concealed fasteners wherever possible. Use exposed fasteners of type shown, or if not shown, use Phillips flat head, countersunk screws or bolts. Fasteners for galvanized items shall be galvanized or stainless steel.
Cut, reinforce, drill and tap miscellaneous metal work as required to receive hardware and similar items.

PART 3 EXECUTION
3.1 EXAMINATION
Examine conditions under which railing assemblies will be installed for compliance with manufacturer's installation requirements. Do not proceed with installation until all unsatisfactory conditions have been corrected.

3.2 INSTALLATION
Install in accordance with approved Shop Drawings and manufacturer's instructions.
Erect work square and level, free from distortion or defects detrimental to appearance or performance.
Fit exposed connections accurately together to form tight hairline joints.
Provide anchorage devices and fasteners for securing guardrail assemblies to in-place construction.

3.3 CLEANING
Once installation is completed, wash thoroughly using clean water and soap; rinse with clean water.
Do not use acid solution, steel wool or other harsh abrasives.

If stain remains after washing, remove finish and restore in accordance with NAAMM Metal Finishes Manual.

3.4 REPAIR OF DEFECTIVE WORK

Remove stained or otherwise defective work and replace with material that meets specification requirements.

-- End of Section --
SECTION 06 10 00
ROUGH CARPENTRY
02/12

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)

AMERICAN WOOD COUNCIL (AWC)

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

AWPA M2 (2015) Standard for Inspection of Treated Wood Products

AWPA M6 (2013) Brands Used on Preservative Treated Materials

AWPA T1 (2013) Use Category System: Processing and Treatment Standard

APA - THE ENGINEERED WOOD ASSOCIATION (APA)

APA F405 (19) Product Guide: Performance Rated Panels

APA L870 (2010) Voluntary Product Standard, PS 1-09, Structural Plywood

APA S350 (2014) PS 2-10, Performance Standard for Wood-Based Structural-Use Panels
1.2 DELIVERY AND STORAGE

Deliver materials to the site in an undamaged condition. Store materials off the ground to provide proper ventilation, with drainage to avoid standing water, and protection against ground moisture and dampness. Store materials with a moisture barrier at both the ground level and as a cover forming a well ventilated enclosure. Remove defective and damaged materials and provide new materials. Store separated reusable wood waste convenient to cutting station and area of work.

1.3 GRADING AND MARKING

1.3.1 Lumber

Mark each piece of board lumber or each bundle of small pieces of lumber
with the grade mark of a recognized association or independent inspection agency. Such association or agency shall be certified by the Board of Review, American Lumber Standards Committee, to grade the species used. Surfaces that are to be exposed to view shall not bear grademarks, stamps, or any type of identifying mark.

1.3.2 Plywood

Mark each sheet with the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood. The mark shall identify the plywood by species group or span rating, exposure durability classification, grade, and compliance with APA L870. Surfaces that are to be exposed to view shall not bear grademarks or other types of identifying marks.

1.3.3 Preservative-Treated Lumber and Plywood

The Contractor shall be responsible for the quality of treated wood products. Each treated piece shall be inspected in accordance with AWPA M2 and permanently marked or branded, by the producer, in accordance with AWPA M6. The Contractor shall provide Contracting Officer's Representative (COR) with the inspection report of an approved independent inspection agency that offered products comply with applicable AWPA Standards. The appropriate Quality Mark on each piece will be accepted, in lieu of inspection reports, as evidence of compliance with applicable AWPA treatment standards.

1.3.4 Fire-Retardant Treated Lumber

Mark each piece in accordance with AWPA M6, except pieces that are to be natural or transparent finished. Labels of a nationally recognized independent testing agency will be accepted as evidence of conformance to the fire-retardant requirements of AWPA M6.

1.4 SIZES AND SURFACING

ALSC PS 20 for dressed sizes of yard lumber. Lumber shall be surfaced four sides. Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which the product is produced. Other measurements are IP or SI standard.

1.5 MOISTURE CONTENT

Air-dry or kiln-dry lumber. Kiln-dry treated lumber after treatment. Maximum moisture content of wood products shall be as follows at the time of delivery to the job site:

a. Framing lumber and board, 19 percent maximum

b. Materials other than lumber; moisture content shall be in accordance with standard under which the product is produced

1.6 PRESERVATIVE TREATMENT

Treat wood products with waterborne wood preservative conforming to AWPA P5. Pressure treatment of wood products must conform to the requirements of AWPA BOOK Use Category System Standards U1 and T1. Pressure-treated wood products must not contain arsenic, chromium, or other agents classified as
carcinogenic, probably carcinogenic, or possibly carcinogenic to humans (compounds in Groups 1, 2A, or 2B) by the International Agency for Research on Cancer (IARC), Lyon, France. Pressure-treated wood products must not exceed the limits of the U.S. EPA's Toxic Characteristic Leaching Procedure (TCLP), and must not be classified as hazardous waste. Submit certification from treating plant stating chemicals and process used and net amount of preservatives retained are in conformance with specified standards.

a. 0.25 pcf intended for above ground use.

b. 0.40 pcf intended for ground contact and fresh water use. All wood shall be air or kiln dried after treatment. Specific treatments shall be verified by the report of an approved independent inspection agency, or the AWPA Quality Mark on each piece. Brush coat areas that are cut or drilled after treatment with either the same preservative used in the treatment. The following items shall be preservative treated:

1. Wood sills, soles and plates that are less than 24 inches from the ground, and nailers that are set into or in contact with concrete or masonry.

2. Wall sheathing at exterior wall opening infills.

1.7 FIRE-RETARDANT TREATMENT

Fire-retardant treated wood must be pressure treated with fire retardants conforming to AWPA P49. Fire retardant treatment of wood products must conform to the requirements of AWPA U1, Commodity Specification H and AWPA T1, Section H. Treatment and performance inspection shall be by an independent and qualified testing agency that establishes performance ratings. Each piece or bundle of treated material shall bear identification of the testing agency to indicate performance in accordance with such rating. Fire-retardant-treated wood products shall be free of halogens, sulfates, ammonium phosphate, and formaldehyde. Items to be treated include the following:

a. Plywood backer board for telecommunications.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Engineered Wood Products

Products shall contain no added urea-formaldehyde.

2.2 PLYWOOD PANELS

APA L870, APA S350, APA E445, and APA F405 respectively.

2.2.1 Wall Sheathing

2.2.1.1 Plywood

C-D Grade, Exposure 1, and a minimum thickness of 7/16 inch.
2.2.2 Other Uses

2.2.2.1 Plywood

Plywood for backer boards shall be 1/2" fire-retardant treated plywood.

2.3 OTHER MATERIALS

2.3.1 Miscellaneous Wood Members

2.3.1.1 Blocking

Blocking shall be standard or number 2 grade.

2.3.2 Adhesives

Comply with applicable regulations regarding toxic and hazardous materials and as specified. Interior adhesives, sealants, primers and sealants used as filler must meet the requirements of LEED low emitting materials credit.

2.4 ROUGH HARDWARE

Unless otherwise indicated or specified, rough hardware shall be of the type and size necessary for the project requirements. Sizes, types, and spacing of fastenings of manufactured building materials shall be as recommended by the product manufacturer unless otherwise indicated or specified. Rough hardware exposed to the weather or embedded in or in contact with preservative treated wood, exterior masonry, or concrete walls or slabs shall be hot-dip zinc-coated in accordance with ASTM A153/A153M.

2.4.1 Bolts, Nuts, Studs, and Rivets

ASME B18.2.1, ASME B18.5.2.1M, ASME B18.5.2.2M and ASME B18.2.2.

2.4.2 Anchor Bolts

ASTM A307, size as indicated, complete with nuts and washers.

2.4.3 Expansion Shields

2.4.4 Lag Screws and Lag Bolts

ASME B18.2.1.

2.4.5 Wood Screws

ASME B18.6.1.

PART 3 EXECUTION

3.1 INSTALLATION

Conform to AWC WFCM unless otherwise indicated or specified. Select lumber sizes to minimize waste. Fit rough carpentry, set accurately to the required lines and levels, and secure in place in a rigid manner. Frame members for the passage of pipes, conduits, and ducts. Provide as
necessary for the proper completion of the work all framing members not indicated or specified. Spiking and nailing not indicated or specified otherwise shall be in accordance with the Nailing Schedule contained in ICC IBC; perform bolting in an approved manner. Spikes, nails, and bolts shall be drawn up tight.

3.1.1 Wall Sheathing

3.1.1.1 Plywood Wall Sheathing

Apply horizontally or vertically. Extend sheathing over and screw to sill and top plate. Abut sheathing edges over centerlines of supports. Allow 1/8 inch spacing between panels and 1/8 inch at windows and doors. If sheathing is applied horizontally, stagger vertical end joints. Screw panels with #10 self-tapping screws with a minimum head diameter of 0.333 inch nails spaced 6 inches o.c. along edges of the panel and 12 inches o.c. over intermediate supports. Keep screws 3/8 inches away from panel edges. Provide 2 by 4 blocking for horizontal edges not otherwise supported.

3.2 MISCELLANEOUS

3.2.1 Wood Blocking

Provide proper sizes and shapes at proper locations for the installation and attachment of wood and other finish materials, fixtures, equipment, and items indicated or specified.

3.3 WASTE MANAGEMENT

In accordance with the Waste Management Plan and as specified. Separate and reuse scrap sheet materials larger than 2 square feet and multiple offcuts of any size larger than 12 inches. Clearly separate damaged wood and other scrap lumber for acceptable alternative uses on site, including bracing, blocking, cripples, ties, and shims.

Separate treated, stained, painted, and contaminated wood and place in designated area for hazardous materials. Dispose of according to local regulations. Do not leave any wood, shavings, sawdust, or other wood waste buried in fill or on the ground. Prevent sawdust and wood shavings from entering the storm drainage system.

-- End of Section --
SECTION 06 20 00
FINISH CARPENTRY
08/16

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN LUMBER STANDARDS COMMITTEE (ALSC)

AMERICAN WOOD PROTECTION ASSOCIATION (AWPA)

APA - THE ENGINEERED WOOD ASSOCIATION (APA)
APA L870 (2010) Voluntary Product Standard, PS 1-09, Structural Plywood

ASME INTERNATIONAL (ASME)
ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASTM INTERNATIONAL (ASTM)
ASTM F547 (2006; R 2012) Nails for Use with Wood and Wood-Base Materials

NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA)

WESTERN WOOD PRODUCTS ASSOCIATION (WWPA)
WWPA G-5 (2011) Western Lumber Grading Rules

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)
WDMA I.S.4 (2013) Preservative Treatment for Millwork
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
Detail Drawings Indicating All Wood Assemblies; G

SD-11 Closeout Submittals
VOC Content for Softwood Plywood; S
Indoor Air Quality for Non-Aerosol Adhesives; S
Indoor Air Quality for Aerosol Adhesives; S

1.3 DETAIL DRAWINGS

Submit detail drawings indicating all wood assemblies proposed for use in the project. Indicate materials, species, grade, density, grain, finish details of construction, location of use in the project, finishes, types, method and arrangement of fasteners, and installation details. This includes all fabricated assemblies.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver wood products to the jobsite in an undamaged condition. Stack materials to ensure ventilation and drainage. Protect against dampness before and after delivery. Store materials under cover in a well ventilated enclosure and protect against extreme changes in temperature and humidity. Keep materials wrapped and separated from off-gassing materials (such as drying paints and adhesives). Do not use materials that have visible moisture or biological growth. Do not store products in building until wet trade materials are dry and humidity of the space is within wood manufacturer's tolerance limits for storage.

1.5 QUALITY ASSURANCE

1.5.1 Lumber

Identify each piece or each bundle of lumber, millwork, and trim by the grade mark of a recognized association or independent inspection agency certified by the Board of Review of the ALSC to grade the species.

1.5.2 Plywood

Provide each sheet of plywood with the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood. Marks must identify plywood by species group or span rating, exposure durability classification, grade, and compliance with APA L870.
1.5.3 Pressure Treated Lumber and Plywood

Inspect each treated piece in accordance with AWPA U1.

1.5.4 Non-Pressure Treated Woodwork and Millwork

Mark, stamp, or label to indicate compliance with WDMA I.S.4.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Reduce Volatile Organic Compounds (VOC) (Low-Emitting Materials) for Products

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 WOOD PRODUCTS

2.2.1 Sizes and Patterns of Wood Products

Provide yard and board lumber sizes in accordance with ALSC PS 20. Provide shaped lumber and millwork in the patterns indicated and in standard patterns of the association covering the species. Size references, unless otherwise specified, are nominal sizes. Provide actual sizes within manufacturing tolerances allowed by the applicable standard.

2.2.2 Species and Grades

Provide in accordance with AWPA U1 Use Category System Tables unless otherwise specified herein.

2.2.3 Trim, Finish, and Frames

Provide species and grades listed in the table below for wood materials that must be painted. For materials that must be stained, have a natural, or a transparent finish, provide materials one grade higher than those listed in the table below.
TABLE OF GRADES FOR WOOD TO RECEIVE PAINT FINISH

<table>
<thead>
<tr>
<th>Grading Rules</th>
<th>Species</th>
<th>Interior Trim</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHLA Rules</td>
<td>Soft Elm, Birch</td>
<td>Select or BTR (for interior use only)</td>
</tr>
</tbody>
</table>

Note: **

2.2.4 Softwood Plywood

Provide select white birch in accordance with APA L870. When located on the interior of buildings, provide products with no added urea-formaldehyde resins. Provide data identifying VOC content for softwood plywood.

2.3 TRIM

2.3.1 Wood

Provide select white birch species for all trim in accordance with AWPA U1 Use Category System Tables. Provide sizes indicated.

2.4 COUNTERTOPS

2.4.1 Solid Surface

For solid surface countertops refer to Section 06 61 16, SOLID POLYMER (SOLID SURFACING) FABRICATIONS.

2.5 MOISTURE CONTENT OF WOOD PRODUCTS

Air dry or kiln dry lumber. Kiln dry treated lumber after treatment. Maximum moisture content of wood products at time of delivery to the jobsite, and when installed, must be as follows:
a. Interior Finish Lumber, Trim, and Millwork: 1-1/4 Inches Nominal or Less in Thickness: 6 percent on 85 percent of the pieces and 8 percent on remainder.

b. Provide moisture content of other materials in accordance with the applicable standards.

2.6 HARDWARE AND ACCESSORIES

Provide sizes, types, and spacings of hardware and accessories as recommended in writing by the wood product manufacturer, except as otherwise specified.

2.6.1 Wood Screws

ASME B18.6.1.

2.6.2 Bolts, Nuts, Lag Screws, and Studs

ASME B18.2.1 and ASME B18.2.2.

2.6.3 Nails

Use nails of a size and type best suited for each application and in accordance with ASTM F547.

2.7 FABRICATION

2.7.1 Quality Standards (QS)

2.7.1.1 Grades

The terms "Premium," "Custom," and "Economy" refer to the quality grades defined in AWI AWS. Provide items not otherwise specified in a specific grade as "Custom" grade.

2.7.1.2 Adhesives

Select adhesives for durability and permanent bonding. Address factors such as materials that must be bonded, expansion and contraction, bond strength, moisture resistance, and manufacturer's recommendations.

Provide certification of indoor air quality for non-aerosol adhesives applied on the interior of the building (inside of the weatherproofing system). Provide certification of indoor air quality for aerosol adhesives used on the interior of the building.

PART 3 EXECUTION

Do not install building construction materials that show visual evidence of biological growth.

3.1 FINISH WORK

Apply primer to finish work before installing. Where practicable, shop assemble and finish millwork items. Construct joints tight and in a manner to conceal shrinkage but to avoid cupping, twisting and warping after installation. Cope at interior angles and at returns. Provide millwork and
trim in maximum practical lengths. Fasten finish work with finish nails. Provide blind nailing where practicable. Set face nails for putty stopping.

3.1.1 Interior Finish Work

After installation, sand exposed surfaces smooth.

3.1.2 Bases

Fasten base to framing or to grounds. Set one-piece wood base after finish flooring is in place.

3.2 MOULDING AND INTERIOR TRIM

Install mouldings and interior trim straight, plumb, level and with closely fitted joints. Provide exposed surfaces machine sanded at the shop. Cope returns and interior angles at moulded items and miter external corners. Shoulder intersections of flatwork to ease any inherent changes in plane. Blind nail to the extent practicable. Set and stop face nailing with a nonstaining putty to match the applied finish. Use screws for attachment to metal; set and stop screws in accordance with the same quality requirements for nails.

-- End of Section --
PART 1 GENERAL

1.1 SCOPE

1.1.A Plastic Laminate-Clad Cabinets

All cabinets shall be plastic laminate clad except as outlined in Part 1.1.B below.

1.1.B Wood-Clad Cabinets

All cabinets in SOC Room 203 shall be clad with hardwood and hardwood veneer particleboard as shown on the Drawings.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI AWS (2nd Edition) Architectural Woodwork Standards

ASTM INTERNATIONAL (ASTM)

ASTM F547 (2006; R 2012) Nails for Use with Wood and Wood-Base Materials

COMPOSITE PANEL ASSOCIATION (CPA)

CPA A208.1 (2016) Particleboard

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)

ANSI/WDMA I.S.1A (2013) Interior Architectural Wood Flush Doors
1.3 SYSTEM DESCRIPTION

Work in this section includes laminate clad custom casework as shown on the drawings and as described in this specification. This Section includes high-pressure laminate surfacing and cabinet hardware.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
 Shop Drawings; G

SD-03 Product Data
 Wood Materials; G
 Finish Schedule; G
 Cabinet Hardware; G

SD-04 Samples
 Plastic Laminates; G
 Door Pulls; G

SD-11 Closeout Submittals
 Indoor Air Quality for Particleboard; S
 Indoor Air Quality for Hardwood Veneer Particleboard; S

1.5 QUALITY ASSURANCE

1.5.1 General Requirements

Unless otherwise noted on the drawings, all materials, construction methods, and fabrication shall conform to and comply with the premium grade quality standards as outlined in AWI AWS, Section for laminate clad cabinets. These standards shall apply in lieu of omissions or specific requirements in this specification. Contractors and their personnel engaged in the work shall be able to demonstrate successful experience with work of comparable extent, complexity and quality to that shown and specified. Submit a quality control statement which illustrates compliance with and understanding of AWI AWS requirements, in general, and the specific AWI AWS requirements provided in this specification. The quality control statement shall also certify a minimum of ten years Contractor's experience in laminate clad casework fabrication and construction. The quality control statement shall provide a list of a minimum of five successfully completed projects of a similar scope, size, and complexity.

1.6 DELIVERY, STORAGE, AND HANDLING

Casework may be delivered knockdown or fully assembled. Deliver all units to the site in undamaged condition, stored off the ground in fully enclosed
areas, and protected from damage. The storage area shall be well ventilated and not subject to extreme changes in temperature or humidity.

1.7 SEQUENCING AND SCHEDULING

Coordinate work with other trades. Units shall not be installed in any room or space until painting, and ceiling installation are complete within the room where the units are located. Floor cabinets shall be installed before finished flooring materials are installed.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

Reduced VOC content is identified for some products in this section, provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify these products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW EMITTING MATERIALS).

2.2 WOOD MATERIALS

2.2.1 Lumber

a. All framing lumber shall be kiln-dried Grade III to dimensions as shown on the drawings.

b. Standing or running trim casework components, which are specified to receive a transparent finish, shall be select white birch hardwood species, plain sawn. AWI grade shall be premium. Location, shape, and dimensions shall be as indicated on the drawings.

2.2.2 Panel Products

2.2.2.1 Particleboard

All particleboard shall be industrial grade, medium density (40 to 50 pounds per cubic foot), 3/4 inch thick. A moisture-resistant particleboard in grade Type 2-M-2 or 2-M-3 shall be used as the substrate for areas subjected to moisture. Particleboard shall meet the minimum standards listed in ASTM D1037 and CPA A208.1. Face veneer for hardwood particle board shall be select white birch, plain sliced.

2.3 SOLID POLYMER MATERIAL

Solid surfacing casework components shall conform to the requirements of Section 06 61 16 SOLID - SURFACING FABRICATIONS.

2.4 HIGH PRESSURE DECORATIVE LAMINATE (HPDL)

All plastic laminates shall meet the requirements of ANSI/NEMA LD 3 and ANSI A161.2 for high-pressure decorative laminates. Design, colors, surface finish and texture, and locations shall be as indicated on the drawings and in Section 09 06 00 SCHEDULES FOR FINISHES. Submit two samples of each plastic laminate pattern and color. Samples shall be a minimum of 5 by 7 inches in size. Plastic laminate types and nominal
minimum thicknesses for casework components shall be as indicated in the following paragraphs.

2.4.1 Horizontal General Purpose Standard (HGS) Grade

Horizontal general purpose standard grade plastic laminate shall be 0.048 inches (plus or minus 0.005 inches) in thickness. This laminate grade is intended for horizontal surfaces where postforming is not required.

2.4.2 Vertical General Purpose Standard (VGS) Grade

Vertical general purpose standard grade plastic laminate shall be 0.028 inches (plus or minus 0.004 inches) in thickness. This laminate grade is intended for exposed exterior vertical surfaces of casework components where postforming is not required.

2.4.3 Backing Sheet (BK) Grade

Undecorated backing sheet grade laminate is formulated specifically to be used on the backside of plastic laminated panel substrates to enhance dimensional stability of the substrate. Backing sheet thickness shall be 0.020 inches. Backing sheets shall be provided for all laminated casework components where plastic laminate finish is applied to only one surface of the component substrate.

2.5 THERMOSET DECORATIVE OVERLAYS (MELAMINE)

Thermoset decorative overlays (melamine panels) shall be used for casework cabinet interior and drawer interior, unless noted otherwise. Color shall be white.

2.6 EDGE BANDING

Edge banding for casework doors and drawer fronts shall be PVC vinyl and shall be 0.125 inch thick. Color and pattern shall match exposed door and drawer front laminate pattern and color.

2.7 CABINET HARDWARE

The following casework hardware schedule provides model numbers by given manufacturer in order to establish the basis of design only, and is not intended to limit the choice of equal products from other manufacturers.

a. Shelf Supports 5mm steel pins
b. Pulls Semi-recessed plastic pulls #144 by Outwater Plastic Industries, Inc. (color to match plastic laminate)
c. Drawer Slides Blum Model BS230E

2.8 FASTENERS

Nails, screws, and other suitable fasteners shall be the size and type best suited for the purpose and shall conform to ASTM F547 where applicable.

2.9 ADHESIVES, CAULKS, AND SEALANTS

2.9.1 Adhesives

Adhesives shall be of a formula and type recommended by AWI. Adhesives
shall be selected for their ability to provide a durable, permanent bond and shall take into consideration such factors as materials to be bonded, expansion and contraction, bond strength, fire rating, and moisture resistance. Adhesives shall meet local regulations regarding VOC emissions and off-gassing.

2.9.1.1 Wood Joinery

Adhesives used to bond wood members shall be a Type II for interior use. Adhesives shall withstand a bond test as described in ANSI/WDMA I.S.1A.

2.9.1.2 Laminate Adhesive

Adhesive used to join high-pressure decorative laminate to wood shall be an adhesive consistent with AWI and laminate manufacturer's recommendations. PVC edgebanding shall be adhered using a polymer-based hot melt glue.

2.9.2 Caulk

Caulk used to fill voids and joints between laminated components and between laminated components and adjacent surfaces shall be clear, 100 percent silicone.

2.9.3 Sealant

Sealant shall be of a type and composition recommended by the substrate manufacturer to provide a moisture barrier at sink cutouts and all other locations where unfinished substrate edges may be subjected to moisture.

2.10 WOOD FINISHES

Paint, stain, varnish and their applications required for wood veneer particleboard clad casework components shall be as indicated in Section 09 90 00 PAINTS AND COATINGS and as indicated in Section 09 06 00 SCHEDULES FOR FINISHES.

2.11 ACCESSORIES

2.11.1 Grommets

Grommets shall be plastic material for cutouts with a diameter of 2 1/2 inches. Locations shall be as indicated on the drawings.

2.12 FABRICATION

Verify field measurements as indicated in the shop drawings before fabrication. Fabrication and assembly of components shall be accomplished at the shop site to the maximum extent possible. Construction and fabrication of cabinets and their components shall meet or exceed the requirements for AWI premium grade unless otherwise indicated in this specification. Cabinet style, in accordance with AWI AWS, Section 400-G descriptions, shall be flush overlay.

2.12.1 Base and Wall Cabinet Case Body

2.12.1.1 Cabinet Components

Frame members shall be glued-together, kiln-dried hardwood lumber. Top corners, bottom corners, and cabinet bottoms shall be braced with either
hardwood blocks or water-resistant glue and nailed in place metal or plastic corner braces. Cabinet components shall be constructed from the following materials and thicknesses:

2.12.1.1.1 Body Members (Ends, Divisions, Bottoms, and Tops)
 3/4 inch particleboard panel product

2.12.1.1.2 Face Frames and Rails
 3/4 inch panel product

2.12.1.1.3 Shelving
 3/4 inch particleboard panel product

2.12.1.1.4 Cabinet Backs
 1/4 inch particleboard panel product

2.12.1.1.5 Drawer Sides, Backs, and Subfronts
 1/2 inch hardwood lumber panel product

2.12.1.1.6 Drawer Bottoms
 1/4 inch particleboard panel product

2.12.1.1.7 Drawer Fronts
 3/4-inch particleboard panel product

2.12.1.2 Joinery Method for Case Body Members

2.12.1.2.1 Tops, Exposed Ends, and Bottoms
 a. Stop dado, glued under pressure, and either nailed, stapled or screwed (fasteners will not be visible on exposed parts).

2.12.1.2.2 Exposed End Corner and Face Frame Attachment

2.12.1.2.2.1 Mitered Joint
 Lock miter or spline or biscuit, glued under pressure (no visible fasteners)

2.12.1.2.2.2 Non-Mitered Joint (90 degree)
 Butt joint glued under pressure (no visible fasteners)

2.12.1.2.2.3 Butt Joint
 Glued and nailed

2.12.1.2.3 Cabinet Backs (Wall Hung Cabinets)

Wall hung cabinet backs must not be relied upon to support the full weight of the cabinet and its anticipated load for hanging/mounting purposes. Method of back joinery and hanging/mounting mechanisms should transfer the load to case body members. Fabrication method shall be:
2.12.1.2.3.1 Full Bound

Full bound, captured in grooves on cabinet sides, top, and bottom. Cabinet backs for floor standing cabinets shall be side bound, captured in grooves; glued and fastened to top and bottom.

2.12.1.2.4 Cabinet Backs (Floor Standing Cabinets)

2.12.1.2.4.1 Side Bound

Side bound, captured in grooves; glued and fastened to top and bottom.

2.12.2 Cabinet Floor Base

Floor cabinets shall be mounted on a base constructed of nominal 2 inch thick lumber. Base assembly components shall be treated lumber. Finished height for each cabinet base shall be as indicated on the drawings. Bottom edge of the cabinet door or drawer face shall be flush with top of base.

2.12.3 Cabinet Door and Drawer Fronts

Door and drawer fronts shall be fabricated from 3/4 inch medium density particleboard. All door and drawer front edges shall be surfaced with PVC edgebanding, color and pattern to match exterior face laminate.

2.12.4 Drawer Assembly

2.12.4.1 Drawer Components

Drawer components shall consist of a removable drawer front, sides, backs, and bottom. Drawer components shall be constructed of the following materials and thicknesses:

2.12.4.1.1 Drawer Sides and Back For Thermoset Decorative Overlay (Melamine) Finish

1/2 inch thick medium density particleboard or MDF fiberboard substrate

2.12.4.1.2 Drawer Bottom

1/4 inch thick thermoset decorative overlay melamine panel product

2.12.4.2 Drawer Assembly Joinery Method

a. Multiple dovetail (all corners) or French dovetail front/dadoed back, glued under pressure.

b. Doweled, glued under pressure.

c. Lock shoulder, glued and pin nailed.

d. Bottoms shall be set into sides, front, and back, 1/4 inch deep groove with a minimum 3/8 inch standing shoulder.
2.12.5 Shelving

2.12.5.1 General Requirements

Shelving shall be fabricated from 3/4 inch medium density particleboard. All shelving top and bottom surfaces shall be finished with thermoset decorative overlay (melamine). Shelf edges shall be finished in a thermoset decorative overlay (melamine). Exposed shelves shall be clad with HDPL plastic laminate with PVC edge banding.

2.12.5.2 Shelf Support System

2.12.5.2.1 Pin Hole Method

Drill holes on the interior surface of the cabinet side walls. Evenly space holes in two vertical columns. Space the holes in each column at 1 inch increments starting 6 inches from the cabinet interior bottom and extending to within 6 inches of the top interior surface of the cabinet. Drill holes to provide a level, stable surface when the shelf is resting on the shelf pins. Coordinate hole diameter with pin insert size to provide a firm, tight fit.

2.12.6 Laminate Application

Laminate application to substrates shall follow the recommended procedures and instructions of the laminate manufacturer and ANSI/NEMA LD 3, using tools and devices specifically designed for laminate fabrication and application. Provide a balanced backer sheet (Grade BK) wherever only one surface of the component substrate requires a plastic laminate finish. Apply required grade of laminate in full uninterrupted sheets consistent with manufactured sizes using one piece for full length only, using adhesives specified herein or as recommended by the manufacturer. Fit corners and joints hairline. All laminate edges shall be machined flush, filed, sanded, or buffed to remove machine marks and eased (sharp corners removed). Clean up at easing shall be such that no overlap of the member eased is visible. Fabrication shall conform to ANSI A161.2. Laminate types and grades for component surfaces shall be as follows unless otherwise indicated on the drawings:

2.12.6.1 Base/Wall Cabinet Case Body

a. Exterior (exposed) surfaces to include exposed and semi-exposed face frame surfaces: HPDL Grade VGS.

b. Interior (semi-exposed) surfaces to include interior back wall, bottom, and side walls: Thermoset Decorative Overlay (melamine).

2.12.6.2 Adjustable Shelving

2.12.6.2.1 Top and Bottom Surfaces

HPDL Grade HGS or Thermoset Decorative Overlay (melamine)

2.12.6.2.2 All Edges

Thermoset Decorative Overlay (melamine) or PVC edgebanding
2.12.6.3 Fixed Shelving

2.12.6.3.1 Top and Bottom Surfaces

HPDL Grade HGS or Thermoset Decorative Overlay (melamine)

2.12.6.3.2 Exposed Edges

Thermoset Decorative Overlay (melamine) or PVC edgebanding

2.12.6.4 Door, Drawer Fronts, Access Panels

2.12.6.4.1 Exterior (Exposed) and Interior (Semi-Exposed) Faces

HPDL Grade VGS

2.12.6.4.2 Edges

PVC edgebanding

2.12.6.5 Drawer Assembly

All interior and exterior surfaces: Thermoset Decorative Overlay (melamine).

2.12.6.6 Tolerances

Flushness, flatness, and joint tolerances of laminated surfaces shall meet the AWI AWS premium grade requirements.

PART 3 EXECUTION

3.1 INSTALLATION

Installation shall comply with applicable requirements for AWI AWS premium quality standards. Assemblies shall be installed level, plumb, and true to line, in locations shown on the drawings. Cabinets and other laminate clad casework assemblies shall be attached and anchored securely to the floor and walls with mechanical fasteners that are appropriate for the wall and floor construction.

3.1.1 Anchoring Systems

3.1.1.1 Floor

Base cabinets shall utilize a floor anchoring system. Anchoring and mechanical fasteners shall not be visible from the finished side of the casework assembly. Cabinet assemblies shall be attached to anchored bases without visible fasteners. Where assembly abuts a wall surface, anchoring shall include a minimum 1/2 inch thick lumber or panel product hanging strip, minimum 2-1/2 inch width; securely attached to the top of the wall side of the cabinet back.

3.1.1.2 Wall

Cabinets to be wall mounted shall utilize minimum 1/2 inch thick lumber or panel product hanging strips, minimum 2-1/2 inch width; securely attached to the wall side of the cabinet back, both top and bottom.
3.1.2 Doors and Drawers

The fitting of doors and drawers shall be accomplished within target fitting tolerances for gaps and flushness in accordance with AWI AWS premium grade requirements.

3.1.3 Plumbing Fixtures

Install sinks, sink hardware, and other plumbing fixtures in locations as indicated on the drawings and in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

-- End of Section --
SECTION 06 61 16
SOLID SURFACING FABRICATIONS
08/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D2583 (2013a) Indentation Hardness of Rigid Plastics by Means of a Barcol Impessor

CSA GROUP (CSA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

NSF INTERNATIONAL (NSF)

NSF/ANSI 51 (2012) Food Equipment Materials

TILE COUNCIL OF NORTH AMERICA (TCNA)

1.2 SYSTEM DESCRIPTION

a. Work under this section includes countertops with and without integral lavatory bowls, back and side splashes, window stools and trim and other items utilizing solid polymer (solid surfacing) fabrication as shown on the drawings and as described in this specification. Do not change source of supply for materials after work has started, if the appearance of finished work would be affected.

b. In most instances, installation of solid polymer fabricated components and assemblies will require strong, correctly located structural support provided by other trades. To provide a stable, sound, secure installation, close coordination is required between the solid polymer fabricator/installer and other trades to ensure that necessary structural wall support, cabinet counter top structural support, proper clearances, and other supporting components are provided for the installation of countertops and all other solid polymer fabrications to the degree and extent recommended by the solid polymer manufacturer.

c. Provide appropriate staging areas for solid polymer fabrications. Allow variation in component size and location of openings of plus or minus 1/8 inch.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
Detail Drawings; G

SD-03 Product Data
Solid Polymer Material; G
Qualifications

SD-04 Samples
Material; G

SD-06 Test Reports
Solid Polymer Material

SD-07 Certificates
Fabrications Qualifications

SD-10 Operation and Maintenance Data
Clean-up; G
Manuels shall be supplied in both paper copy and PDF file formats.

SD-11 Closeout Submittals

Indoor Air Quality for Adhesives; G

1.4 QUALITY ASSURANCE

1.4.1 Qualifications

To ensure warranty coverage, solid polymer fabricators shall be certified to fabricate by the solid polymer material manufacturer being utilized. Mark all fabrications with the fabricator's certification label affixed in an inconspicuous location. Fabricators shall have a minimum of 5 years of experience working with solid polymer materials. Submit solid polymer manufacturer's certification attesting to fabricator qualification approval.

1.5 DELIVERY, STORAGE, AND HANDLING

Do not deliver materials to project site until areas are ready for installation. Deliver components and materials to the site undamaged, in containers clearly marked and labeled with manufacturer's name. Materials shall be stored indoors and adequate precautions taken to prevent damage to finished surfaces. Provide protective coverings to prevent physical damage or staining following installation, for duration of project.

1.6 WARRANTY

Provide manufacturer's warranty of ten years against defects in materials, excluding damages caused by physical or chemical abuse or excessive heat. Warranty shall provide for material and labor for replacement or repair of defective material for a period of ten years after component installation.

PART 2 PRODUCTS

2.1 MATERIAL

Provide solid polymer material that is a homogeneous filled solid polymer; not coated, laminated or of a composite construction; meeting CSA B45.5-11/IAPMO Z124 requirements. Material shall have minimum physical and performance properties specified. Superficial damage to a depth of 0.01 inch shall be repairable by sanding or polishing. Material thickness shall be as indicated on the drawings. In no case shall material be less than 1/4 inch in thickness. Submit a minimum 4 by 4 inch sample of each color and pattern for approval. Samples shall indicate full range of color and pattern variation. Approved samples shall be retained as a standard for this work. Submit test report results from an independent testing laboratory attesting that the submitted solid polymer material meets or exceeds each of the specified performance requirements.

2.1.1 Cast, 100 Percent Acrylic Polymer Solid Surfacing Material

Cast, 100 percent acrylic solid polymer material shall be composed of acrylic polymer, mineral fillers, and pigments and shall meet the following minimum performance requirements:
<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>REQUIREMENT (min. or max.)</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>4000 psi (max.)</td>
<td>ASTM D638</td>
</tr>
<tr>
<td>Hardness</td>
<td>55-Barcol Impressor (min.)</td>
<td>ASTM D2583</td>
</tr>
<tr>
<td>Thermal Expansion</td>
<td>.000023 in/in/F (max.)</td>
<td>ASTM D696</td>
</tr>
<tr>
<td>Boiling Water Surface Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.05</td>
</tr>
<tr>
<td>High Temperature Resistance</td>
<td>No Change</td>
<td>ANSI/NEMA LD 3-3.06</td>
</tr>
<tr>
<td>Impact Resistance (Ball drop)</td>
<td></td>
<td>ANSI/NEMA LD 3-303</td>
</tr>
<tr>
<td>1/4 inch sheet</td>
<td>36 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>1/2 inch sheet</td>
<td>140 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>3/4 inch sheet</td>
<td>200 inches, 1/2 lb ball, no failure</td>
<td></td>
</tr>
<tr>
<td>Mold & Mildew Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Bacteria Growth</td>
<td>No growth</td>
<td>ASTM G21</td>
</tr>
<tr>
<td>Liquid Absorption</td>
<td>0.1 percent max.</td>
<td>ASTM D570</td>
</tr>
<tr>
<td>Flammability</td>
<td></td>
<td>ASTM E84</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>25 max.</td>
<td></td>
</tr>
<tr>
<td>Smoke Developed</td>
<td>30 max.</td>
<td></td>
</tr>
<tr>
<td>Sanitation</td>
<td>"Food Contact" approval</td>
<td>NSF/ANSI 51</td>
</tr>
</tbody>
</table>

2.1.2 Integral Lavatory Bowls

Integral laboratory bowls shall be fabricated of the same material as the countertops. Bowls shall be oval shape with dimensions approximately 16.5" W. x 13.1" x 5.4" D.

2.1.3 Material Patterns and Colors

Patterns and colors for all solid polymer components and fabrications shall be those indicated in Section 09 06 00 SCHEDULES FOR FINISHES. Pattern and color shall occur, and shall be consistent in appearance, throughout the entire depth (thickness) of the solid polymer material.

2.1.4 Surface Finish

Exposed finished surfaces and edges shall receive a uniform appearance.
Exposed surface finish shall be matte; gloss rating of 5-20.

2.2 ACCESSORY PRODUCTS

Accessory products, as specified below, shall be manufactured by the solid polymer manufacturer or shall be products approved by the solid polymer manufacturer for use with the solid polymer materials being specified.

2.2.1 Seam Adhesive

Seam adhesive shall be a two-part adhesive kit to create permanent, inconspicuous, non-porous, hard seams and joints by chemical bond between solid polymer materials and components to create a monolithic appearance of the fabrication. Adhesive shall be approved by the solid polymer manufacturer. Adhesive shall be color-matched to the surfaces being bonded where solid-colored, solid polymer materials are being bonded together. The seam adhesive shall be clear or color matched where particulate patterned, solid polymer materials are being bonded together.

2.2.2 Panel Adhesive

Panel adhesive shall be neoprene based panel adhesive meeting TCNA Hdbk, Underwriter's Laboratories (UL) listed. Use this adhesive to bond solid polymer components to adjacent and underlying substrates.

2.2.3 Silicone Sealant

Sealant shall be a mildew-resistant, FDA and OSHA Nationally Recognized Testing Laboratory (NRTL) listed silicone sealant or caulk in a clear formulation. The silicone sealant shall be approved for use by the solid polymer manufacturer. Use sealant to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors and plumbing fixtures.

2.3 FABRICATIONS

Components shall be factory or shop fabricated to sizes and shapes indicated, to the greatest extent practical, in accordance with approved Shop Drawings and manufacturer's requirements. Provide factory cutouts for sinks, lavatories, and plumbing fixtures where indicated on the drawings. Contours and radii shall be routed to template, with edges smooth. Defective and inaccurate work will be rejected. Submit product data indicating product description, fabrication information, and compliance with specified performance requirements for solid polymer, joint adhesive, sealants, and heat reflective tape. Both the manufacturer of materials and the fabricator shall submit a detailed description of operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products.

2.3.1 Joints and Seams

Form joints and seams between solid polymer components using manufacturer's approved seam adhesive. Joints shall be inconspicuous in appearance and without voids to create a monolithic appearance.
2.3.2 Edge Finishing

Rout and finish component edges to a smooth, uniform appearance and finish. Edge shapes and treatments, including any inserts, shall be as detailed on the drawings. Rout all cutouts, then sand all edges smooth. Repair or reject defective or inaccurate work.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Components

Install all components and fabricated units plumb, level, and rigid. Make field joints between solid polymer components using solid polymer manufacturer's approved seam adhesives, to provide a monolithic appearance with joints inconspicuous in the finished work. Attach metal or vitreous china sinks and lavatory bowls to counter tops using solid polymer manufacturer's recommended clear silicone sealant and mounting hardware. Solid polymer sinks and bowls shall be installed using a color-matched seam adhesive. Plumbing connections to sinks and lavatories shall be made in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.1.2 Silicone Sealant

Use a clear, silicone sealant or caulk to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors and plumbing fixtures. Sealant bead shall be smooth and uniform in appearance and shall be the minimum size necessary to bridge any gaps between the solid surfacing material and the adjacent surface. Bead shall be continuous and run the entire length of the joint being sealed.

3.2 CLEAN-UP

Components shall be cleaned after installation and covered to protect against damage during completion of the remaining project items. Components damaged after installation by other trades will be repaired or replaced at the General Contractor's cost. Component supplier will provide a repair/replace cost estimate to the General Contractor who shall approve estimate before repairs are made. Submit a minimum of three copies of maintenance data indicating manufacturer's care, repair and cleaning instructions. Maintenance video shall be provided, if available. Maintenance kit for matte finishes shall be submitted.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E136 (2016) Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.134 Respiratory Protection

UL ENVIRONMENT (ULE)

ULE Greenguard UL Greenguard Certification Program

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S"
are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-03 Product Data
Blanket Insulation; G

SD-08 Manufacturer's Instructions
Insulation

SD-11 Closeout Submittals
Recycled Content for Insulation Materials; S
Reduce Volatile Organic Compounds (VOC) for Insulation Materials; S

1.3 SUSTAINABLE DESIGN CERTIFICATION

Product must be third party certified in accordance with ULE Greenguard.

1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery

Deliver materials to site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation.

1.4.2 Storage

Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling.

1.5 SAFETY PRECAUTIONS

1.5.1 Respirators

Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134.

1.5.2 Other Safety Concerns

Consider other safety concerns and measures as outlined in ASTM C930.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:
2.1.1 Recycled Content for Insulation Materials

Provide insulation materials meeting the recycled content requirements as stated within this section and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT.

2.1.2 Reduce Volatile Organic Compounds (VOC) for Insulation Materials

Provide insulation materials meeting the reduced VOC requirements as stated within this section and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS.

2.2 BLANKET INSULATION

ASTM C665, Type I, blankets without membrane coverings with a flame spread rating of 25 or less and a smoke developed rating of 150 or less when tested in accordance with ASTM E84.

2.2.1 Thermal Resistance Value (R-VALUE)

The R-Value must be as indicated on drawings.

2.2.2 Recycled Materials

Provide Thermal Insulation containing recycled materials to the extent practicable, provided the material meets all other requirements of this section. The minimum required recycled materials content by weight are:

Fiberglass: 20 to 25 percent glass cullet

2.2.3 Prohibited Materials

Do not provide asbestos-containing materials.

2.2.4 Reduced Volatile Organic Compounds (VOC) for Insulation Materials

ULE Greenguard

2.3 BLOCKING

Wood, metal, unfaced mineral fiber blankets in accordance with ASTM C665, Type I, or other approved materials. Use only non-combustible materials meeting the requirements of ASTM E136 for blocking around heat producing devices.

PART 3 EXECUTION

3.1 EXISTING CONDITIONS

Before installing insulation, ensure that areas that will be in contact with the insulation are dry and free of projections which could cause voids or compressed insulation. If moisture or other conditions are found that do not allow the workmanlike installation of the insulation, do not proceed but notify Contracting Officer of such conditions.
3.2 PREPARATION

3.2.1 Blocking Around Heat Producing Devices

Install non-combustible blocking around heat producing devices to provide the following clearances:

a. Recessed lighting fixtures, including wiring compartments, ballasts, and other heat producing devices, unless these are certified by the manufacturer for installation surrounded by insulation: 3 inches from outside face of fixtures and devices or as required by NFPA 70 and, if insulation is to be placed above fixture or device, 24 inches above fixture.

b. Vents and vent connectors used for venting the products of combustion and at flues: Minimum clearances as required by NFPA 211.

c. Gas Fired Appliances: Clearances as required in NFPA 54.

d. Oil Fired Appliances: Clearances as required in NFPA 31.

Blocking around flues is not required when insulation blanket passed ASTM E136, in addition to meeting all other requirements stipulated in Part 2. Blocking is also not required if the flues are certified by the manufacturer for use in contact with insulating materials.

3.3 INSTALLATION

3.3.1 Insulation

Install and handle insulation in accordance with manufacturer's instructions. Keep material dry and free of extraneous materials. Any materials that show visual evidence of biological growth due to presence of moisture must not be installed on the building project. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices.

3.3.1.1 Electrical wiring

Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation.

3.3.1.2 Continuity of Insulation

Install blanket insulation to butt tightly against adjoining blankets and to studs, headers and any obstructions. Provide continuity and integrity of insulation at corners, wall to ceiling joints, and floor. Avoid creating thermal bridges.

3.3.1.3 Installation at Bridging and Cross Bracing

Insulate at bridging and cross bracing by splitting blanket vertically at center and packing one half into each opening. Butt insulation at bridging and cross bracing; fill in bridged area with loose or scrap insulation.

3.3.1.4 Cold Climate Requirement

Place insulation to the outside of pipes.
3.3.1.5 Insulation

Provide snug friction fit to hold insulation in place. Stuff pieces of insulation into cracks between studs and other framing, such as at door and window jambs, sills and headers.

3.3.1.6 Sizing of Blankets

Provide only full width blankets when insulating between studs. Size width of blankets for a snug fit where studs are irregularly spaced.

3.3.1.7 Special Requirements for Ceilings

Place insulation under electrical wiring occurring across joists. Pack insulation into narrowly spaced framing. Do not block flow of air through soffit vents.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.2 SYSTEM DESCRIPTION AND REQUIREMENTS

The exterior insulation and finish system (EIFS) must be a job-fabricated, drainable, exterior wall covering consisting of sheathing, insulation board, reinforcing fabric, base coat, finish coat and mechanical fasteners as applicable. The system components must be compatible with each other and with the substrate as recommended or approved by, and the products of, a single manufacturer regularly engaged in furnishing Exterior Insulation and Finish Systems. All materials must be installed by an applicator approved by the system manufacturer. EIFS must be Class PB and must match existing color and match the existing finish texture as approved by the Contracting Officer.

1.2.1 System Requirements and Tests

The system must meet the performance requirements as verified by the tests listed below. Where a wall system of similar type, size, and design as specified for this project has been previously tested under the condition specified herein, the resulting test reports may be submitted in lieu of job specific tests.
1.2.1.1 Water Penetration

Test the system for water penetration by uniform static air pressure in accordance with ASTM E331. There must be no penetration of water beyond the plane of the base coat/EPS board interface after 15 minutes at 6.4 psf, or 20 percent of positive design wind pressure, whichever is greater.

1.2.1.2 Wind Load

Test the system for wind load by uniform static air pressure in accordance with ASTM E330/E330M (procedure A) to a minimum pressure of 25 psf. There must be no permanent deformation, delamination, or other deterioration.

1.2.1.3 Full scale or intermediate scale fire test

Conduct wall fire test using apparatus, specimen, performance criteria, and procedure in accordance with NFPA 285 when required by ICC IBC 2603.5.5. The following requirements must be met:

a. No vertical spread of flame within core of panel from one story to the next.

b. No flame spread over the exterior surface.

c. No vertical flame spread over the interior surface from one story to the next.

d. No significant lateral spread of flame from compartment of fire origin to adjacent spaces.

1.2.1.4 Mock-Up Installation of EIFS

Complete wall mock-up installation three ft high by three ft wide, including typical control joints. Control joints to be filled with sealant of type, manufacturer, and color selected. Construct mock-up installation at job site. Build mock-up to comply with the following requirements, using materials indicated for the completed work:

a. Locate mock-up installation near an existing EIFS wall area to be matched as directed by the Contracting officer. Locate on the south or west wall.

b. Demonstrate the proposed range of color, texture, thickness, insulation, and workmanship.

c. Obtain Contracting Officer's written approval of mock-up before starting fabrication of work.

d. Maintain mock-up installation during construction as a standard for judging the completed work by protecting them from weather and construction activities.

e. When directed, demolish and remove mock-up from the site.

1.2.2 Component Requirements and Tests

The components of the system must meet the performance requirements as verified by the tests listed below.
1.2.2.1 Surface Burning Characteristics

Conduct ASTM E84 test on samples consisting of base coat, reinforcing fabric, and finish coat. Cure for 28 days. The flame spread index must be 25 or less and the smoke developed index must be 450 or less.

1.2.2.2 Radiant Heat

The system must be tested in accordance with NFPA 268 on both the minimum and maximum thickness of insulation intended for use with no ignition during the 20-minute period.

1.2.2.3 Impact Resistance

a. Class PB Systems: Hemispherical Head Test; 28 day cured specimen of PB EIFS in accordance with ASTM E2486.

b. Impact Mass: Test 28 day cured specimen of PM EIFS in accordance with ASTM E695. The test specimen must exhibit no cracking or denting after twelve impacts by 30 lbs lead shot mass from 6 in to 6 ft drop heights in 6 in intervals.

1.2.3 Sub-Component Requirements and Tests

Unless otherwise stated, the test specimen must consist of reinforcing mesh, base coat, and finish coat applied in accordance with manufacturer's printed recommendations to the insulation board to be used on the building. For mildew resistance, only the finish coat is applied onto glass slides for testing. These specimen must be suitably sized for the apparatus used and be allowed to cure for a minimum of 28 days prior to testing.

1.2.3.1 Abrasion Resistance

Test in accordance with ASTM D968, Method A. Test a minimum of two specimens. After testing, the specimens must show only very slight smoothing, with no loss of film integrity after 132 gallons of sand.

1.2.3.2 Accelerated Weathering

Test in accordance with ASTM G153, Cycle 1. After 2000 hours specimens must exhibit no visible cracking, flaking, peeling, blistering, yellowing, fading, or other such deterioration.

1.2.3.3 Mildew Resistance

Test in accordance with ASTM D3273. The specimen shall consist of the finish coat material, applied to clean 3 inch by 4 inch glass slides and must be allowed to cure for 28 days. After 28 days of exposure, the specimen must not show any growth.

1.2.3.4 Salt Spray Resistance

Test in accordance with ASTM B117. The specimen must be a minimum of 4 inch by 6 inch and must be tested for a minimum of 300 hours. After exposure, the specimen must exhibit no observable deterioration, such as chalking, fading, or rust staining.
1.2.3.5 Water Resistance

Test in accordance with ASTM D2247. The specimen must be a minimum of 4 inch by 6 inch. After 14 days, the specimen must exhibit no cracking, checking, crazing, erosion, blistering, peeling, or delamination.

1.2.3.6 Absorption-Freeze/Thaw

Class PB systems must be tested in accordance with ASTM E2570/E2570M for 60 cycles of freezing and thawing. After testing, the specimen must exhibit no cracking, checking, or splitting, and negligible weight gain. Class PM systems must be tested in accordance with ASTM C67 for 50 cycles of freezing and thawing. After testing, the specimens must exhibit no cracking or checking and have negligible weight gain.

1.2.3.7 Sample Boards

Unless otherwise stated, provide sample EIFS Component 12 by 12 inches, on sheathing board, including finish color and texture, typical joints and sealant. If more than one color, finish, or pattern is used, provide one sample for each. The test specimen must consist of reinforcing mesh, base coat, and finish coat applied in accordance with manufacturer's printed recommendations to the insulation board to be used on the building.

1.2.4 Moisture Analysis

Perform a job specific vapor transmission analysis based on project specific climate and specified wall components and materials. Indicate the temperatures and relative humidities for the inside and outside of the building; a complete listing of the building components, their thickness, thermal resistance and permeance, as well as building location and use. If a mathematical model was used for the analysis, include the name of the model and the supplier/developer.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Mechanical Fasteners
Accessories
Base Coat; G
Portland Cement; G
Reinforcing Fabric; G
Finish Coat; G
Joint Sealant; G
Sealant Primer
Bond Breaker
Backer Rod
Insulation Board; G
Warranty; G

Include joint and other details, such as end conditions, corners, windows, and parapet. Include shelf life and recommended cleaning solvents in data for sealants. Include Safety Data Sheets (SDS) for all components of the EIFS. The SDS shall be available at the job site.

SD-04 Samples
Sample Boards; G
Color and Texture
Mock-up Installation of EIFS; G

SD-05 Design Data
Wind Load Calculations
Moisture Analysis Calculations

SD-06 Test Reports
Accelerated Weathering
Impact Resistance
Mildew Resistance
Water Vapor Transmission
Absorption-Freeze-Thaw
Wall Fire Test
Water Penetration
Water Resistance
Full Scale or Intermediate Scale Fire Test
Surface Burning Characteristics
Radiant Heat
Substrate
Wind Load

SD-08 Manufacturer's Instructions
Installation

Manufacturer's standard printed instructions for the installation of the EIFS. Include requirements for condition and preparation of substrate, installation of EIFS, and requirements for sealants and sealing.

1.4 QUALITY ASSURANCE

1.4.1 Qualifications of EIFS Manufacturer

The EIFS must be the product of a manufacturer who has been in the practice of manufacturing and designing EIFS for a period of not less than 3 years, and has been involved in at least five projects similar to this project in size, scope, and complexity, in the same or a similar climate as this project.

1.4.2 Qualification of EIFS Installer

The EIFS Installer must be trained by the EIFS manufacturer to perform the installation of the System and must have successfully installed at least five projects at or near the size and complexity of this project. The contractor must employ qualified workers trained and experienced in installing the manufacturer's EIFS.

1.4.3 Qualification of Sealant Applicator

The sealant applicator must be experienced and competent in the installation of high performance industrial and commercial sealants and must have successfully installed at least five projects at or near the size and complexity of this project.

1.4.4 Insulation Board

Insulation Board must be approved and labeled under third party quality program as required by applicable building code.

1.4.5 Pre-Installation Conference

After approval of submittals and before commencing any work on the EIFS, including installation of any sheathing board, insulation, and associated work, the Contracting Officer will hold a pre-installation conference to review:

a. Drawings, specifications, and samples;

b. Procedure for on site inspection and acceptance of EIFS substrate and pertinent details (for example, mock-up installation);

c. Contractor's plan for coordination of work of the various trades involved in providing EIF system and other components;

d. Inspection procedures; and

e. Safety requirements.

Pre-installation conference must be attended by the Contractor, and all personnel directly responsible for installation of the EIFS system,
including sealant applicator, and personnel responsible for related work, such as flashing and sheet metal, windows and doors, and a representative of the EIFS manufacturer. Before beginning EIFS work, the contractor must confirm in writing the resolution of conflicts among those attending the pre-installation conference.

1.5 DELIVERY AND STORAGE

Deliver materials to job site in original unopened packages, marked with manufacturer's name, brand name, and description of contents. Store materials off the ground and in accordance with the manufacturer's recommendations in a clean, dry, well-ventilated area. Protect stored materials from rain, sunlight, and excessive heat. Keep coating materials which would be damaged by freezing at a temperature not less than 40 degrees F. Do not expose insulation board to flame or other ignition sources.

1.6 ENVIRONMENTAL CONDITIONS

a. Do not prepare materials or apply EIFS during inclement weather unless appropriate protection is provided. Protect installed materials from inclement weather until they are dry.

b. Apply sealants and wet materials only at ambient temperatures of 40 degrees F or above and rising, unless supplemental heat is provided. The system must be protected from inclement weather and maintain this temperature for a minimum of 24 hours after installation.

c. Do not leave insulation board exposed to sunlight after installation.

1.7 WARRANTY

Furnish manufacturer's standard warranty for the EIFS. Warranty must run directly to Government and cover a period of not less than 5 years from date Government accepted the work.

PART 2 PRODUCTS

2.1 REFERENCES TO MANUFACTURER'S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 COMPATIBILITY

Provide all materials compatible with each other and with the substrate, and as recommended by EIFS manufacturer.

2.3 MECHANICAL FASTENERS

Corrosion resistant and as approved by EIFS manufacturer. Select fastener type and pattern based on applicable wind loads and substrate into which fastener will be attached, to provide the necessary pull-out, tensile, and shear strengths.
2.4 THERMAL INSULATION

2.4.1 Manufacturer's Recommendations

Provide only thermal insulation recommended by the EIFS manufacturer for the type of application intended.

2.4.2 Insulation Board

Insulation board must be standard product of manufacturer and must be compatible with other systems components. Boards must be factory marked individually with the manufacturer's name or trade mark, the material specification number, the R-value at 75 degree F, and thickness. No layer of insulation shall be less than 3/4 inch thick. The maximum thickness of all layers must not exceed 4 inches. Insulation Board must be certified as aged, in block form, prior to cutting and shipping, a minimum of 6 weeks by air drying, or equivalent.

a. Thermal resistance: As indicated on drawings.

b. Insulating material: ASTM C578 Type I as recommended by the EIFS manufacturer and treated to be compatible with other EIFS components. Age insulation by air drying a minimum of 6 weeks prior to cutting and shipping.

c. Recycled Content: Provide insulation material that has minimum of 10 percent recycled material.

2.5 BASE COAT

Manufacturer's standard product and compatible with other systems components.

2.6 PORTLAND CEMENT

Conform to ASTM C150/C150M, Type I or II as required, fresh and free of lumps, and approved by the systems manufacturer.

2.7 REINFORCING FABRIC

Reinforcing fabric mesh must be alkali-resistant, balanced, open weave, glass fiber fabric made from twisted multi-end strands specifically treated for compatibility with the other system materials, and comply with ASTM E2098/E2098M and as recommended by EIFS manufacturer.

2.8 FINISH COAT

Manufacturer's standard product conforming to the requirements in the paragraph on Sub-Component Requirements and Tests. For color consistency, use materials from the same batch or lot number.

2.9 SEALANT PRIMER

Non-staining, quick-drying type recommended by sealant manufacturer and EIFS manufacturer.

2.10 ACCESSORIES

Conform to recommendations of EIFS manufacturer, including trim, edging,
anchors, and expansion joints. All metal items and fasteners to be corrosion resistant.

2.11 JOINT SEALANT

Non-staining, quick-drying type meeting ASTM C920, as Type S or M, minimum Grade NS, minimum Class 25 and compatible with the finish system type and grade, and recommended by both the sealant manufacturer and EIFS manufacturer.

2.12 BOND BREAKER

As required by EIFS manufacturer and recommended by sealant manufacturer and EIFS manufacturer.

2.13 BACKER ROD

Closed cell polyethylene free from oil or other staining elements and as recommended by sealant manufacturer and EIFS manufacturer. Do not use absorptive materials as backer rod. The backer rod should be sized 25 percent larger than the width of the joint.

2.14 RECOAT FINISH

Manufacturer's high performance coating 5-7 mils. Provide a recoat finish for all surfaces new and existing, to be installed after all repairs and cleaning have been performed. Provide Sto Color Loatuson as manufactured by Sto Corp (www.stocorp.com) or equal.

PART 3 EXECUTION

3.1 EXAMINATION

Examine substrate and existing conditions to determine that the EIFS can be installed as required by the EIFS manufacturer and that all work related to the EIFS is properly coordinated. Surface must be sound and free of oil, loose materials or protrusions which will interfere with the system installation. If deficiencies are found, notify the Contracting Officer and do not proceed with installation until the deficiencies are corrected. The substrate must be plane, with no deviation greater than 1/4 inch when tested with a 10 foot straightedge. Determine flatness, plumbness, and any other conditions for conformance to manufacturer's instructions.

3.2 SURFACE PREPARATION

Prepare existing surfaces for application of the EIFS to meet flatness tolerances and surface preparation according to manufacturer's installation instructions but provide a flatness of not more that 1/4 inch in 10 feet. Provide clean surfaces free of oil and loose material without protrusions adversely affecting the installation of the insulation board. Due to substrate conditions or as recommended by the system manufacturer, a primer may be required. Apply the primer to existing surfaces as recommended by the manufacturer. Use masking tape to protect areas adjacent to the EIFS to prevent base or finish coat to be applied to areas not intended to be covered with the EIFS. The contractor must not proceed with the installation until all noted deficiencies of the substrate are corrected.
3.3 INSTALLATION

Install EIFS as indicated, comply with manufacturer's instructions except as otherwise specified, and in accordance with the shop drawings. EIFS must be installed only by an applicator trained by the EIFS manufacturer. Specifically, include all manufacturer recommended provisions regarding flashing and treatment of wall penetrations. Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project.

3.3.1 Insulation Board

Unless otherwise specified by the system manufacturer, place the long edge horizontally from level base line. Stagger vertical joints and interlock at corners. Butt joints tightly. Provide flush surfaces at joints. Offset insulation board joints from joints in sheathing by at least 8 inches. Use L-shaped insulation board pieces at corners of openings. Joints of insulation must be butted tightly. Surfaces of adjacent insulation boards must be flush at joints. Gaps greater than 1/16 inch between the insulation boards must be filled with slivers of insulation. Uneven board surfaces with irregularities projecting more than 1/16 inch must be rasped in accordance with the manufacturer's instructions to produce an even surface. Attach insulation board as recommended by manufacturer. Do not leave insulation board exposed longer than recommended by insulation manufacturer.

3.3.1.1 Mechanically Fastened Insulation Boards

Fasten with manufacturer's standard corrosion resistant anchors, spaced as recommended by manufacturer, but not more than 2 feet horizontally and vertically.

3.3.2 Base Coat and Reinforcing Fabric Mesh,

3.3.2.1 Class PB Systems

Install reinforcing fabric in accordance with manufacturer's instructions. Mix base coat in accordance with the manufacturer's instructions and apply to insulated wall surfaces to the thickness specified by the system manufacturer and provide any other reinforcement recommended by EIFS manufacturer. Trowel the reinforcing fabric mesh into the wet base coat material. Fully embed the mesh in the base coat. When properly worked-in, the pattern of the reinforcing fabric mesh must not be visible. Provide diagonal reinforcement at opening corners. Back-wrap or edge wrap all terminations of the EIFS. Overlap the reinforcing fabric mesh a minimum of 2.5 inches on previously installed mesh, or butted, in accordance with the manufacturer’s instructions.

3.3.3 Finish Coat

The base coat/reinforcing mesh must be allowed to dry a minimum of 24 hours prior to application of the finish coat. Surface irregularities in the base coat, such as trowel marks, board lines, reinforcing mesh laps, etc., must be corrected prior to the application of the finish coat. Apply and level finish coat in one operation. Obtain final texture by trowels, floats, or by spray application as necessary to achieve the required finish matching approved mock-up installation. Apply the finish coat to the dry base coat maintaining a wet edge at all times to obtain a uniform appearance. The thickness of the finish coat must be in accordance with
the system manufacturer’s current published instructions. Apply finish coat so that it does not cover surfaces to which joint sealants are to be applied.

3.4 EIFS REPAIRS

Provide the appropriate repair technique as recommended by the EIFS manufacturer. The existing structure requires the following types of repairs:

a. Patch Seal (minor penetrations):
 1. Install patch seal on minor penetrations in existing EIFS surface.

b. Repair and Refinish (minor damage):
 1. Remove/grind EIFS finish in areas requiring localized repair.
 2. Remove and replace damaged insulation board in a manner that minimizes damage to substrate.
 3. Install mesh and base coat.
 4. Apply finish coat, match adjacent texture stipple and float as required.

c. Waterproof Base Coat Flashing:
 1. Provide waterproof base coat flashing at the base of the building where indicated on the drawings.

d. Clean and Recoat:
 Clean and Recoat after all EIF repairs required in the document have been performed. The entire EIFS envelope shall be cleaned and recoated as recommended by the EIFS manufacturer.
 1. Prepare surface to receive coating in accordance with EIFS manufacturers cleaning specifications.
 2. Apply coating in accordance with EIFS manufacturers written instructions. Note: Recoating of the building requires two colors, as shown on the drawings. See Section 09 06 00 SCHEDULES FOR FINISHES for selected colors.

3.5 JOINT SEALING

Seal EIFS at openings as recommended by the system manufacturer. Apply sealant only to the base coat or base coat with EIFS Manufacturer's color coating. Do not apply sealant to the finish coat.

3.5.1 Surface Preparation, Backer Rod, and Primer

Immediately prior to application, remove loose matter from joint. Ensure that joint is dry and free of finish coat, or other foreign matter. Install backer rod. Apply primer as required by sealant and EIFS manufacturer. Check that joint width is as shown on drawings but in no case shall it be less than 0.5 inch for perimeter seals and 0.75 inch for expansion joints. The width must not be less than 4 times the anticipated movement. Check sealant manufacturer’s recommendations regarding proper width to depth ratio.

3.5.2 Sealant

Do not apply sealant until all EIFS coatings are fully dry. Apply sealant in accordance with sealant manufacturer's instructions with gun having nozzle that fits joint width. Do not use sealant that has exceeded shelf life or cannot be discharged in a continuous flow. Completely fill the joint solidly with sealant without air pockets so that full contact is made with both sides of the joint. Tool sealant with a round instrument that provides a concave profile and a uniformly smooth and wrinkle free sealant.
surface. Do not wet tool the joint with soap, water, or any other liquid tooling aid. During inclement weather, protect the joints until sealant application. Use particular caution in sealing joints between window and door frames and the EIFS wall and at all other wall penetrations. Clean all surfaces to remove excess sealant.

3.6 FIELD QUALITY CONTROL

Throughout the installation, the contractor must establish and maintain an inspection procedure to assure compliance of the installed EIFS with contract requirements. Work not in compliance must be removed and replaced or corrected in an approved manner. The inspection procedures, from acceptance of deliveries through installation of sealants and final acceptance must be performed by qualified inspector trained by the manufacturer. No work on the EIFS is allowed unless the inspector is present at the job site.

3.6.1 Inspection Check List

During the installation and at the completion of installation, perform inspections covering at the minimum all applicable items enumerated on the attached check list. The inspector must initial and date all applicable items, sign the check list, and submit it to the Contracting Officer at the completion of the EIFS erection.

CHECK LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Appr'd/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Materials are handled and stored correctly.</td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>Environmental conditions are within specified limits, including temperature not below 4 degrees C (40 degrees F), and the work is protected from the elements as required.</td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>Preparation and installation is performed by qualified personnel using the correct tools.</td>
<td></td>
</tr>
<tr>
<td>d.</td>
<td>Adjacent areas to which EIFS is not to be applied (such as on window and door frames) are protected with masking tape, plastic films, drop cloths, etc. to prevent accidental application of EIFS materials.</td>
<td></td>
</tr>
<tr>
<td>e.</td>
<td>Control, expansion and aesthetic joints are installed as indicated or recommended. Accessories are properly installed.</td>
<td></td>
</tr>
<tr>
<td>f.</td>
<td>Substrate is in-plane, properly attached, clean, dry, and free of contaminants. Concrete substrate is free of efflorescence.</td>
<td></td>
</tr>
<tr>
<td>g.</td>
<td>Materials are mixed thoroughly and in proper proportions.</td>
<td></td>
</tr>
<tr>
<td>h.</td>
<td>Mechanical attachments have proper spacing, layout and fastener depth.</td>
<td></td>
</tr>
<tr>
<td>i.</td>
<td>Insulation boards are tightly abutted, in running bond pattern, with joints staggered with the sheathing, board</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
<td>Appr'd/Date</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>corners interlocked, L-shaped boards around openings, and provision for joints. Gaps are filled and surfaces rasped.</td>
<td></td>
</tr>
<tr>
<td>j.</td>
<td>Reinforcing fabric mesh is properly back-wrapped at terminations.</td>
<td></td>
</tr>
<tr>
<td>k.</td>
<td>Reinforcing fabric mesh is fully embedded and properly placed. Corners are reinforced. Openings are diagonally reinforced. Mesh overlaps minimum 65 mm (2-1/2 inches).</td>
<td></td>
</tr>
<tr>
<td>l.</td>
<td>Base coat thickness is within specified limits.</td>
<td></td>
</tr>
<tr>
<td>m.</td>
<td>The base coat/reinforcing fabric mesh must be allowed to dry (a minimum of 24-hours) prior to the application of the finish coat.</td>
<td></td>
</tr>
<tr>
<td>n.</td>
<td>Finish coat is applied with sufficient number of personnel and stopped at suitable points. Floats and methods of texturing are uniform.</td>
<td></td>
</tr>
<tr>
<td>o.</td>
<td>All flashings are properly installed.</td>
<td></td>
</tr>
<tr>
<td>p.</td>
<td>All joints are properly sealed in their entire length at time and under environmental conditions as specified by the manufacturer.</td>
<td></td>
</tr>
<tr>
<td>q.</td>
<td>All scaffolding, equipment, materials, debris and temporary protection are removed from site upon completion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name of Inspector:________________ Signed:__________________ Date:________</td>
<td></td>
</tr>
</tbody>
</table>

3.7 CLEANUP

Upon completion, remove all scaffolding, equipment, materials and debris from site. Remove all temporary protection installed to facilitate installation of EIFS.

 -- End of Section --
PART 1 GENERAL

1.1 SUMMARY

This Section specifies the construction and quality control of the installation of an air and water barrier system to the new exterior walls of this facility only. Construct the air and water barrier system indicated, taking responsibility for the means, methods, and workmanship of the installation of the air barrier.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referenced within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4263 (1983; R 2012) Indicating Moisture in Concrete by the Plastic Sheet Method

1.3 DEFINITIONS

The following terms as they apply to this section:

1.3.1 Air and Water Barrier Accessory

Products designated to maintain air and water tightness between air and water barrier system materials, air and water barrier assemblies and air and water barrier components, to fasten them to the structure of the building, or both (e.g., sealants, tapes, backer rods, transition membranes, fasteners, strapping, primers).

1.3.2 Air and Water Barrier Assembly

The combination of air and water barrier system materials and air and water barrier system accessories that are designated and designed within the environmental separator to act as a continuous barrier to the movement of air and water through the environmental separator.
1.3.3 Air and Water Barrier Components

Pre-manufactured elements such as windows, doors, dampers and service elements that are installed in the environmental separator.

1.3.4 Air and Water Barrier Envelope

The combination of air and water barrier system assemblies and air barrier components, connected by air and water barrier system accessories that are designed to provide a continuous barrier to the movement of air through an environmental separator.

1.3.5 Air and Water Barrier Material

A building material that is designed and constructed to provide the primary resistance to airflow through an air barrier assembly.

1.3.6 Air Leakage Rate

The rate of airflow (CFM) driven through a unit surface area (sq.ft.) of an assembly or system by a unit static pressure difference (Pa) across the assembly. (example: 0.25 CFM/sq.ft. @ 75 Pa)

1.3.7 Air Leakage

The total airflow (CFM) driven through the air barrier system by a unit static pressure difference (Pa) across the air barrier envelope. (example: 6500 CFM @ 75 Pa)

1.3.8 Air Permeance

The rate of airflow (CFM) through a unit area (sq.ft.) of a material driven by unit static pressure difference (Pa) across the material (example: 0.004 CFM/sq.ft. @ 75 Pa).

1.3.9 Environmental Separator

The parts of a building that separate the controlled interior environment from the uncontrolled exterior environment, or that separate spaces within a building that have dissimilar environments. Also known as the Control Layer.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Air and Water Barrier System; G

Air and Water Barrier System Accessories; G
PART 2 PRODUCTS

2.1 REFERENCES TO MANUFACTURER'S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturer's and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 AIR AND WATER BARRIER SYSTEM

A. Provide air barrier coatings and accessory products of a single manufacturer through a single source.

B. Air and water barrier shall be Barritech VP fluid-applied fire-resistant system by Carlisle Coatings and Waterproofing or approved equal. Air and water barrier shall meet NFPA 285 and ASTM E331 requirements, and shall have a flame spread index of 25 or less and a smoke generated index of 450 or less per ASTM E84.

C. Air and water barrier shall be a nominal 0.040 inch (40 mils) dry film thickness membrane.

D. Air and water barrier shall also meet the following requirements:
 2. Water vapor permeance of 14 Perms per ASTM D541.
 3. Maximum air permeance of 0.0002 CFM/SP at 1.57 PSF per ASTM E2179.

2.3 ACCESSORIES

A. Detail flashing shall be 30 mil thickness, fire-resistant self-adhering flashing consisting of foil-faced glass laminated with fire-resistant butyl adhesive.

B. Contact adhesive shall be a VOC-compliant, solvent-based.

C. Include all accessories necessary for a complete, watertight system, including but not limited to primers, mastic, fill compound, transition membranes, fasteners and sealants.

PART 3 EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions affecting installation of the air & water barrier and accessory products for compliance with requirements specified herein. Verify that surfaces and conditions are suitable prior to commencing Work of this section. Do not proceed with installation until unsatisfactory conditions have been corrected.

B. Verify that wall assemblies are dried in, such that water intrusion will not occur from above, behind or around the air and water barrier installation.

3.2 PREPARATION

A. Remove weather barriers, flashings, carrier or protective films and similar materials that would impede adhesion from substrates indicated to receive air and water barrier. Clean surfaces thoroughly prior to
installation.

B. Surfaces shall be prepared as follows to accept the air and water barrier:
 1. Surfaces shall be free of contaminants such as grease, oil, dirt, wax and other contaminants.
 2. Surfaces shall be free from projections.
 3. Fill all voids and holes greater than ¼ inch across at any point with sealant or other approved fill material.
 4. Surface irregularities exceeding 1/4 inch in height or sharp to touch shall be ground flush or made smooth.
 5. Fill around all penetrations with sealant or other approved fill material and strike flush.
 6. Surfaces shall be supported and flush at joints without large voids or sharp protrusions.
 7. Sheathing boards shall be flush at joints, with gaps between boards according to 2015 International Building Code and sheathing manufacturer's documented requirements. Sheathing boards shall also be securely to the structure with proper fastener type, technique and spacing according to 2015 International Building Code and sheathing manufacturer's requirements. Sheathing boards shall be repaired or replaced if inspection reveals moisture damage or mechanical damage, or if sheathing boards have exceeded the exposure duration or exposure conditions as required by the sheathing manufacturer.
 8. Plywood, OSB, lumber or pressure-treated wood moisture content, measured with a wood moisture meter in the core of the substrate, shall be below 20%.
 9. Fill cracks, gaps and joints exceeding ¼ inch width with fill compound or paintable sealant.
 10. Fill rough gaps around pipe, conduit and similar penetrations with fill compound or polyurethane foam sealant shaved flush.
 11. Apply a ¾ inch cant of fill compound at the intersection of the base of walls and footings, where occurring.

C. Preinstallation Testing: Prior to application of air barrier coatings, perform the following tests to verify condition of substrate in accordance with manufacturer's instructions:
 1. Perform substrate field adhesion tests on each substrate to determine if primer is required to satisfactorily adhere air barrier coatings to substrates.
 2. Verify substrates are within alkalinity range acceptable to manufacturer.
 3. Verify substrate moisture content is acceptable to manufacturer. Verify substrate is visibly dry and free of moisture. Test for capillary moisture by plastic sheet method according to ASTM D4263.

D. Proceed with air barrier coating work once conditions meet air barrier coating manufacturer's recommendations.

3.3 INSTALLATION

A. Air and water barrier shall be installed in accordance with manufacturer's documented instructions.

B. Install detail flashing at all exterior window, door and louver openings, all penetrations in exterior metal panel walls, and all other locations as required to create a complete, monolithic air and water-tight
exterior building envelope. Install detail flashing in accordance with the manufacturer's documented instructions.

C. Apply and integrate flashing/sealant tape with water-resistant barrier using watershed principles in accordance with exterior window, door and louver manufacturer's documented instructions.

D. Spray or roller-apply air and water barrier to achieve specified thickness in accordance with manufacturer's literature.

E. Lap air and water barrier minimum 2 inches onto detail flashings.

3.4 SCHEDULE

A. Wall substrates and roof or temporary roof shall be in place, effectively enclosing interior space before proceeding with air and water barrier installation.

B. Seal penetrations made through installed barrier according to manufacturer's documented instructions.

C. Seal fenestration to air and water barrier with detail membrane, transition membrane, polyurethane sealant, silicone sealant or polyurethane foam sealant according to manufacturer's documented instructions.

D. Through-wall flashing may be installed before or after air and water barrier. Seal termination of metal through-wall flashing to air and water barrier with 6 inch width counter-flashing strip consisting of any of the following:
 1. Detail flashing
 2. Reinforcing fabric imbedded in air and water barrier
 3. Glass mat imbedded in air and water barrier

E. Sequence work to enable air and water barrier continuity at wall-to-foundation, shelf angle, wall-to-roof, fenestration, different wall assemblies and other conditions providing challenges to air and water barrier continuity.

3.5 REPAIR AND PROTECTION

Upon completion of inspection, testing, sample removal and similar services, repair damaged construction and restore substrates, coatings and finishes. Protect construction exposed by or for quality control service activities, and protect repaired construction.

-- End of Section --
SECTION 07 42 13
METAL WALL PANELS
05/11

PART 1 GENERAL

1.1 SCOPE

This Section includes metal wall panels to be used at locations on the east face of building at Break Room 106.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

AAMA 800 (2010) Voluntary Specifications and Test Methods for Sealants

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISI S100 (2012) North American Specification for the Design of Cold-Formed Steel Structural Members

AISI SG03-3 (2002; Suppl 2001-2004; R 2008) Cold-Formed Steel Design Manual Set

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM D3363 (2005; E 2011; R 2011; E 2012) Film Hardness by Pencil Test

ASTM D4587 (2011) Standard Practice for Fluorescent UV-Condensation Exposures of Paint and
Related Coatings

ASTM D610 (2008; R 2012) Evaluating Degree of Rusting on Painted Steel Surfaces

ASTM D714 (2002; R 2009) Evaluating Degree of Blistering of Paints

ASTM E1592 (2005; R 2012) Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

ASTM E331 (2000; R 2009) Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference

METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)

1.3 DEFINITIONS

Metal Wall Panel: Metal wall panels, attachment system components and accessories necessary for a complete weather-tight wall system.

1.4 DESCRIPTION OF WALL PANEL SYSTEM

Factory color finished metal wall panel system with exposed fastener attachment.

1.4.1 Metal Wall Panel General Performance

Comply with performance requirements, conforming to AISI S100, without failure due to defective manufacture, fabrication, installation, or other defects in construction. Wall panels and accessory components must conform to the following standards:

ASTM A1008/A1008M
ASTM A123/A123M
ASTM A606/A606M
ASTM A780/A780M for repair of damage or uncoated areas of hot-dipped galvanized coating

UL Bld Mat Dir

1.4.2 Structural Performance

Maximum calculated fiber stress must not exceed the allowable value in the AISI or AA manuals; a one third overstress for wind is allowed. Midspan deflection under maximum design loads is limited to L/180. Siding panels and accessories must be the products of the same manufacturer.

Provide metal wall panel assemblies complying with the load and stress requirements in accordance with ASTM E1592. Wind Load force due to wind action governs the design for panels.

Wall systems and attachments are to resist the wind loads as determined by ASTM E72 and ASCE 7 in the geographic area where the construction will take place, in pounds per square foot.

1.4.3 Air Infiltration

Air leakage through the wall assembly area shall be limited to 0.06 CFM/SF at a positive pressure differential of 1.57 psf when tested according to ASTM E283.
1.4.4 Water Penetration Under Static Pressure

No water penetration when tested according to ASTM E331 at a positive pressure differential of 6.24 psf or 20% of the design wind pressure, whichever is greater. The test pressure need not exceed 12 psf.

1.4.5 Water Penetration Under Dynamic Pressure

No evidence of water leakage when tested according to AAMA 501.1.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Installation Drawings; G

SD-03 Product Data

Submit Manufacturer's catalog data for the following items:

Wall Panels; G

Factory Color Finish; G
Closure Materials
Pressure Sensitive Tape
Sealants and Caulking
Repair Paint
Accessories

SD-08 Manufacturer's Instructions

Include detailed application instructions and standard manufacturer drawings altered as required by these specifications.

Installation of Wall Panels

SD-11 Closeout Submittals

Warranty; G

20 year "No Dollar Limit" warranty for labor and material

1.6 QUALITY ASSURANCE

1.6.1 Manufacturer's Technical Representative

The representative must have authorization from manufacturer to approve field changes and be thoroughly familiar with the products and installations in the geographical area where construction will take place.

1.6.2 Qualification of Manufacturer

Metal wall panel system manufacturer shall have a minimum of five (5) years
experience in manufacturing metal wall system and accessory products.

Manufacturer must also provide engineering services by an authorized engineer; currently licensed in the geographical area where construction will take place, having a minimum of four (4) years experience as an engineer knowledgeable in wind load design analysis, protocols and procedures per MBMA MBSM, "Metal Building Systems Manual"; ASCE 7, and ASTM E1592.

1.6.3 Certified Qualification of Installation Contractor

The installation contractor must be approved and certified by the metal wall panel manufacturer prior to beginning the installation of the metal wall panel system.

1.6.4 Single Source

Obtain each type of metal wall panels, clips, closure materials and other accessories from the standard products of the single source from a single manufacturer to operate as a complete system for the intended use.

1.6.5 Manufacturer's Maintenance Instructions

Provide manufacturer's detailed written instructions including copies of Safety Data Sheets for maintenance and repair materials.

1.7 DELIVERY, HANDLING, AND STORAGE

Deliver and protect package components, sheets, metal wall panels, and other manufactured items to prevent damage or deformation during transportation and handling.

Unload, store, and erect metal wall panels in a manner to prevent bending, warping, twisting, and surface damage.

Stack and store metal wall panels horizontally on platforms or pallets, covered with suitable weather-tight and ventilated covering to ensure dryness, with positive slope for drainage of water. Do not store metal wall panels in contact with other materials that might cause staining, denting, or other surface damage.

Retain strippable protective covering on metal wall panel until actual installation.

1.8 PROJECT CONDITIONS

1.8.1 Field Measurements

Verify locations of wall framing and opening dimensions by field measurements before metal wall panel fabrication and indicate measurements on Shop Drawings.

1.8.2 Weather Limitations

Proceed with installation preparation only when existing and forecasted weather conditions permit Work to proceed without water entering into wall system or building.
1.9 WARRANTY

Warranty must conform to the Sample Warranty as reviewed and approved by the Contracting Officer.

1.9.1 20 Year "No Dollar Limit" Warranty for Labor and Material

Furnish manufacturer's no-dollar-limit warranty for the metal wall panel system. The warranty period is to be no less than twenty (20) years from the date of Government acceptance of the work. The warranty is to be issued directly to the Government. The warranty is to provide that if within the warranty period the metal wall panel system shows evidence of corrosion, perforation, rupture or excess weathering due to deterioration of the wall panel system resulting from defective materials and correction of the defective workmanship is to be the responsibility of the metal wall panel system manufacturer. Repairs that become necessary because of defective materials and workmanship while metal wall panel system is under warranty are to be performed within 72 hours after notification, unless additional time is approved by the Contracting Officer. Failure to perform repairs within 72 hours of notification will constitute grounds for having emergency repairs performed by others and not void the warranty.

PART 2 PRODUCTS

2.1 REFERENCE TO MANUFACTURER'S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 FABRICATION

Unless approved otherwise, fabricate and finish metal wall panels and accessories at the factory to greatest extent possible, by manufacturer's standard procedures and processes and as necessary to fulfill indicated and specified performance requirements. Comply with indicated profiles and with dimensional and structural requirements.

Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel. Fabricate metal wall panel side laps with factory-installed captive gaskets or separator strips that provide a tight seal and prevent metal-to-metal contact, in a manner that will seal weather-tight and minimize noise from movements within panel assembly.

2.2.1 Sheet Metal Accessories

Fabricate flashing and trim to comply with recommendations in SMACNA 1793 that apply to the design, dimensions, metal, and other characteristics of item indicated:

a. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.

b. End Seams: fabricate nonmoving end seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
c. Sealed Joints: form non-expansion but movable joints in metal to accommodate elastomeric sealant to comply with SMACNA 1793.

d. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.

e. Fabricate cleats and attachment devices of size and metal thickness recommended by SMACNA 1793 or by metal wall panel manufacturer for application, but not less than thickness of metal being secured.

2.3 PANEL MATERIALS

2.3.1 Steel Sheet

Roll-form steel wall panels to the specified profile, with fy= 50 ksi, 26 gauge. Material must be plumb and true, and within the tolerances listed:

a. Aluminum-Zinc Alloy-coated Steel Sheet conforming to ASTM A792/A792M and AISI SG03-3.

b. Individual panels must be continuous length to cover the entire length of any unbroken wall area with no joints or seams and formed without warping, waviness, or ripples that are not part of the panel profile and free of damage to the finish coating system.

c. Provide panels with thermal expansion and contraction consistent with the type of system specified.

1. Profile and coverage to be a minimum height and width from manufacturer's standard for the indicated wall area.

2. Profile shall match existing, which is similar to Multi-V Panel by McElroy Metal. Profile to include 1-3/16 inch deep major ribs at 12 inches o.c., and minor ribs centered between major ribs, a tapered V-shape, with 38-1/4 inch overall width with 36 inch coverage, and with exposed fasteners.

3. Smooth, flat Surface Texture.

2.3.2 Factory Color Finish

Comply with NAAMM AMP 500 for recommendations for applying and designating finishes. Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved samples and are assembled or installed to minimize contrast.

All panels are to receive a factory-applied polyvinylidene fluoride finish consisting of a baked-on top-coat with a manufacturer's recommended prime coat conforming to the following:

2.3.2.1 Metal Preparation

Carefully prepare all metal surface for painting on a continuous process coil coating line by alkali cleaning, hot water rinsing, application of chemical conversion coating, cold water rinsing, sealing with acid rinse, and thorough drying.
2.3.2.2 Prime Coating

Apply a base coat of epoxy paint, specifically formulated to interact with the top-coat, to the prepared surfaces by roll coating to a dry film thickness of 0.20 plus 0.05 mils. Prime coat must be oven cured prior to application of finish coat.

2.3.2.3 Exterior Finish Coating

Roll coat the finish coating over the primer by roll coating to dry film thickness of 0.80 plus 5 mils (3.80 plus 0.50 mils for Vinyl Plastisol) for a total dry film thickness of 1.00 plus 0.10 mils (4.00 plus 0.10 mils for Vinyl Plastisol). Oven-cure finish coat.

2.3.2.4 Interior Finish Coating

Apply a wash-coat on the reverse side over the primer by roll coating to a dry film thickness of 0.30 plus 0.05 mils for a total dry film thickness of 0.50 plus 0.10 mils. Oven-cured the wash coat.

2.3.2.5 Color

Provide exterior finish color as selected by the Contracting Officer from the manufacturer's standard color chart.

2.3.2.6 Physical Properties

Coating must conform to the industry and manufacturer's standard performance criteria as listed by the following certified test reports:

<table>
<thead>
<tr>
<th>Category</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>ASTM D5894 and ASTM D4587</td>
</tr>
<tr>
<td>Abrasion</td>
<td>ASTM D968</td>
</tr>
<tr>
<td>Adhesion</td>
<td>ASTM D3359</td>
</tr>
<tr>
<td>Chalking</td>
<td>ASTM D4214</td>
</tr>
<tr>
<td>Chemical Pollution</td>
<td>ASTM D1308</td>
</tr>
<tr>
<td>Color Change and Conformity</td>
<td>ASTM D2244</td>
</tr>
<tr>
<td>Creepage</td>
<td>ASTM D1654</td>
</tr>
<tr>
<td>Cyclic Corrosion Test</td>
<td>ASTM D5894</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>ASTM E84</td>
</tr>
<tr>
<td>Flexibility</td>
<td>ASTM D522/D522M</td>
</tr>
<tr>
<td>Formability</td>
<td>ASTM D522/D522M</td>
</tr>
<tr>
<td>Gloss at 60 and 85 degrees</td>
<td>ASTM D523</td>
</tr>
<tr>
<td>Humidity</td>
<td>ASTM D2247 and ASTM D714</td>
</tr>
<tr>
<td>Oxidation:</td>
<td>ASTM D610</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Pencil Hardness:</td>
<td>ASTM D3363</td>
</tr>
<tr>
<td>Reverse Impact:</td>
<td>ASTM D2794</td>
</tr>
<tr>
<td>Salt Spray:</td>
<td>ASTM B117</td>
</tr>
<tr>
<td>Weatherometer:</td>
<td>ASTM G152, ASTM G153 and ASTM D822</td>
</tr>
</tbody>
</table>

2.4 FASTENERS

2.4.1 General

2.4.1.1 Exposed Fasteners

Provide corrosion resistant fasteners for wall panels, made of coated steel and of a type and size recommended by the manufacturer to meet the performance requirements and design loads.

Fasteners for accessories must be the manufacturer's standard. Provide an integral metal washer matching the color of attached material with compressible sealing EPDM gasket approximately 3/32 inch thick.

2.4.1.2 Hidden Fasteners

Provide corrosion resistant fasteners recommended by the manufacturer to meet the performance requirements and design loads.

2.4.1.3 Screws

Screws to be corrosion resistant coated steel of the type and size recommended by the manufacturer to meet the performance requirements.

2.4.1.4 Rivets

Rivets to be closed-end type, corrosion resistant coated steel or stainless steel where watertight connections are required.

2.4.1.5 Attachment Clips

Fabricate clips from steel hot-dipped galvanized in accordance with ASTM A653/A653M, Z275 G 90 or Series 300 stainless steel. Size, shape, thickness and capacity as required meeting the insulation thickness and design load criteria specified.

2.5 ACCESSORIES

2.5.1 General

All accessories must be compatible with the metal wall panels. Sheet metal flashing, trim, metal closure strips, caps and similar metal accessories must not be less than the minimum thickness specified for the wall panels. Exposed metal accessories/finishes to match the panels furnished, except as otherwise indicated. Molded foam rib, ridge and other closure strips must be non-absorbent closed-cell or solid-cell synthetic rubber or pre-molded neoprene to match configuration of the panels.
2.5.2 Rubber Closure Strips

Provide closed-cell, expanded cellular rubber conforming to ASTM D1056 and ASTM D1667; extruded or molded to the configuration of the specified wall panel and in lengths supplied by the wall panel manufacturer.

2.5.3 Metal Closure Strips

Provide factory fabricated steel closure strips to be the same thickness, color, finish and profile of the specified wall panel.

2.5.4 Joint Sealants

2.5.4.1 Sealants and Caulking

Provide approved gun type sealants for use in hand- or air-pressure caulking guns at temperatures above 4 degrees C (or frost-free application at temperatures above 10 degrees F with minimum solid content of 85 percent of the total volume. Sealants must dry with a tough, durable surface skin which permit remaining soft and pliable underneath, providing a weather-tight joint. No migratory staining is permitted on painted or unpainted metal, stone, glass, vinyl, or wood.

Prime all joints receiving sealants with a compatible one-component or two-component primer as recommended by the wall panel manufacturer.

2.5.4.2 Shop-Applied

Sealant for shop-applied caulking must be non-curing butyl compliant with AAMA 800 to ensure the sealant's plasticity at the time of field erection.

2.5.4.3 Field-Applied

Sealant for field-applied caulking must be an approved gun grade, non-sag one component polysulfide or two-component polyurethane with an initial maximum Shore A durometer hardness of 25, and conforming to ASTM C920, Type II. Color to match panel colors.

2.5.4.4 Pressure Sensitive Tape

Provide pressure sensitive tape sealant, 100 percent solid with a release paper backing; permanently elastic, non-sagging, non-toxic and non-staining as approved by the wall panel manufacturer.

2.6 SHEET METAL FLASHING AND TRIM

2.6.1 Fabrication

Shop fabricate sheet metal flashing and trim where practicable to comply with recommendations in SMACNA 1793 that apply to design, dimensions, metal, and other characteristics of item indicated. Obtain field measurements for accurate fit before shop fabrication.

Fabricate sheet metal flashing and trim without excessive oil canning, buckling, and tool marks and true to line and levels indicated, with exposed edges folded back to form hems.
2.7 REPAIR OF FINISH PROTECTION

Repair paint for color finished wall panels must be compatible paint of the same formula and color as the specified finish furnished by the wall panel manufacturer. Provide 2 pints of repair paint matching the specified wall panels.

PART 3 EXECUTION

3.1 EXAMINATION

Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal wall panel supports, and other conditions affecting performance of the Work.

Examine primary and secondary wall framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal wall panel manufacturer, UL, ASTM, ASCE 7 and as required for the geographical area where construction will take place.

Examine solid wall sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal wall panel manufacturer.

Examine roughing-in for components and systems penetrating metal wall panels to verify actual locations of penetrations relative to seam locations of metal wall panels before metal wall panel installation.

3.2 PREPARATION

Miscellaneous framing installation, including sub-purlins, girts, angles, furring, and other miscellaneous wall panel support members and anchorage must be according to metal wall panel manufacturer's written instructions.

3.3 WALL PANEL INSTALLATION

Provide full height metal wall panels, from bottom to top of area as indicated, unless otherwise indicated or restricted by shipping limitations. Anchor metal wall panels and other components of the Work securely in place, with provisions for thermal and structural movement in accordance with MBMA MBSM.

Erect wall panel system in accordance with the approved erection drawings, printed instructions and safety precautions of the manufacturer.

Sheets are not to be subjected to overloading, abuse, or undue impact. Bent, chipped, or defective sheets shall not be applied.

Sheets must be erected true and plumb and in exact alignment with the horizontal and vertical edges of the building, securely anchored, and with the indicated eave, and sill.

Work shall allow for thermal movement of the wall panel, movement of the building structure, and to provide permanent freedom from noise due to wind pressure.

Field cutting metal wall panels by torch is not permitted.
3.3.1 Anchor Clips

Anchor metal wall panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

3.3.2 Metal Protection

Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by metal wall panel manufacturer.

3.3.3 Joint Sealers

Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal wall panel assemblies. Provide types of gaskets, fillers, and sealants indicated or, if not indicated, types recommended by metal wall panel manufacturer.

3.4 FASTENER INSTALLATION

Anchor metal wall panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.

3.5 FLASHING, TRIM AND CLOSURE INSTALLATION

3.5.1 General Requirements

Comply with performance requirements, manufacturer's written installation instructions, and SMACNA 1793. Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams to form permanently watertight and weather resistant.

Install sheet metal work to form weather-tight construction without waves, warps, buckles, fastening stresses or distortion, and allow for expansion and contraction. Cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades is to be performed by sheet metal mechanics.

3.5.2 Metal Flashing

Install exposed metal flashing at building corners, sills and eaves, junctions between metal siding and walling. Exposed metal flashing must be the same material, color, and finish as the specified metal wall panel.

Fasten flashing at a minimum of 8 inches on center, except where flashing is held in place by the same screws that secure covering sheets.

Flashing is to be furnished in at least 8 foot lengths. Exposed flashing is to have 1 inch locked and blind-soldered end joints, and expansion joints at intervals of not more than 16 feet.

Exposed flashing and flashing subject to rain penetration to be bedded in the specified joint sealant.

Isolate flashing which is in contact with dissimilar metals by means of the
specified asphalt mastic material to prevent electrolytic deterioration.

Form drips to the profile indicated, with the edge folded back 1/2 inch to form a reinforced drip edge.

3.5.3 Closures

Install metal closure strips at open ends of corrugated or ribbed pattern walls, and at intersection of wall and wall unless open ends are concealed with formed eave flashing; and in other required areas.

Install mastic closure strips at intersection of the wall with metal walling; top and bottom of metal siding; heads of wall openings; and in other required locations.

3.6 WORKMANSHIP

Make lines, arises, and angles sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 1/2 inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and contraction.

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections which might affect the application. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight.

3.7 ACCEPTANCE PROVISIONS

3.7.1 Erection Tolerances

Erect metal wall panels straight and true with plumb vertical lines correctly lapped and secured in accordance with the manufacturer's written instructions.

3.7.2 Leakage Tests

Finished application of metal wall panels are to be subject to inspection and test for leakage by request of the Contracting Officer. Conduct inspection and tests at no cost to the Government.

Inspection and testing shall be made promptly after erection to permit correction of defects and the removal and replacement of defective materials.

3.7.3 Repairs to Finish

Scratches, abrasions, and minor surface defects of finish may be repaired with the specified repair materials. Finished repaired surfaces must be uniform and free from variations of color and surface texture.

Repaired metal surfaces that are not acceptable to the project requirements and/or Contracting Officer are to be immediately removed and replaced with new material.
3.7.4 Paint-Finish Metal Siding

Paint-finish metal siding will be tested for color stability by the Contracting Officer during the manufacturer's specified guarantee period. Panels that indicate color changes, fading, or surface degradation, determined by visual examination, must be removed and replaced with new panels at no expense to the Government. New panels will be subject to the specified tests for an additional year from the date of their installation.

3.8 FIELD QUALITY CONTROL

3.8.1 Construction Monitoring

Make visual inspections as necessary to ensure compliance with specified requirements. Additionally, verify the following:

a. Materials comply with the specified requirements.
b. All materials are properly stored, handled and protected from damage. Damaged materials are removed from the site.
c. Framing and substrates are in acceptable condition, in compliance with specification, prior to application of wall panels.
d. Panels are installed without buckles, ripples, or waves and in uniform alignment and modulus.
e. Side laps are formed, sealed, fastened or seam locked as required.
f. The proper number, type, and spacing of attachment clips and fasteners are installed.
g. Installer adheres to specified and detailed application parameters.
h. Associated flashing and sheet metal are installed in a timely manner in accord with the specified requirements.

3.9 CLEAN-UP AND DISPOSAL

Clean all exposed sheet metal work at completion of installation. Remove metal shavings, filings, nails, bolts, and wires from work area. Remove grease and oil films, excess sealants, handling marks, contamination from steel wool, fittings and drilling debris and scrub the work clean. Exposed metal surfaces must be free of dents, creases, waves, scratch marks, solder or weld marks, and damage to the finish coating.

Collect and place scrap/waste materials in containers. Promptly dispose of demolished materials. Do not allow demolished materials to accumulate on-site; transport demolished materials from government property and legally dispose of them.

-- End of Section --
SECTION 07 57 13
SPRAYED POLYURETHANE FOAM (SPF) INSULATION
05/11

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN INDUSTRIAL HYGIENE ASSOCIATION (AIHA)

AIHA Z88.6 (2006) Respiratory Protection - Respirator Use-Physical Qualifications for Personnel

ASTM INTERNATIONAL (ASTM)

ASTM D2126 (2009) Response of Rigid Cellular Plastics to Thermal and Humid Aging

INTERNATIONAL SAFETY EQUIPMENT ASSOCIATION (ISEA)

ANSI/ISEA Z87.1 (2015) Occupational and Educational Personal Eye and Face Protection Devices
1.2 DESCRIPTION OF SYSTEM

The system shall consist of sprayed in-place polyurethane foam insulation covered with a fireproof protective coating.

1.2.1 Design Requirements

1.2.1.1 Fire

The complete system shall have a UL 790, Class A fire rating, be listed as "fire classified" in UL Bld Mat Dir, and bear the UL label. Ratings from other independent laboratories may be substituted provided that the tests, requirements and ratings are documented to be equivalent, to the satisfaction of the Contracting Officer.

1.2.2 Performance Requirements

The installed system shall be free of defects including foam and coating delamination, blistering, or voids.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-03 Product Data

Spray urethane foam; G

Submit literature including material description, physical properties, recommended storage conditions, Material Safety Data Sheets, and shelf life expiration date.

Protective coating; G

Submit literature including material description, physical properties, recommended storage conditions, Material Safety Data Sheets, and shelf life expiration date.

SD-07 Certificates

Qualification of Manufacturer
Qualification of Applicator
SD-08 Manufacturer's Instructions

Polyurethane foam

Submit manufacturer's complete application instructions and details, and to include storage, handling, and warnings or precautions on flammability and toxicity. Include manufacturer's written recommendations for surface preparation of metals and other materials and surface substrates over which sprayed polyurethane foam and coating system will be applied.

Coating

Submit manufacturer's complete application instructions and details, and to include storage, handling, and warnings or precautions on flammability and toxicity. Include manufacturer's written recommendations for surface preparation of metals and other materials and surface substrates over which sprayed polyurethane foam and coating system will be applied.

Surface preparation

Submit manufacturer's complete application instructions and details, and to include storage, handling, and warnings or precautions on flammability and toxicity. Include manufacturer's written recommendations for surface preparation of metals and other materials and surface substrates over which sprayed polyurethane foam and coating system will be applied.

SD-11 Closeout Submittals

Reduced VOC Content for SPF Insulation; S

1.4 QUALITY ASSURANCE

1.4.1 Qualification of Manufacturer

Sprayed polyurethane foam and coating products manufacturer shall have a minimum of 10 years experience in the manufacture of polyurethane foam and coating products.

1.4.1.1 Manufacturer's Technical Representative

Manufacturer's technical representative shall have a minimum of 10 years experience with sprayed polyurethane foam insulation systems products and installations and be thoroughly familiar with the products to be installed, installation requirements and practices, quality control of the installation, and with any special considerations in the geographical area and climate where construction will take place. The representative shall be available to perform field inspections and attend meetings as specified.

1.4.2 Qualification of Applicator

The system applicator shall have prior manufacturer training in the application of sprayed polyurethane foam insulation and coating materials. Applicator shall be certified and approved by the foam and coating manufacturer to apply the specified materials. Applicator shall have a minimum of 5 years experience in application of the specified materials and
minimum of 10 years experience in the application of sprayed polyurethane foam systems. Mechanics applying the foam and coating materials shall have minimum 3 years prior experience in handling and spraying the type of materials specified and spray equipment must be operated by or under the direct full-time supervision of manufacturer-trained personnel.

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Delivery

Deliver and store materials in sufficient quantity to allow for uninterrupted flow of work. Materials shall be delivered to the jobsite in their original unopened packages, clearly marked with the manufacturer's name, brand name, description of contents, and shelf life of containerized materials.

1.5.2 Storage

Materials shall be stored in clean, dry areas, away from excessive heat, sparks, and open flame. Storage area shall be ventilated to prevent build-up of flammable gases. Maintain temperatures in the storage area below the materials' flash point and within limits recommended by the manufacturer's printed instructions.

1.5.3 Handling

Handle materials and containers during application work safely and in accordance with manufacturer recommendations. Store liquids in airtight containers and keep containers closed except when removing materials. Do not use equipment or containers containing remains of dissimilar materials. Do not expose foam component containers to direct sunlight for periods of time sufficient to cause contents to exceed 80 degrees F. Mark and remove from job site materials which have been exposed to moisture or that exceed shelf life limits. Not more than half the shelf life shall have expired when materials are applied.

1.6 ENVIRONMENTAL CONDITIONS

Do not apply system materials when ice, frost, surface moisture, or visible dampness is present on the surface to be covered, or when such dampness is imminent. Use moisture-measuring methods and equipment as required to verify that the moisture conditions of substrate surfaces are in accordance with system materials manufacturer requirements prior to application of foam and coating materials. Substrate temperatures shall be within limits recommended by the manufacturer's printed instructions, unless specified otherwise.

1.6.1 Sprayed Polyurethane Foam

Do not apply sprayed polyurethane foam if the surface temperature is less than 50 degrees F, higher than 130 degrees F, or is less than 5 degrees F above the dewpoint. Relative humidity shall be within limits recommended by the sprayed polyurethane foam manufacturer's printed instructions. Determine the dewpoint at the jobsite prior to and upon completion of each work day unless variable weather conditions require more frequent monitoring. The wet bulb and dry bulb temperatures during application of sprayed polyurethane foam shall be within the ranges recommended by the sprayed polyurethane foam manufacturer.
1.6.2 Coating

Prior to applying coating, check polyurethane foam with a moisture resistance meter to ensure that foam is dry. Apply coating between the temperature ranges of 50 and 110 degrees F, ambient.

1.7 COORDINATION

Installation operations shall be coordinated with work of other trades to ensure that components are installed as required to permit continuous installation of the sprayed polyurethane foam and protective coating system. The installed system shall be protected from damage. Damaged areas shall be repaired.

1.8 CONTRACTOR'S FOAM SPRAY EQUIPMENT

1.8.1 Applicator

Use an airless foam spray gun of the mechanical, self-cleaning type, that does not require a flushing solvent during the spray operation.

1.8.2 Equipment Calibration

Fully calibrate the foam metering equipment to monitor each liquid component to within 2 percent of the foam material manufacturer's required metering ratio. Calibrate spray equipment each day at start of operations, after each restart if spraying operations have been terminated for more than one hour, whenever there is a change in fan pattern or pressure, whenever slow curing areas are noticed, whenever a change is made in hose length or working height, and after changeover between materials. Calibration shall consist of demonstrating that the equipment is adjusted to deliver components in proper mix and proportion. Calibration test shall be done on cardboard or plywood adjacent to the area to be sprayed.

1.8.3 Metering Equipment Requirements

Use foam metering equipment capable of developing and maintaining the foam manufacturer's required liquid component pressures and temperatures. Foam metering equipment shall have gages for visual monitoring. Equipment shall provide temperature control of foam components to within the temperature ranges recommended by the foam manufacturer's printed instructions.

1.8.4 Moisture Protection

Protect the surfaces of component supply containers or tanks used to feed the foam metering equipment from moisture.

1.8.5 Compressed Air

Supply compressed air in contact with foam components during mixing or atomization through moisture traps that are continuously bled.

1.8.6 Dispense Excess Materials

Do not deposit materials used for cleaning of equipment or materials dispensed for calibration purposes and establishment of spray gun pattern on the surfaces to be sprayed. Dispense such materials into scrap containers or onto plastic film, or cardboard, and dispose of in compliance with safety requirements and jobsite regulations.
1.9 SPECIAL SAFETY PROVISIONS

During application, the following shall be required unless in conflict with the manufacturer's recommendations or requirements of a recognized legal authority, in which case, the manufacturer's recommendations or the legal authority's requirements take precedence:

1.9.1 Special Equipment

1.9.1.1 Air Masks

Wear fresh air supply masks when applying foam or when handling hazardous liquid materials. Respiratory protective devices shall be as recommended by AIHA Z88.6. Instruct personnel required to use respiratory protective devices in the use of the devices. Maintain such equipment and inspect regularly.

1.9.1.2 Eye and Face Masks

Use eye and face protection during materials application. Eye and face protective equipment shall meet the requirements of ANSI/ISEA Z87.1.

1.9.1.3 Clothing and Gloves

Wear protective clothing and gloves during materials application. Skin areas not covered by clothing shall be protected by protective creams.

1.9.2 Handling Precautions

1.9.2.1 Venting of Material Containers

Partially unscrew material container and drum caps to gradually vent the containers prior to opening. Do not inhale vapors. Decontaminate empty component containers by filling with water and allowing to stand for 48 hours with bung caps removed. Under no circumstances seal, stop, or close the containers which have been emptied of the foam component.

1.10 CONFORMANCE AND COMPATIBILITY

The entire system shall be in accordance with specified and indicated requirements, including fire resistance requirements. Work not specifically addressed and any deviation from specified requirements shall be in general accordance with applicable recommendations of the manufacturer published recommendations and details, and compatible with surrounding components and construction. Any deviation from specified or indicated requirements shall be submitted to the Contracting Officer for approval prior to installation.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with
Section 01 33 29 SUSTAINABILITY REPORTING paragraph PRODUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 SPRAY URETHANE FOAM

Urethane foam shall be standard product of the manufacturer, and containers shall be factory marked with the manufacturer's name or trademark. The foam material shall be of a formulation suitable for the environmental and climatic conditions in which foam will be applied. Urethane foam shall meet the following requirements:

<table>
<thead>
<tr>
<th>Properties in Inch-Pound Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties</td>
</tr>
<tr>
<td>Density (Sprayed in Place)</td>
</tr>
<tr>
<td>K-Factor (aged)</td>
</tr>
<tr>
<td>Compressive Strength Parallel to Foam Rise</td>
</tr>
<tr>
<td>Dimensional Stability (Humid Aging) 7 days volume change 160 degrees F, 100 relative humidity</td>
</tr>
<tr>
<td>Water Vapor Permeability</td>
</tr>
<tr>
<td>Closed Cell Content</td>
</tr>
<tr>
<td>Water Absorption</td>
</tr>
<tr>
<td>Flammability</td>
</tr>
</tbody>
</table>

2.3 PROTECTIVE COATING

In open (occupied) areas and attics, provide intumescent coating for application over spray-applied polyurethane foam insulation to meet requirements of International Building Code, latest edition.

2.4 INSPECTION TOOLS

Maintain the following inspection tools on site for use in evaluating conditions and quality:

a. Moisture meter - to measure degree of moisture within or on the
substrate surface.

b. Surface thermometer - to read temperature of a surface.

c. Optical comparator - to read dry film thickness.

d. Magnifying glass, minimum 3 inch - to inspect surface conditions.

e. Wet film thickness gauge - read wet film thickness.

f. Probe wire (0.025 inches diameter, maximum) - to inspect foam depth.

PART 3 EXECUTION

3.1 PROTECTION OF PROPERTY

Protect the building structure, equipment, and other surfaces adjacent to the work from overspray from foam and coating materials. Protective coverings shall be secured and vented to prevent collection of moisture on covered surfaces. Use protective shields or barriers when spraying along open edges and walls to prevent uncontrolled overspray. Any surfaces damaged by system products shall be restored or replaced to the satisfaction of the Government at no additional expense to the Government.

3.1.1 Masking

Provide masking protection to protect surfaces immediately adjacent to foam and coating terminations at time of application. Adjust or provide new masking protection at perimeter to protect surfaces immediately adjacent to coating terminations and to provide for clean smooth coating termination lines.

3.1.2 Warning Signs

Post warning signs at ground level in the adjacent to the work area and a minimum of 150 feet from the application area stating the area is off limits to unauthorized persons and warning of potential overspray hazard. Place clearly visible and legible warning sign at entrance to primary road leading to the project facility warning of presence of flammable materials, irritating fumes, and potential of overspray damage.

3.2 SPECIAL PRECAUTIONS AND INSTRUCTIONS

3.2.1 Material Handling

Handle materials and containers during application work safely and in accordance with recommendations of the manufacturer. Store liquids in airtight containers and keep containers closed except when removing materials. Do not use equipment or containers containing remains of dissimilar materials or products.

3.2.2 Fire and Explosion Hazards

Prohibit open flames, sparks, welding, and smoking in the application area. Provide and maintain a fire extinguisher of appropriate type and size in the application area.
3.3 PREPARATION

3.3.1 Preapplication Inspection

3.3.1.1 Surface Examination

Examine surfaces and correct defects that may adversely affect the system application or performance.

3.4 GENERAL APPLICATION

Application shall be as specified and in general accord with requirements and recommendations of ASTM D5469/D5469M.

3.5 SURFACE PREPARATION FOR FOAM APPLICATION

Surfaces that are to receive spray foam application shall be dry; completely cured; free of grease, oils, dirt and other foreign matter or contaminants which will interfere with total adhesion of polyurethane foam. Prior to foam application, fill or otherwise seal openings where foam spray may damage or contaminate interior items or surfaces.

3.5.1 Ferrous Metal

Sandblast iron and steel surfaces which are not primed, shop painted, or otherwise protected in accordance with SSPC SP 6/NACE No.3. Remove loose rust from shop-primed iron and steel surfaces by scraping or wire brushing.

3.6 SPRAY FOAM APPLICATION

3.6.1 Spray Foam

Apply foam to provide a minimum finished thickness of 4 inches in at least two spray passes. Apply each spray pass at right angles to the previous pass to the extent practicable. Each pass, except for filleting or tapering as required at terminations, shall be between 1/2 inch and 1 inch in thickness. Check foam thickness during application by probing depth with probe wire. Adjust application procedures as necessary to develop required foam thickness.

3.6.2 Terminations

Unless otherwise indicated, conform with manufacturer's standard details, for foam thickness around penetrations, curbs, and other terminations. Transitions between horizontal and vertical surfaces shall be smooth and sprayed at a nominal angle of 45 degrees.

3.6.3 Application Time Limits

Do not start foam application on an area larger than can be brought to the specified full foam thickness, cured, and coated with the base coat of the coating system on the same day. No applied foam, except for leading edges, shall stand uncoated overnight. Inspect the leading edge of foam before resuming work the next day. Remove and replace damaged or wet foam material.

3.6.4 Curing Time

Cure the applied foam for a minimum of 2 hours and as otherwise recommended.
by the foam manufacturer prior to application of the protective coating.

3.6.5 Spray Foam Clean Up

Remove overspray masking materials and coverings upon completion of the spray foam application and prior to the application of the protective coating. Do not remove the masking over air intake vents until two hours after application of the foam. Remove foam overspray found on adjacent surfaces not scheduled to application of the protective coating.

3.7 SURFACE PREPARATION FOR PROTECTIVE COATING APPLICATION

Apply coating on surfaces free of water, grease, oils, dirt, debris, and other foreign materials, and cured completely. Foam surfaces to receive coating shall be as specified.

3.8 PROTECTIVE COATING APPLICATION

Check coating wet film thickness during application to ensure that the wet mil thickness required for each coat is provided. For each coat, provide a dry film thickness not less than specified in paragraph entitled "Minimum Dry Film Thickness (DFT) in Mils." Provide smooth coatings free of runs, dry spray, or overspray, and provide a uniform film over the foam. Coating applications shall consider possible coverage loss due to overspray, waste, foam texture and other factors that may affect coverage rate. Adjust methods and quantities to provide the minimum DFT for each coating layer free of blowholes, pinholes, voids, blisters, and other conditions detrimental to coating performance.

3.8.1 Coating Application Clean-Up

Clean surfaces that receive coating materials which are not designated to receive such materials. Remove overspray masking materials and coverings upon completion of the coating work.

3.9 FIELD QUALITY CONTROL

3.9.1 Construction Monitoring

During progress of the work, Contractor shall make visual inspections as necessary to insure compliance with specified parameters. Additionally, verify the following:

a. Protection measures are in place.

b. Equipment is in working order. Metering devices are accurate.

c. Materials are not installed in adverse weather.

d. Surfaces are cleaned and primed and substrates are in acceptable condition prior to application of materials.

e. Materials comply with specified requirements.

f. All materials are properly stored, handled and protected from moisture or other damages.

g. Foam material is applied in minimum of two passes, or lifts, applied perpendicular to the subsequent pass and in thickness from 1/2 inch to
1-1/2 inches per lift.

h. Foam is free of blistering in its formation and the surface texture is as specified.

i. Foam is cured minimum of 2 hours and in accordance with manufacturer requirements prior to coating application.

3.10 CORRECTION OF DEFICIENCIES

Correction of deficiencies shall be as directed by the Contracting Officer at no additional cost to the Government.

3.11 CLEAN-UP AND DISPOSAL

All waste material, material containers, and debris shall be cleaned up daily and placed in appropriate trash containers. At completion of the work all waste material, debris, and containers shall be removed from the job site and disposed of as required by local regulations.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

1.2 SCOPE

The work of this Section includes the following categories:
- New sheet metal flashing around existing Atrium cupola and other miscellaneous sheet metal flashing as shown on the Drawings.
- New sheet metal gutters and downspouts as noted on the Drawings.

1.3 GENERAL REQUIREMENTS

Finished sheet metalwork will form a weathertight construction without waves, warps, buckles, fastening stresses or distortion, which allows for expansion and contraction. Sheet metal mechanic is responsible for cutting, fitting, drilling, and other operations in connection with sheet metal required to accommodate the work of other trades. Coordinate installation of sheet metal items used in conjunction with roofing with roofing work to permit continuous roofing operations.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Gutters; G
Downspouts; G

Flashing; G

Indicate thicknesses, dimensions, fastenings and anchoring methods, expansion joints, and other provisions necessary for thermal expansion and contraction. Scaled manufacturer's catalog data may be submitted for factory fabricated items.

1.5 DELIVERY, HANDLING, AND STORAGE

Package and protect materials during shipment. Uncrate and inspect materials for damage, dampness, and wet-storage stains upon delivery to the job site. Remove from the site and replace damaged materials that cannot be restored to like-new condition. Handle sheet metal items to avoid damage to surfaces, edges, and ends. Store materials in dry, weather-tight, ventilated areas until immediately before installation.

PART 2 PRODUCTS

2.1 MATERIALS

Do not use lead, lead-coated metal, or galvanized steel. Use any metal listed by SMACNA Arch. Manual for a particular item, unless otherwise specified or indicated. Conform to the requirements specified and to the thicknesses and configurations established in SMACNA Arch. Manual for the materials. Different items need not be of the same metal.

Furnish sheet metal items in 8 to 10 foot lengths. Single pieces less than 8 feet long may be used to connect to factory-fabricated inside and outside corners, and at ends of runs. Factory fabricate corner pieces with minimum 12 inch legs. Provide accessories and other items essential to complete the sheet metal installation. Provide accessories made of the same or compatible materials as the items to which they are applied. Fabricate sheet metal items of the materials specified below and to the gage, thickness, or weight shown in Table I at the end of this section. Provide sheet metal items with mill finish unless specified otherwise. Where more than one material is listed for a particular item in Table I, each is acceptable and may be used except as follows:

2.1.1 Steel Sheet, Zinc-Coated (Galvanized)

ASTM A653/A653M.

2.1.1.1 Finish

Exposed exterior items of zinc-coated steel sheet must have a baked-on, factory-applied color coating of polyvinylidene fluoride or other equivalent fluorocarbon coating applied after metal substrates have been cleaned and pretreated. Provide finish coating dry-film thickness of 0.8 to 1.3 mils and color as indicated in Section 09 06 00 SCHEDULES FOR FINISHES.

2.1.2 Solder

ASTM B32, 95-5 tin-antimony.
2.1.3 Fasteners

Use the same metal or a metal compatible with the item fastened. Use stainless steel fasteners to fasten dissimilar materials.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Metal Roofing

3.1.1.1 Flat-Seam Method

Lay metal so short dimension is parallel to eave lines and so water will flow over and not into seams. Make seams by turning edges of sheet 3/4 inch and lock and solder together. If sheets are laid one at a time, secure to roof deck with cleats, using three cleats to each sheet, two on long side and one on short side. Use cleats inch wide, hooked over 3/4 inch upturned edges of sheets, and nail to roof deck with two one inch long nails. Turn back roof end of cleat over nail heads before next sheet is applied. If desired, sheets may be made into long lengths at shop by locking short dimensions together and soldering seams thus formed. Turn long lengths 3/4 inch, and secure each length to roof deck by cleats spaced 12 inch apart. Mallet and solder seams after pans are in place. All sheets to be same length, except as required to complete run or maintain pattern. Locate transverse joints of each panel half way between joints in adjacent sheets. Align joints of alternate sheets horizontally to produce uniform pattern, as shown in SMACNA Arch. Manual.

3.1.2 Workmanship

Make lines and angles sharp and true. Free exposed surfaces from visible wave, warp, buckle, and tool marks. Fold back exposed edges neatly to form a 1/2 inch hem on the concealed side. Make sheet metal exposed to the weather watertight with provisions for expansion and contraction.

Make surfaces to receive sheet metal plumb and true, clean, even, smooth, dry, and free of defects and projections. For installation of items not shown in detail or not covered by specifications conform to the applicable requirements of SMACNA 1793, Architectural Sheet Metal Manual. Provide sheet metal flashing in the angles formed where roof decks abut walls, curbs, ventilators, pipes, or other vertical surfaces and wherever indicated and necessary to make the work watertight. Join sheet metal items together as shown in Table II.

3.1.3 Nailing

Confine nailing of sheet metal generally to sheet metal having a maximum width of 18 inch. Confine nailing of flashing to one edge only. Space nails evenly not over 3 inch on center and approximately 1/2 inch from edge unless otherwise specified or indicated. Face nailing will not be permitted. Where sheet metal is applied to other than wood surfaces, include in shop drawings, the locations for sleepers and nailing strips required to secure the work.

3.1.4 Cleats

Provide cleats for sheet metal 18 inch and over in width. Space cleats evenly not over 12 inch on center unless otherwise specified or indicated.
Unless otherwise specified, provide cleats of 2 inch wide by 3 inch long and of the same material and thickness as the sheet metal being installed. Secure one end of the cleat with two nails and the cleat folded back over the nailheads. Lock the other end into the seam. Pretin cleats for soldered seams.

3.1.5 Bolts, Rivets, and Screws

Install bolts, rivets, and screws where indicated or required. Provide compatible washers where required to protect surface of sheet metal and to provide a watertight connection. Provide mechanically formed joints in aluminum sheets 0.040 inch or less in thickness.

3.1.6 Seams

Straight and uniform in width and height with no solder showing on the face.

3.1.6.1 Flat-lock Seams

Finish not less than 3/4 inch wide.

3.1.6.2 Lap Seams

Finish soldered seams not less than one inch wide. Overlap seams not soldered, not less than 3 inch.

3.1.6.3 Loose-Lock Expansion Seams

Not less than 3 inch wide; provide minimum one inch movement within the joint. Completely fill the joints with the specified sealant, applied at not less than 1/8 inch thick bed.

3.1.6.4 Flat Seams

Make seams in the direction of the flow.

3.1.7 Soldering

Pretin edges of sheet metal before soldering is begun. Seal the joints in aluminum sheets of 0.040 inch or less in thickness with specified sealants. Do not solder aluminum.

3.1.8 Protection from Contact with Dissimilar Materials

3.1.8.1 Metal Surfaces

Paint surfaces in contact with mortar, concrete, or other masonry materials with alkali-resistant coatings such as heavy-bodied bituminous paint.

3.1.8.2 Wood or Other Absorptive Materials

Paint surfaces that may become repeatedly wet and in contact with metal with two coats of aluminum paint or a coat of heavy-bodied bituminous paint.

3.1.9 Expansion and Contraction

Provide expansion and contraction joints at not more than 40 foot intervals. Provide an additional joint where the distance between the last expansion joint and the end of the continuous run is more than half the required
interval. Space joints evenly.

3.1.10 Edge Strip

Hook the lower edge of fascias at least 3/4 inch over a continuous strip of the same material bent outward at an angle not more than 45 degrees to form a drip. Nail hook strip to a wood nailer at 6 inch maximum on center. Where fastening is made to concrete or masonry, use screws spaced 12 inch on center driven in expansion shields set in the concrete or masonry.

3.1.11 Joints

Leave open the section ends of fascias 1/4 inch and backed with a formed flashing plate, mechanically fastened in place and lapping each section end a minimum of 4 inch set laps in plastic cement. Face nailing will not be permitted.

3.1.12 Gutters

The hung type of shape indicated and supported on underside by brackets that permit free thermal movement of the gutter. Provide gutters in sizes indicated complete with mitered corners, end caps, outlets, brackets, and other accessories necessary for installation. Bead with hemmed edge or reinforce the outer edge of gutter with a stiffening bar not less than 3/4 by 3/16 inch of material compatible with gutter. Fabricate gutters in sections not less than 8 feet. Lap the sections a minimum of one inch in the direction of flow or provide with concealed splice plate 6 inch minimum. Join the gutters, other than aluminum, by riveted and soldered joints. Join aluminum gutters with riveted sealed joints. Provide expansion-type slip joints midway between outlets. Install gutters below slope line of the roof so that snow and ice can slide clear. Support gutters on adjustable hangers spaced not more than 30 inch on center. Adjust gutters to slope uniformly to outlets, with high points occurring midway between outlets. Fabricate hangers and fastenings from metals.

3.1.13 Downspouts

Space supports for downspouts according to the manufacturer's recommendation for the steel substrate. Types, shapes and sizes are indicated. Provide complete including elbows and offsets. Provide downspouts in approximately 10 foot lengths. Provide end joints to telescope not less than 1/2 inch and lock longitudinal joints. Provide gutter outlets with wire ball strainers for each outlet. Provide strainers to fit tightly into outlets and be of the same material used for gutters. Keep downspouts not less than one inch away from walls. Fasten to the walls at top, bottom, and at an intermediate point not to exceed 5 feet on center with leader straps or concealed rack-and-pin type fasteners. Form straps and fasteners of metal compatible with the downspouts.

3.1.13.1 Terminus

Neatly fit into the drainage connection the downspouts terminating in drainage lines and fill the joints with a portland cement mortar cap sloped away from the downspout. Provide downspouts terminating in splash blocks with elbow-type fittings. Provide splash pans as specified.

3.2 CLEANING

Clean exposed sheet metal work at completion of installation. Remove
3.3 REPAIRS TO FINISH

Scratches, abrasions, and minor surface defects of finish may be repaired in accordance with the manufacturer's printed instructions and as approved. Repair damaged surfaces caused by scratches, blemishes, and variations of color and surface texture. Replace items which cannot be repaired.

3.4 FIELD QUALITY CONTROL

3.4.1 Procedure

<table>
<thead>
<tr>
<th>TABLE I. SHEET METAL WEIGHTS, THICKNESSES, AND GAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashings?</td>
</tr>
<tr>
<td>Sheets, smooth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE II. SHEET METAL JOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF JOINT</td>
</tr>
<tr>
<td>Item Designation</td>
</tr>
<tr>
<td>Flashings</td>
</tr>
<tr>
<td>Sheet, smooth</td>
</tr>
</tbody>
</table>

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

Furnish and install tested and listed firestopping systems, combination of materials, or devices to form an effective barrier against the spread of flame, smoke and gases, and maintain the integrity of fire resistance rated walls, partitions, floors, and ceiling-floor assemblies, including through-penetrations and construction joints and gaps.

a. Through-penetrations include the annular space around pipes, tubes, conduit, wires, cables and vents.

b. Construction joints include those used to accommodate expansion, contraction, wind, or seismic movement; firestopping material shall not interfere with the required movement of the joint.

Gaps requiring firestopping include gaps between the top of fire-rated walls and roof or floor deck above and at the intersection of shaft assemblies and adjoining fire-resistance rated assemblies.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

FM GLOBAL (FM)

FM 4991 (2013) Approval of Firestop Contractors

1.3 SEQUENCING

Coordinate the specified work with other trades. Apply firestopping materials, at penetrations of pipes and ducts, prior to insulating, unless insulation meets requirements specified for firestopping. Apply firestopping materials at building joints and construction gaps, prior to completion of enclosing walls or assemblies. Firestop material shall be inspected and approved prior to final completion and enclosing of any assemblies that may conceal installed firestop.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Firestopping Materials; G

SD-06 Test Reports

Inspection; G

SD-07 Certificates

Installer Qualifications

1.5 QUALITY ASSURANCE

1.5.1 Installer

Engage an experienced Installer who is:

a. FM Research approved in accordance with FM 4991, operating as a UL Certified Firestop Contractor, or

b. Certified, licensed, or otherwise qualified by the firestopping...
manufacturer as having the necessary staff, training, and a minimum of 3 years experience in the installation of manufacturer's products in accordance with specified requirements. Submit documentation of this experience. A manufacturer's willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer installer qualifications on the buyer. The Installer shall have been trained by a direct representative of the manufacturer (not distributor or agent) in the proper selection and installation procedures. The installer shall obtain from the manufacturer and submit written certification of training, and retain proof of certification for duration of firestop installation.

1.6 DELIVERY, STORAGE, AND HANDLING

Deliver materials in the original unopened packages or containers showing name of the manufacturer and the brand name. Store materials off the ground, protected from damage and exposure to elements and temperatures in accordance with manufacturer requirements. Remove damaged or deteriorated materials from the site. Use materials within their indicated shelf life.

PART 2 PRODUCTS

2.1 FIRESTOPPING SYSTEM

Submit manufacturer's descriptive data, typical details conforming to UL Fire Resistance or other details certified by another nationally recognized testing laboratory, installation instructions or UL listing details for a firestopping assembly in lieu of fire-test data or report. For those firestop applications for which no UL tested system is available through a manufacturer, a manufacturer's engineering judgment, derived from similar UL system designs or other tests, shall be submitted for review and approval prior to installation. Submittal must indicate the firestopping material to be provided for each type of application.

Also, submit a written report indicating locations of and types of penetrations and types of firestopping used at each location; record type by UL list printed numbers.

2.2 FIRESTOPPING MATERIALS

Provide firestopping materials, supplied from a single domestic manufacturer, consisting of commercially manufactured, asbestos-free, nontoxic products FM APP GUIDE approved, or UL listed, for use with applicable construction and penetrating items, complying with the following minimum requirements:

2.2.1 Fire Hazard Classification

Material shall have a flame spread of 25 or less, and a smoke developed rating of 50 or less, when tested in accordance with ASTM E84 or UL 723. Material shall be an approved firestopping material as listed in UL Fire Resistance or by a nationally recognized testing laboratory.

2.2.2 Toxicity

Material shall be nontoxic and carcinogen free to humans at all stages of application or during fire conditions and shall not contain hazardous chemicals or require harmful chemicals to clean material or equipment.
2.2.3 Fire Resistance Rating

Firestop systems shall be UL Fire Resistance listed or FM APP GUIDE approved with "F" rating at least equal to fire-rating of fire wall or floor in which penetrated openings are to be protected. Where required, firestop systems shall also have "T" rating at least equal to the fire-rated floor in which the openings are to be protected.

2.2.3.1 Through-Penetrations

Firestopping materials for through-penetrations, as described in paragraph SUMMARY, shall provide "F", "T" and "L" fire resistance ratings in accordance with ASTM E814 or UL 1479. Fire resistance ratings shall be as follows:

2.2.3.1.1 Penetrations of Fire Resistance Rated Walls and Partitions

F Rating = Rating of wall or partition being penetrated.

2.2.3.1.2 Penetrations of Fire Resistance Rated Floors and Floor-Ceiling Assemblies

Where the penetrating item is outside of a wall cavity the F rating must be equal to the fire resistance rating of the floor penetrated, and the T rating shall be in accordance with the requirements of ICC IBC.

2.2.3.2 Construction Joints and Gaps

Fire resistance ratings of construction joints, as described in paragraph SUMMARY, and gaps such as those between floor slabs shall be the same as the construction in which they occur. Construction joints and gaps shall be provided with firestopping materials and systems that have been tested in accordance with ASTM E119, ASTM E1966 or UL 2079 to meet the required fire resistance rating. Systems installed at construction joints shall meet the cycling requirements of ASTM E1399/E1399M or UL 2079. All joints at the intersection of the top of a fire resistance rated wall and the underside of a fire-rated floor or floor ceiling assembly shall provide a minimum class II movement capability.

2.2.4 Material Certification

Submit certificates attesting that firestopping material complies with the specified requirements. For all intumescent firestop materials used in through penetration systems, manufacturer shall provide certification of compliance with UL 1479.

PART 3 EXECUTION

3.1 PREPARATION

Areas to receive firestopping must be free of dirt, grease, oil, or loose materials which may affect the fitting or fire resistance of the firestopping system. Prepare surfaces as recommended by the manufacturer.

3.2 INSTALLATION

Completely fill void spaces with firestopping material regardless of geometric configuration, subject to tolerance established by the manufacturer. Firestopping systems for filling floor voids 4 inches or
more in any direction must be capable of supporting the same load as the floor is designed to support or be protected by a permanent barrier to prevent loading or traffic in the firestopped area. Install firestopping in accordance with manufacturer's written instructions. Provide tested and listed firestop systems in the following locations, except in floor slabs on grade:

a. Penetrations of duct, conduit, tubing, cable and pipe through floors and through fire-resistance rated walls, partitions, and ceiling-floor assemblies.

b. Penetrations of vertical shafts such as pipe chases, elevator shafts, and utility chutes.

c. Gaps at perimeter of fire-resistance rated walls and partitions, such as between the top of the walls and the bottom of roof decks.

d. Construction joints in floors and fire rated walls and partitions.

e. Other locations where required to maintain fire resistance rating of the construction.

3.2.1 Insulated Pipes and Ducts

Thermal insulation shall be cut and removed where pipes or ducts pass through firestopping, unless insulation meets requirements specified for firestopping. Replace thermal insulation with a material having equal thermal insulating and firestopping characteristics.

3.2.2 Fire Dampers

Install and firestop fire dampers in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. Firestop installed with fire damper must be tested and approved for use in fire damper system. Firestop installed with fire damper must be tested and approved for use in fire damper system.

3.2.3 Data and Communication Cabling

Cabling for data and communication applications shall be sealed with re-enterable firestopping products.

3.2.3.1 Re-Enterable Devices

Firestopping devices shall be pre-manufactured modular devices, containing built-in self-sealing intumescent inserts. Firestopping devices shall allow for cable moves, additions or changes without the need to remove or replace any firestop materials. Devices must be capable of maintaining the fire resistance rating of the penetrated membrane at 0 percent to 100 percent visual fill of penetrants; while maintaining "L" rating of <10 cfm/sf at 0 percent to 100 percent visual fill.

3.2.3.2 Re-Sealable Products

Provide firestopping pre-manufactured modular products, containing self-sealing intumescent inserts. Firestopping products shall allow for cable moves, additions or changes. Devices shall be capable of maintaining the fire resistance rating of the penetrated membrane at 0 percent to 100 percent visual fill of penetrants.
3.3 INSPECTION

For all projects, the firestopped areas shall not be covered or enclosed until inspection is complete and approved by the Contracting Officer. Inspect the applications initially to ensure adequate preparations (clean surfaces suitable for application, etc.) and periodically during the work to assure that the completed work has been accomplished according to the manufacturer's written instructions and the specified requirements. Submit written reports indicating locations of and types of penetrations and types of firestopping used at each location; type shall be recorded by UL listed printed numbers.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C734 (2015) Low-Temperature Flexibility of Latex Sealants After Artificial Weathering
ASTM C834 (2014) Latex Sealants
ASTM C919 (2012) Use of Sealants in Acoustical Applications

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD)

SCAQMD Rule 1168 (1989; R 2005) Adhesive and Sealant Applications
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

- SD-03 Product Data
 - Sealants; G
 - Compression Seals; G
 - Primers
 - Bond Breakers
 - Backstops
- SD-04 Samples
 - Sealants; G
 - Compression Seals; G
- SD-07 Certificates
 - Indoor Air Quality
- SD-11 Closeout Submittals
 - Indoor Air Quality For Interior Sealants; S

1.3 PRODUCT DATA

Include storage requirements, shelf life, curing time, instructions for mixing and application, and accessories. Provide manufacturer's Material Safety Data Sheet (MSDS) for each solvent, primer and sealant material proposed.

1.4 CERTIFICATIONS

1.4.1 Indoor Air Quality Certifications

Submit required indoor air quality certifications in one submittal package.

1.4.1.1 Adhesives and Sealants

Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or
provide validation by other third-party program that products meet the requirements of this paragraph. Sealants and non-aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168. Provide current product certification documentation from certification body.

1.5 ENVIRONMENTAL CONDITIONS

Apply sealant when the ambient temperature is between 40 and 90 degrees F.

1.6 DELIVERY AND STORAGE

Deliver materials to the jobsite in unopened manufacturers' sealed shipping containers, with brand name, date of manufacture, color, and material designation clearly marked thereon. Label elastomeric sealant containers to identify type, class, grade, and use. Handle and store materials in accordance with manufacturer's printed instructions. Prevent exposure to foreign materials or subject to sustained temperatures exceeding 90 degrees F or lower than 0 degrees F. Keep materials and containers closed and separated from absorptive materials such as wood and insulation.

1.7 QUALITY ASSURANCE

1.7.1 Compatibility with Substrate

Verify that each sealant is compatible for use with each joint substrate in accordance with sealant manufacturer's printed recommendations for each application.

1.7.2 Joint Tolerance

Provide joint tolerances in accordance with manufacturer's printed instructions.

1.7.3 Adhesion

Provide in accordance with ASTM C1193 or ASTM C1521.

PART 2 PRODUCTS

2.1 REFERENCES TO MANUFACTURER'S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.2.1 Reduce Volatile Organic Compounds (VOC) (Low-Emitting Materials) for Products

Reduced VOC content is identified for some products in this section;
provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.3 SEALANTS

Provide sealant products that have been tested, found suitable, and documented as such by the manufacturer for the particular substrates to which they will be applied.

2.3.1 Interior Sealants

Provide ASTM C834 sealant. Provide certification of indoor air quality for interior sealants. Provide certification of indoor air quality for interior sealants. Location(s) and color(s) of sealant for the following. Note, color "as selected" refers to manufacturer's full range of color options:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Small voids between walls or partitions and adjacent casework, shelving, door frames, built-in or surface mounted equipment and fixtures, and similar items.</td>
<td>Match adjacent surface color</td>
</tr>
<tr>
<td>b. Perimeter of frames at doors, windows, and access panels which adjoin exposed interior concrete and masonry surfaces.</td>
<td>Match door/window frame color</td>
</tr>
<tr>
<td>c. Joints of interior masonry walls and partitions which adjoin columns, pilasters, and exterior walls unless otherwise detailed.</td>
<td>Match wall color</td>
</tr>
<tr>
<td>d. Joints between edge members for acoustical tile and adjoining vertical surfaces.</td>
<td>Match wall color</td>
</tr>
<tr>
<td>e. Interior locations, not otherwise indicated or specified, where small voids exist between materials specified to be painted.</td>
<td>Match adjacent surface color</td>
</tr>
</tbody>
</table>

2.3.2 Exterior Sealants

For joints in vertical surfaces, provide ASTM C920, Type S or M, Grade NS, Class 25, Use NT. For joints in horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide location(s) and color(s) of sealant as follows. Note, color "as selected" refers to manufacturer's full range of color options:
a. Joints and recesses formed where frames and subsills of windows, doors, louvers, and vents adjoin metal wall panels or metal frames. Use sealant at both exterior and interior surfaces of exterior wall penetrations.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joints and recesses formed where frames and subsills of windows,</td>
<td>Match adjacent surface color</td>
</tr>
<tr>
<td>doors, louvers, and vents adjoin metal wall panels or metal frames.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Voids where items pass through exterior walls.</td>
<td>Match adjacent surface color</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Metal-to-metal joints where sealant is indicated or specified.</td>
<td>Match adjacent surface color</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Joints between ends of fascia, copings, and adjacent walls.</td>
<td>Match adjacent surface color</td>
</tr>
</tbody>
</table>

2.3.3 Floor Joint Sealants

ASTM C920, Type S or M, Grade P, Class 25, Use T. Provide certification of indoor air quality for interior floor joint sealants. Provide location(s) and color(s) of sealant as follows. Note, color "as selected" refers to manufacturer's full range of color options:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Seats of metal thresholds for exterior doors.</td>
<td>Gray</td>
</tr>
</tbody>
</table>

2.3.4 Acoustical Sealants

Rubber or polymer based acoustical sealant in accordance with ASTM C919 to have a flame spread of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Provide non-staining acoustical sealant with a consistency of 250 to 310 when tested in accordance with ASTM D217. Acoustical sealant must remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734. Provide certification of indoor air quality for interior acoustical sealants.

2.4 PRIMERS

Non-staining, quick drying type and consistency as recommended by the sealant manufacturer for the particular application. Provide primers for interior applications that meet the indoor air quality requirements of the paragraph SEALANTS above.

2.5 BOND BREAKERS

Type and consistency as recommended by the sealant manufacturer to prevent adhesion of the sealant to the backing or to the bottom of the joint.

2.6 BACKSTOPS

Provide glass fiber roving, neoprene, butyl, polyurethane, or polyethylene foams free from oil or other staining elements as recommended by sealant manufacturer. Provide 25 to 33 percent oversized backing for closed cell
and 40 to 50 percent oversized backing for open cell material, unless otherwise indicated. Provide backstop material that is compatible with sealant. Do not use oakum or other types of absorptive materials as backstoppers.

2.7 CLEANING SOLVENTS

Provide type(s) recommended by the sealant manufacturer and in accordance with environmental requirements herein. Protect adjacent aluminum and bronze surfaces from solvents. Provide solvents for interior applications that meet the indoor air quality requirements of the paragraph SEALANTS above.

2.8 COMPRESSION SEALS

Compression seals for exterior wall vertical expansion joints shall be Wabo Compression Seal by Watson Bowman Acme; Model WE-400. Submit actual color samples of all available colors for selection by Architect during Shop Drawing Review process. Photographic/printed color reproductions will not be acceptable.

PART 3 EXECUTION

3.1 FIELD QUALITY CONTROL

Perform a field adhesion test in accordance with manufacturer's instructions and ASTM C1193, Method A or ASTM C1521, Method A, Tail Procedure. Remove sealants that fail adhesion testing; clean substrates, reapply sealants, and re-test. Test sealants adjacent to failed sealants. Submit field adhesion test report indicating tests, locations, dates, results, and remedial actions taken.

3.2 SURFACE PREPARATION

Prepare surfaces according to manufacturer's printed installation instructions. Clean surfaces from dirt, frost, moisture, grease, oil, wax, lacquer, paint, or other foreign matter that would destroy or impair adhesion. Remove oil and grease with solvent; thoroughly remove solvents prior to sealant installation. Wipe surfaces dry with clean cloths. When resealing an existing joint, remove existing caulk or sealant prior to applying new sealant. For surface types not listed below, provide in accordance with sealant manufacturer's printed instructions for each specific surface.

3.2.1 Steel Surfaces

Remove loose mill scale by sandblasting or, if sandblasting is impractical or would damage finished work, scraping and wire brushing. Remove protective coatings by sandblasting or using a residue free solvent. Remove resulting debris and solvent residue prior to sealant installation.

3.2.2 Aluminum or Bronze Surfaces

Remove temporary protective coatings from surfaces that will be in contact with sealant. When masking tape is used as a protective coating, remove tape and any residual adhesive prior to sealant application. For removing protective coatings and final cleaning, use non-staining solvents recommended by the manufacturer of the item(s) containing aluminum or bronze surfaces.
3.2.3 Concrete and Masonry Surfaces

Where surfaces have been treated with curing compounds, oil, or other such materials, remove materials by sandblasting or wire brushing. Remove laitance, efflorescence and loose mortar from the joint cavity. Remove resulting debris prior to sealant installation.

3.2.4 Wood Surfaces

Ensure wood surfaces that will be in contact with sealants are free of splinters, sawdust and other loose particles.

3.3 SEALANT PREPARATION

Do not add liquids, solvents, or powders to sealants. Mix multicomponent elastomeric sealants in accordance with manufacturer's printed instructions.

3.4 APPLICATION

3.4.1 Joint Width-To-Depth Ratios

Acceptable Ratios:

<table>
<thead>
<tr>
<th>JOINT WIDTH</th>
<th>JOINT DEPTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>Maximum</td>
</tr>
</tbody>
</table>

For metal, glass, or other nonporous surfaces:

- 1/4 inch (minimum)
 1/4 inch
 1/4 inch

- over 1/4 inch
 1/2 of width
 Equal to width

For wood, concrete and masonry:

- 1/4 inch (minimum)
 1/4 inch
 1/4 inch

- over 1/4 inch to 1/2 inch
 1/4 inch
 Equal to width

- over 1/2 inch to 1 inch
 1/2 inch
 5/8 inch

- Over 1 inch
 prohibited

Unacceptable Ratios: Where joints of acceptable width-to-depth ratios have not been provided, clean out joints to acceptable depths and grind or cut to acceptable widths without damage to the adjoining work. Grinding is prohibited at metal surfaces.

3.4.2 Unacceptable Sealant Use

Do not install sealants in lieu of other required building enclosure weatherproofing components such as flashing, drainage components, and joint closure accessories, or to close gaps between walls, floors, roofs, windows, and doors, that exceed acceptable installation tolerances. Remove sealants that have been used in an unacceptable manner and correct building enclosure deficiencies to comply with contract documents requirements.
3.4.3 Masking Tape

Place masking tape on the finished surface on one or both sides of joint cavities to protect adjacent finished surfaces from primer or sealant smears. Remove masking tape within 10 minutes of joint filling and tooling.

3.4.4 Backstops

Provide backstops dry and free of tears or holes. Tightly pack the back or bottom of joint cavities with backstop material to provide joints in specified depths. Provide backstops where indicated and where backstops are not indicated but joint cavities exceed the acceptable maximum depths specified in JOINT WIDTH-TO-DEPTH RATIOS Table.

3.4.5 Primer

Clean out loose particles from joints immediately prior to application of. Apply primer to joints in concrete masonry units, wood, and other porous surfaces in accordance with sealant manufacturer's printed instructions. Do not apply primer to exposed finished surfaces.

3.4.6 Bond Breaker

Provide bond breakers to surfaces not intended to bond in accordance with, sealant manufacturer's printed instructions for each type of surface and sealant combination specified.

3.4.7 Sealants

Provide sealants compatible with the material(s) to which they are applied. Do not use a sealant that has exceeded its shelf life or has jelled and cannot be discharged in a continuous flow from the sealant gun. Apply sealants in accordance with the manufacturer's printed instructions with a gun having a nozzle that fits the joint width. Work sealant into joints so as to fill the joints solidly without air pockets. Tool sealant after application to ensure adhesion. Apply sealant uniformly smooth and free of wrinkles. Upon completion of sealant application, roughen partially filled or unfilled joints, apply additional sealant, and tool smooth as specified. Apply sealer over sealants in accordance with the sealant manufacturer's printed instructions.

3.5 INSTALLATION OF COMPRESSION SEALS

Install compression seals in accordance with the manufacturer's instructions at locations shown on the Drawings.

3.6 PROTECTION AND CLEANING

3.6.1 Protection

Protect areas adjacent to joints from sealant smears. Masking tape may be used for this purpose if removed 5 to 10 minutes after the joint is filled and no residual tape marks remain.

3.6.2 Final Cleaning

Upon completion of sealant application, remove remaining smears and stains and leave the work in a clean and neat condition.
a. Masonry and Other Porous Surfaces: Immediately remove fresh sealant that has been smeared on adjacent masonry, rub clean with a solvent, and remove solvent residue, in accordance with sealant manufacturer's printed instructions. Allow excess sealant to cure for 24 hour then remove by wire brushing or sanding. Remove resulting debris.

b. Metal and Other Non-Porous Surfaces: Remove excess sealant with a solvent moistened cloth. Remove solvent residue in accordance with solvent manufacturer's printed instructions.

-- End of Section --
SECTION 08 11 13
STEEL DOORS AND FRAMES
02/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN WELDING SOCIETY (AWS)

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016)
Structural Welding Code - Steel

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM C612 (2014) Mineral Fiber Block and Board Thermal Insulation

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.115 (2016) Hardware Preparation in Steel Doors and Steel Frames
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Doors; G
Frames; G

Show elevations, construction details, metal gages, hardware provisions, method of glazing, and installation details.
Schedule of doors; G
Schedule of frames; G
Submit door and frame locations.

SD-03 Product Data

Doors; G
Frames; G
Accessories; G
Weatherstripping; G

Submit manufacturer's descriptive literature for doors, frames, and accessories. Include data and details on door construction, panel (internal) reinforcement, insulation, and door edge construction. When "custom hollow metal doors" are provided in lieu of "standard steel doors," provide additional details and data sufficient for comparison to SDI/DOOR A250.8 requirements.

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver doors, frames, and accessories undamaged and with protective wrappings or packaging. Provide temporary steel spreaders securely fastened to the bottom of each welded frame. Store doors and frames on platforms under cover in clean, dry, ventilated, and accessible locations, with 1/4 inch airspace between doors. Remove damp or wet packaging immediately and wipe affected surfaces dry. Replace damaged materials with new.

PART 2 PRODUCTS

2.1 STANDARD STEEL DOORS

SDI/DOOR A250.8, except as specified otherwise. Prepare doors to receive door hardware as specified in Section 08 71 00. Undercut where indicated. Exterior doors shall have top edge closed flush and sealed to prevent water intrusion. Doors shall be 1-3/4 inch thick, unless otherwise indicated.

2.1.1 Classification - Level, Performance, Model

2.1.1.1 Heavy Duty Doors

SDI/DOOR A250.8, Level 2, physical performance Level B, Model 2, with core construction as required by the manufacturer for interior doors, of size(s) and design(s) indicated. Where vertical stiffener cores are required, the space between the stiffeners shall be filled with mineral board insulation.

2.1.1.2 Extra Heavy Duty Doors

SDI/DOOR A250.8, Level 3, physical performance Level A, Model 2 with core construction as required by the manufacturer for exterior doors, of size(s) and design(s) indicated. Where vertical stiffener cores are required, the space between the stiffeners shall be filled with mineral board insulation.
2.2 CUSTOM HOLLOW METAL DOORS

Provide custom hollow metal doors where nonstandard steel doors are indicated. At the Contractor's option, custom hollow metal doors may be provided in lieu of standard steel doors. Door size(s), design(s), materials, construction, gages, and finish shall be as specified for standard steel doors and shall comply with the requirement of NAAMM HMMA HMM. Fill all spaces in doors with insulation. Close top and bottom edges with steel channels not lighter than 16 gage. Close tops of exterior doors flush with an additional channel and seal to prevent water intrusion. Prepare doors to receive hardware specified in Section 08 71 00 DOOR HARDWARE. Undercut doors where indicated. Doors shall be 1-3/4 inch thick, unless otherwise indicated.

2.3 ACCESSORIES

2.3.1 Moldings

Provide moldings around glass of interior and exterior doors. Provide nonremovable moldings on outside of exterior doors and on corridor side of interior doors. Other moldings may be stationary or removable. Secure inside moldings to stationary moldings, or provide snap-on moldings.

2.4 INSULATION CORES

Insulated cores shall be of type specified, and provide an apparent U-factor of .48 in accordance with SDI/DOOR 113 and shall conform to:

a. Rigid Cellular Polyisocyanurate Foam: ASTM C591, Type I or II, foamed-in-place or in board form, with oxygen index of not less than 22 percent when tested in accordance with ASTM D2863; or

b. Rigid Polystyrene Foam Board: ASTM C578, Type I or II; or

c. Mineral board: ASTM C612, Type I.

2.5 STANDARD STEEL FRAMES

SDI/DOOR A250.8, 14 gauge at exterior doors, and 16 gauge at interior doors. Form frames to sizes and shapes indicated, with welded corners. Provide steel frames for doors, transoms, sidelights, Mullions, and interior glazed panels, unless otherwise indicated.

2.5.1 Welded Frames

Continuously weld frame faces at corner joints. Mechanically interlock or continuously weld stops and rabbets. Grind welds smooth.

Weld frames in accordance with the recommended practice of the Structural Welding Code Sections 1 through 6, AWS D1.1/D1.1M and in accordance with the practice specified by the producer of the metal being welded.

2.5.2 Mullions and Transom Bars

Mullions and transom bars shall be closed or tubular construction and be a member with heads and jambs butt-welded thereto.
2.5.3 Stops and Beads

Form stops and beads from 20 gage steel. Provide for glazed and other openings in standard steel frames. Secure beads to frames with oval-head, countersunk Phillips self-tapping sheet metal screws or concealed clips and fasteners. Space fasteners approximately 12 to 16 inch on center. Miter molded shapes at corners. Butt or miter square or rectangular beads at corners.

2.5.4 Anchors

Provide anchors to secure the frame to adjoining construction. Provide steel anchors, zinc-coated or painted with rust-inhibitive paint, not lighter than 18 gage.

2.5.4.1 Wall Anchors

Provide at least three anchors for each jamb. For frames which are more than 7.5 feet in height, provide one additional anchor for each jamb for each additional 2.5 feet or fraction thereof.

 a. Masonry: Provide anchors of corrugated or perforated steel straps or 3/16 inch diameter steel wire, adjustable or T-shaped;

 b. Stud partitions: Weld or otherwise securely fasten anchors to backs of frames. Design anchors to be fastened to closed steel studs with sheet metal screws, and to open steel studs by wiring or welding;

 c. Completed openings: Secure frames to previously placed concrete or masonry with expansion bolts in accordance with SDI/DOOR 111; and

2.5.4.2 Floor Anchors

Provide floor anchors drilled for 3/8 inch anchor bolts at bottom of each jamb member. Where floor fill occurs, terminate bottom of frames at the indicated finished floor levels and support by adjustable extension clips resting on and anchored to the structural slabs.

2.6 FIRE AND SMOKE DOORS AND FRAMES

NFPA 80 and NFPA 105 and this specification. The requirements of NFPA 80 and NFPA 105 shall take precedence over details indicated or specified.

2.6.1 Labels

Fire doors and frames shall bear the label of Underwriters Laboratories (UL), Factory Mutual Engineering and Research (FM), or Warnock Hersey International (WHI) attesting to the rating required. Testing shall be in accordance with NFPA 252 or UL 10C. Labels shall be metal with raised letters, and shall bear the name or file number of the door and frame manufacturer. Labels shall be permanently affixed at the factory to frames and to the hinge edge of the door. Door labels shall not be painted.

2.6.2 Oversized Doors

For fire doors and frames which exceed the size for which testing and labeling are available, furnish certificates stating that the doors and
frames are identical in design, materials, and construction to a door which has been tested and meets the requirements for the class indicated.

2.7 WEATHERSTRIPPING

As specified in Section 08 71 00 DOOR HARDWARE.

2.7.1 Integral Gasket to be Provided at Doors 131B, 131C and 132

Black synthetic rubber gasket with tabs for factory fitting into factory slotted frames, or extruded neoprene foam gasket made to fit into a continuous groove formed in the frame. Insert gasket in groove after frame is finish painted. Air leakage of weatherstripped doors shall not exceed 0.5 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E283.

2.8 HARDWARE PREPARATION

Provide minimum hardware reinforcing gages as specified in SDI/DOOR A250.6. Drill and tap doors and frames to receive finish hardware. Prepare doors and frames for hardware in accordance with the applicable requirements of SDI/DOOR A250.8 and SDI/DOOR A250.6. For additional requirements refer to ANSI/BHMA A156.115. Drill and tap for surface-applied hardware at the project site. Build additional reinforcing for surface-applied hardware into the door at the factory. Locate hardware in accordance with the requirements of SDI/DOOR A250.8, as applicable. Punch door frames, with the exception of frames that will have weatherstripping to receive a minimum of two rubber or vinyl door silencers on lock side of single doors and one silencer for each leaf at heads of double doors. Set lock strikes out to provide clearance for silencers.

2.9 FINISHES

2.9.1 Factory-Primed Finish

All surfaces of doors and frames shall be thoroughly cleaned, chemically treated and factory primed with a rust inhibiting coating as specified in SDI/DOOR A250.8. Where coating is removed by welding, apply touchup of factory primer.

2.9.2 Hot-Dip Zinc-Coated and Factory-Primed Finish

Fabricate exterior doors and frames from hot dipped zinc coated steel, alloyed type, that complies with ASTM A924/A924M and ASTM A653/A653M. The coating weight shall meet or exceed the minimum requirements for coatings having 0.4 ounces per square foot, total both sides, i.e., A40. Repair damaged zinc-coated surfaces by the application of zinc dust paint. Thoroughly clean and chemically treat to insure maximum paint adhesion. Factory prime as specified in SDI/DOOR A250.8.

2.9.3 Electrolytic Zinc-Coated Anchors and Accessories

Provide electrolytically deposited zinc-coated steel in accordance with ASTM A879/A879M, Commercial Quality, Coating Class A. Phosphate treat and factory prime zinc-coated surfaces as specified in SDI/DOOR A250.8.

2.10 FABRICATION AND WORKMANSHIP

Finished doors and frames shall be strong and rigid, neat in appearance,
and free from defects, waves, scratches, cuts, dents, ridges, holes, warp, and buckle. Molded members shall be clean cut, straight, and true, with joints coped or mitered, well formed, and in true alignment. Dress exposed welded and soldered joints smooth. Design door frame sections for use with the wall construction indicated. Corner joints shall be well formed and in true alignment. Conceal fastenings where practicable.

2.10.1 Grouted Frames

For frames to be installed in exterior walls and to be filled with mortar or grout, fill the stops with strips of rigid insulation to keep the grout out of the stops and to facilitate installation of stop-applied head and jamb seals.

2.11 PROVISIONS FOR GLAZING

Materials are specified in Section 08 81 00, GLAZING.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Frames

Set frames in accordance with SDI/DOOR A250.11. Plumb, align, and brace securely until permanent anchors are set. Anchor bottoms of frames with expansion bolts or powder-actuated fasteners. Build in or secure wall anchors to adjoining construction. Where frames require ceiling struts or overhead bracing, anchor frames to the struts or bracing. Backfill frames with mortar. Coat inside of frames with corrosion-inhibiting bituminous material. For frames in exterior walls, ensure that stops are filled with rigid insulation before grout is placed.

3.1.2 Doors

Hang doors in accordance with clearances specified in SDI/DOOR A250.8. After erection and glazing, clean and adjust hardware.

3.1.3 Fire and Smoke Doors and Frames

Install fire doors and frames, including hardware, in accordance with NFPA 80. Install smoke doors and frames in accordance with NFPA 105.

3.2 PROTECTION

Protect doors and frames from damage. Repair damaged doors and frames prior to completion and acceptance of the project or replace with new, as directed. Wire brush rusted frames until rust is removed. Clean thoroughly. Apply an all-over coat of rust-inhibitive paint of the same type used for shop coat.

3.3 CLEANING

Upon completion, clean exposed surfaces of doors and frames thoroughly. Remove mastic smears and other unsightly marks.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

1.2 PERFORMANCE REQUIREMENTS

1.2.1 Structural Calculations

1.2.1.1 Minimum Antiterrorism Performance

Doors 100A must meet the minimum antiterrorism performance as specified in the paragraphs below.

a. Dynamic Design Analysis Method

Glazed opening framing members, anchors, and glazing may be designed using a dynamic analysis to prove the glazed opening system will provide performance equivalent to or better than a very low hazard rating in accordance with ASTM F1642/F1642M associated with the applicable low level of protection for the project.

1.2.2 Air Infiltration

When tested in accordance with ASTM E283, air infiltration per door leaf must not exceed 0.6 cubic feet per minute per square foot of fixed area at a test pressure of 6.24 pounds per square foot.

1.2.3 Water Penetration

When tested in accordance with ASTM E331, there must be no water penetration at a pressure of 2.86 pounds per square foot of fixed area.

1.2.4 Thermal Transmittance

Provide products bearing NFRC Project Label Certificates for Fenestration verifying compliance with requirements for each assembly indicated. An NFRC Bid Report, or approved equal, for field assembled exterior doors may be submitted in lieu of Project Label Certificates for Fenestration if such reports are created in accordance with NFRC CAMP procedures and are provided by the manufacturer. Such alternate reports may be submitted with shop drawings, however, NFRC validated Project Label Certificates for Fenestration are required as a Closeout Submittal. Contact NFRC for information on NFRC 100 and NFRC 200 Compliance and Monitoring Program (CAMP) rating requirements:

http://www.nfrc.org/industry/certification/compliance-and-monitoring-program-camp/

1.2.4.1 U-Factor

Provide exterior glazed assemblies, including aluminum entrances doors with greater than 50 percent glazed area, certified by the NFRC as having a whole window U-factor of 0.35 or less as determined in accordance with ASHRAE 90.1 - IP and as verified in accordance with NFRC 100.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
 For Each Type of Door and Frame Assembly; G

SD-03 Product Data
 For Each Type of Door and Frame Assembly; G

SD-04 Samples
 Finish Samples; G

SD-05 Design Data
 Structural Calculations for Deflection and Antiterrorism; G
 Design Analysis; G

Submit design analysis with calculations showing that the design of each different size and type of aluminum door and frame unit and its anchorage to the structure meets the minimum antiterrorism standards required by paragraph "Minimum Antiterrorism Performance". Calculations verifying the structural performance of each door and frame proposed for use, under the given loads, must be prepared and signed by a registered Professional Engineer. The door and frame components and anchorage devices to the structure, as determined by the design analysis, must be reflected in the shop drawings.

SD-06 Test Reports
 Air Infiltration; G
 Water Penetration; G

SD-10 Operation and Maintenance Data
 Adjustments, Cleaning, and Maintenance

1.4 DELIVERY, STORAGE, AND HANDLING

Inspect materials delivered to the site for damage. Unload and store with minimum handling. Provide storage space in dry location with adequate ventilation, free from dust or water, and easily accessible for inspection and handling. Stack materials on non-absorptive strips or wood platforms. Do not cover doors and frames with tarps, polyethylene film, or similar coverings. Protect finished surfaces during shipping and handling using manufacturer's standard method. Do not apply coatings or lacquers to surfaces to which caulking and glazing compounds must adhere.
1.5 QUALITY CONTROL

1.5.1 Shop Drawing

Indicate elevations and sections for each type of door and frame assembly. Show sizes and details of each assembly, frame construction, subframe attachment, thickness and gages of metal, details of door and frame construction, proposed method(s) of anchorage, glazing details, provisions for location of hardware, method and materials for flashing and weatherstripping, miscellaneous trim, installation details, and other related items necessary for a complete representation of all components. A qualified blast engineer must perform testing or calculations for door system design resistance to specified blast loads.

1.5.2 Design Analysis

Submit design analysis with calculations showing that the design of Doors 100A and its anchorage to the structure meets the minimum antiterrorism standards required by paragraph MINIMUM ANTITERRORISM PERFORMANCE. Calculations verifying the performance of each door proposed for use, under the given loads, must be prepared and signed by a registered Professional Engineer. The door components and anchorage devices to the structure, as determined by the design analysis, must be reflected in the shop drawings.

1.5.3 Operation and Maintenance Data

Submit detailed instructions for installation, adjustments, cleaning, and maintenance of each type of assembly indicated.

1.5.4 Finish Samples

Submit two color charts and two finish sample chips from manufacturer's standard color and finish options for each type of finish indicated.

1.6 QUALITY ASSURANCE

1.6.1 Engineer Qualifications for Blast Design

All blast design calculations must be performed by or under the direct supervision of a registered engineer with a minimum of 5 years' experience performing blast design. The engineering firm performing the blast design must be able to demonstrate experience on similar size projects using similar design methods to meet the requirements outlined in this specification.

PART 2 PRODUCTS

2.1 RECYCLED CONTENT

Provide products with recycled content and provide certificates of compliance in accordance with Section 01 33 29 SUSTAINABILITY REPORTING.

2.2 DOORS AND FRAMES

Provide swing-type aluminum doors and frames of size, design, and location indicated. Provide doors complete with frames, framing members, subframes, trim, and accessories.
2.3 MATERIALS

2.3.1 Anchors

Stainless steel.

2.3.2 Weatherstripping

Continuous wool pile, silicone treated, or type recommended by door manufacturer.

2.3.3 Aluminum Alloy for Doors and Frames

2.3.4 Fasteners

Hard aluminum or stainless steel.

2.3.5 Structural Steel

ASTM A36/A36M.

2.3.6 Aluminum Paint

Aluminum door manufacturer's standard aluminum paint.

2.4 FABRICATION

2.4.1 Aluminum Frames

Extruded aluminum shapes with contours approximately as indicated. Provide removable glass stops and glazing beads for frames accommodating fixed glass. Use countersunk stainless steel Phillips screws for exposed fastenings, and space not more than 12 inches on center. Mill joints in frame members to a hairline fit, reinforce, and secure mechanically.

2.4.2 Aluminum Doors

Of type, size, and design indicated and minimum 1-3/4 inch thick. Minimum wall thickness, 0.125 inch, except beads and trim, 0.050 inch. Door sizes shown are nominal; include standard clearances as follows: 0.093 inch at hinge and lock stiles, 0.125 inch between meeting stiles, 0.125 inch at top rails, 0.187 inch between bottom and threshold, and 0.687 inch between bottom and floor. Provide bevel of 0.063 or 0.125 inch at lock, hinge, and meeting stile edges.

2.4.2.1 Full Glazed Stile and Rail Doors

Provide doors with medium stiles and rails as indicated. Fabricate from extruded aluminum hollow seamless tubes or from a combination of open-shaped members interlocked or welded together. Fasten top and bottom rail together by means of welding or by 3/8 or 1/2 inch diameter cadmium-plated tensioned steel tie rods. Provide an adjustable mechanism of jack screws or other methods in the top rail to allow for minor clearance adjustments after installation.
2.4.3 Welding and Fastening

Where possible, locate welds on unexposed surfaces. Dress welds on exposed surfaces smoothly. Select welding rods, filler wire, and flux to produce a uniform texture and color in finished work. Remove flux and spatter from surfaces immediately after welding. Exposed screws or bolts will be permitted only in inconspicuous locations, and must have countersunk heads. Weld concealed reinforcements for hardware in place.

2.4.4 Weatherstripping

Provide on stiles and rails of exterior doors. Fit into slots which are integral with doors or frames. Weatherstripping must be replaceable without special tools, and adjustable at meeting rails of pairs of doors. During installation, verify doors swing freely and close positively. Refer to paragraph AIR INFILTRATION for air leakage requirements and testing.

2.4.5 Anchors

On the backs of subframes, provide anchors of the sizes and shapes indicated for securing subframes to adjacent construction. Anchor transom bars at ends and mullions at head and sill. Where indicated, reinforce vertical mullions with structural steel members of sufficient length to extend up to the overhead structural slab or framing and secure thereto. Reinforce and anchor freestanding door frames to floor construction as indicated on approved shop drawings and in accordance with manufacturer's recommendation. Place anchors near top and bottom of each jamb and at intermediate points not more than 25 inch apart.

2.4.6 Provisions for Hardware

Coordinate with Section 08 71 00 DOOR HARDWARE. Deliver hardware templates and hardware (except field-applied hardware) to the door manufacturer for use in fabrication of aluminum doors and frames. Cut, reinforce, drill, and tap doors and frames at the factory to receive template hardware. Provide doors to receive surface-applied hardware, except push plates, kick plates, and mop plates, with reinforcing only; drill and tap in the field. Provide hardware reinforcements of stainless steel or steel with hot-dipped galvanized finish, and secure with stainless steel screws.

2.4.7 Provisions for Glazing

Provide extruded aluminum, theft-proof, snap-in glazing beads or fixed glazing beads on exterior or security side of doors. Design glazing beads to receive thickness indicated for each glazed assembly. Coordinate requirements with Section 08 81 00 GLAZING.

2.4.8 Finishes

Provide exposed aluminum surfaces with factory finish of anodic coating.

2.4.8.1 Anodic Coating

Clean exposed aluminum surfaces and provide an anodized finish conforming to AA DAF45. Provide integral color-anodized, designation AA-M10-C22-A32, Architectural Class II 0.4 mil to 0.7 mil finish. Provide material(s) in color as selected from manufacturer's standard range of color options.
PART 3 EXECUTION

3.1 INSTALLATION

Plumb, square, level, and align frames and framing members to receive doors. Anchor frames to adjacent construction as indicated and in accordance with manufacturer's printed instructions and the approved shop drawings. Anchorage must comply with applicable structural requirements. Anchor bottom of each frame to rough floor construction with 3/32 inch thick minimum stainless steel angle clips secured to back of each jamb and to floor construction; use stainless steel bolts and expansion rivets for fastening clip anchors. Hang doors to produce clearances specified in paragraph ALUMINUM DOORS. After erection and glazing, adjust doors and hardware to operate properly.

3.2 PROTECTION FROM DISSIMILAR MATERIALS

3.2.1 Dissimilar Metals

Where aluminum surfaces come in contact with metals other than stainless steel, zinc, or small areas of white bronze, protect from direct contact to dissimilar metals.

3.2.1.1 Protection

Provide one of the following systems to protect surfaces in contact with dissimilar metals:

a. Paint the dissimilar metal with one coat of heavy-bodied bituminous paint.

b. Apply elastomeric sealant between aluminum and dissimilar metals in accordance with Section 07 92 00 JOINT SEALANTS.

c. Paint dissimilar metals with one coat of primer and one coat of aluminum paint.

d. Use a non-absorptive tape or gasket in permanently dry locations.

3.2.2 Drainage from Dissimilar Metals

In locations where drainage from dissimilar metals has direct contact with aluminum, provide protective paint to prevent aluminum discoloration.

3.2.3 Masonry and Concrete

Provide aluminum surfaces in contact with mortar, concrete, or other masonry materials with one coat of heavy-bodied bituminous paint.

3.2.4 Wood or Other Absorptive Materials

Provide aluminum surfaces in contact with absorptive materials subject to frequent moisture, and aluminum surfaces in contact with treated wood, with two coats of aluminum paint or one coat of heavy-bodied bituminous paint. In lieu of painting aluminum, paint the wood or other absorptive surface with two coats of aluminum paint and seal joints with elastomeric sealant.
3.3 SEALING AROUND ASSEMBLIES

Seal all penetrations of the air barrier by sealing around door openings as necessary to achieve compliance with air leakage requirements listed herein. Flash all doors with corrosion resistant flashing to prevent water intrusion.

3.4 CLEANING

Upon completion of installation, clean door and frame surfaces in accordance with door manufacturer's written recommended procedure. Do not use abrasive, caustic, or acid cleaning agents.

3.5 PROTECTION

Protect doors and frames from damage and from contamination by other materials such as cement mortar. Prior to completion and acceptance of the work, restore damaged doors and frames to original condition, or replace with new ones.

-- End of Section --
SECTION 08 14 00
WOOD DOORS
08/16

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI AWS (2nd Edition) Architectural Woodwork Standards

ASTM INTERNATIONAL (ASTM)

ASTM E2226 (2015a) Standard Practice for Application of Hose Stream

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 105 (2016; TIA 16-1) Standard for Smoke Door Assemblies and Other Opening Protectives

NFPA 80 (2016; TIA 16-1) Standard for Fire Doors and Other Opening Protectives

UNDERWRITERS LABORATORIES (UL)

UL 10B (2008; Reprint Feb 2015) Fire Tests of Door Assemblies

WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA)

ANSI/WDMA I.S.1A (2013) Interior Architectural Wood Flush Doors

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:
SD-02 Shop Drawings

Doors; G

Submit drawings or catalog data showing each type of door unit. Indicate within drawings and data the door types and construction, sizes, thickness, methods of assembly, and glazing.

SD-03 Product Data

Doors; G
Accessories; G
Water-resistant Sealer; G
Sample Warranty; G
Fire Resistance Rating; G

SD-04 Samples

Door Finish Colors; G

Submit a minimum of three color selection samples, minimum 3 by 5 inches in size representing wood stain for selection by the Contracting Officer.

SD-06 Test Reports

Cycle-Slam
Hinge Loading Resistance

Submit cycle-slam test report for doors tested in accordance with ANSI/WDMA 1.S.1A.

SD-11 Closeout Submittals

Indoor Air Quality for Agrifiber Door Cores; S
Reduced VOC Content for Finishes; S
Warranty; G

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver doors to the site in an undamaged condition and protect against damage and dampness. Stack doors flat under cover. Support on blocking, a minimum of 4 inch thick, located at each end and at the midpoint of the door. Store doors in a well-ventilated building so that they will not be exposed to excessive moisture, heat, dryness, direct sunlight, or extreme changes of temperature and humidity. Do not store in a building under construction until concrete and masonry work are dry. Replace defective or damaged doors with new ones.

1.4 WARRANTY

Warrant doors free of defects as set forth in the door manufacturer's
standard door warranty.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

2.1.1 Reduce Volatile Organic Compounds (VOC) (Low-Emitting Materials) for Products

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 DOORS

Provide doors of the types, sizes, and designs indicated free of urea-formaldehyde resins.

2.2.1 Flush Doors

Provide agrifiber core, Type II flush doors conforming to ANSI/WDMA I.S.1A with faces of premium A-grade veneer select white birch. Hardwood veneers must be plain sliced book matched.

2.2.2 Fire Doors

Provide doors specified or indicated to have a fire resistance rating conforming to the requirements of UL 10B, ASTM E2226, or NFPA 252 for the class of door indicated. Affix a permanent metal label with raised or incised markings indicating testing agency's name and approved hourly fire rating to hinge edge of each door.

2.3 ACCESSORIES

2.3.1 Door Light Openings

Provide glazed openings with the manufacturer's standard flush wood moldings. Provide moldings for doors to receive natural finish of the same wood species and color as the wood face veneers.

2.3.2 Additional Hardware Reinforcement

Provide the minimum lock blocks to secure the specified hardware. The measurement of top, bottom, and intermediate rail blocks are a minimum 125 mm 5 inch by full core width. Comply with the manufacturer's labeling requirements for reinforcement blocking, but not mineral material similar to the core.

2.4 FABRICATION

2.4.1 Marking

Stamp each door with a brand, stamp, or other identifying mark indicating quality and construction of the door.
2.4.2 Quality and Construction

Identify the standard on which the construction of the door was based and identify doors having a Type I glue bond.

2.4.3 Adhesives and Bonds

ANSI/WDMA I.S.1A. Use Type II bond. Provide a nonstaining adhesive on doors with a natural finish.

2.4.4 Prefitting

Provide factory prefinished and factory prefitted doors for the specified hardware, door frame and door-swing indicated. Machine and size doors at the factory by the door manufacturer in accordance with the standards under which the doors are produced and manufactured. The work includes sizing, beveling edges, mortising, and drilling for hardware and providing necessary beaded openings for glass. Provide the door manufacturer with the necessary hardware samples, and frame and hardware schedules to coordinate the work.

2.4.5 Finishes

2.4.5.1 Factory Finish

Provide doors finished at the factory by the door manufacturer as follows: AWI AWS Section 1500, specification for System No. 9, UV Curable, Acrylated Epoxy, Polyester or Urethane. The coating is AWI AWS premium, medium rubbed sheen, open grain effect. Use stain when required to produce the finish specified for color. Seal edges, cutouts, trim, and wood accessories, and apply two coats of finish compatible with the door face finish. Touch-up finishes that are scratched or marred, or where exposed fastener holes are filled, in accordance with the door manufacturer's instructions. Match color and sheen of factory finish using materials compatible for field application.

2.4.5.2 Color

Provide door finish colors in accordance with Section 09 06 00 SCHEDULES FOR FINISHES.

2.4.6 Water-Resistant Sealer

Provide manufacturer's standard water-resistant sealer compatible with the specified finish.

2.5 SOURCE QUALITY CONTROL

Meet or exceed the following minimum performance criteria of stiles of "B" and "C" label fire doors utilizing standard mortise leaf hinges:

a. Cycle-slam: Heavy Duty Doors: 500,000 cycles with no loose hinge screws or other visible signs of failure when tested in accordance with the requirements of ANSI/WDMA I.S.1A.

b. Hinge loading resistance: Averages of ten test samples not less than Heavy Duty doors: 475 pounds force when tested for direct screw withdrawal in accordance with ANSI/WDMA I.S.6A using a No. 12, 1-1/4
inch long, steel, fully threaded wood screw. Drill 5/32 inch pilot hole, use 1-1/2 inch opening around screw for bearing surface, and engage screw full, except for last 1/8 inch. Do not use a steel plate to reinforce screw area.

PART 3 EXECUTION

3.1 INSTALLATION

Do not install building construction materials that show visual evidence of biological growth.

Before installation, seal top and bottom edges of doors with the approved water-resistant sealer. Seal cuts made on the job immediately after cutting using approved water-resistant sealer. Fit, trim, and hang doors with a 1/16 inch minimum, 1/8 inch maximum clearance at sides and top, and a 3/16 inch minimum, 1/4 inch maximum clearance over thresholds. Provide 3/8 inch minimum, 7/16 inch maximum clearance at bottom where no threshold occurs. Bevel edges of doors at the rate of 1/8 inch in 2 inch. Door warp must not exceed 1/4 inch when measured in accordance with ANSI/WDMA I.S.1A.

3.1.1 Fire and Smoke Doors

Install fire doors in accordance with NFPA 80. Install smoke doors in accordance with NFPA 105. Do not paint over labels.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ARCHITECTURAL WOODWORK INSTITUTE (AWI)

AWI AWS (2nd Edition) Architectural Woodwork Standards

ASTM INTERNATIONAL (ASTM)

ASTM A1008/A1008M (2016) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM E413 (2016) Classification for Rating Sound
Insulation

NATIONAL COUNTERINTELLIGENCE AND SECURITY CENTER

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 80 (2016; TIA 16-1) Standard for Fire Doors and Other Opening Protectives

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Hollow Metal Sound Retardant Doors; G
Wood Sound Retardant Doors; G
Door Frames; G

SD-03 Product Data

Hollow Metal Sound Retardant Doors; G
Wood Sound Retardant Doors; G
Door Frames; G
Door Hardware; G
Intumescent Seals, Gasketing and Door Bottoms; G
Thresholds; G

SD-06 Test Reports

Wind Loading Tests; G
Water Leakage Tests; G
Acoustical Tests; G
Air Infiltration Tests; G
Positive Pressure Tests; G

SD-07 Certificates

Hollow Metal Sound Retardant Doors; G
Wood Sound Retardant Doors; G
Door Frames; G
Door Hardware; G
Intumescent Seals, Gasketing and Door Bottoms; G
Thresholds; G

SD-11 Closeout Submittals

Reduced VOC Content for Finishes; S

1.3 QUALITY CONTROL

Ensure work within this section is designed and furnished by one manufacturer, who has been engaged in the manufacture of Sound Retardant Wood and Hollow Metal Door Systems for at least five years prior to the start of this work.

Provide acoustic assemblies manufactured by a single source specializing in the production of this type work for a minimum of 5 years.

1.3.1 Compliance and Labeling

1.3.1.1 Category A Positive Pressure Fire Door Construction

Where requirements for positive pressure are met, include for doors all requirements as part of the door construction per Category A guidelines as published by ITS/Warnock-Hersey. Intumescent is not allowed on the frame. Apply smoke gasketing around the perimeter of the frame to meet the "S" smoke rating is permissible in instances where smoke control is required.

1.3.1.2 Category B Positive Pressure Fire Door Construction

Conform all door openings to the applicable portions of NFPA 101 and NFPA 252. Incorporate field applied intumescent materials, applied by a licensed installer according to the manufacturers' instructions. Keep instructions on file. Additional gasketing may be required to meet the 'S' smoke rating. Submit Certificate for intumescent seals, gasketing and door bottoms.

1.3.1.3 Labeling

Ensure all positive pressure door assemblies carry the fire label for the complete opening, clearly identifying the:

a. Manufacturer
b. Third party testing and certification agency
c. Fire door rating
d. Installation limitations
e. Compatible frame, hardware component ratings
f. Required building code information, including temperature and smoke rating
1.4 DELIVERY, STORAGE, AND HANDLING

Ship all doors in the manufacturer's undamaged individual cartons, securely bundled and wrapped with moisture-resistant covers and stored in accordance with the manufacturer's printed instructions in a dry, clean, and ventilated area.

Deliver and store wood doors in the building following the installation of concrete, terrazzo, plaster, or other wet materials, and only after the building has dried out and has a roof.

Store all materials on planks in a dry location. Store doors and frames vertically with minimum 2-inch airspace between. Store doors on the edge to eliminate any potential damage to the door bottom seal. Cover all material to protect from damage but in a manner to allow proper circulation.

Maintain relative humidity in the building between 30 and 65 percent. Maintain the ambient temperature at 60 degrees F minimum at the time of installation of wood doors.

Perform final adjustment of seals when temperatures and humidity conditions replicate the interior conditions that will exist when the building is occupied.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph PRODUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 SYSTEM DESCRIPTION

Provide sound retardant door assemblies of the thickness, width, and height indicated, complete with perimeter seals, seal housings, gasketing, automatic door bottoms, thresholds, and door frames as required to conform to the specified STC per ASTM E90 and ASTM E1289.

Submit fabrication drawings for Hollow Metal Sound Retardant Doors, Wood Sound Retardant Doors, and Door Frames.

Submit certificates showing conformance with the referenced standards in this section, and manufacturer's catalog data including STC ratings and UL fire rating, where applicable, for the following items: Hollow metal sound retardant doors; wood sound retardant doors; door frames; door hardware; intumescent seals and gasketing; and thresholds.

Provide assemblies that are complete with metal frame, door(s), sealing system, and Cam-lift hinges (when required).
2.2.1 Design Requirements

2.2.1.1 Door Design

Provide interior Sound Retardant Wood and Hollow Metal Doors with wood veneer that are a 1-15/16-inch thickness construction with sizes as indicated on drawings. No visible seams are permitted on door faces. Provide face gauges, internal sound retardant core and perimeter door edge construction per manufacturer's standard for the specified STC rating. No lead or asbestos is permitted in door construction to achieve performance requirements.

Provide exterior Sound Retardant Hollow Metal Doors that are 1-3/4-inch thickness construction with sizes as indicated on the drawings.

2.2.1.2 Frame Design

Provide sound Retardant Metal Frames conforming to ASTM A1008/A1008M, not less than 0.0747-inch thick, and free from pitting, scale, stretcher strains, fluting, and surface defects with integral trim and shipped with temporary spreader. Knockdown frames are not acceptable.

Provide frames with 2-inch faces, profiles and dimensions as indicated, with mitered reinforced corners, welded the full depth of frame and trim, with exposed surfaces ground smooth and flush. Close contact edges to hairline joints.

2.2.2 Basis of Design

Interior sound retardant hollow metal door assembly at Doors 102A, 102B, 102C and 103B shall be Model No. NC12-SCIF Single by Krieger Specialty Products (www.kriegerproducts.com), or approved equal. The listed model and manufacturer is not meant to limit selection of equal products from other manufacturers. Provide door assemblies with a Sound Transmission Coefficient rating of STC-50, when tested as operable door assembly in accordance with ASTM E 90 and ASTM E 413.

Interior sound retardant hollow metal door assemblies with wood veneer at Doors 242, 244, 245, 246, 251, 252, 253, 255, 257 and 258 shall be Model No. NC5-WD3-9353 by Krieger Specialty Products (www.kriegerproducts.com), or approved equal. The listed model and manufacturer is not meant to limit selection of equal products from other manufacturers. Provide door assemblies with a Sound Transmission Coefficient rating of STC-53, when tested as operable door assembly in accordance with ASTM E90 and ASTM E413.

Exterior sound retardant hollow metal door assemblies at Doors 164 and 170B shall be Model No. NC12-SCIF Single by Krieger Specialty Products (www.kriegerproducts.com), or approved equal. The listed model and manufacturer is not meant to limit selection of equal products from other manufacturers. Provide door assemblies with a Sound Transmission
Coefficient rating of STC-50, when tested as operable door assembly in accordance with ASTM E90 and ASTM E413.

Exterior sound retardant hollow metal door assemblies at Door 145C shall be Model No. NC5-19-9353 by Krieger Specialty Products (www.kriegerproducts.com), or approved equal. The listed model and manufacturer is not meant to limit selection of equal products from other manufacturers. Provide door assemblies with a Sound Transmission Coefficient rating of STC-53, when tested as operable door assembly in accordance with ASTM E 90 and ASTM E 413.

2.2.3 Performance Requirements

2.2.3.1 STC (Sound Transmission Classification) Rating

Provide door/frame assemblies with an STC rating per the Door and Frame Schedule.

2.2.3.2 Security Requirements

Provide door/frame assemblies that meet the requirements of NCSC ICD/ICS 705 and UFC 4-010-05.

2.3 FABRICATION

Provide hollow metal doors that are minimum 16 gauge, 1-3/4-inch thick with welded, seamless construction. No visible joints are permitted on the exposed faces or edges. Join door skins at vertical edges by continuous welds, ground and dressed smooth to provide a flush finish. Reinforce top and bottom with 16 gauge continuous inverted steel channels spot welded to both faces. Finish both top and bottom to provide a smooth flush condition. Bevel both vertical edges 1/8-inch in 2-inches.

2.3.1 Hot Dip Zinc-Coated Finish

Fabricate exterior doors and frames from hot dipped zinc coated steel, alloyed type, that complies with ASTM A924/A924M and ASTM A653/A653M. The coating weight shall meet or exceed the minimum requirements for coatings having 0.4 ounces per square foot, total both sides, i.e., A40. Repair damaged zinc-coated surfaces by the application of zinc dust paint. Thoroughly clean and chemically treat to insure maximum paint adhesion.

2.3.2 Hollow Metal Sound Retardant Doors

Conform to ASTM A1008/A1008M for door construction utilizing steel facing sheets. Conform stretcher level flatness to ASTM A568/A568M; not less than 0.0598-inch thick; free from pitting, scale, and surface defects; separated by a core construction designed to meet the required STC; and tested and rated in accordance with ASTM E90.

Provide doors that have flush seamless face sheets and vertical edges, with continuous welded and smooth joints. Provide edges that are flush or rabbeted as required for perimeter seals.

Provide door surfaces that are visually flat and free from warp, waviness, and other surface irregularities and defects. Maximum allowable warp or twist-can not exceed 1/8-inch when measured with a 7-foot straightedge along the diagonal and not exceed 1/16-inch when measured with a 7-foot straightedge in the width or in any position along the length of the door.

SECTION 08 34 73 Page 6
Provide hardware reinforcement that is steel drilled, tapped to template requirements and welded in place. Provide minimum thicknesses as follows:

a. Cam Lift Hinges, 0.1494-inch

b. Lock strike, 0.1196-inch

c. Surface applied hardware 0.0747-inch

Provide doors, including sound retardant type, to bear the UL label fire rating and the specified STC rating as shown on the Drawings.

Shop prime exposed metal door and frame surfaces, including surfaces that are galvanized.

Shop prime concealed exterior door and frame surfaces except galvanized surfaces.

Thoroughly clean all mill scale, rust, oil, grease, dirt, and other foreign materials from surfaces before the application of the shop coat of primer.

After cleaning, provide galvanized surfaces free of paint in accordance with ASTM D6386, Method A, B, C, or D.

Apply to clean prepared dry surfaces one shop coat of rust inhibitive metallic oxide or synthetic resin primer by brush, dipping, or other approved method to provide a continuous minimum dry film thickness (dft) of 0.9 mil.

2.3.3 Wood Sound Retardant Doors

Construct doors with wood veneer facings separated by a core construction designed to meet the required STC. Test, rate, and label in accordance with ASTM E90.

Comply with the AWI AWS, "Guide Specifications and Quality Certification Program," for premium grade construction and to the requirements specified.

Perform beveling, prefitting, machining, mortising, and routing for hardware, perimeter seals, and door bottom cutouts at the mill.

Furnish premium grade door facings with standard thickness face veneers conforming to AWI AWS, Type 1 for stain and transparent finish.

Provide face veneers as follows:

<table>
<thead>
<tr>
<th>Face Veneer Species:</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select White Birch</td>
<td></td>
</tr>
</tbody>
</table>

Provide the following veneer cut:

Plain Sliced

2.3.4 Door Finishing

Clean and sand to smooth finish all wood doors to remove handling and
storage marks, raised grain, minor surface marks and abrasions.

Conform factory finishing of Sound Retardant Wood Veneer Doors in accordance with AWI Quality Standards. Provide factory finish of a water-base stain and ultraviolet (UV) cured polyurethane sealer to comply with EPA Title 5 guidelines for Volatile Organic Compound (VOC) emissions limitations. Conform finish to meet or exceed performance standards of AWI AWS catalyzed polyurethane.

2.3.5 Color

Provide door finish color as specified in Section 09 06 00 SCHEDULES FOR FINISHES.

2.4 COMPONENTS

2.4.1 Anchors

Locate frame anchors near the top and bottom of doors and at intermediate points and 24-inches on center. Provide a minimum of three anchors per jamb.

Provide floor anchor clips at each jamb with 2-inch vertical adjustments on increments not exceeding 1/16-inch.

2.4.2 Door Hardware

Provide the following STC related hardware with the door: cam-lift hinges, perimeter seals, door bottoms and thresholds.

Refer to hardware sets in Section 08 71 00 DOOR HARDWARE for remaining hardware requirements to be provided under this Section 08 34 73.

Include on Installation drawings a finish hardware schedule for each door and a hollow metal door frame schedule for each door indicating profile, dimensions, hardware reinforcement, and frame anchorage. Also indicate perimeter seals, door-bottom devices and other hardware items that are assembled in the shop.

2.4.3 Perimeter Seals and Gasketing

Provide a closed-cell, expanded cellular rubber seal material conforming to ASTM D1056, Type S, Grade SBE-42 or SCE-42 for heads, jambs, and door bottoms.

Install seals in formed steel or extruded aluminum shapes designed to receive and hold seals and to provide concealed adjustable attachment to door frames. Provide concealed adjustment screws that are not more than 12-inches on center and provide at least 3/8-inch adjustment.

Provide door bottoms that are assemblies of closed-cell neoprene seals, seal housings, and automatic operating devices, mounted on the doors as indicated. Design devices to seal the spaces between the doors and the finished floors or thresholds when closed and to retract immediately when doors are opened, with a sill clearance of approximately 1/4-inch.

2.4.4 Thresholds

Provide metal thresholds where indicated. Provide thresholds that are
extruded aluminum, 6063-T5 alloy, mill finish, not less than 1/8-inch thick, with integral seal grooves formed to the indicated section.

2.5 TESTS, INSPECTIONS, AND VERIFICATIONS

2.5.1 Sound Transmission Classification

Provide Test reports prepared by a nationally recognized, independent laboratory for Acoustical Tests, Air Infiltration Tests, Wind Loading Tests, and Water Leakage Tests indicating that the sound transmission classification (STC) of the proposed door, based on tests at 16 third-octave band frequencies from 125 to 4,000 hertz, is no less than the specified STC ratings when tested in accordance with ASTM E90, and that the door tested is hung in substantially the type of wall and frame as indicated and is fully operable with hardware and perimeter seals installed.

2.5.2 Positive Pressure

Provide Test reports, prepared by a nationally recognized, independent laboratory for Positive Pressure Tests, for all fire rated door assemblies, including Intumescent Seals, Gasketing, and Door Bottoms.

2.5.3 Cam Lift Hinges

When required to achieve STC ratings, manufacturer shall furnish laboratory test data certifying hinges have been cycled a minimum of 1,000,000 while supporting a minimum door weight of 350 pounds.

2.5.4 Guarantee

Provide written guarantee that each door delivered to the project is equal in construction, sound transmission classification (STC), and positive pressure test rating where applicable, with appropriate labeling and markings, to that of the sample door tested. Clearly state in written guarantee that each door assembly, when installed in accordance with the manufacturer's printed instructions, has an in-place STC rating within 3 decibels of the specimen tested. Submit the following test data and Certificates with the written Guarantee:

a. Wind Loading Tests

b. Water Leakage Tests

c. Acoustical Tests

d. Air Infiltration Tests

e. Positive Pressure Tests

PART 3 EXECUTION

3.1 PREPARATION

Upon receipt of material, thoroughly inspect all frames, doors and accessories. Verify quantities and tag numbers according to the packing list provided. Report all discrepancies, deficiencies and/or damages immediately to Contracting Officer.

Prior to installation check all doors and frames for correct size and
swing. Verify that frames are plumb, square and aligned without twist in accordance with tolerances published by NAAMM/HMMA and SDI.

3.1.1 Frame Painting and Cleaning

Clean thoroughly all surfaces of all mill scale, rust, oil, grease, dirt, and other foreign materials before the application of the shop coat of paint.

Apply one shop coat of rust inhibitive metallic oxide or synthetic resin primer applied to clean, dry, and prepared surfaces by brush, dipping, or other approved method to provide a continuous minimum dry film thickness of 0.9 mil.

3.2 INSTALLATION

3.2.1 Frame

Install frames plumb and true with not more than 1/32-inch deviation in vertical alignment in 8 feet. Anchor to the wall in accordance with the printed instructions of the manufacturer. Grout frames solid with mortar in masonry, concrete, and plaster wall construction. Spot grout frames in dry wall partitions with mortar at the jamb anchor clips; fill the space between metal frame and stud partition solidly with fiberglass or mineral wool insulation.

3.2.2 Door

Install and adjust all doors, hardware, and seals in accordance with the approved drawings, hardware schedules, and the printed instructions of the door manufacturer.

Install and adjust perimeter seals and automatic door bottom seals to provide positive compression contact with the entire sealing surface with no gaps, openings, or breaks. Hinges or hardware which distort or pinch the perimeter seal during operation of the door will be rejected.

Install door bottom devices to seal the space between the door bottoms and the finished floor and the space between the seal and seal housing.

Field apply perimeter seal housings with mitered corners and with flush, aligned hairline joints.

Install wood doors and frames in accordance with NFPA 80.

Install components to manufacturer's written instructions. Coordinate with gypsum board wall construction for anchor placement. Set frames plumb, square, level and at correct elevation. Adjust operable parts for correct clearances and function. Install and adjust perimeter and bottom acoustic seals.

3.3 FIELD QUALITY CONTROL

Provide third party testing in accordance with ASTM E336. Verify in writing that installed product performs no less than three (3) STC rating points below the specified laboratory STC rating. Examine, adjust, and retest any installation not meeting that criteria until compliance is obtained.
3.3.1 Performance

Provide assemblies that are identical to those tested at an independent acoustical laboratory qualified under the National Voluntary Laboratory Accreditation Program (NVLAP) by the National Institute for Science and Technology (NIST) in accordance with ASTM E90 and ASTM E413. On test reports include the laboratory name, test report number and date of test.

3.3.2 Testing

Contractor is responsible for meeting the acoustic performance of STC rated door/frame assemblies as shown on the Drawings. The Government will test the assemblies and the Contractor is responsible for all corrective work at his own expense to pass Government tests.

-- End of Section --
SECTION 08 51 13

ALUMINUM WINDOWS

05/11

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA)

AAMA 611 (2014) Voluntary Specification for Anodized Architectural Aluminum

ASTM INTERNATIONAL (ASTM)

NATIONAL FENESTRATION RATING COUNCIL (NFRC)

NFRC 100 (2014) Procedure for Determining Fenestration Product U-Factors

1.2 CERTIFICATION

Each prime window unit must bear the AAMA Label warranting that the product complies with AAMA/WDMA/CSA 101/I.S.2/A440. Certified test reports attesting that the prime window units meet the requirements of AAMA/WDMA/CSA 101/I.S.2/A440, including test size, will be acceptable in lieu of product labeling.
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Windows; G

Fabrication Drawings

SD-03 Product Data

Windows; G

Window Performance; G

Mullions; G

Weatherstripping; G

Fasteners

Accessories

Submit manufacturer's product data, indicating VOC content.

SD-04 Samples

Finish Samples; G

SD-05 Design Data

Structural Calculations for Deflection and Antiterrorism; G

Design Analysis; G

Submit design analysis with calculations showing that the design of each different size and type of aluminum window unit and its anchorage to the structure meets the minimum antiterrorism standards required by paragraph "Minimum Antiterrorism Performance". Calculations verifying the structural performance of each window proposed for use, under the given loads, must be prepared and signed by a registered Professional Engineer. The window components and anchorage devices to the structure, as determined by the design analysis, must be reflected in the shop drawings.

SD-06 Test Reports

Air Infiltration; G

Water Penetration; G

Minimum Condensation Resistance Factor; G

SD-11 Closeout Submittals
Recycled Content of Aluminum Windows; S

1.4 QUALITY ASSURANCE

1.4.1 Shop Drawing Requirements

Provide drawings that indicate elevations of windows, full-size sections, thickness and gages of metal, fastenings, proposed method of anchoring, size and spacing of anchors, details of construction, method of glazing, mullion details, method and materials for weatherstripping, material and method of attaching subframes, trim, installation details, and other related items.

1.4.2 Design Data Requirements

Submit calculations to substantiate compliance with deflection requirements and Minimum Antiterrorism Performance criteria. A registered Professional Engineer must provide calculations.

Submit design analysis with calculations showing that the design of each different size and type of aluminum window unit and its anchorage to the structure meets the requirements of paragraph "Minimum Antiterrorism Performance Criteria". Calculations verifying the structural performance of each window proposed for use, under the given loads, must be prepared and signed by a registered professional engineer. Reflect the window components and anchorage devices to the structure, as determined by the design analysis, in the shop drawings.

1.4.3 Test Report Requirements

Submit test reports for each type of window attesting that identical windows have been tested and meet the requirements specified herein for conformance to AAMA/WDMA/CSA 101/I.S.2/A440 including test size, and minimum condensation resistance factor (CRF).

1.4.4 Engineer Qualifications for Blast Design

All blast design calculations must be performed by or under the direct supervision of a registered engineer with a minimum of 5 years experience performing blast design. The engineering firm performing the blast design must be able to demonstrate experience on similar size projects using similar design methods to meet the requirements outlined in this specification.

1.4.5 Finish Samples

Submit two color charts and two finish sample chips from manufacturer's standard color and finish options for each type of finish indicated.

1.5 DELIVERY AND STORAGE

Deliver windows to project site in an undamaged condition. Use care in handling and hoisting windows during transportation and at the jobsite. Store windows and components out of contact with the ground, under a weathertight covering, so as to prevent bending, warping, or otherwise damaging the windows. Repair damaged windows to an "as new" condition as approved. If windows can not be repaired, provide a new unit.
1.6 PROTECTION

Protect finished surfaces during shipping and handling using the manufacturer's standard method. Do not apply coatings or lacquers to surfaces to which caulking must adhere.

1.7 FIELD MEASUREMENTS

Take field measurements prior to preparation of the drawings and fabrication.

1.8 PERFORMANCE REQUIREMENTS

1.8.1 Wind Loading Design Pressure

Design window components, including mullions and anchors, to withstand a wind-loading design pressure of at least 25 pounds per square foot (psf).

1.8.2 Tests

Test windows proposed for use in accordance with AAMA/WDMA/CSA 101/I.S.2/A440 for the particular type and quality window specified.

Perform tests by a nationally recognized independent testing laboratory equipped and capable of performing the required tests. Submit the results of the tests as certified laboratory reports required herein.

Minimum design load for a uniform-load structural test must be 50 psf.

1.9 DRAWINGS

Submit the Fabrication Drawings for aluminum window units showing complete window assembly including subframe assembly details.

1.10 WINDOW PERFORMANCE

Aluminum windows must meet the following performance requirements. Perform testing requirements by an independent testing laboratory or agency.

1.10.1 Structural Performance

Structural test pressures on window units must be for positive load (inward) and negative load (outward). After testing, there will be no glass breakage or permanent damage to fasteners. There must be no permanent deformation of any main frame member in excess of the requirements established by AAMA/WDMA/CSA 101/I.S.2/A440 for the window types and classification specified in this section.

1.10.2 Minimum Antiterrorism Performance

Windows must meet the minimum antiterrorism performance as specified in the paragraphs below. Conformance to the performance requirements must be validated by one of the following methods.

1.10.2.1 Computational Design Analysis Method

Window frames and mullions must be designed to the criteria listed herein. Computational design analysis must include calculations verifying the
structural performance of each window proposed for use, under the given static equivalent loads.

Aluminum window framing members must restrict deflections of the edges of glazing they support to \(L/60 \) under two times (2X) the glazing resistance per the requirements of ASTM F2248 and ASTM E1300. Glazing resistance must be greater than equivalent 3-second duration loading of 55 pounds per square foot (psf). \(L \) denotes the length of the glazing supported edge. (\(L \) is to be based on edge length of glazing in frame and not on the distance between anchors that fasten frame to the structure.)

The glazing frame bite for the window frames must be in accordance with ASTM F2248.

Window frames must be anchored to the supporting structure with anchors designed to resist two times (2X) the glazing resistance in accordance with ASTM F2248 and ASTM E1300.

1.10.2.2 Alternate Dynamic Design Analysis Method

As an alternative to the static equivalent load design approach described above, window framing members, anchors, and glazing may be designed using a dynamic analysis to prove the window system will provide performance equivalent to or better than a very low hazard rating in accordance with ASTM F1642/F1642M associated with the applicable low level of protection for the project.

1.10.3 Air Infiltration

Air infiltration must not exceed the amount established by AAMA/WDMA/CSA 101/I.S.2/A440 for each window type.

1.10.4 Water Penetration

Water penetration must not exceed the amount established by AAMA/WDMA/CSA 101/I.S.2/A440 for each window type.

1.10.5 Thermal Performance

Aluminum windows (including frames and glass) must be certified by the National Fenestration Rating Council with a U-factor maximum of 0.47 Btu/hr-ft\(^2\)-F in accordance with NFRC 100.

1.11 QUALIFICATION

Window manufacturer must specialize in designing and manufacturing the type of aluminum windows specified in this section, and have a minimum of five years of documented successful experience. Manufacturer must have the facilities capable of meeting contract requirements, single-source responsibility and warranty.

1.12 WARRANTY

Provide Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.
PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Recycled content of Aluminum Windows

Provide aluminum window frames meeting the recycled content requirements as stated within this section and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT.

2.2 WINDOWS

Provide windows that comply with AAMA/WDMA/CSA 101/I.S.2/A440 and the requirements specified herein. In addition to compliance with AAMA/WDMA/CSA 101/I.S.2/A440, window framing members for each individual light of glass must not deflect to the extent that deflection perpendicular to the glass light exceeds L/175 of the glass edge length when subjected to uniform loads at specified design pressures. Provide Structural calculations for deflection to substantiate compliance with deflection requirements. Provide windows of types, performance classes, performance grades, combinations, and sizes indicated or specified. Provide aluminum window frames with a minimum recycled content of 20 percent. Design windows to accommodate glass, weatherstripping and accessories to be furnished. Each window must be a complete factory assembled unit with or without glass installed. Dimensions shown are minimum. Provide windows with insulating glass and thermal break necessary to achieve a minimum Condensation Resistance Factor (CRF) of 69 when tested in accordance with AAMA 1503.

2.2.1 Glass and Glazing

Materials are specified in Section 08 81 00 GLAZING.

2.2.2 Caulking and Sealing

Are specified in Section 07 92 00 JOINT SEALANTS.

2.2.3 Weatherstripping

2.3 FABRICATION

Fabrication of window units must comply with AAMA/WDMA/CSA 101/I.S.2/A440.

2.3.1 Provisions for Glazing

Design windows and rabbets suitable for glass thickness shown or specified. For minimum antiterrorism windows, attach glazing to its supporting frame using structural silicone sealant or adhesive glazing tape in accordance with ASTM F2248.

2.3.2 Weatherstripping

Provide for ventilating sections of all windows to ensure a weather-tight seal meeting the infiltration requirements specified in
AAMA/WDMA/CSA 101/I.S.2/A440. Provide easily replaceable factory-applied weatherstripping. Use molded vinyl, molded or molded-expanded neoprene or molded or expanded Ethylene Propylene Diene Terpolymer (EPDM) compression-type weatherstripping for compression contact surfaces. Use treated woven pile or wool, or polypropylene or nylon pile bonded to nylon fabric and metal or plastic backing strip weatherstripping for sliding surfaces. Do no use neoprene or polyvinylchloride weatherstripping where exposed to direct sunlight.

2.3.3 Fasteners

Use window manufacturer's standard for windows, trim, and accessories. Self-tapping sheet-metal screws are not acceptable for material more than 1/16 inch thick.

2.3.4 Adhesives

Provide joint sealants as specified in Section 07 92 00 JOINT SEALANTS. For interior application of joint sealants, comply with applicable regulations regarding reduced VOC's, and as specified in Section 07 92 00 JOINT SEALANTS.

2.3.5 Drips and Weep Holes

Provide drips and weep holes as required to return water to the outside.

2.3.6 Combination Windows

Windows used in combination must be factory assembled of the same class and grade. Where factory assembly of individual windows into larger units is limited by transportation considerations, prefabricate, match mark, transport, and field assemble.

2.3.7 Mullions and Transom Bars

Provide mullions between multiple window units to resist two times (2X) glazing resistance in accordance with ASTM F2248 and ASTM E1300. Provide mullions with a thermal break. Secure mullions and transom bars to adjoining construction and window units in such a manner as to permit expansion and contraction and to form a weathertight joint. Provide mullion covers on the interior and exterior to completely close exposed joints and recesses between window units and to present a neat appearance. Provide special covers over structural support at mullions as indicated.

2.3.8 Accessories

Provide windows complete with necessary fastenings, clips, fins, anchors, glazing beads, and other appurtenances necessary for complete installation. Furnish extruded aluminum subframe receptors and subsill with each window unit.

2.3.8.1 Fasteners

Provide concealed anchors of the type recommended by the window manufacturer for the specific type of construction. Anchors and fasteners must be compatible with the window and the adjoining construction. Provide a minimum of three anchors for each jamb located approximately 6 inches from each end and at midpoint.
2.3.8.2 Window Anchors

Anchoring devices for installing windows must be made of aluminum, cadmium-plated steel, stainless steel, or zinc-plated steel conforming to AAMA/WDMA/CSA 101/I.S.2/A440.

2.3.9 Finishes

Exposed aluminum surfaces must be factory finished with an anodic coating. Color must be as indicated in Section 09 06 00 SCHEDULES FOR FINISHES.

2.3.9.1 Anodic Coating

Clean exposed aluminum surfaces and provide an anodized finish conforming to AA DAF45 and AAMA 611. Finish shall be Architectural Class II (0.4 mil to 0.7 mil) anodized.

2.4 THERMAL-BARRIER WINDOWS

Provide thermal-barrier windows, complete with accessories and fittings, where indicated.

Specify material and construction except as follows:

a. Aluminum alloy must be 6063-T6.

b. Frame construction must be factory-assembled and factory-sealed inner and outer aluminum completely separated from metal-to-metal contact. Join assembly by a continuous, concealed, low conductance divider housed in an interlocking extrusion of the inner frame. Metal fasteners, straps, or anchors must not bridge the connection between the inner and outer frame.

2.5 MULLIONS

Provide mullions between multiple-window units where indicated.

Provide profiles for mullions and mullion covers, reinforced as required for the specified wind loading, and securely anchored to the adjoining construction. Mullion extrusion will include serrations or pockets to receive weatherstripping, sealant, or tape at the point of contact with each window flange.

Mullion assembly must include aluminum window clamps or brackets screwed or bolted to the mullion and the mullion cover.

Mullion cover must be screw-fastened to the mullion unless otherwise indicated.

Mullion reinforcing members must be fabricated of the materials specified in AAMA/WDMA/CSA 101/I.S.2/A440 and meet the specified design loading.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Method of Installation

Install in accordance with the window manufacturer's printed instructions.
and details. Build in windows as the work progresses or install without forcing into prepared window openings. Set windows at proper elevation, location, and reveal; plumb, square, level, and in alignment; and brace, strut, and stay properly to prevent distortion and misalignment. Bed screws or bolts in sill members, joints at mullions, contacts of windows with sills, built-in fins, and subframes in mastic sealant of a type recommended by the window manufacturer. Install and caulk windows in a manner that will prevent entrance of water and wind.

Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project.

3.1.2 Dissimilar Materials

Where aluminum surfaces are in contact with, or fastened to masonry, concrete, wood, or dissimilar metals, except stainless steel or zinc, protect the aluminum surface from dissimilar materials as recommended in the Appendix to AAMA/WDMA/CSA 101/I.S.2/A440. Do not coat surfaces in contact with sealants after installation with any type of protective material.

3.1.3 Anchors and Fastenings

Make provision for securing units to each other, to masonry, and to other adjoining construction. Windows installed in masonry walls must have head and jamb members designed to recess into masonry wall not less than 7/16 inch.

3.2 CLEANING

Clean interior and exterior surfaces of window units of paint spattering spots and other foreign matter to present a neat appearance, and to prevent fouling of weathering surfaces and weather-stripping. Replace all stained, discolored, or abraded windows that cannot be restored to their original condition with new windows.

-- End of Section --
SECTIO\n08 71 00
DOOR HARDWARE
02/16

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E283 (2004; R 2012) Determining the Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen

BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA)

ANSI/BHMA A156.1 (2013) Butts and Hinges
ANSI/BHMA A156.13 (2012) Mortise Locks & Latches Series 1000
ANSI/BHMA A156.16 (2013) Auxiliary Hardware
ANSI/BHMA A156.18 (2016) Materials and Finishes
ANSI/BHMA A156.2 (2011) Bored and Preassembled Locks and Latches
ANSI/BHMA A156.21 (2014) Thresholds
ANSI/BHMA A156.22 (2012) Door Gasketing and Edge Seal Systems
ANSI/BHMA A156.25 (2013) Electrified Locking Devices
ANSI/BHMA A156.26 (2012) Continuous Hinges
ANSI/BHMA A156.3 (2014) Exit Devices
ANSI/BHMA A156.36 (2010) Auxiliary Locks
ANSI/BHMA A156.4 (2013) Door Controls - Closers
ANSI/BHMA A156.5 (2014) Cylinder and Input Devices for Locks
ANSI/BHMA A156.6 (2015) Architectural Door Trim
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
- Manufacturer's Detail Drawings; G
- Verification of Existing Conditions; G
- Hardware Schedule; G
- Keying System; G

SD-03 Product Data
- Hardware Items; G
1.3 SHOP DRAWINGS

Submit manufacturer’s detail drawings indicating all hardware assembly components and interface with adjacent construction. Indicate power components and wiring coordination for electrified hardware. Base shop drawings on verified field measurements and include verification of existing conditions.

1.4 PRODUCT DATA

Indicate fire-ratings at applicable components. Provide documentation of ABA/ADA accessibility compliance of applicable components, as required by 36 CFR 1191 Appendix D - Technical.

1.5 HARDWARE SCHEDULE

Prepare and submit hardware schedule in the following form:

<table>
<thead>
<tr>
<th>Hardware Item</th>
<th>Quantity</th>
<th>Size</th>
<th>Reference Publication Type No.</th>
<th>Finish Mfr Name and Catalog No.</th>
<th>Key Control Symbols (If fire-rated and listed)</th>
<th>UL Mark (If fire-rated and listed)</th>
<th>BHMA Finish Designation</th>
</tr>
</thead>
</table>

In addition, submit hardware schedule data package 1 in accordance with Section 01000.

1.6 KEY BITTING CHART REQUIREMENTS

1.6.1 Requirements

Submit key bitting charts to the Contracting Officer prior to completion of the work. Include:

a. Complete listing of all keys (e.g. AA1 and AA2).

b. Complete listing of all key cuts (AA1-123456, AA2-123458).

c. Tabulation showing which key fits which door.

d. Copy of floor plan showing doors and door numbers.

e. Listing of 20 percent more key cuts than are presently required in each...
1.7 QUALITY ASSURANCE

1.7.1 Hardware Manufacturers and Modifications

Provide, as far as feasible, locks, hinges, and closers of one lock, hinge, or closer manufacturer's make. Modify hardware as necessary to provide features indicated or specified.

1.7.2 Key Shop Drawings Coordination Meeting

Prior to the submission of the key shop drawing, the Contracting Officer, Contractor, Door Hardware Subcontractor, using Activity and Base Locksmith must meet to discuss and coordinate key requirements for the facility.

1.8 DELIVERY, STORAGE, AND HANDLING

Deliver hardware in original individual containers, complete with necessary appurtenances including fasteners and instructions. Mark each individual container with item number as shown on hardware schedule. Deliver permanent keys and removable cores to the Contracting Officer, either directly or by certified mail. Deliver construction master keys with the locks.

PART 2 PRODUCTS

2.1 TEMPLATE HARDWARE

Hardware applied to metal doors must be manufactured using a template. Provide templates to door and frame manufacturers in accordance with ANSI/BHMA A156.7 for template hinges. Coordinate hardware items to prevent interference with other hardware.

2.2 HARDWARE FOR FIRE DOORS AND EXIT DOORS

Provide all hardware necessary to meet the requirements of NFPA 72 for door alarms, NFPA 80 for fire doors, NFPA 101 for exit doors, NFPA 252 for fire tests of door assemblies, ABA/ADA accessibility requirements, and all other requirements indicated, even if such hardware is not specifically mentioned in paragraph HARDWARE SCHEDULE. Provide Underwriters Laboratories, Inc. labels for such hardware in accordance with UL Bld Mat Dir or equivalent labels in accordance with another testing laboratory approved in writing by the Contracting Officer.

2.3 HARDWARE ITEMS

Clearly and permanently mark with the manufacturer's name or trademark, hinges, pivots, locks, latches, exit devices, bolts and closers where the identifying mark is visible after the item is installed. For closers with covers, the name or trademark may be beneath the cover. Coordinate electrified door hardware components with corresponding components specified in Division 28 ELECTRONIC SAFETY AND SECURITY.

2.3.1 Hinges

Provide in accordance with ANSI/BHMA A156.1. Provide hinges that are 4-1/2 by 4-1/2 inch unless otherwise indicated. Construct loose pin hinges for interior doors and reverse-bevel exterior doors so that pins are
non-removable when door is closed. Other anti-friction bearing hinges may be provided in lieu of ball bearing hinges.

2.3.2 Continuous Hinges

Where continuous hinges are required, provide in accordance with ANSI/BHMA A156.26.

2.3.3 Locks and Latches

2.3.3.1 Mortise Locks and Latches

Provide in accordance with ANSI/BHMA A156.13, Series 1000, Operational Grade 1, Security Grade 2. Provide mortise locks with escutcheons not less than 7 by 2-1/4 inch with a bushing at least 1/4 inch long. Cut escutcheons to fit cylinders and provide trim items with straight, beveled, or smoothly rounded sides, corners, and edges. Provide knobs and roses of mortise locks with screwless shanks and no exposed screws.

2.3.3.2 Bored Locks and Latches

Provide in accordance with ANSI/BHMA A156.2, Series 4000, Grade 1.

2.3.3.3 Auxiliary Locks

Provide in accordance with ANSI/BHMA A156.36, Grade 1.

2.3.3.4 Combination Locks

Heavy-duty, mechanical combination lockset with five push buttons, standard sized knobs, 3/4 inch deadlocking latch, 2-3/4 inch backset. Locks to operate by pressing two or more of the buttons in unison or individually in the proper sequence. Inside knob operates the latch. Provide a keyed cylinder on the interior to permit setting the combination. Provide a keyed removable core cylinder on the exterior to permit bypassing the combination.

2.3.4 Exit Devices

Provide in accordance with ANSI/BHMA A156.3, Grade 1. Provide adjustable strikes for rim type devices. Provide touch bars.

2.3.5 Cylinders and Cores

Provide cylinders and cores for new locks. Provide cylinders from the products of one manufacturer, and provide cores from the products of one manufacturer. Rim cylinders, mortise cylinders, and knobs of bored locksets have interchangeable cores which are removable by special control keys. Stamp each interchangeable core with a key control symbol in a concealed place on the core.

2.3.6 Push Button Mechanisms

Provide in accordance with ANSI/BHMA A156.5, Grade 1.

2.3.7 Electrified Hardware

Comply with the requirements of NFPA 70 for wiring of electrified hardware.
2.3.7.1 Electrified Mortise Locks

Provide in accordance with ANSI/BHMA A156.25, Grade 1. Provide electrified mortise locks that remain secure during power failure. Provide facility interface devices that use dc power to energize solenoids. Provide solenoids, resistors, and signal switches.

2.3.7.1.1 Power Transfer Hinges

Provide power transfer hinges with each electrified lock that route power and monitoring signals from the lockset to the door frame. Coordinate power transfer hinges with door frames.

2.3.7.2 Release Devices

In accordance with ANSI/BHMA A156.15, Grade 1.

2.3.7.2.1 Release Devices

Provide wall mounted electromagnetic release devices connected to fire/smoke detecting devices.

2.3.7.3 Power Assist and Low Energy Power Operated Doors

Provide in accordance with ANSI/BHMA A156.19, Grade 1.

2.3.8 Keying System

Provide a grand master keying system.

The Government will provide permanent cylinders with cores and keys for mortise locksets, auxiliary locks, and exit devices. Provide cylinders of Grade 1 products from one manufacturer. Notify the Contracting Officer 90 days prior to the required delivery of the cylinders. Provide temporary cores and keys for the Contractor's use during construction, and for testing of locksets.

2.3.9 Lock Trim

Provide cast, forged, or heavy wrought construction and commercial plain design for lock trim.

2.3.9.1 Lever Handles

Provide lever handles. Provide in accordance with ANSI/BHMA A156.3 for mortise locks of lever handles for exit devices. Provide lever handle locks with a breakaway feature (such as a weakened spindle or a shear key) to prevent irreparable damage to the lock when force in excess of that specified in ANSI/BHMA A156.13 is applied to the lever handle. Provide lever handles return to within 1/2 inch of the door face.

2.3.10 Keys

Provide one file key, one duplicate key, and one working key for each key change. Provide one additional working key for each lock of each keyed-alike group, 6 construction master keys, and 10 control keys for removable cores. Provide a quantity of 50 key blanks. Stamp each key with appropriate key control symbol and "U.S. property - do not duplicate." Do not place room number on keys.
2.3.11 Door Bolts

Provide in accordance with ANSI/BHMA A156.16. Provide dustproof strikes for bottom bolts, except at doors having metal thresholds. Provide automatic latching flush bolts in accordance with ANSI/BHMA A156.3, Type 25.

2.3.12 Closers

Provide in accordance with ANSI/BHMA A156.4, Series C02000, Grade 1, with PT 4C. Provide with brackets, arms, mounting devices, fasteners, full size covers, and other features necessary for the particular application. Size closers in accordance with manufacturer's printed recommendations, or provide multi-size closers, Sizes 1 through 6, and list sizes in the Hardware Schedule. Provide manufacturer's 10 year warranty.

2.3.12.1 Identification Marking

Engrave each closer with manufacturer's name or trademark, date of manufacture, and manufacturer's size designation in locations that will be visible after installation.

2.3.13 Overhead Holders

Provide in accordance with ANSI/BHMA A156.8.

2.3.14 Door Protection Plates

Provide in accordance with ANSI/BHMA A156.6.

2.3.15 Door Stops and Silencers

Provide in accordance with ANSI/BHMA A156.16. Silencers Type L03011. Provide three silencers for each single door, two for each pair.

2.3.16 Thresholds

Provide in accordance with ANSI/BHMA A156.21. Use J35100, with vinyl or silicone rubber insert in face of stop, for exterior doors opening out, unless specified otherwise.

2.3.17 Weatherstripping Gasketing

Provide in accordance with ANSI/BHMA A156.22. Provide the type and function designation where specified in paragraph HARDWARE SCHEDULE. Provide a set to include head and jamb seals, sweep strips, and, for pairs of doors, astragals. Air leakage of weatherstripped doors not to exceed 0.5 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E283. Provide weatherstripping with one of the following:

2.3.17.1 Extruded Aluminum Retainers

Extruded aluminum retainers not less than 0.050 inch wall thickness with vinyl, neoprene, silicone rubber, or polyurethane inserts. Provide clear anodized aluminum.
2.3.17.2 Interlocking Type

Zinc not less than 0.018 inch thick.

2.3.17.3 Spring Tension Type

Stainless steel not less than 0.008 inch thick.

2.3.18 Rain Drips

Provide in accordance with ANSI/BHMA A156.22. Provide extruded aluminum rain drips, not less than 0.08 inch thick, clear anodized finish. Provide the manufacturer's full range of color choices to the Contracting Officer for color selection. Provide rain drips with a 4 inch overlap on each side of each exterior door that is not protected by an awning, roof, eave or other horizontal projection. Set drips in sealant and fasten with stainless steel screws.

2.3.18.1 Overhead Rain Drips

Approximately 1-1/2 inch high by 2-1/2 inch projection. Align bottom with door frame rabbet.

2.3.19 Auxiliary Hardware (Other than locks)

Provide in accordance with ANSI/BHMA A156.16, Grade 1.

2.3.20 Special Tools

Provide special tools, such as spanner and socket wrenches and dogging keys, as required to service and adjust hardware items.

2.4 FASTENERS

Provide fasteners of type, quality, size, and quantity appropriate to the specific application. Fastener finish to match hardware. Provide stainless steel or nonferrous metal fasteners in locations exposed to weather. Verify metals in contact with one another are compatible and will avoid galvanic corrosion when exposed to weather.

2.5 FINISHES

Provide in accordance with ANSI/BHMA A156.18. Provide hardware in BHMA 630 finish (satin stainless steel), unless specified otherwise. Provide items not manufactured in stainless steel in BHMA 626 finish (satin chromium plated) over brass or bronze, except aluminum paint finish for surface door closers, and except BHMA 652 finish (satin chromium plated) for steel hinges. Provide hinges for exterior doors in stainless steel with BHMA 630 finish or chromium plated brass or bronze with BHMA 626 finish. Furnish exit devices in BHMA 626 finish in lieu of BHMA 630 finish except where BHMA 630 is specified under paragraph HARDWARE SETS. Match exposed parts of concealed closers to lock and door trim.

2.6 KEY CABINET AND CONTROL SYSTEM

Provide in accordance with ANSI/BHMA A156.5. Type required to yield a capacity (number of hooks) 50 percent greater than the number of key changes used for door locks.
PART 3 EXECUTION

3.1 INSTALLATION

Provide hardware in accordance with manufacturers' printed installation
instructions. Fasten hardware to wood surfaces with full-threaded wood
screws or sheet metal screws. Provide machine screws set in expansion
shields for fastening hardware to solid concrete and masonry surfaces.
Provide toggle bolts where required for fastening to hollow core
construction. Provide through bolts where necessary for satisfactory
installation.

3.1.1 Weatherstripping Installation

Provide full contact, weathertight seals that allow operation of doors
without binding the weatherstripping.

3.1.1.1 Stop Applied Weatherstripping

Fasten in place with color matched sheet metal screws not more than 9 inch
on center after doors and frames have been finish painted.

3.1.1.2 Interlocking Type Weatherstripping

Provide interlocking, self adjusting type on heads and jambs and flexible
hook type at sills. Nail weatherstripping to door 1 inch on center and to
heads and jambs at 4 inch on center.

3.1.2 Threshold Installation

Extend thresholds the full width of the opening and notch end for jamb
stops. Set thresholds in a full bed of sealant and anchor to floor with
cadmium-plated, countersunk, steel screws in expansion sleeves.

3.2 FIRE DOORS AND EXIT DOORS

Provide hardware in accordance with NFPA 72 for door alarms, NFPA 80 for
fire doors, NFPA 101 for exit doors, and NFPA 252 for fire tests of door
assemblies.

3.3 HARDWARE LOCATIONS

Provide in accordance with SDI/DOOR A250.8, unless indicated or specified
otherwise.

3.4 KEY CABINET AND CONTROL SYSTEM

Locate where indicated. Tag one set of file keys and one set of duplicate
keys. Place other keys in appropriately marked envelopes, or tag each
key. Provide complete instructions for setup and use of key control
system. On tags and envelopes, indicate door and room numbers or master or
grand master key.

3.5 FIELD QUALITY CONTROL

After installation, protect hardware from paint, stains, blemishes, and
other damage until acceptance of work. Submit notice of testing 15 days
before scheduled, so that testing can be witnessed by the Contracting Officer. Adjust hinges, locks, latches, bolts, holders, closers, and other items to operate properly. Demonstrate that permanent keys operate respective locks, and give keys to the Contracting Officer. Correct, repair, and finish, errors in cutting and fitting and damage to adjoining work.

3.6 HARDWARE SETS

3.6.1 List of Manufacturers

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

<table>
<thead>
<tr>
<th>Specified</th>
<th>Equal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>Stanley</td>
</tr>
<tr>
<td>Continuous Hinges</td>
<td>Pemko</td>
</tr>
<tr>
<td>Cylinders</td>
<td>Best 7 Pin</td>
</tr>
<tr>
<td>Locks</td>
<td>Best</td>
</tr>
<tr>
<td>High Security Devices</td>
<td>Sargent Greenleaf</td>
</tr>
<tr>
<td>Exit Devices</td>
<td>Precision</td>
</tr>
<tr>
<td>Closers</td>
<td>Norton</td>
</tr>
<tr>
<td>Overhead Stops</td>
<td>Rixson</td>
</tr>
<tr>
<td>Flat Goods and Stops</td>
<td>Rockwood</td>
</tr>
<tr>
<td>Weatherproofing</td>
<td>Pemko</td>
</tr>
<tr>
<td>Wall Magnets</td>
<td>Rixson</td>
</tr>
<tr>
<td>Power Transfers</td>
<td>Precision</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 1

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Specification</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Each Continuous Hinges</td>
<td>KCFM_HD1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Keyed Mullion</td>
<td>KR822</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Exit Device</td>
<td>2101 CD</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Exit Device</td>
<td>2103 CD (RHR)</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Cylinders</td>
<td>12E72 S2 RP3</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Cylinders</td>
<td>1E74 C4 RP3</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Pulls</td>
<td>BF157</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Closers</td>
<td>CPS7500 x 6890 x 6891</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Set Weatherstrip</td>
<td></td>
<td></td>
<td>By Door Supplier</td>
</tr>
<tr>
<td>1</td>
<td>Each Threshold</td>
<td></td>
<td></td>
<td>By Door Supplier</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 2

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Specification</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Each Continuous Hinges</td>
<td>KCFM_HD1-PT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Power Transfers</td>
<td>EPT-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Keyed Mullion</td>
<td>KR822</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Exit Device</td>
<td>MLR TS 2101</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Exit Device</td>
<td>MLR TS 2103 (RHR)</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Cylinders</td>
<td>12E72 S2 RP3</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Pulls</td>
<td>BF157</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Each Closers</td>
<td>CPS7500 x 6890 x 6891</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Set Weatherstrip</td>
<td></td>
<td></td>
<td>By Door Supplier</td>
</tr>
<tr>
<td>1</td>
<td>Each Threshold</td>
<td></td>
<td></td>
<td>By Door Supplier</td>
</tr>
<tr>
<td>1</td>
<td>Each Card Reader</td>
<td></td>
<td></td>
<td>By Access Control</td>
</tr>
<tr>
<td>1</td>
<td>Each Power Supply</td>
<td></td>
<td></td>
<td>By Access Control</td>
</tr>
</tbody>
</table>

Note: Blast resistant door and frame assembly.

Note: Access entry control system (AECS) provided by Others.
Operational Description: Door is normally closed and secure. Free egress at all times. Latchbolt retracted by key override from the outside, via valid card read applying power to electric latch retraction, or inside dogging. During scheduled hours latch can be held back electronically. Upon loss of power door remains locked. Door position switch to monitor door being held open for an extended time. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 3 - NOT USED

HARDWARE SET NO. 4 - NOT USED

HARDWARE SET NO. 5

3 Each	Hinges	FBB199	4 ½ x 4 ½ NRP	US32D
1 Each	Exit Device	2101		
1 Each	Closer	CPS7500		689
1 Each	Kick Plate	K1050	8” x 2” LDW	US32D
1 Each	Threshold	2005AT		
1 Set	Integral Seal	Under Section 08 11 13		
1 Each	Balanced Magnetic Switch	By Access Control		

HARDWARE SET NO. 6

5 Each	Hinges	FBB199	4 ½ x 4 ½ NRP	US32D
1 Each	Electric Hinge	CECB199-18	4 ½ x 4 ½	US32D
1 Set	Flush Bolt	555 12”		US26D
1 Each	Electrified Lockset	45HW7DEU	14H RQE 7/8” (RHRA) 626	
1 Each	Overhead Stop	9 Series Hold Open	630	
1 Each	Closer	CPS7500T (RHRA)	689	
2 Each	Armor Plate	K1050 30” x 1” LDW	US32D	
1 Each	Astragal	355CS		
1 Each	Threshold	2005AT		
1 Set	Integral Seal	Under Section 08 11 13		
1 Each	Overhead Rain Drip	346C		
2 Each	Balanced Magnetic Switches	By Access Control		
1 Each	Card Reader	By Access Control		
1 Each	Power Supply	By Access Control		
Note: Access entry control system (AECS) provided by Others.				

Operational Description: Door is normally closed and secure. Free egress at all times. Latchbolt retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. Internal request to exit switch on lock will shunt door position switch. Door position switch to monitor door being held open for extended time. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 7

3 Each	Cam Lift Hinges	By Door Supplier	US26D
1 Each	High Sec. Pedestrian Panic	2890-630 (exit only)	
1 Each	Closer	CPS7500	689
1 Each	Kick Plate	K1050 8” x 2” LDW	US32D
1 Each	Threshold	By Door Supplier	
1 Set	Sound Seal	By Door Supplier	
1 Each	Overhead Rain Drip	346C	
1 Each	Balanced Magnetic Switch	By Access Control	
1 Each	Power Supply for Alarm	By Access Control	
1 Each	Piezo Sounder Alarm	PZ1	
Note: STC acoustical door assembly.			
Operation Description: Door can be alarmed at set times or conditions whereby a local wall-mounted alarm will sound.

HARDWARE SET NO. 8
6 Each Cam Lift Hinges By Door Supplier US26D
1 Set Flush Bolts 555 12" (LHR) US26D
1 Each High Sec. Pedestrian Panic 2890-440M (exit only w/ Z bracket)
2 Each Closers CPS7500T 689
2 Each Armor Plates K1050 30" x 1" LDW US32D
1 Each Threshold By Door Supplier
1 Set Sound Seal By Door Supplier
1 Each Overhead Rain Drip 346C
2 Each Balanced Magnetic Switches By Access Control
1 Each Power Supply for Alarm By Access Control
1 Each Piezo Sounder Alarm PZ1

Note: STC acoustical door assembly.

Operational Description: Door is normally closed and secure. Free egress at all times. Door can be alarmed at set times or conditions whereby a local wall-mounted alarm will sound.

HARDWARE SET NO. 9
3 Each Cam Lift Hinges By Door Supplier US26D
1 Each High Sec. Pedestrian Panic 2890-630 (exit only)
1 Each Closer CPS7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Threshold By Door Supplier
1 Set Sound Seal By Door Supplier
1 Each Balanced Magnetic Switch By Access Control
1 Each Power Supply for Alarm By Access Control
1 Each Piezo Sounder Alarm PZ1

Note: STC acoustical door assembly.

Operational Description: Door can be alarmed at set times or conditions whereby a local wall-mounted alarm will sound.

HARDWARE SET NO. 10
3 Each Hinges FBB199 5 x 4 ½ NRP US26D
1 Each Exit Device 2101 630
1 Each Closer PR7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D

HARDWARE SET NO. 11
3 Each Hinges FBB168 4 ½ x 4 ½ NRP US26D
1 Each Exit Device FL2114 x 4914D 630
1 Each Closer CLP7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Smoke Seal S88D

HARDWARE SET NO. 12
3 Each Hinges FBB168 4.5 x 4.5 US26D
1 Each Exit Device FL2114 x 4914D 630
1 Each Closer CLP7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D

HARDWARE SET NO. 12A
2 Each Hinges FBB168 4 ½ x 4 ½ NRP US26D
1 Each Electrified Hinge CECB168-18 4 ¼ x 4 ½ US26D
1 Each Exit Device MLR FL2103 x 4903D 630
1 Each Closer PR7500 689
1 Each Kick Plate K1050 8” x 2” LDW US32D
1 Each Wall Stop 409 US32D
1 Each Smoke Seal S88D
1 Each Card Reader By Access Control
1 Each Power Supply By Access Control

Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Free egress at all times. Latchbolt retracted by key override from the outside or via valid card read applying power to electric latch retraction. During scheduled hours latch can be held back electronically. Upon loss of power door remains locked. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 13
3 Each Hinges FBB168 4 ¼ x 4 ½ NRP US26D
1 Each Exit Device FL2114 x 4914D 630
1 Each Closer 7500 689
1 Each Kick Plate K1050 8” x 2” LDW US32D
1 Each Wall Stop 409 US32D
1 Each Smoke Seal S88D

HARDWARE SET NO. 14
2 Each Cam Lift Hinges By Door Supplier US26D
1 Each Electrified Cam Lift Hinge By Door Supplier US26D
1 Each High Security Lock 2890-523M
1 Each Keyed Core IC72 626
1 Each High Security Lock CDX-10 Strike Type 2
1 Each Closer 7706STP 689
1 Each Kick Plate K1050 8” x 2” LDW US32D
1 Each Stop Holder 494R 626
1 Each Threshold By Door Supplier
1 Set Sound Seal By Door Supplier
1 Each Balanced Magnetic Switch By Access Control

Note: STC acoustical door assembly.

Operational Description: Door is normally closed and secure unless mechanically held open. High security lock operated by rotating the dial to power up the lock and entering the combination. The mortise lock latchbolt is retracted by key override from the outside allowing outside lever to become operable. Door position switch to monitor door being held open for extended time.

HARDWARE SET NO. 15
2 Each Cam Lift Hinges By Door Supplier US26D
1 Each Electrified Cam Lift Hinge By Door Supplier US26D
1 Each Electrified Lockset 45HW7DEU 14H RQE 626
1 Each Closer PR7500 689
1 Each Kick Plate K1050 8” x 2” LDW US32D
1 Each Wall Stop 409 US32D
1 Each Threshold By Door Supplier
1 Set Sound Seal By Door Supplier
1 Each Card Reader By Access Control
1 Each Power Supply By Access Control

Note: STC acoustical door assembly.
Note: Access entry control system (AECS) provided by Others.
Operational Description: Door is normally closed and secure. Latchbolt retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. Internal request to exit switch on lock will shunt door position switch. Door position switch to monitor door being held open for extended time. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 16

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Supplier</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Each Cam Lift Hinges</td>
<td>By Door Supplier</td>
<td>US26D</td>
</tr>
<tr>
<td>1</td>
<td>Each Electrified Cam Lift Hinge</td>
<td>By Door Supplier</td>
<td>US26D</td>
</tr>
<tr>
<td>1</td>
<td>Each High Sec. Pedestrian Panic</td>
<td>2890-630M (exit only)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Closer</td>
<td>PR7500</td>
<td>689</td>
</tr>
<tr>
<td>1</td>
<td>Each Kick Plate</td>
<td>K1050 8” x 2” LDW</td>
<td>US32D</td>
</tr>
<tr>
<td>1</td>
<td>Each Threshold</td>
<td>By Door Supplier</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Set Sound Seal</td>
<td>By Door Supplier</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Balanced Magnetic Switch</td>
<td>By Access Control</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Power Supply for Alarm</td>
<td>By Access Control</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Each Piezo Sounder Alarm</td>
<td>PZ1</td>
<td></td>
</tr>
</tbody>
</table>

Note: STC acoustical door assembly.

Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Free egress at all times. Door can be alarmed at set times or conditions whereby a local wall-mounted alarm will sound.

HARDWARE SET NO. 17 - NOT USED

HARDWARE SET NO. 18

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each Hinges</td>
<td>FBB179 4 ½ x 4 ½</td>
</tr>
<tr>
<td>1</td>
<td>Each Push Plate</td>
<td>70C</td>
</tr>
<tr>
<td>1</td>
<td>Each Pull Plate</td>
<td>110 x 70B</td>
</tr>
<tr>
<td>1</td>
<td>Each Closer</td>
<td>PR7500</td>
</tr>
<tr>
<td>1</td>
<td>Each Kick Plate</td>
<td>K1050 8” x 2” LDW</td>
</tr>
<tr>
<td>1</td>
<td>Each Wall Stop</td>
<td>409</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 19

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each Hinges</td>
<td>FBB179 4 ½ x 4 ½</td>
</tr>
<tr>
<td>1</td>
<td>Each Lockset</td>
<td>45HOL14H VIN</td>
</tr>
<tr>
<td>1</td>
<td>Each Closer</td>
<td>7500</td>
</tr>
<tr>
<td>1</td>
<td>Each Kick Plate</td>
<td>K1050 8” x 2” LDW</td>
</tr>
<tr>
<td>1</td>
<td>Each Wall Stop</td>
<td>409</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 20 - NOT USED

HARDWARE SET NO. 21

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Each Keyed Core</td>
<td>1C72</td>
</tr>
</tbody>
</table>

Note: All other existing hardware to remain.

HARDWARE SET NO. 22

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Each Hinges</td>
<td>FBB179 4 ½ x 4 ½ NRP</td>
</tr>
<tr>
<td>1</td>
<td>Each Lockset</td>
<td>45H7AT14H</td>
</tr>
<tr>
<td>1</td>
<td>Each Wall Stop</td>
<td>409</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 23 - NOT USED

HARDWARE SET NO. 24

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Item</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Each Hinges</td>
<td>FBB179 5 x 4 ½ NRP</td>
</tr>
<tr>
<td>HARDWARE SET NO. 25</td>
<td>8 Each</td>
<td>Hinges</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>1 Set</td>
<td>Flush Bolt</td>
<td>555 12"</td>
</tr>
<tr>
<td>1 Each</td>
<td>Lockset</td>
<td>45H7R14H</td>
</tr>
<tr>
<td>2 Each</td>
<td>Armor Plate</td>
<td>K1050 30” x 2” LDW</td>
</tr>
<tr>
<td>2 Each</td>
<td>Edge Protector</td>
<td>305 30” (hinge side)</td>
</tr>
<tr>
<td>2 Each</td>
<td>Overhead Stop</td>
<td>2 Series Hold Open</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARDWARE SET NO. 26</th>
<th>3 Each</th>
<th>Hinges</th>
<th>FBB179 4 ½ x 4 ½ NRP</th>
<th>US26D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Each</td>
<td>Lockset</td>
<td>45H7D14H</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Closer</td>
<td>7500</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Kick Plate</td>
<td>K1050 8” x 2” LDW</td>
<td>US32D</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Wall Stop</td>
<td>409</td>
<td>US32D</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Smoke Seal</td>
<td>S88D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARDWARE SET NO. 27</th>
<th>3 Each</th>
<th>Cam Lift Hinges</th>
<th>By Door Supplier</th>
<th>US26D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Each</td>
<td>Exit Device</td>
<td>2108 x 4908D</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Cylinder</td>
<td>12E72 S2 RP3</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Closer</td>
<td>PR7500</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Kick Plate</td>
<td>K1050 8” x 2” LDW</td>
<td>US32D</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Wall Stop</td>
<td>409</td>
<td>US32D</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Threshold</td>
<td>By Door Supplier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Set</td>
<td>Sound Seal</td>
<td>By Door Supplier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARDWARE SET NO. 28</th>
<th>6 Each</th>
<th>Hinges</th>
<th>FBB179 5 x 4.5</th>
<th>US26D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Each</td>
<td>Exit Devices</td>
<td>FL2714LBR x 4914D</td>
<td>630</td>
<td></td>
</tr>
<tr>
<td>2 Each</td>
<td>Closers</td>
<td>7706STP</td>
<td>689</td>
<td></td>
</tr>
<tr>
<td>2 Each</td>
<td>Kick Plates</td>
<td>K1050 8” x 1” LDW</td>
<td>US32D</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Astragal</td>
<td>S771D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Smoke Seal</td>
<td>S88D</td>
<td>689</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HARDWARE SET NO. 29</th>
<th>3 Each</th>
<th>Hinges</th>
<th>FBB179 5 x 4 ½ NRP</th>
<th>US26D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Each</td>
<td>Lockset</td>
<td>45H7R14H</td>
<td>626</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Overhead Stop</td>
<td>1 Series Hold Open</td>
<td>652</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Armor Plate</td>
<td>K1050 30” x 2” LDW</td>
<td>US32D</td>
<td></td>
</tr>
<tr>
<td>1 Each</td>
<td>Edge Protector</td>
<td>304 30” (hinge side)</td>
<td>US32D</td>
<td></td>
</tr>
</tbody>
</table>

| HARDWARE SET NO. 30 | 3 Each | Hinges | FBB179 5 x 4.5 | US26D |

Operational Description: Door is normally closed and secure. Mortise lock latchbolt is retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. All associated credential cards, power sources, and head end equipment will be supplied by Others.
Add/Repair B541 Global Hawk GSMP - Grand Forks AFB, ND

Operational Description: Door is normally closed and secure. Mortise lock latchbolt is retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 31

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Model/Details</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>FBB179 5 x 4 ½ NRP</td>
<td>3</td>
</tr>
<tr>
<td>Lockset</td>
<td>45H7R14H</td>
<td>1</td>
</tr>
<tr>
<td>Closer</td>
<td>7500</td>
<td>1</td>
</tr>
<tr>
<td>Armor Plate</td>
<td>K1050F 30” x 2” LDW</td>
<td>1</td>
</tr>
<tr>
<td>Edge Protector</td>
<td>304 30” UL (hinge side)</td>
<td>1</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>409</td>
<td>1</td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>S88D</td>
<td>1</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 32

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Model/Details</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hinges</td>
<td>FBB179 4 ½ x 4 ½ NRP</td>
<td>6</td>
</tr>
<tr>
<td>Flush Bolt</td>
<td>555 12”</td>
<td>1</td>
</tr>
<tr>
<td>Lockset</td>
<td>45H7R14H (RHA)</td>
<td>1</td>
</tr>
<tr>
<td>Overhead Stop</td>
<td>1 Series Stop Only</td>
<td>1</td>
</tr>
<tr>
<td>Closer</td>
<td>7500 (RHA)</td>
<td>1</td>
</tr>
<tr>
<td>Armor Plates</td>
<td>K1050F 30” x 1” LDW</td>
<td>2</td>
</tr>
<tr>
<td>Edge Protectors</td>
<td>304 30” UL (hinge side)</td>
<td>2</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>409 (RHA)</td>
<td>1</td>
</tr>
<tr>
<td>Astragal</td>
<td>S771</td>
<td>1</td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>S88D</td>
<td>1</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 33

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Model/Details</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cam Lift Hinges</td>
<td>By Door Supplier</td>
<td>2</td>
</tr>
<tr>
<td>Electrified Cam Lift Hinge</td>
<td>By Door Supplier</td>
<td>1</td>
</tr>
<tr>
<td>Electrified Lockset</td>
<td>45HW7DEU 14H</td>
<td>1</td>
</tr>
<tr>
<td>Closer</td>
<td>7500</td>
<td>1</td>
</tr>
<tr>
<td>Kick Plate</td>
<td>K1050 8” x 2” LDW</td>
<td>1</td>
</tr>
<tr>
<td>Wall Stop</td>
<td>409</td>
<td>1</td>
</tr>
<tr>
<td>Smoke Seal</td>
<td>S88D</td>
<td>1</td>
</tr>
<tr>
<td>Threshold</td>
<td>By Door Supplier</td>
<td>1</td>
</tr>
<tr>
<td>Sound Seal</td>
<td>By Door Supplier</td>
<td>1</td>
</tr>
<tr>
<td>Card Reader</td>
<td>By Access Control</td>
<td>1</td>
</tr>
<tr>
<td>Power Supply</td>
<td>By Access Control</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: STC acoustical door assembly.

Note: Access entry control system (AECS) provided by Others.
HARDWARE SET NO. 34
2 Each Cam Lift Hinges By Door Supplier US26D
1 Each Electrified Cam Lift Hinge By Door Supplier US26D
1 Each Electrified Lockset 45HW7DEU 14H 626
1 Each Closer 7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Wall Stop 409 US32D
1 Each Threshold By Door Supplier
1 Set Sound Seal By Door Supplier
1 Each Card Reader By Access Control
1 Each Power Supply By Access Control

Note: STC acoustical door assembly.
Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Free egress at all times. Latchbolt retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 35
3 Each Hinges FBB179 4 ½ x 4 ½ NRP US26D
1 Each Cipher Lock L_1021B US26D
1 Each Keyed Core 1C72 626
1 Each Closer 7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Wall Stop 409 US32D

HARDWARE SET NO. 36
3 Each Hinges FBB179 4 ½ x 4 ½ NRP US26D
1 Each Cipher Lock L_1021B US26D
1 Each Keyed Core 1C72 626
1 Each Closer 7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Wall Stop 409 US32D
1 Each Smoke Seal S88D

HARDWARE SET NO. 37
4 Each Hinges FBB179 4 ½ x 4 ½ US26D
2 Each Electrified Hinges CECB179-18 4 ½ x 4 ½ US26D
1 Each Keyed Mullion KR822 689
1 Each Exit Device MLR TS 2102 x 4902D 630
1 Each Exit Device MLR TS 2103 x 4903D (RHRA) 630
2 Each Cylinders 12E72 S2 RP3 626
2 Each Closers CLP7500 689
2 Each Kick Plates K1050 8" x 1" LDW US32D
1 Each Card Reader By Access Control
1 Each Power Supply By Access Control

Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Free egress at all times. Latchbolt retracted by key override from the outside, via valid card read applying power to electric latch retraction, or inside dogging. During scheduled hours latch can be held back electronically. Upon loss of power door remains locked. Internal request to exit switch on exit device will shunt door position switch. All associated credential cards, power sources, and head end equipment will be supplied by Others.
HARDWARE SET NO. 38

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
<th>Model/Part No.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Hinges</td>
<td>2</td>
<td></td>
<td>FBB179</td>
<td>4 ½ x 4 ½ NRP</td>
</tr>
<tr>
<td>Each Electrified Hinge</td>
<td>1</td>
<td></td>
<td>CECB179-18</td>
<td>4 ½ x 4 ½ NRP</td>
</tr>
<tr>
<td>Each Electrified Lockset</td>
<td>1</td>
<td></td>
<td>45HW7DEU14H</td>
<td></td>
</tr>
<tr>
<td>Each Closer</td>
<td>1</td>
<td></td>
<td>CLP500</td>
<td></td>
</tr>
<tr>
<td>Each Kick Plate</td>
<td>1</td>
<td></td>
<td>K1050</td>
<td>8” x 2” LDW</td>
</tr>
<tr>
<td>Each Wall Stop</td>
<td>1</td>
<td></td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>Each Card Reader</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each Power Supply</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Mortise lock latchbolt is retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. All associated credential cards, power sources, and headend equipment will be supplied by Others.

HARDWARE SET NO. 39 - NOT USED

HARDWARE SET NO. 40

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
<th>Model/Part No.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Hinges</td>
<td>3</td>
<td></td>
<td>FBB179</td>
<td>4 ½ x 4 ½ NRP</td>
</tr>
<tr>
<td>Each Closer</td>
<td>1</td>
<td></td>
<td>CLP 7500</td>
<td></td>
</tr>
<tr>
<td>Each Closer</td>
<td>1</td>
<td></td>
<td>7500 (Doors 110 and 112)</td>
<td></td>
</tr>
<tr>
<td>Each Wall Stop</td>
<td>1</td>
<td></td>
<td>409 (Doors 223 and 224)</td>
<td></td>
</tr>
<tr>
<td>Each Push Plate</td>
<td>1</td>
<td></td>
<td>70 MOD 4” x 24”</td>
<td></td>
</tr>
<tr>
<td>Each Pull Plate</td>
<td>1</td>
<td></td>
<td>110 x 70B</td>
<td></td>
</tr>
<tr>
<td>Each Kick Plate</td>
<td>1</td>
<td></td>
<td>K1050</td>
<td>8” x 2” LDW</td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 41

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
<th>Model/Part No.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Hinges</td>
<td>3</td>
<td></td>
<td>FBB179</td>
<td>4 ½ x 4 ½ NRP</td>
</tr>
<tr>
<td>Each Lockset</td>
<td>1</td>
<td></td>
<td>45H7R14H</td>
<td></td>
</tr>
<tr>
<td>Each Closer</td>
<td>1</td>
<td></td>
<td>7500</td>
<td></td>
</tr>
<tr>
<td>Each Armor Plate</td>
<td>1</td>
<td></td>
<td>K1050F 30” x 1”</td>
<td></td>
</tr>
<tr>
<td>Each Wall Stop</td>
<td>1</td>
<td></td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>Each Smoke Seal</td>
<td>1</td>
<td></td>
<td>S88D</td>
<td></td>
</tr>
</tbody>
</table>

HARDWARE SET NO. 42

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Description</th>
<th>Model/Part No.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Hinges</td>
<td>2</td>
<td></td>
<td>FBB179</td>
<td>5 x 4 ½ NRP</td>
</tr>
<tr>
<td>Each Electrified Hinge</td>
<td>1</td>
<td></td>
<td>CECB179-18</td>
<td>5 x 4 ½ NRP</td>
</tr>
<tr>
<td>Each Electrified Lockset</td>
<td>1</td>
<td></td>
<td>45HW7DEU14H</td>
<td></td>
</tr>
<tr>
<td>Each Closer</td>
<td>1</td>
<td></td>
<td>7500</td>
<td></td>
</tr>
<tr>
<td>Each Closer (Door 220)</td>
<td>1</td>
<td></td>
<td>PR7500</td>
<td></td>
</tr>
<tr>
<td>Each Kick Plate</td>
<td>1</td>
<td></td>
<td>K1050</td>
<td>8” x 2” LDW</td>
</tr>
<tr>
<td>Each Wall Stop</td>
<td>1</td>
<td></td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>Each Smoke Seal</td>
<td>1</td>
<td></td>
<td>S88D</td>
<td>(eliminate at Door 220)</td>
</tr>
</tbody>
</table>

Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Mortise lock latchbolt is retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. All associated credential cards, power sources, and headend equipment will be supplied by Others.

HARDWARE SET NO. 43 - NOT USED
HARDWARE SET NO. 44
2 Each Hinges FBB179 4 ⅜ x 4 ⅜ NRP US26D
1 Each Electrified Hinge CECB179-18 4 ⅜ x 4 ⅜ US26D
1 Each Electrified Lockset 45HW7DEU 14H 626
1 Each Closer 7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Wall Stop 409 US32D
1 Each Smoke Seal S88D (Door 202 only)
1 Each Card Reader By Access Control
1 Each Power Supply By Access Control
Note: Access entry control system (AECS) provided by Others.

Operational Description: Door is normally closed and secure. Mortise lock latchbolt is retracted by key override from the outside or via valid card read allowing outside lever to become operable. Upon loss of power door remains locked. All associated credential cards, power sources, and head end equipment will be supplied by Others.

HARDWARE SET NO. 45
2 Each Cam Lift Hinges By Door Supplier US26D
1 Each High Sec. Aux. Deadbolt 2890-563 (inside mounting only)
1 Set Sound Seal (4 sides) By Door Supplier
1 Each Balanced Magnetic Switch By Access Control
Note: STC acoustical door assembly.

HARDWARE SET NO. 46
3 Each Hinges FBB179 4 ⅜ x 4 ⅜ NRP US26D
1 Each Cipher Lock L_1021B US26D
1 Each Keyed Core 1C72 626
1 Each Closer 7500 689
1 Each Kick Plate K1050 8" x 2" LDW US32D
1 Each Wall Stop 409 US32D

HARDWARE SET NO. 47
3 Each Hinges FBB179 4 ⅜ x 4 ⅜ NRP US26D
1 Each Cipher Lock L_1021B US26D
1 Each Keyed Core 1C72 626
1 Each Closer CLP7500 689
1 Each Kickplate K1050 8" x 2" LDW US32D

-- End of Section --
PART 1 GENERAL
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ASTM INTERNATIONAL (ASTM)

ASTM C509 (2006; R 2015) Elastomeric Cellular Preformed Gasket and Sealing Material

ASTM D2287 (2012) Nonrigid Vinyl Chloride Polymer and Copolymer Molding and Extrusion Compounds

ASTM E2226 (2015a) Standard Practice for Application of Hose Stream

ASTM E330 (2002; R 2010) Structural Performance of Exterior Windows, Doors, Skylights and
1.2 SYSTEM PERFORMANCE

1.2.1 Structural Test Pressure

Structural test pressures on exterior glazing units must be for positive load (inward) and negative load (outward) in accordance with ASTM E330. After testing, there shall be no glass breakage.

1.2.2 Minimum Antiterrorism Performance

Develop the exterior glazing along with aluminum framing and anchorage systems as a system to meet the requirements of UFC 4-010-01, given the following project-specific information:
Per Table B-1 of UFC 4-010-01, this facility has the following characteristics:

a. Location: Parking and roadways within a controlled perimeter.
b. Building Category: Primary Gathering facility.
c. Construction Standoff Distance: 167 feet minimum.
d. Applicable Explosive Weight: II.
e. Equivalent 3-Second Design Load: 50 psf.

All exterior glazing shall be designed to be blast-resistant. Glazing shall be laminated glass. Blast resistant glazing shall have a minimum frame bite of 3/8-inch for structurally glazed systems, or 1 inch for systems not structurally glazed. Blast resistant glazing shall be adhered to its supporting frame using structural glazing adhesive or adhesive glazing tape for non-structurally glazed systems. The width of the structural glazing adhesive bead shall be at least equal to but not larger than two times the thickness designation of the glass to which it adheres. See Section 08 11 16 ALUMINUM DOORS AND FRAMES and 08 51 13 ALUMINUM WINDOWS for information regarding methods to validate conformance to performance requirements.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Insulating Glass; G

Exterior Glazing - performance documentation for all glass types

Glazing Accessories

Manufacturer's descriptive product data, handling and storage recommendations, installation instructions, and cleaning instructions.

SD-04 Samples

Insulating Glass; G

Two 8 by 10 inch samples of each of the following: tinted glass and insulating glass units.

SD-05 Design Data

Structural Calculations For Deflection and Antiterrorism; G

Design Analysis; G

SD-07 Certificates

Insulating Glass; G

Certificates stating that the glass meets the specified requirements. Labels or manufacturers marking affixed to the
glass will be accepted in lieu of certificates.

SD-08 Manufacturer's Instructions

Setting and Sealing Materials

Glass Setting

Submit glass manufacturer's recommendations for setting and sealing materials and for installation of each type of glazing material specified.

1.4 SYSTEM DESCRIPTION

Fabricate and install watertight and airtight glazing systems to withstand thermal movement and wind and structural loading without glass breakage, gasket failure, deterioration of glazing accessories, or defects in the work. Glazed panels must comply with the safety standards, in accordance with ANSI Z97.1, and comply with indicated wind/snow loading in accordance with ASTM E1300.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver products to the site in unopened containers, labeled plainly with manufacturers' names and brands. Store glass and setting materials in safe, enclosed dry locations and do not unpack until needed for installation. Handle and install materials in a manner that will protect them from damage.

1.6 ENVIRONMENTAL REQUIREMENTS

Do not start glazing work until the outdoor temperature is above 40 degrees F and rising, unless procedures recommended by the glass manufacturer and approved by the Contracting Officer are made to warm the glass and rabbet surfaces. Provide ventilation to prevent condensation of moisture on glazing work during installation. Do not perform glazing work during damp or rainy weather.

1.7 WARRANTY

1.7.1 Warranty for Insulating Glass Units

Warranty insulating glass units against development of material obstruction to vision (such as dust, fogging, or film formation on the inner glass surfaces) caused by failure of the hermetic seal, other than through glass breakage, for a 10-year period following acceptance of the work. Provide new units for any units failing to comply with terms of this warranty within 45 working days after receipt of notice from the Government.

1.7.2 Monolithic Opacified Spandrel

Manufacturer must warrant the opacifier film on the spandrel to be free of peeling for a period of five years after Date of Substantial Completion. Warranty must be signed by manufacturer.
PART 2 PRODUCTS

2.1 REFERENCES TO MANUFACTURER’S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 GENERAL

Glazing for all new exterior windows and Doors 100A vestibule door/frame assembly shall be developed with aluminum windows (provided under Section 08 51 13 and aluminum doors and frames (provided under Section 08 11 16) to meet the requirements of UFC 4-010-01 as described under paragraph "MINIMUM ANTITERRORISM PERFORMANCE" above.

2.3 GLASS

ASTM C1036, unless specified otherwise. In doors and sidelights, provide safety glazing material conforming to 16 CFR 1201.

2.3.1 Clear Glass

Type I, Class 1 (clear), Quality q4 (A). Provide for glazing openings not indicated or specified otherwise. Use double-strength sheet glass or 1/4 inch float glass.

2.3.2 Wired Glass

Provide UL listed glass for fire-rated windows as shown on the Drawings when tested in accordance with ASTM E2226. Wired glass must be Type II flat type, Class 1 - translucent q8 - glazing, Form. Wire mesh must be polished stainless steel Mesh 2 - square. Wired glass for fire-rated windows must bear an identifying UL label or the label of a nationally recognized testing agency, and be rated as shown on the Drawings when tested in accordance with NFPA 257. Wired glass for fire-rated doors must be tested as part of a door assembly in accordance with NFPA 252.

2.3.3 Laminated Glass for Doors 100A

ASTM C1172, Kind LA fabricated from two nominal 1/4 inch pieces of Type I, Class 1, Quality q3, flat tempered transparent glass conforming to ASTM C1036. Flat glass must be laminated together with a minimum of 0.030 inch thick, clear polyvinyl butyral interlayer with a total nominal thickness of approximately 1/4 inch. Color shall be clear.

2.3.4 Laminated Glass for Other than Doors

ASTM C1172, Kind LA fabricated from two nominal 1/8 inch pieces of Type I, Class 1, Quality q3, flat tempered transparent glass conforming to ASTM C1036. Flat glass must be laminated together with a minimum of 0.030 inch thick, clear polyvinyl butyral interlayer with a total nominal thickness of approximately 1/4 inch. Color shall be clear.
2.3.5 Mirrors

2.3.5.1 Glass Mirrors

Glass for mirrors must be Type I transparent flat type, Class 1-clear, Glazing Quality q1 1/4 inch thick conforming to ASTM C1036. Glass must be coated on one surface with silver coating, copper protective coating, and mirror backing paint. Silver coating must be highly adhesive pure silver coating of a thickness which must provide reflectivity of 83 percent or more of incident light when viewed through 1/4 inch thick glass, and must be free of pinholes or other defects. Copper protective coating must be pure bright reflective copper, homogeneous without sludge, pinholes or other defects, and must be of proper thickness to prevent "adhesion pull" by mirror backing paint. Mirror backing paint must consist of two coats of special scratch and abrasion-resistant paint, and must be baked in uniform thickness to provide a protection for silver and copper coatings which will permit normal cutting and edge fabrication.

2.3.6 Tempered Glass

ASTM C1048, Kind FT (fully tempered), Condition A (uncoated), Type I, Class 1 (transparent), Quality q3, 1/4 inch thick, conforming to ASTM C1048 and GANA Standards Manual. Color shall be bronze to match existing.

2.3.7 Spandrel Glass

2.3.7.1 Ceramic-Opacified Spandrel Glass

Ceramic-opacified spandrel glass must be Kind HS heat-strengthened transparent flat type, Condition B, coated with a colored ceramic material on No. 2 surface, Quality q3 - glazing select, 1/4 inch thick, conforming to ASTM C1048. Color shall be bronze to match existing.

2.4 Glass Smoke Baffle System

2.4.1 System

Glass smoke baffle system for use around floor opening above Lobby 105 shall consist of the following components to form a complete system:
- 1/2" clear tempered glass
- Surface-mounted aluminum base shoe with brushed stainless steel cladding
- Grommets and fasteners
- Other components as required by the glass smoke baffle system manufacturer

2.4.2 Basis of Design

Basis of Design for glass smoke baffle system shall be B5B Series Smoke Baffle System by CRL Aluminum.

2.4.3 Dimensions

Total system height shall be 16 inches. Width shall be as shown on the Drawings.

2.4.4 Components

Exposed edges of glass shall be polished.
Provide clear silicone sealant at butt and corner joints.

2.5 INSULATING GLASS UNITS

2.5.1 Buildings

Two panes of glass separated by a dehydrated airspace, filled with argon gas and hermetically sealed.

Insulated glass units must have a U-factor maximum of 0.30 Btu per square foot by hr by degree F.

Dimensional tolerances must be as specified in IGMA TR-1200. Spacer must be black, roll-formed, thin-gauge, C-section steel, with bent or tightly welded or keyed and sealed joints to completely seal the spacer periphery and eliminate moisture and hydrocarbon vapor transmission into airspace through the corners. Primary seal must be compressed polyisobutylene and the secondary seal must be a specially formulated silicone.

Clear insulated glass shall consist of one sheet (exterior) of 1/4" thick clear tempered glass (as described above) and one sheet (interior of approximately 1/2" thick clear laminated glass (as described above) separated with a metal spacer to provide an air space and hermetically sealed with primary and secondary seals. The #3 glass surface shall receive PPG Solarban 70XL anti-reflective low emissivity coating. Total glass unit thickness shall be nominally 1.25 inch. Adjust thicknesses of individual components and total unit thickness to meet the requirements described in paragraph "MINIMUM ANTITERRORISM PERFORMANCE" above.

2.6 SETTING AND SEALING MATERIALS

Provide as specified in the GANA Glazing Manual, IGMA TM-3000, IGMA TB-3001, and manufacturer's recommendations, unless specified otherwise herein. Do not use metal sash putty, nonskinning compounds, nonresilient preformed sealers, or impregnated preformed gaskets. Materials exposed to view and unpainted must be gray or neutral color.

2.6.1 Sealants

Provide elastomeric sealants.

2.6.1.1 Elastomeric Sealant

ASTM C920, Type S, Grade NS, Class 12.5, Use G. Use for channel or stop glazing metal sash. Sealant must be chemically compatible with setting blocks, edge blocks, and sealing tapes, with sealants used in manufacture of insulating glass units. Color of sealant must be white.

2.6.1.2 Structural Sealant

ASTM C1184, Type S.

2.6.2 Joint Backer

Joint backer must have a diameter size at least 25 percent larger than joint width; type and material as recommended in writing by glass and sealant manufacturer.
2.6.3 Preformed Channels

Neoprene, vinyl, or rubber, as recommended by the glass manufacturer for the particular condition.

2.6.4 Sealing Tapes

Preformed, semisolid, PVC-based material of proper size and compressibility for the particular condition, complying with ASTM D2287. Use only where glazing rabbet is designed for tape and tape is recommended by the glass or sealant manufacturer. Provide spacer shims for use with compressible tapes. Tapes must be chemically compatible with the product being set.

2.6.5 Setting Blocks and Edge Blocks

Closed-cell neoprene setting blocks must be dense extruded type conforming to ASTM C509 and ASTM D395, Method B, Shore A durometer between 70 and 90. Edge blocking must be Shore A durometer of 50 (plus or minus 5). Provide silicone setting blocks when blocks are in contact with silicone sealant. Profiles, lengths and locations must be as required and recommended in writing by glass manufacturer. Block color must be black.

2.6.6 Glazing Gaskets

Glazing gaskets must be extruded with continuous integral locking projection designed to engage into metal glass holding members to provide a watertight seal during dynamic loading, building movements and thermal movements. Glazing gaskets for a single glazed opening must be continuous one-piece units with factory-fabricated injection-molded corners free of flashing and burrs. Glazing gaskets must be in lengths or units recommended by manufacturer to ensure against pull-back at corners. Provide glazing gasket profiles as recommended by the manufacturer for the intended application.

2.6.6.1 Fixed Glazing Gaskets

Fixed glazing gaskets must be closed-cell (sponge) smooth extruded compression gaskets of cured elastomeric virgin neoprene compounds conforming to ASTM C509, Type 2, Option 1.

2.6.6.2 Wedge Glazing Gaskets

Wedge glazing gaskets must be high-quality extrusions of cured elastomeric virgin neoprene compounds, ozone resistant, conforming to ASTM C864, Option 1, Shore A durometer between 65 and 75.

2.6.6.3 Aluminum Framing Glazing Gaskets

Glazing gaskets for aluminum framing must be permanent, elastic, non-shrinking, non-migrating, watertight and weathertight.

2.6.7 Accessories

Provide as required for a complete installation, including glazing points, clips, shims, angles, beads, and spacer strips. Provide noncorroding metal accessories. Provide primer-sealers and cleaners as recommended by the glass and sealant manufacturers.
2.7 MIRROR ACCESSORIES

2.7.1 Mastic

Mastic for setting mirrors must be a polymer type mirror mastic resistant to water, shock, cracking, vibration and thermal expansion. Provide mastic compatible with mirror backing paint, and as approved by mirror manufacturer.

2.7.2 Mirror Frames

Provide mirrors with mirror frames (J-mold channels) fabricated of one-piece roll-formed Type 304 stainless steel with No. 4 brushed satin finish and concealed fasteners which will keep mirrors snug to wall. Frames must be 1-1/4 by 1/4 by 1/4 inch continuous at top and bottom of mirrors. Concealed fasteners of type to suit wall construction material must be provided with mirror frames.

2.7.3 Mirror Clips

Provide clips with concealed fasteners of type to suit wall construction material.

PART 3 EXECUTION

Any materials that show visual evidence of biological growth due to the presence of moisture must not be installed on the building project.

3.1 PREPARATION

Preparation, unless otherwise specified or approved, must conform to applicable recommendations in the GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, IGMA TM-3000, and manufacturer's recommendations. Determine the sizes to provide the required edge clearances by measuring the actual opening to receive the glass. Grind smooth in the shop glass edges that will be exposed in finish work. Leave labels in place until the installation is approved, except remove applied labels on heat-absorbing glass and on insulating glass units as soon as glass is installed. Securely fix movable items or keep in a closed and locked position until glazing compound has thoroughly set.

3.2 GLASS SETTING

Shop glaze or field glaze items to be glazed using glass of the quality and thickness specified or indicated. Glazing, unless otherwise specified or approved, must conform to applicable recommendations in the GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, IGMA TM-3000, and manufacturer's recommendations. Aluminum windows, wood doors, and wood windows may be glazed in conformance with one of the glazing methods described in the standards under which they are produced, except that face puttying with no bedding will not be permitted. Handle and install glazing materials in accordance with manufacturer's instructions. Use beads or stops which are furnished with items to be glazed to secure the glass in place. Verify products are properly installed, connected, and adjusted.

3.2.1 Sheet Glass

Cut and set with the visible lines or waves horizontal.
3.2.2 Insulating Glass Units

Do not grind, nip, or cut edges or corners of units after the units have left the factory. Springing, forcing, or twisting of units during setting will not be permitted. Handle units so as not to strike frames or other objects. Installation must conform to applicable recommendations of IGMA TB-3001 and IGMA TM-3000.

3.2.3 Wire Glass

Install glass for fire doors in accordance with installation requirements of NFPA 80.

3.2.4 Installation of Laminated Glass

Sashes which are to receive laminated glass must be weeped to the outside to allow water drainage into the channel.

3.3 INSTALLATION OF GLASS SMOKE BAFPLE SYSTEM

Install glass smoke baffle system in strict accordance with manufacturer's documented instructions, plumb and level, with tight corners.

3.4 CLEANING

Clean glass surfaces and remove labels, paint spots, putty, and other defacement as required to prevent staining. Glass must be clean at the time the work is accepted.

3.5 PROTECTION

Protect glass work immediately after installation. Identify glazed openings with suitable warning tapes, cloth or paper flags, attached with non-staining adhesives. Place protective material far enough away from the coated glass to allow air to circulate to reduce heat buildup and moisture accumulation on the glass. Upon removal, separate protective materials for reuse or recycling. Remove and replace glass units which are broken, chipped, cracked, abraded, or otherwise damaged during construction activities with new units.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

This section covers only the color of exterior and interior materials and products that are exposed to view in the finished construction. The word "color", as used herein, includes surface color and pattern. Requirements for quality, product specifications, and method of installation are covered in other appropriate sections of the specifications. Specific locations where the various materials are required are shown on the drawings if not identified in this specification. Items not designated for color in this section may be specified in other sections. When color is not designated for items, propose a color for approval.

PART 2 PRODUCTS

2.1 COLOR SCHEDULE

The color schedule information provided in the following paragraphs lists the colors, patterns and textures required for exterior and interior finishes, including both factory applied and field applied colors. Where color is shown as being specific to one manufacturer, an equivalent color by another manufacturer may be submitted for approval. Manufacturers and materials specified are not intended to limit the selection of equal colors from other manufacturers. In the case of difference between the drawings and specifications, colors identified in this specification govern.

2.2 EXTERIOR FINISHES

2.2.1 Exterior Walls

Exterior wall colors apply to exterior wall surfaces including recesses at entrances and projecting vestibules. When applicable, paint conduit to closely match the adjacent surface color. Provide wall colors to match the colors listed below.

2.2.1.1 Insulation and Finish System

IFS-1: Tan color to match tan color of existing exterior IFS walls
IFS-2: Dark brown color to match tan color of existing exterior IFS walls

2.2.2 Exterior Trim

2.2.2.1 Steel Doors and Door Frames

Match dark brown color of existing sheet metal exterior building components.

2.2.3 Aluminum Doors and Door Frames

Dark bronze anodized to match existing aluminum window frames.
2.2.4 Aluminum Windows (mullion, muntin, sash, trim, and sill)
 Dark bronze anodized to match existing aluminum window frames.
2.2.5 Downspouts and Gutters
 Dark brown color to match adjacent existing material.
2.2.6 Louvers
 Dark brown color to match adjacent existing material.
2.2.7 Flashings
 Match adjacent material in color.
2.2.8 Caulking and Sealants
 Match adjacent material in color.
2.2.9 Steel Bollards
 Dark brown color to match adjacent existing material.
2.2.10 Steel Ramp/Platform Structure West of Building
 Dark brown color to match adjacent existing material.
2.2.11 Control Joint Sealant
 Match adjacent material in color.
2.2.12 Expansion Joint Sealant
 Match adjacent material in color.
2.2.13 Exterior Roof
 Apply roof color to exterior roof surfaces including sheet metal flashings and copings, snow guards, mechanical units, mechanical penthouses, roof trim, pipes, conduits, electrical appurtenances, and similar items. Provide roof color to match the colors listed below.
2.2.13.1 Metal Flashings
 Dark brown color to match adjacent existing metal roof material.
2.2.13.2 Penetrations
 Match metal roof in color.
2.3 INTERIOR FINISHES
2.3.1 Interior Floor Finishes
 Provide flooring materials to match the colors listed below.
2.3.1.1 Carpet Tile

CPT-1
Manufacturer: J&J Industries
Pattern: Index
Color: Table 1831
Dimensions: 12" x 48"
Installation Method: See Drawings; ashlar if not noted

CPT-2
Manufacturer: J&J Industries
Pattern: Index
Color: Version 1834
Dimensions: 12" x 48"
Installation Method: See Drawings; ashlar if not noted

CPT-3
Manufacturer: J&J Industries
Pattern: Index
Color: Issue 1835
Dimensions: 12" x 48"
Installation Method: See Drawings; ashlar if not noted

CPT-4
Manufacturer: J&J Industries
Pattern: Index
Color: Publication 1837
Dimensions: 12" x 48"
Installation Method: See Drawings; ashlar if not noted

CPT-5
Manufacturer: J&J Industries
Pattern: Index
Color: Volume 1828
Dimensions: 12" x 48"
Installation Method: See Drawings; ashlar if not noted

2.3.1.2 Walk-Off Carpet

CPT-6
Manufacturer: J&J Industries
Pattern: Incognito 7069
Color: Operative 1837
Dimensions: 24" x 24"
Installation Method: Monolithic

2.3.1.3 Vinyl Composition Tile

VCT-1
Manufacturer: Mannington
Pattern: Essentials
Color: Glacier
Size: 12" x 12"

2.3.1.4 Luxury Vinyl Tile

LVT-1
Manufacturer: Patcraft
Pattern: Metallix
Color: Aluminum
Dimension: 12" x 24"
Installation: Ashlar

LVT-2
Manufacturer: Patcraft
Pattern: Metallix Facet
Color: Pewter
Dimension: 12" x 32.5"

LVT-2A
Manufacturer: Patcraft
Pattern: Metallix
Color: Pewter
Dimension: 12" x 24"
Installation: Ashlar

LVT-3
Manufacturer: Patcraft
Pattern: Metallix Facet
Color: Steel Blue
Dimension: 12" x 32.5"

LVT-4
Manufacturer: Patcraft
Pattern: Metallix Facet
Color: Tungsten
Dimension: 12" x 32.5"

2.3.1.5 High Pressure Laminate Covering on Raised Access Flooring

HPL-1
Manufacturer: Formica
Pattern: Folkstone Grafix 507

2.3.1.6 Porcelain Tile

PT-1
Manufacturer: Crossville
Pattern: Shades
Color: AV244 Mist UPS
Size: 12" x 24"

PT-1A
Manufacturer: Crossville
Pattern: Shades
Color: V244 Mist UPS
Dimensions: 12" x 6"

PT-2
Manufacturer: Crossville
Pattern: Shades
Color: AV248 Thunder UPS
Size: 12" x 24"

PT-2A
Manufacturer: Crossville
Pattern: Shades
Color: AV248 Thunder UPS
Dimensions: 12” x 6”

PT-3
Manufacturer: Crossville
Pattern: Cross-Colors
Color: Mica UPS
Size: 12” x 12”

2.3.1.7 Porcelain Tile Grout

PT-1, 1A, 2 and 2A
Manufacturer: Mapei
Color: Iron 107

PT-3
Match existing porcelain tile grout color

2.3.1.8 Rubber Tile

RT-1
Manufacturer: Johnsonite
Pattern: Microtone Rubber Speckled Hammered Texture
Color: LB9 Rainstorm

2.3.2 Interior Base Finishes

Provide base materials to match the colors listed below.

2.3.2.1 Resilient Base

RB-1
Manufacturer: Roppe
Color: Charcoal 123

2.3.2.2 Ceramic Tile

CT-1
Manufacturer: DalTile
Pattern: Semi-Gloss
Color: Uptown Taupe 0144

2.3.2.3 Ceramic Tile Grout

Match existing ceramic tile color grout

2.3.3 Interior Wall Finishes

Apply interior wall color to the entire wall surface, including reveals, vertical furred spaces and columns, grilles, diffusers, electrical and access panels, and piping and conduit adjacent to wall surfaces unless otherwise specified. Paint items not specified in other paragraphs to match adjacent wall surface. Provide wall materials to match the colors listed below.

2.3.3.1 Paint/Glazed Paint/Special Coating

P-1/GP-1/SC-1
Manufacturer: Sherwin Williams
Color: SW0055 Light French Gray
P-2/SC-2
Manufacturer: Sherwin Williams
Color: SW7669 Summit Gray

P-3/SC-3
Manufacturer: Sherwin Williams
Color: SW6508 Secure Blue

P-4/SC-4
Manufacturer: Sherwin Williams
Color: SW9150 Endless Sea

P-5/SC-5
Manufacturer: Sherwin Williams
Color: SW2853 New Colonial Yellow

P-6/GP-6/SC-6
Manufacturer: Sherwin Williams
Color: SW0012 Empire Gold

2.3.3.2 Ceramic Tile

CT-1
Manufacturer: DalTile
Pattern: Semi-Gloss
Color: Uptown Taupe 0144
Dimension: 4" x 4"

2.3.3.3 Ceramic Tile Grout

Match existing ceramic tile grout color

2.3.4 Interior Ceiling Finishes

Apply ceiling colors to ceiling surfaces including soffits, furred down areas, grilles, diffusers, registers, and access panels. In addition, apply ceiling color to joists, underside of roof deck, and conduit and piping where joists and deck are exposed and required to be painted. Provide ceiling materials to match the colors listed below.

2.3.4.1 Acoustical Tile and Grid

ATC-1
Color: White

ATC-2
Color: White

2.3.4.2 Wood Acoustic Ceiling Panel System

Stain ST-1; match Plastic Laminate PL-1; see 2.3.7.2

2.3.5 Interior Trim

Provide interior trim to match the colors listed below
2.3.5.1 Aluminum Doors and Door Frames
Match exterior aluminum doors and frames (dark bronze anodized)

2.3.5.2 Wood Doors
ST-1
Color: Match Plastic Laminate PL-1; see 2.3.7.2

2.3.5.3 Wood Stain for Hardwood Base, Trim and Chair Rail, and Hardwood and Hardwood Plywood Casework Components in all areas except SOC 203
ST-1
Color: Match Plastic Laminate PL-1; see 2.3.7.2

2.3.5.4 Wood Stain for Hardwood Base and Trim and Hardwood and Hardwood Plywood Casework Components in SOC 203
ST-2
Color: Match wood furniture components; sample to be provided by Government

2.3.5.5 Fire Extinguisher Cabinets
White

2.3.5.6 Handrails at Atrium Second Floor Opening
Stainless steel; no paint

2.3.5.7 Handrails at Lobby 200 Ramp and Stair Stainless Steel
Stainless steel; no paint

2.3.5.8 Handrails at Enclosed Stairwells
Paint P-2; see 2.3.3.1

2.3.5.9 Guardrails at Enclosed Stairwells
Paint P-2; see 2.3.3.1

2.3.5.10 Metal Stairs at Enclosed Stairwells; includes stringers and underside of stairs
Paint P-2; see 2.3.3.1

2.3.5.11 Railings at Corridor 162 Ramp and Stair
Aluminum; no paint

2.3.5.12 Railings at Corridors 240 and 250 Stairs
Aluminum, no paint

2.3.5.13 Railings at Corridor 201 Ramp
Stainless steel; no paint
2.3.6 Interior Window Treatment

Provide window treatments to match the colors listed below.

2.3.6.1 Roller Window Shades

Hunter Douglas Contract
Sheerweave 3000 - 14% openness
Dusty Gray

2.3.7 Interior Miscellaneous

Provide miscellaneous items to match the colors listed below.

2.3.7.1 Toilet Partitions and Urinal Screens

Manufacturer: Bradley
Color: Desert Stone S406

2.3.7.2 Plastic Laminate for Architectural Casework

PL-1
Manufacturer: Wilsonart
Pattern/Color: Shaker Cherry 7935K-07

PL-2
Manufacturer: Wilsonart
Pattern/Color: Steel Mesh 4879-38

2.3.7.3 Solid Surfacing Material

SS-1 (architectural casework countertops, window sills and wall caps)
Manufacturer: Corian
Color: Lava

SS-2 (lavatory countertops)
Manufacturer: Corian
Color: Doeskin

SS-3 (lavatory bowls)
Manufacturer: Corian
Color: Bisque

2.3.7.4 Solid Surfacing Benches Outside of Showers

SS-2
Manufacturer: Corian
Color: Doeskin

2.3.7.5 Operable Partitions Wallcovering

Hytex
Inspirations
Boucle Atlantis 58-02
54" Width
2.3.7.6 Acoustical Wall Panel Fabric

 APF-1
 Manufacturer: Vertical Interior Solutions
 Distributor: National Wallcoverings
 Pattern: Essence
 Color: VES-22 Putty
 Size: See drawings

 APF-2
 Manufacturer: Vertical Interior Solutions
 Distributor: National Wallcoverings
 Pattern: Essence
 Color: VES-09 Marigold
 Size: See drawings

 APF-3
 Manufacturer: Vertical Interior Solutions
 Distributor: National Wallcoverings
 Pattern: Essence
 Color: VES-05 Starlight
 Size: See drawings

2.3.7.7 Signage

 Manufacturer: ASI
 Plaque Color: Dusted Steel MX16
 Type Color: Black

2.3.7.8 Markerboards

 White

2.3.7.9 Lockers

 To be selected from manufacturer's standard colors during Submittal process.

2.3.7.10 Wall Switch Handles and Standard Receptacle Bodies

 Grey

2.3.7.11 Electrical Device Cover Plates

 Brushed stainless steel or aluminum

2.3.7.12 Electrical Panels

 Grey

2.3.7.13 Shower Curtains

 White

2.3.7.14 Shower Pan

 White
2.4 PLACEMENT SCHEDULE

Placement of color to be in accordance with the following schedule. Contractor shall verify the color and type of finish with the Contracting Officer for any items which obviously require finish, but for which a paint color is not listed hereinafter.

2.4.1 Exterior Color Placement

a. Steel doors and frames: Paint color to match dark brown color of existing exterior building components
b. Mechanical/electrical meters, piping, equipment, etc.: Match adjacent surface color

2.4.2 Interior Color Placement

a. Walls, ceilings and soffits: See Drawings
b. Steel doors and frames except as noted below: Paint P-2; see 2.3.3.1
c. Steel doors and frames at Doors 103B, 150 and 160A: Paint to match adjacent walls
d. Metal Deck, Structural Framing, Exposed Ductwork, Conduit, Piping, etc. in Server Room 163; Paint P-1; see 2.3.3.1

PART 3 EXECUTION

Not Used

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C645 (2014; E 2015) Nonstructural Steel Framing Members

UNDERWRITERS LABORATORIES (UL)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Metal Support Systems; G

1.3 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the job site and store in ventilated dry locations. Storage area shall permit easy access for inspection and handling. If materials are stored outdoors, stack materials off the ground, supported on a level platform, and fully protected from the weather. Handle materials carefully to prevent damage. Remove damaged items and provide new items.
PART 2 PRODUCTS

2.1 MATERIALS

Provide steel materials for metal support systems with galvanized coating ASTM A653/A653M, G-60; aluminum coating ASTM A463/A463M, T1-25; or a 55-percent aluminum-zinc coating.

2.1.1 Materials for Attachment of Gypsum Wallboard

2.1.1.1 Suspended Ceiling Systems

ASTM C645.

2.1.1.2 Non-load-bearing Wall Framing

ASTM C645, but not thinner than 0.0179 inch thickness, with 0.0329 inch minimum thickness supporting wall hung items such as cabinetwork, equipment and fixtures.

2.1.1.3 Furring Structural Steel Columns

ASTM C645. Steel clips and support angles listed in UL Fire Resistance may be provided in lieu of steel studs for erection of gypsum wallboard around structural steel columns.

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 Systems for Attachment of Gypsum Wallboard

3.1.1.1 Suspended Ceiling Systems

ASTM C754, except provide framing members 16 inches o.c. unless indicated otherwise.

3.1.1.2 Non-loadbearing Wall Framing

ASTM C754, except as indicated otherwise.

3.1.1.3 Furring Structural Steel Columns

Install studs or galvanized steel clips and support angles for erection of gypsum wallboard around structural steel columns in accordance with the UL Fire Resistance, design number(s) of the fire resistance rating indicated.

3.2 ERECTION TOLERANCES

Provide framing members which will be covered by finish materials such as wallboard or ceramic tile set in a mortar setting bed, within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;

b. Plates and runners: 1/4 inch in 8 feet from a straight line;

c. Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and
d. Face of framing members: 1/4 inch in 8 feet from a true plane.

Provide framing members which will be covered by ceramic tile set in dry-set mortar, latex-portland cement mortar, or organic adhesive within the following limits:

a. Layout of walls and partitions: 1/4 inch from intended position;

b. Plates and runners: 1/8 inch in 8 feet from a straight line;

c. Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and

d. Face of framing members: 1/8 inch in 8 feet from a true plane.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM C1002 (2014) Standard Specification for Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs

ASTM C475/C475M (2015) Joint Compound and Joint Tape for Finishing Gypsum Board

ASTM C954 (2015) Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

FM GLOBAL (FM)

GREEN SEAL (GS)

GS-36 (2011) Commercial Adhesives
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with 01000:

SD-03 Product Data

Gypsum Board; G
Type X Fire-Resistant Gypsum Board; G
Water-Resistant Gypsum Backing Board; G
Shaftwall Liner Panel; G
SD-07 Certificates
Asbestos Free Materials; G
Certify that gypsum board types, gypsum backing board types, and joint treating materials do not contain asbestos.
Indoor Air Quality; S

SD-08 Manufacturer's Instructions
Material Safety Data Sheets

SD-11 Closeout Submittals
Recycled Content for Paper Facing and Gypsum Cores; S
Indoor Air Quality for Gypsum Board; S
VOC Content of Joint Compound; S
Indoor Air Quality for Non-aerosol Adhesives; S

1.3 CERTIFICATIONS

1.3.1 Indoor Air Quality Certifications
Submit required indoor air quality certifications in one submittal package.

1.3.1.1 Ceiling and Wall Systems
Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or provide validation by other third-party program that products meet the requirements of this paragraph. Provide current product certification documentation from certification body. Gypsum wall board and panels must meet the emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type).

1.3.1.2 Adhesives and Sealants
Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or provide validation by other third-party program that products meet the requirements of this paragraph. Sealants and non-aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168. Aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of GS-36. Provide current product certification documentation from certification body.
1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery

Deliver materials in the original packages, containers, or bundles with each bearing the brand name, applicable standard designation, and name of manufacturer, or supplier.

1.4.2 Storage

Keep materials dry by storing inside a sheltered building. Where necessary to store gypsum board and cementitious backer units outside, store off the ground, properly supported on a level platform, and protected from direct exposure to rain, snow, sunlight, and other extreme weather conditions. Provide adequate ventilation to prevent condensation. Store per manufacturer's recommendations for allowable temperature and humidity range. Do not store gypsum wallboard with materials which have high emissions of volatile organic compounds (VOCs) or other contaminants. Do not store panels near materials that may offgas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives. Do not use materials that have visible moisture or biological growth.

1.4.3 Handling

Neatly stack gypsum board and cementitious backer units flat to prevent sagging or damage to the edges, ends, and surfaces.

1.5 QUALIFICATIONS

Furnish type of gypsum board work specialized by the installer with a minimum of 3 years of documented successful experience.

1.6 SCHEDULING

Commence application only after the area scheduled for gypsum board work is completely weathertight. The heating, ventilating, and air-conditioning systems must be complete and in operation prior to application of the gypsum board. If the mechanical system cannot be activated before gypsum board is begun, the gypsum board work may proceed in accordance with an approved plan to maintain the environmental conditions specified below. Apply gypsum board prior to the installation of finish flooring and acoustic ceiling.

1.7 ENVIRONMENTAL REQUIREMENTS

Do not expose the gypsum board to excessive sunlight prior to gypsum board application. Maintain a continuous uniform temperature of not less than 50 degrees F and not more than 80 degrees F for at least one week prior to the application of gypsum board work, while the gypsum board application is being done, and for at least one week after the gypsum board is set. Shield air supply and distribution devices to prevent any uneven flow of air across the plastered surfaces. Provide ventilation to exhaust moist air to the outside during gypsum board application, set, and until gypsum board jointing is dry. In glazed areas, keep windows open top and bottom or side to side 3 to 4 inches. Reduce openings in cold weather to prevent freezing of joint compound when applied. For enclosed areas lacking natural ventilation, provide temporary mechanical means for ventilation. In unglazed areas subjected to hot, dry winds or temperature differentials from day to night of 20 degrees F or more, screen openings with cheesecloth
or similar materials. Avoid rapid drying. During periods of low indoor humidity, provide minimum air circulation following gypsum boarding and until gypsum board jointing complete and is dry.

1.8 FIRE RESISTIVE CONSTRUCTION

Comply with specified fire-rated assemblies for design numbers indicated per UL Fire Resistance or FM APP GUIDE.

1.9 SOUND PERFORMANCE REQUIREMENTS

1.9.1 STC (Sound Transmission Classification) Rating

Provide wall assemblies with an STC rating per the Drawings.

1.9.2 Security Requirements

Provide wall assemblies that meet the requirements of NCSC ICD/ICS 705 and UFC 4-010-05.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Recycled Content for Gypsum Board Materials

Recycled content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT. Other products listed in this section may be available with recycled content; identify those products that meet project requirements for recycled content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT.

2.1.2 Reduce Volatile Organic Compounds (VOC) (LOW-EMITTING MATERIALS) for Products

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 MATERIALS

Conform to specifications, standards and requirements specified. Provide gypsum board types, gypsum backing board types, cementitious backing units, and joint treating materials manufactured from asbestos free materials only. Submit Material Safety Data Sheets and manufacturer maintenance instructions for gypsum materials including adhesives.

2.2.1 Gypsum Board

ASTM C1396/C1396M. Gypsum board must contain a minimum of 5 percent
post-consumer recycled content, or a minimum of 20 percent post-industrial recycled content. Provide data identifying percentage of recycled content for gypsum board. Paper facings must contain a minimum of 50 percent post-consumer recycled paper content.

2.2.1.1 Regular
48 inch wide, 5/8 inch thick, tapered edges.

2.2.1.2 Type X (Special Fire-Resistant)
48 inch wide, 5/8 inch thick, tapered edges.

2.2.2 Regular Water-Resistant Gypsum Backing Board
ASTM C1396/C1396M

2.2.2.1 Regular
48 inch wide, 5/8 inch thick, tapered edges.

2.2.3 Joint Treatment Materials
ASTM C475/C475M. Product must be low emitting VOC types with VOC limits not exceeding 50 g/L. Provide data identifying VOC content of joint compound. Use all purpose joint and texturing compound containing inert fillers and natural binders, including lime compound. Pre-mixed compounds must be free of antifreeze, vinyl adhesives, preservatives, biocides and other slow releasing compounds.

2.2.3.1 Embedding Compound
Specifically formulated and manufactured for use in embedding tape at gypsum board joints and compatible with tape, substrate and fasteners.

2.2.3.2 Finishing or Topping Compound
Specifically formulated and manufactured for use as a finishing compound.

2.2.3.3 All-Purpose Compound
Specifically formulated and manufactured to serve as both a taping and a finishing compound and compatible with tape, substrate and fasteners.

2.2.3.4 Setting or Hardening Type Compound
Specifically formulated and manufactured for use with fiber glass mesh tape.

2.2.3.5 Joint Tape
Use cross-laminated, tapered edge, reinforced paper, or fiber glass mesh tape recommended by the manufacturer.

2.2.4 Fasteners

2.2.4.1 Screws
ASTM C1002, Type "G", Type "S" or Type "W" steel drill screws for fastening gypsum board to gypsum board and steel framing members less than 0.033 inch
thick. ASTM C954 steel drill screws for fastening gypsum board to steel framing members 0.033 to 0.112 inch thick. Provide cementitious backer unit screws with a polymer coating.

2.2.5 Adhesives

Provide certification of indoor air quality for non-aerosol adhesives applied on the interior of the building (inside of the weatherproofing system). Provide certification of indoor air quality for aerosol adhesives used on the interior of the building (inside of the weatherproofing system).

2.2.5.1 Adhesive for Fastening Gypsum Board to Existing Gypsum Board

Type recommended by gypsum board manufacturer.

2.2.6 Shaftwall Liner Panel

ASTM C1396/C1396M. Conform to the UL Fire Resistance for the Design Numbers(s) indicated for shaftwall liner panels. Manufacture liner panel for cavity shaftwall system, with water-resistant paper faces, bevel edges, single lengths to fit required conditions, 1 inch thick, by 24 inch wide.

2.2.7 Accessories

ASTM C1047. Fabricate from corrosion protected steel or plastic designed for intended use. Accessories manufactured with paper flanges are not acceptable. Flanges must be free of dirt, grease, and other materials that may adversely affect bond of joint treatment. Provide prefinished or job decorated materials.

2.2.8 Water

Provide clean, fresh, and potable water.

PART 3 EXECUTION

3.1 EXAMINATION

3.1.1 Framing and Furring

Verify that framing and furring are securely attached and of sizes and spacing to provide a suitable substrate to receive gypsum board and cementitious backer units. Verify that all blocking, headers and supports are in place to support plumbing fixtures and to receive soap dishes, grab bars, towel racks, and similar items. Do not proceed with work until framing and furring are acceptable for application of gypsum board and cementitious backer units.

3.1.2 Gypsum Board

Verify that surfaces of gypsum board to be bonded with an adhesive are free of dust, dirt, grease, and any other foreign matter. Do not proceed with work until surfaces are acceptable for application of gypsum board with adhesive.

3.1.3 Building Construction Materials

Do not install building construction materials that show visual evidence of
biological growth.

3.2 APPLICATION OF GYPSUM BOARD

Apply gypsum board to framing and furring members in accordance with ASTM C840 or GA 216 and the requirements specified. Apply gypsum board with separate panels in moderate contact; do not force in place. Stagger end joints of adjoining panels. Neatly fit abutting end and edge joints. Use gypsum board of maximum practical length; select panel sizes to minimize waste. Cut out gypsum board to make neat, close, and tight joints around openings. In vertical application of gypsum board, provide panels in lengths required to reach full height of vertical surfaces in one continuous piece. Lay out panels to minimize waste; reuse cutoffs whenever feasible. Surfaces of gypsum board and substrate members may be bonded together with an adhesive, except where prohibited by fire rating(s). Treat edges of cutouts for plumbing pipes, screwheads, and joints with water-resistant compound as recommended by the gypsum board manufacturer. Minimize framing by floating corners with single studs and drywall clips. Install 5/8 inch gypsum ceiling board over framing at 24 inch on center. Provide type of gypsum board for use in each system specified herein as indicated.

3.2.1 Application of Gypsum Board to Steel Framing and Furring

Apply in accordance with ASTM C840, System VIII or GA 216.

3.2.2 Gypsum Board for Wall Tile or Tile Base Applied with Adhesive

In dry areas other than shower enclosures, apply water-resistant gypsum backing board in accordance with ASTM C840, System X or GA 216.

3.2.3 Control Joints

Install expansion and contraction joints in ceilings and walls in accordance with ASTM C840, System XIII or GA 216. Fill control joints between studs in fire-rated construction with firesafing insulation to match the fire-rating of construction.

3.3 FINISHING OF GYPSUM BOARD

Tape and finish gypsum board in accordance with ASTM C840, GA 214 and GA 216. Finish plenum areas above ceilings to Level 1 in accordance with GA 214. Unless otherwise specified, finish all gypsum board walls, partitions and ceilings to Level 4 in accordance with GA 214. Provide joint, fastener depression, and corner treatment. Tool joints as smoothly as possible to minimize sanding and dust. Do not use self-adhering fiber glass mesh tape with conventional drying type joint compounds; use setting or hardening type compounds only. Provide treatment for water-resistant gypsum board as recommended by the gypsum board manufacturer. Protect workers, building occupants, and HVAC systems from gypsum dust.

3.3.1 Uniform Surface

Wherever gypsum board is to receive eggshell, semigloss or gloss paint finish, or where severe, up or down lighting conditions occur, finish gypsum wall surface in accordance to GA 214 Level 5. In accordance with GA 214 Level 5, apply a thin skim coat of joint compound to the entire gypsum board surface, after the two-coat joint and fastener treatment is complete and dry.
3.4 SEALING

Seal openings around pipes, fixtures, and other items projecting through gypsum board and cementitious backer units as specified in Section 07 92 00 JOINT SEALANTS. Apply material with exposed surface flush with gypsum board or cementitious backer units.

3.5 FIRE-RESISTANT ASSEMBLIES

Wherever fire-rated construction is indicated, provide materials and application methods, including types and spacing of fasteners, wall and ceiling framing in accordance with the specifications contained in UL Fire Resistance for the Design Number(s) indicated or GA 600 for the File Number(s) indicated. Joints of fire-rated gypsum board enclosures must be closed and sealed in accordance with UL test requirements or GA requirements. Seal penetrations through rated partitions and ceilings tight in accordance with tested systems.

3.6 PATCHING

Patch surface defects in gypsum board to a smooth, uniform appearance, ready to receive finishes.

3.7 SHAFTWALL FRAMING

Install the shaftwall system in accordance with the system manufacturer's published instructions. Coordinate bucks, anchors, blocking and other items placed in or behind shaftwall framing with electrical and mechanical work. Patch or replace fireproofing materials which are damaged or removed during shaftwall construction.

3.8 TESTING OF SOUND-RATED PARTITIONS

3.8.1 Testing

Contractor is responsible for meeting the acoustic performance of STC rated wall assemblies as shown on the Drawings. The Government will test the assemblies and the Contractor is responsible for all corrective work at his own expense to pass Government tests.

-- End of Section --
SECTION 09 30 10

CERAMIC TILING

08/17

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ASTM INTERNATIONAL (ASTM)

ASTM C648 (2004; R 2009) Breaking Strength of Ceramic Tile

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD)

SCAQMD Rule 1168 (1989; R 2005) Adhesive and Sealant Applications

TILE COUNCIL OF NORTH AMERICA (TCNA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-03 Product Data
 Porcelain Tile; G
 Glazed Wall Tile; G
 Mortar, Grout and Adhesive; G

SD-04 Samples
 Tile; G
 Accessories; G
 Transition Strips; G
 Grout; G

SD-07 Certificates
 Indoor Air Quality; S

SD-11 Closeout Submittals
 Recycled Content for Porcelain Tile; S
 Indoor Air Quality for Adhesives; S
 Indoor Air Quality for Sealants; S

1.3 CERTIFICATIONS

1.3.1 Indoor Air Quality Certifications

1.3.1.1 Adhesives and Sealants

Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or provide certification or validation by other third-party programs that products meet the requirements of this Section. Provide current product certification documentation from certification body.
1.4 QUALITY ASSURANCE

Provide installers having a minimum of two years experience with a company specializing in performing the type of work described. Each type and color of tile to be provided from a single source. Each type and color of mortar, adhesive, and grout to be provided from the same source.

1.5 DELIVERY, STORAGE, AND HANDLING

Ship tiles in sealed packages and clearly marked with the grade, type of tile, producer identification, and country of origin. Deliver materials to the project site in manufacturer's original unopened containers with seals unbroken and labels and hallmarks intact. Protect materials from weather, and store them under cover in accordance with manufacturer's printed instructions.

1.6 ENVIRONMENTAL REQUIREMENTS

Do not perform ceramic tile work unless the substrate and ambient temperature is at least 50 degrees F and rising. Maintain temperature above 50 degrees F while the work is being performed and for at least 7 days after completion of the work. When temporary heaters are used, ventilate the area to the outside to avoid carbon dioxide damage to new tilework.

1.7 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period.

1.8 EXTRA MATERIALS

Supply an extra 2 percent of each type tile used in clean and marked cartons.

PART 2 PRODUCTS

2.1 TILE

Provide tiles that comply with ANSI A137.1 and are standard grade tiles. Provide a minimum breaking strength of 125 lbs. for wall tile and 250 lbs. for floor tile in accordance with ASTM C648. Provide floor tiles with a wet dynamic coefficient of friction (DCOF) value of 0.42 or greater when tested in accordance with ANSI A137.1 requirements. For materials like tile, accessories, and transition strips submit samples of sufficient size to show color range, pattern, type and joints. Submit manufacturer's catalog data.

2.1.1 Porcelain Tile

Provide unglazed porcelain tile, cove base and trim pieces with color extending uniformly through the body of the tile. Provide tile with a V2 aesthetic classification. Blend tiles in factory and in a packages to have same color range and continuous blend for installation. Provide nominal tile size(s) of 12 by 24 inch and 3/8 inch thick. Provide a 0.30 percent maximum water absorption in accordance with ASTM C373.

Provide Porcelain Tiling Materials that contain a minimum of 10 percent recycled content. Provide data identifying percentage of recycled content for porcelain tile.
2.1.2 Glazed Wall Tile

Furnish glazed wall tile that has cushioned edges and trim with lead-free bright finish. Provide nominal tile size(s) of 4-1/4 by 4-1/4 inch.

Provide Glazed Wall Tile Materials that contain a minimum of 3 percent recycled content. Provide data identifying percentage of recycled content for glazed wall tile.

2.2 WATER

Provide potable water.

2.3 MORTAR, GROUT, AND ADHESIVE

Provide adhesive products meeting either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168. Provide certification or validation of indoor air quality for adhesives.

2.3.1 Latex-Portland Cement Mortar

TCNA Hdbk.

2.3.2 Ceramic Tile Grout

TCNA Hdbk; petroleum-free and plastic-free dry-set grout.

2.3.3 Organic Adhesive

TCNA Hdbk, Type I. Water-resistant. Comply with ANSI A136.1.

2.3.4 Sealants

Comply with applicable regulations regarding toxic and hazardous materials and as specified. Grout sealant must not change the color or alter the appearance of the grout. Refer to Section 07 92 00 JOINT SEALANTS.

Provide sealants meeting either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168. Provide certification or validation of indoor air quality for sealants.

2.4 TRANSITION STRIPS

Provide clear anodized aluminum transitions between tile and carpet or resilient flooring. Provide types as recommended by flooring manufacturer for both edges and transitions of flooring materials specified.

2.5 COLOR, TEXTURE, AND PATTERN

Provide color, pattern and texture in accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Color listed is not intended to limit the selection of equal colors from other manufacturers. Provide floor patterns as shown on the drawings.
PART 3 EXECUTION

3.1 PREPARATORY WORK AND WORKMANSHIP

Inspect surface to receive tile in conformance to the requirements of TCNA Hdbk for surface conditions for the type setting bed specified and for workmanship. Provide variations of tiled surfaces that fall within maximum values shown below:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>WALLS</th>
<th>FLOORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Adhesives</td>
<td>1/8 inch in 8 ft.</td>
<td>1/16 inch in 3 ft.</td>
</tr>
<tr>
<td>Latex Portland Cement</td>
<td>1/8 inch in 8 ft.</td>
<td>1/8 inch in 10 ft.</td>
</tr>
</tbody>
</table>

3.2 GENERAL INSTALLATION REQUIREMENTS

Do not start tile work until roughing in for mechanical and electrical work has been completed and tested. Keep closed until tile is firmly set. Do not start floor tile installation in spaces requiring wall tile until after wall tile has been installed. Apply tile in colors and patterns indicated in the area shown on the drawings. Install tile with the respective surfaces in true even planes to the elevations and grades shown. Provide special shapes as required for sills, jambs, recesses, offsets, external corners, and other conditions to provide a complete and neatly finished installation. Solidly back tile bases and coves with mortar. Do not walk or work on newly tiled floors without using kneeling boards or equivalent protection of the tiled surface. Keep traffic off horizontal portland cement mortar installations for at least 72 hours.

Do not install building construction materials that show visual evidence of biological growth.

3.3 INSTALLATION OF WALL TILE

Install wall tile in accordance with the TCNA Hdbk method W248-16 and with grout joints as recommended by the manufacturer for the type of tile.

3.3.1 Ceramic Tile Grout

Prepare and install ceramic tile grout in accordance with TCNA Hdbk. Provide and apply manufacturer's standard product for sealing grout joints in accordance with manufacturer's recommendations.

3.4 INSTALLATION OF FLOOR TILE

Install floor tile in accordance with TCNA Hdbk method F116 and with grout joints as recommended by the manufacturer for the type of tile.

3.4.1 Latex-Portland Cement

Use Latex-Portland cement mortar to install tile directly over properly cured, plane, clean concrete slabs in accordance with TCNA Hdbk. Use Latex Portland cement when installing porcelain ceramic tile.
3.4.2 Ceramic Tile Grout

Prepare and install ceramic tile grout in accordance with TCNA Hdbk. Provide and apply manufacturer's standard product for sealing grout joints in accordance with manufacturer's recommendations.

3.5 EXPANSION JOINTS

Form and seal joints as specified in Section 07 92 00 JOINT SEALANTS.

3.5.1 Walls

Provide expansion joints at control joints in backing material. Wherever backing material changes, install an expansion joint to separate the different materials.

3.5.2 Floors

Provide expansion joints over construction joints, control joints, and expansion joints in concrete slabs. Provide expansion joints where tile abuts restraining surfaces such as perimeter walls, curbs and columns and at intervals of 24 to 36 feet each way. Extend expansion joints through setting-beds and fill.

3.6 CLEANING AND PROTECTING

Upon completion, thoroughly clean tile surfaces in accordance with manufacturer's approved cleaning instructions. Do not use acid for cleaning glazed tile. Clean floor tile with factory mixed grout in accordance with printed instructions of the grout manufacturer. After the grout has set, provide a protective coat of a noncorrosive soap or other approved method of protection for tile wall surfaces. Cover tiled floor areas with building paper before foot traffic is permitted over the finished tile floors. Provide board walkways on tiled floors that are to be continuously used as passageways by workmen. Replace damaged or defective tiles. Submit copy of manufacturer's printed maintenance instructions.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM A1008/A1008M (2016) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM C423 (2009a) Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM E1264 (2014) Acoustical Ceiling Products

ASTM E1477 (1998a; R 2013) Luminous Reflectance Factor of Acoustical Materials by Use of Integrating-Sphere Reflectometers

1.2 SYSTEM DESCRIPTION

Provide sound controlling units mechanically mounted on a ceiling suspension system for acoustical treatment. The unit size, texture, finish, and color must be as specified. The location and extent of acoustical treatment shall be as shown on the approved detail drawings. Submit drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan.

1.2.1 Ceiling Sound Absorption

Determine the Noise Reduction Coefficient (NRC) in accordance with ASTM C423 Test Method.

1.2.2 Light Reflectance

Determine light reflectance factor in accordance with ASTM E1477 Test Method.

1.2.3 Other Submittals Requirements

The following shall be submitted:

a. Manufacturer's data indicating percentage of recycle material in acoustic ceiling tiles to verify affirmative procurement compliance.

b. Total weight and volume quantities of acoustic ceiling tiles with recycle material.

c. Certificate attesting that the mineral based acoustical units furnished for the project contain recycled material and showing an estimated percent of such material.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data
Acoustical Ceiling Systems; G
Wood Acoustical Panel Ceiling System; G

SD-04 Samples

Acoustic Ceiling Tiles; G

SD-06 Test Reports

Ceiling Attenuation Class and Test

SD-07 Certificates

Acoustic Ceiling Tiles; S

SD-11 Closeout Submittals

Recycled Content; S

1.4 SUSTAINABLE DESIGN CERTIFICATION

Acoustic ceiling tile products shall be third party certified in accordance with ULE Greenguard, SCS Scientific Certification Systems Indoor Advantage or equal. Certification shall be performed annually and shall be current.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Carefully handle and store materials in dry, watertight enclosures. Immediately before installation, store acoustical units for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation.

1.6 ENVIRONMENTAL REQUIREMENTS

Maintain a uniform temperature of not less than 60 degrees F nor more than 85 degrees F and a relative humidity of not more than 70 percent for 24 hours before, during, and 24 hours after installation of acoustical units.

1.7 SCHEDULING

Complete and dry interior finish work such as plastering, concrete and terrazzo work before ceiling installation. Complete mechanical, electrical, and other work above the ceiling line; install and start operating heating, ventilating, and air conditioning systems in order to maintain temperature and humidity requirements.

1.8 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period. Include an agreement to repair or replace acoustical panels that fail within the warranty period in the standard performance guarantee or warranty. Failures include, but are not limited to, sagging and warping of panels; rusting and manufacturers defects of grid system.
1.9 EXTRA MATERIALS

Furnish spare tiles, from the same lot as those installed, of each color at the rate of 5 tiles for each 1000 tiles installed, but not less than one full, unopened box.

PART 2 PRODUCTS

2.1 REFERENCES TO MANUFACTURER’S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 ACOUSTICAL UNITS

Comply with EPA requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color. Conform acoustical units to ASTM E1264, Class A, and the following requirements:

2.2.1 Affirmative Procurement

Laminated paperboard used in acoustic ceiling tiles are materials listed in the EPA's Comprehensive Procurement Guidelines (CPG) (http://www.epa.gov/cpg/). EPA's recommended Recovered Materials Content Levels for Mineral Wool, Cellulose, Structural Fiberboard and Laminated Paperboard are:

<table>
<thead>
<tr>
<th>Product</th>
<th>Material</th>
<th>Percent of Post Consumer Materials</th>
<th>Percent of Total Recovered Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminated Paperboard</td>
<td>Post Consumer Paper</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

a. The recommended recovered materials content levels are based on the weight (not volume) of materials in the insulating core only.

b. Submit recycled material content data for acoustic ceiling tiles indicating compliance with affirmative procurement.

c. Submit total weight and volume quantities of acoustic ceiling tiles with recycle material.

2.2.2 Units for Exposed-Grid System ATC-1

2.2.2.1 Basis of Design

Basis of Design for ATC-1 is Armstrong Ultima Health Zone #1935.

2.2.2.2 Type

III (non-asbestos mineral fiber with painted finish.)
2.2.2.3 Flame Spread
 Class A, 25 or less
2.2.2.4 Pattern
 Light stipple
2.2.2.5 Minimum NRC
 0.70 when tested on mounting Type E-400 of ASTM E795.
2.2.2.6 Minimum Light Reflectance Coefficient
 0.85 or greater
2.2.2.7 Nominal Size
 24 by 24 inch x 3/4 inch
2.2.2.8 Edge Detail
 Square
2.2.2.9 Finish
 Factory-applied latex paint.
2.2.2.10 Minimum CAC
 35
2.2.3 Units for Exposed-Grid System ATC-2
2.2.3.1 Basis of Design
 Basis of Design for ATC-2 is Armstrong Clean Room #868.
2.2.3.2 Type
 IV (non-asbestos mineral fiber with membrane-faced overlay)
2.2.3.3 Flame Spread
 Class A, 25 or less
2.2.3.4 Pattern
 Light stipple
2.2.3.5 Minimum Light Reflectance Coefficient
 0.75 or greater
2.2.3.6 Nominal Size
 24 x 24 inch x 5/8 inch
2.2.3.7 Edge Detail
 Square

2.2.3.8 Finish
 Factory-applied latex paint

2.2.3.9 Minimum CAC
 38

2.2.4 Wood Acoustic Panel Ceiling System (Concealed Grid) WAPS-1

2.2.4.1 Basis of Design
 Basis of Design for WAPS-1 is Linear Suspended Wood Ceiling System by Rulon International.

2.2.4.2 Hardwood Slats
 5 1/4 inch wide x 3/4 inch thick hardwood slats with 3/4 inch wide reveal (6" module). Hardwood species shall be plain-sawn Cherry.

2.2.4.3 Flame Spread
 Class A, 25 or less.

2.2.4.4 Minimum NRC
 0.65 (with 1 inch fiberglass insulation)

2.2.4.5 Felt Spacer Cover
 Black, fire-retardant felt, 1/8 inch thick

2.2.4.6 Finish
 Factory-applied standard clear satin finish.

2.2.4.7 Suspension System
 Hangers shall be #12-gauge wire hangers. Suspension shall be standard heavy-duty 15/16" steel grid. Clips for attachment of wood slats to grid shall be made of spring-steel, with a corrosion-resistant coating.

2.2.4.8 Perimeter Trims
 Ceiling terminations at walls or soffits shall be wood members provided by the WAPS manufacturer to match the hardwood slats.

2.2.4.9 Clamping Tool
 Provide a clamping tool to fasten the wood slats to the suspension system.

2.3 SUSPENSION SYSTEM

Provide standard exposed-grid standard width flange suspension system conforming to ASTM C635/C635M for intermediate-duty systems. Provide
surfaces exposed to view of aluminum or steel with a factory-applied white color. Provide wall molding having a flange of not less than 15/16 inch. Provide inside and outside corner caps. Suspended ceiling framing system must have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. Provide a suspension system with a maximum deflection of 1/360 of the span length. Conform seismic details to the guidance in UFC 3-310-04 and ASTM E580/E580M.

2.4 HANGERS

Provide hangers and attachment capable of supporting a minimum 300 pound ultimate vertical load without failure of supporting material or attachment.

2.4.1 Wires

Conform wires to ASTM A641/A641M, Class 1.

2.4.2 Straps

Provide straps of 1 by 3/16 inch galvanized steel conforming to ASTM A653/A653M, with a light commercial zinc coating or ASTM A1008/A1008M with an electrodeposited zinc coating conforming to ASTM B633, Type RS.

2.4.3 Rods

Provide 3/16 inch diameter threaded steel rods, zinc or cadmium coated.

2.4.4 Eyebolts

Provide eyebolts of weldless, forged-carbon-steel, with a straight-shank in accordance with ASTM A489. Eyebolt size must be a minimum 1/4 inch, zinc coated.

2.5 FINISHES

Use manufacturer's standard textures, patterns and finishes as specified for acoustical units and suspension system members. Treat ceiling suspension system components to inhibit corrosion.

2.6 COLORS AND PATTERNS

Use colors and patterns for acoustical units and suspension system components as specified in Section 09 06 00 SCHEDULES FOR FINISHES.

PART 3 EXECUTION

3.1 INSTALLATION

Examine surfaces to receive directly attached acoustical units for unevenness, irregularities, and dampness that would affect quality and execution of the work. Rid areas, where acoustical units will be cemented, of oils, form residue, or other materials that reduce bonding capabilities of the adhesive. Complete and dry interior finish work such as plastering, concrete, and terrazzo work before installation. Complete and approve mechanical, electrical, and other work above the ceiling line prior to the start of acoustical ceiling installation. Provide acoustical work complete with necessary fastenings, clips, and other accessories required for a complete installation. Do not expose mechanical fastenings in the finished work. Lay out hangers for each individual room or space. Provide hangers
to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Keep main runners and carrying channels clear of abutting walls and partitions. Provide at least two main runners for each ceiling span. Wherever required to bypass an object with the hanger wires, install a subsuspension system so that all hanger wires will be plumb.

3.1.1 Suspension System

Install suspension system in accordance with ASTM C636/C636M and as specified herein. Do not suspend hanger wires or other loads from underside of steel decking.

3.1.1.1 Plumb Hangers

Install hangers plumb and not pressing against insulation covering ducts and pipes. Where lighting fixtures are supported from the suspended ceiling system, provide hangers at a minimum of four hangers per fixture and located not more than 6 inch from each corner of each fixture.

3.1.1.2 Splayed Hangers

Where hangers must be splayed (sloped or slanted) around obstructions, offset the resulting horizontal force by bracing, countersplaying, or other acceptable means.

3.1.2 Wall Molding

Provide wall molding where ceilings abut vertical surfaces. Miter corners where wall moldings intersect or install corner caps. Secure wall molding not more than 3 inch from ends of each length and not more than 16 inch on centers between end fastenings. Provide wall molding springs at each acoustical unit in semi-exposed or concealed systems.

3.1.3 Acoustical Units

Install acoustical units in accordance with the approved installation instructions of the manufacturer. Ensure that edges of acoustical units are in close contact with metal supports, with each other, and in true alignment. Arrange acoustical units so that units less than one-half width are minimized. Hold units in exposed-grid system in place with manufacturer's standard hold-down clips, if units weigh less than 1 psf.

3.1.4 Caulking

Seal all joints around pipes, ducts or electrical outlets penetrating the ceiling.

3.1.5 Adhesive Application

Wipe back of tile to remove accumulated dust. Daub acoustical units on back side with four equal daubs of adhesive. Apply daubs near corners of tiles. Ensure that contact area of each daub is at least 2 inch diameter in final position. Press units into place, aligning joints and abutting units tight and uniform without differences in joint widths.

3.2 CLEANING

Following installation, clean dirty or discolored surfaces of acoustical
units and leave them free from defects. Remove units that are damaged or improperly installed and provide new units as directed.

3.3 RECLAMATION PROCEDURES

Neatly stack ceiling tile, designated for recycling by the Contracting Officer, on 4 by 4 foot pallets not higher than 4 foot. Panels must be completely dry. Shrink wrap and symmetrically stack pallets on top of each other without falling over.

-- End of Section --
SECTION 09 65 00
RESILIENT FLOORING
08/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4078 (2002; R 2015) Water Emulsion Floor Polish

ASTM F1344 (2012; E 2013) Rubber Floor Tile

ASTM F1700 (2013a) Solid Vinyl Floor Tile

ASTM F1869 (2016) Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride

ASTM F710 (2011) Standard Practice for Preparing Concrete Floors to Receive Resilient Flooring

GREEN SEAL (GS)

GS-36 (2011) Commercial Adhesives

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SYSTEM DESCRIPTION

1.2.1 Fire Resistance Requirements

Provide a critical radiant flux of not less than 0.45 watts per square centimeter (Class 1) for flooring in corridors and exits when tested in accordance with ASTM E648 or NFPA 253.

1.2.2 Other Submittal Requirements

The following shall be submitted:

a. documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.

b. documentation indicating distance between manufacturing facility and the project site. Indicate distance of raw material origin from the project site. Indicate relative dollar value of local/regional materials to total dollar value of products included in project.

c. documentation indicating type of biobased material in product and biobased content. Indicate relative dollar value of biobased content products to total dollar value of products included in project.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-03 Product Data

Resilient Flooring and Accessories; G Adhesives
Vinyl Composition Tile; G
Luxury Vinyl Tile; G
Wall Base; G
Stair Treads and Risers; G
Mouldings; G
Nosings; G
SD-04 Samples

Vinyl Composition Tile; G
Luxury Vinyl Tile; G
Wall Base; G
Stair Treads and Risers; G
Mouldings; G
Nosings; G

SD-06 Test Reports

Moisture, Alkalinity and Bond Tests

SD-07 Certificates

Indoor Air Quality; S

SD-08 Manufacturer's Instructions

Surface Preparation
Installation

SD-10 Operation and Maintenance Data

Resilient Flooring and Accessories; G

SD-11 Closeout Submittals

Indoor Air Quality for Resilient Flooring; S
Indoor Air Quality for Adhesives; S

1.4 CERTIFICATIONS

1.4.1 Indoor Air Quality Certifications

1.4.1.1 Floor Covering Materials

Provide resilient flooring products certified to meet indoor air quality requirements by UL 2818 (GreenGuard) Gold, SCS Global Services Indoor Advantage Gold, CRI GLP QM or provide validation by other third-party program that products meet the requirements of this paragraph. Products must meet emissions requirements of CDPH SECTION 01350. Provide current product certification documentation from certification body.

1.4.1.2 Paints and Coatings

Concrete primer products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH Section 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1113. Provide current product certification documentation from certification body.

1.4.1.3 Adhesives and Sealants

Sealants and non-aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either
office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168. Aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of GS-36. Provide current product certification documentation from certification body.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the building site in original unopened containers bearing the manufacturer's name, style name, pattern color name and number, production run, project identification, and handling instructions. Store materials in a clean, dry, secure, and well-ventilated area free from strong contaminant sources and residues with ambient air temperature maintained above 68 degrees F and below 85 degrees F, stacked according to manufacturer's recommendations. Remove resilient flooring products from packaging to allow ventilation prior to installation. Protect materials from the direct flow of heat from hot-air registers, radiators and other heating fixtures and appliances. Observe ventilation and safety procedures specified in the MSDS. Do not store rubber surface products with materials that have a high capacity to adsorb volatile organic compound (VOC) emissions. Do not store exposed rubber surface materials in occupied spaces.

1.6 ENVIRONMENTAL REQUIREMENTS

Maintain areas to receive resilient flooring at a temperature above 68 degrees F and below 85 degrees F for 3 days before application, during application and 2 days after application, unless otherwise directed by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 55 degrees F thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.

1.7 SCHEDULING

Schedule resilient flooring application after the completion of other work which would damage the finished surface of the flooring.

1.8 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period.

1.9 EXTRA MATERIALS

Provide extra flooring material of each color and pattern at the rate of 5 tiles for each 1000 tiles installed. Provide extra wall base material composed of 20 linear feet of each type, color and pattern. Package all extra materials in original properly marked containers bearing the manufacturer's name, brand name, pattern color name and number, production run, and handling instructions. Provide extra materials from the same lot as those installed. Leave extra stock at the site in location assigned by Contracting Officer.
PART 2 PRODUCTS

2.1 VINYL COMPOSITION TILE

Conform to ASTM F1066 Class 2, (through pattern tile), Composition 1, asbestos-free, 12 inch square and 3/32 inch thick. Provide color and pattern uniformly distributed throughout the thickness of the tile. Tile shall contain a minimum of 60 percent recycled material.

2.2 LUXURY VINYL TILE

Conform to ASTM F1700 Class III printed film with a minimum wear layer thickness 0.039 inch (39 mil) and minimum overall thickness 0.19 inch, Type B (embossed). Provide sizes as indicated in Section 09 06 00, Schedules for Finishes. Provide tile with a factory protective finish that enhances cleanability and durability.

2.3 WALL BASE

Conform to ASTM F1861, Type TP (thermoplastic rubber), Style B (coved). Provide 4 inch high and a minimum 1/8 inch thick wall base. Provide job formed corners in matching height, shape, and color.

2.4 STAIR TREADS AND RISERS

Conform to ASTM F1344 Class 1-B, synthetic rubber. Conform to ASTM F2169 for surface of treads Class 1 smooth. Provide square nosing. Provide one piece nosing/tread/riser.

2.5 MOULDINGS

Provide tapered mouldings of rubber and types as recommended by flooring manufacturer for edges and transitions of flooring materials specified. Provide vertical lip on moulding of maximum 1/4 inch. Provide bevel change in level between 1/4 and 1/2 inch with a slope no greater than 1:2.

2.6 NOSINGS AT RAISED PLATFORMS

Provide 1/4-inch thick nosings at raised platforms of rubber and types as recommended by flooring manufacturer for edges of flooring materials specified. Provide vertical and horizontal legs of approximately 2 inches.

2.7 ADHESIVES

Provide adhesives for flooring, base and accessories as recommended by the manufacturer and comply with local indoor air quality standards. VOC content shall be less than the current VOC content limits of GS-36 and SCAQMD Rule 1168. Submit manufacturer's descriptive data, documentation stating physical characteristics, and mildew and germicidal characteristics.

2.8 SURFACE PREPARATION MATERIALS

Provide surface preparation materials, such as floor crack fillers, as recommended by the flooring manufacturer for the subfloor conditions.

2.9 POLISH/FINISH

Provide polish finish as recommended by the manufacturer and conform to ASTM D4078 for polish.
2.10 CAULKING AND SEALANTS

Provide caulking and sealants in accordance with Section 07 92 00 JOINT SEALANTS.

2.11 MANUFACTURER'S COLOR, PATTERN AND TEXTURE

Provide color, pattern and texture for resilient flooring and accessories in accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Color listed is not intended to limit the selection of equal colors from other manufacturers. Provide floor patterns as shown on the Drawings. Provide flooring in any one continuous area or replacement of damaged flooring in continuous area from same production run with same shade and pattern. Submit scaled drawings indicating patterns (including location of patterns and colors) and dimensions. Submit manufacturer's descriptive data and three samples of each indicated color and type of flooring, base, mouldings, and accessories sized a minimum 2-1/2 by 4 inch. Submit Data Package 1 in accordance with Section 01000.

PART 3 EXECUTION

3.1 EXAMINATION

Examine and verify that site conditions are in agreement with the design package. Report all conditions that will prevent a proper installation. Do not take any corrective action without written permission from the Government. Work will proceed only when conditions have been corrected and accepted by the installer. Submit manufacturer's printed installation instructions for all flooring materials and accessories, including preparation of substrate, seaming techniques, and recommended adhesives.

3.2 SURFACE PREPARATION

Provide a smooth, true, level plane for surface preparation of the flooring, except where indicated as sloped. Floor to be flat to within 3/16 inch in 10 feet. Prepare subfloor in accordance with flooring manufacturer's recommended instructions. Prepare the surfaces of lightweight concrete slabs (as defined by the flooring manufacturer) as recommended by the flooring manufacturer. Comply with ASTM F710 for concrete subfloor preparation. Floor fills or toppings may be required as recommended by the flooring manufacturer. Before any work under this section is begun, correct all defects such as rough or scaling concrete, chalk and dust, cracks, low spots, high spots, and uneven surfaces. Repair all damaged portions of concrete slabs as recommended by the flooring manufacturer. Remove concrete curing and sealer compounds from the slabs, other than the type that does not adversely affect adhesion. Remove paint, varnish, oils, release agents, sealers, waxes, and adhesives, as required by the flooring product in accordance with manufacturer's printed installation instructions.

3.3 MOISTURE, ALKALINITY AND BOND TESTS

Determine the suitability of the concrete subfloor for receiving the resilient flooring with regard to moisture content and pH level by moisture and alkalinity tests. Conduct moisture testing in accordance with ASTM F1869 or ASTM F2170, unless otherwise recommended by the flooring manufacturer. Conduct alkalinity testing as recommended by the flooring manufacturer. Determine the compatibility of the resilient flooring.
adhesives to the concrete floors by a bond test in accordance with the
flooring manufacturer's recommendations. Submit copy of test reports for
moisture and alkalinity content of concrete slab, and bond test stating
date of test, person conducting the test, and the area tested.

3.4 PLACING VINYL COMPOSITION TILES

Install tile flooring and accessories in accordance with manufacturer's
printed installation instructions. Prepare and apply adhesives in
accordance with manufacturer's directions. Keep tile lines and joints
square, symmetrical, tight, and even. Keep each floor in true, level
plane, except where slope is indicated. Vary edge width as necessary to
maintain full-size tiles in the field, no edge tile to be less than
one-half the field tile size, except where irregular shaped rooms make it
impossible. Cut flooring to fit around all permanent fixtures, built-in
furniture and cabinets, pipes, and outlets. Cut, fit, and scribe edge tile
to walls and partitions after field flooring has been applied.

3.5 PLACING LUXURY VINYL TILES

Install luxury vinyl tile flooring using glue down installation. Install
flooring and accessories in accordance with manufacturer's printed
installation instructions. Prepare and apply adhesives in accordance with
maker's directions for installation method specified. Keep tile
lines and joints square, symmetrical, tight, and even. Keep each floor in
true, level plane, except where slope is indicated. Vary edge width as
necessary to maintain full-size tiles in the field, no edge tile to be less
than one-half the field tile size, except where irregular shaped rooms make it
impossible. Cut flooring to fit around all permanent fixtures, built-in
furniture and cabinets, pipes, and outlets. Cut, fit, and scribe edge tile
to walls and partitions after field flooring has been applied.

3.6 PLACING MOULDINGS

Provide mouldings where flooring termination is higher than the adjacent
finished flooring and at transitions between different flooring materials.
When required, locate moulding under door centerline. Moulding is not
required at doorways where thresholds are provided. Secure moulding with
adhesive as recommended by the manufacturer. Prepare and apply adhesives
in accordance with manufacturer's printed directions.

3.7 PLACING NOSINGS AT RAISED PLATFORMS

Provide nosings at edges of all raised platforms. Secure nosings with
adhesive as recommended by the manufacturer. Prepare and apply adhesives
in accordance with manufacturer's printed directions.

3.8 PLACING WALL BASE

Install wall base in accordance with manufacturer's printed installation
instructions. Prepare and apply adhesives in accordance with
maker's printed directions. Tighten base joints and make even with
adjacent resilient flooring. Fill voids along the top edge of base at
masonry walls with caulk. Roll entire vertical surface of base with hand
roller, and press toe of base with a straight piece of wood to ensure
proper alignment. Avoid excess adhesive in corners.
3.9 PLACING STAIR TREADS AND RISERS

Secure and install stair treads and risers in accordance with manufacturer's printed installation instructions. Cover the surface of treads and risers the full width of the stairs. Provide equal length pieces butted together to cover the treads and risers for stairs wider than manufacturer's standard lengths.

3.10 CLEANING AND FINISHING

Immediately upon completion of installation of flooring in a room or an area, dry/clean the flooring and adjacent surfaces to remove all surplus adhesive. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions and within the recommended time frame. As required by the manufacturer, apply the recommended number of coats and type of polish and/or finish in accordance with manufacturer's written instructions.

3.11 PROTECTION

From the time of installation until acceptance, protect flooring from damage as recommended by the flooring manufacturer. Remove and replace flooring which becomes damaged, loose, broken, or curled and wall base which is not tight to wall or securely adhered.

-- End of Section --
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC)

- **AATCC 107** (2013) Colorfastness to Water
- **AATCC 16** (2004; E 2008; E 2010) Colorfastness to Light
- **AATCC 165** (2013) Colorfastness to Crocking: Textile Floor Coverings - Crockmeter Method
- **AATCC 174** (2011) Antimicrobial Activity Assessment of Carpets

ASTM INTERNATIONAL (ASTM)

- **ASTM D3278** (1996; R 2011) Flash Point of Liquids by Small Scale Closed-Cup Apparatus
- **ASTM D5793** (2013) Binding Sites Per Unit Length or Width of Pile Yarn Floor Coverings
- **ASTM D5848** (2010; E 2010) Mass Per Unit Area of Pile Yarn Floor Coverings

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

CARPET AND RUG INSTITUTE (CRI)

- **CRI CIS** (2011) Carpet Installation Standard

GREEN SEAL (GS)

- **GS-36** (2011) Commercial Adhesives
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT (SCAQMD)

SCAQMD Rule 1113 (2016) Architectural Coatings

SCAQMD Rule 1168 (1989; R 2005) Adhesive and Sealant Applications

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

16 CFR 1630 Standard for the Surface Flammability of Carpets and Rugs (FF 1-70)

UNDERWRITERS LABORATORIES (UL)

UL 2818 (2013) GREENGUARD Certification Program For Chemical Emissions For Building Materials, Finishes And Furnishings

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-03 Product Data
 Carpet; G
 Physical Characteristics; G

SD-04 Samples
 Carpet; G

SD-06 Test Reports
 Moisture and Alkalinity Tests

SD-07 Certificates
 Indoor Air Quality; S

SD-08 Manufacturer's Instructions
 Surface Preparation
Installation

SD-10 Operation and Maintenance Data

Carpet; G
Cleaning and Protection; G

SD-11 Closeout Submittals

Recycled Content for Carpeting; S
Indoor Air Quality for Carpet; S
Indoor Air Quality for Adhesives; S
Warranty; G

1.3 CERTIFICATIONS

1.3.1 Indoor Air Quality Certifications

1.3.1.1 Floor Covering Materials

Provide carpet and cushion products certified to meet indoor air quality requirements by UL 2818 (GreenGuard) Gold, SCS Global Services Indoor Advantage Gold, CRI GLP QM or provide validation by other third-party program that products meet the requirements of this paragraph. Products must meet emissions requirements of CDPH SECTION 01350. Provide current product certification documentation from certification body.

1.3.1.2 Paints and Coatings

Concrete primer products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1113. Provide current product certification documentation from certification body.

1.3.1.3 Adhesives and Sealants

Sealants and non-aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of SCAQMD Rule 1168. Aerosol adhesive products used on the interior of the building (defined as inside of the weatherproofing system) must meet either emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type) or VOC content requirements of GS-36. Provide current product certification documentation from certification body.

1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the site in the manufacturer's original wrappings and packages clearly labeled with the manufacturer’s name, brand name, size, dye lot number, and related information. Remove materials from packaging and store them in a clean, dry, well ventilated area (100 percent outside air supply, minimum of 1.5 air changes per hour, and no recirculation),
protected from damage, soiling, and moisture, and strong contaminant sources and residues, and maintain at a temperature above 60 degrees F for 2 days prior to installation. Do not store carpet or carpet tiles with materials which have high emissions of volatile organic compounds (VOCs) or other contaminants, including paints and adhesives. Do not store carpet near materials that may off gas or emit harmful fumes, such as kerosene heaters, fresh paint, or adhesives.

1.5 AMBIENT CONDITIONS

Maintain areas in which carpeting is to be installed at a temperature above 60 degrees F and below 90 degrees F for 2 days before installation, during installation, and for 2 days after installation. Provide temporary ventilation during work of this section. Maintain a minimum temperature of 55 degrees F thereafter for the duration of the contract.

1.6 WARRANTY

Provide manufacturer's standard performance guarantees or warranties including minimum ten year wear warranty, two year material and workmanship and ten year tuft bind and delamination.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Recycled Content for Carpeting Materials

Recycled content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT. Other products listed in this section may be available with recycled content; identify those products that meet project requirements for recycled content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT.

2.1.2 Reduce Volatile Organic Compounds (VOC) (LOW-EMITTING MATERIALS) for Products

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 CARPET

Furnish first quality carpet; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Provide carpet materials and treatments as reasonably nonallergenic and free of other recognized health hazards. Provide a static control construction on all grade carpets which gives adequate durability and performance. Submit manufacturer's catalog data and printed documentation stating physical characteristics, durability,
resistance to fading, and flame resistance characteristics for each type of carpet material and installation accessory. Submit manufacturer's catalog data for Carpet. Also, submit samples of the following:

a. Carpet: Two "Production Quality" samples 18 by 18 inches of each carpet proposed for use, showing quality, pattern, and color specified

2.2.1 Recycled Content

Carpeting must contain a minimum of 20 percent post-consumer recycled content, or a minimum of 20 percent post-industrial recycled content. Provide data identifying percentage of recycled content for carpeting.

Provide certification of indoor air quality for carpet.

2.2.2 General

See Section 09 06 00 SCHEDULES FOR FINISHES for Basis of Design carpets.

2.2.3 Physical Characteristics for Modular Tile Carpets CPT-1 thru CPT-5

2.2.3.1 Carpet Construction

Textured patterned loop.

2.2.3.2 Carpet Type

Modular tile 12 by 48 inch with 0.15 percent growth/shrink rate in accordance with ISO 2551.

2.2.3.3 Pile Fiber

Commercial 100 percent branded (federally registered trademark) nylon continuous filament.

2.2.3.4 Gauge or Pitch

Minimum 1/12 inch in accordance with ASTM D5793.

2.2.3.5 Stitches or Rows/Wires

Minimum 10 per square inch.

2.2.3.6 Surface Pile Weight

Minimum 19 ounces per square yard. This does not include weight of backings. Determine weight in accordance with ASTM D5848.

2.2.3.7 Pile Density

Minimum 5925 ounces per cubic yard.

2.2.3.8 Dye Method

Solution dyed.

2.2.3.9 Backing Materials

Provide backing materials like those customarily used and accepted by the
trade for each type of carpet.

2.2.3.10 Physical Characteristics for Modular Tile Carpet CPT-6

2.2.3.10.1 Carpet Construction

Textured patterned loop.

2.2.3.10.2 Carpet Type

Modular tile 24 by 24 inch with 0.15 percent growth/shrink rate in accordance with ISO 2551.

2.2.3.10.3 Pile Fiber

Commercial 100 percent branded (federally registered trademark) nylon continuous filament.

2.2.3.10.4 Gauge or Pitch

Minimum 1/12 inch in accordance with ASTM D5793.

2.2.3.10.5 Stitches or Rows/Wires

Minimum 12 per square inch.

2.2.3.10.6 Surface Pile Weight

Minimum 29 ounces per square yard. This does not include weight of backings. Determine weight in accordance with ASTM D5848.

2.2.3.10.7 Pile Density

Minimum 8717 ounces per cubic yard.

2.2.3.10.8 Dye Method

Solution dyed.

2.2.3.10.9 Backing Materials

Provide backing materials like those customarily used and accepted by the trade for each type of carpet.

2.3 PERFORMANCE REQUIREMENTS

2.3.1 Flammability and Critical Radiant Flux Requirements

Comply with 16 CFR 1630.

2.3.2 Tuft Bind

Comply with ASTM D1335 for tuft bind force required to pull a tuft or loop free from carpet backing with a minimum 8 pound average force.

2.3.3 Colorfastness to Crocking

Comply dry and wet crocking with AATCC 165 and with a Class 4 minimum rating on the AATCC Color Transference Chart for all colors.
2.3.4 Colorfastness to Light

Comply colorfastness to light with AATCC 16, Test Option E "Water-Cooled Xenon-Arc Lamp, Continuous Light" and with a minimum 4 grey scale rating after 40 hours.

2.3.5 Colorfastness to Water

Comply colorfastness to water with AATCC 107 and with a minimum 4.0 gray scale rating and a minimum 4.0 transfer scale rating.

2.3.6 Delamination Strength

Provide delamination strength for tufted carpet with a secondary back of minimum 2.5 lbs/inch.

2.3.7 Antimicrobial

Nontoxic antimicrobial treatment in accordance with AATCC 174 Part I (qualitative), guaranteed by the carpet manufacturer to last the life of the carpet.

2.4 ADHESIVES AND CONCRETE PRIMER

Comply with applicable regulations regarding toxic and hazardous materials. Provide water resistant, mildew resistant, nonflammable, and nonstaining adhesives and concrete primers for carpet installation as required by the carpet manufacturer. Provide release adhesive for modular tile carpet as recommended by the carpet manufacturer. Provide adhesives flashpoint of minimum 140 degrees F in accordance with ASTM D3278. Provide certification of indoor air quality for aerosol adhesives. Provide certification of indoor air quality for non-aerosol adhesives. Provide certification of indoor air quality for concrete primer.

2.5 COLOR, TEXTURE, AND PATTERN

Provide color, texture, and pattern in accordance with Section 09 06 00 SCHEDULES FOR FINISHES.

PART 3 EXECUTION

3.1 SURFACE PREPARATION

Do not install carpet on surfaces that are unsuitable and will prevent a proper installation. Prepare subfloor in accordance with flooring manufacturer's recommended instructions. Repair holes, cracks, depressions, or rough areas using material recommended by the carpet or adhesive manufacturer. Free floor of any foreign materials and sweep clean. Before beginning work, test subfloor with glue and carpet to determine "open time" and bond. Submit three copies of the manufacturer's printed installation instructions for the carpet, including preparation of substrate, and recommended adhesives and tapes.

3.2 MOISTURE AND ALKALINITY TESTS

Test concrete slab for moisture content and excessive alkalinity in accordance with CRI CIS. Submit three copies of test reports of moisture and alkalinity content of concrete slab stating date of test, person
conducting the test, and the area tested.

3.3 PREPARATION OF CONCRETE SUBFLOOR

Do not commence installation of the carpeting until concrete substrate is at least 90 days old. Prepare the concrete surfaces in accordance with the carpet manufacturer's instructions. Match carpet, when required, and adhesives to prevent off-gassing to a type of curing compounds, leveling agents, and concrete sealer.

3.4 INSTALLATION

Isolate area of installation from rest of building. Perform all work by manufacturer's approved installers. Conduct installation in accordance with the manufacturer's printed instructions and CRI CIS. Protect edges of carpet meeting hard surface flooring with molding and install in accordance with the molding manufacturer's printed instructions. Use autofoam mothproofing system for wool carpets. Follow ventilation, personal protection, and other safety precautions recommended by the adhesive manufacturer. Continue ventilation during installation and for at least 72 hours following installation. Do not permit traffic or movement of furniture or equipment in carpeted area for 24 hours after installation. Complete other work which would damage the carpet prior to installation of carpet.

Do not install building construction materials that show visual evidence of biological growth.

3.4.1 Modular Tile Installation

Install modular tiles with adhesive and snug joints. Use installation method as described in Section 09 06 00 SCHEDULES FOR FINISHES.

3.5 CLEANING AND PROTECTION

Submit three copies of carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods, and cleaning cycles.

3.5.1 Cleaning

As specified in Section 01000. After installation of the carpet, remove debris, scraps, and other foreign matter. Remove soiled spots and adhesive from the face of the carpet with appropriate spot remover. Cut off and remove protruding face yarn. Vacuum carpet clean with a high-efficiency particulate air (HEPA) filtration vacuum.

3.5.2 Protection

Protect the installed carpet from soiling and damage with heavy, reinforced, nonstaining kraft paper, plywood, or hardboard sheets. Lap and secure edges of kraft paper protection to provide a continuous cover. Restrict traffic for at least 48 hours. Remove protective covering when directed by the Contracting Officer.

3.6 REMNANTS

Manage waste as specified in the Waste Management Plan. Set aside and return non-retained scraps to manufacturer for recycling into new product
or remove non-retained scraps from site and recycle appropriately.

3.7 MAINTENANCE

3.7.1 Extra Materials

Provide extra material from same dye lot consisting of uncut carpet tiles for future maintenance. Provide a minimum of ten percent of total square yards of each carpet type, pattern, and color.

-- End of Section --
SECTION 09 69 19

ACCESS FLOORING

11/15

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)

ASTM INTERNATIONAL (ASTM)

CEILINGS AND INTERIOR SYSTEMS CONSTRUCTION ASSOCIATION (CISCA)

ICC EVALUATION SERVICE, INC. (ICC-ES)

INTERNATIONAL CODE COUNCIL (ICC)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI/NEMA LD 3 (2005) Standard for High-Pressure Decorative Laminates

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Detailed Installation Drawings; G
Fabrication Drawings; G

SD-03 Product Data

Stringerless Access Flooring System; G
Rigid Access Flooring System; G
Panel Support Systems; G
Accessories; G
Fascia; G
Exposed Step and Ramp Structures; G
Railings; G
Air Supply Panels; G

SD-04 Samples

Floor Panels; G
Floor Covering; G

SD-05 Design Data

Seismic Calculations

SD-06 Test Reports

Factory Tests
Concentrated Load
Uniform Live Load
Rolling Load
Impact Load
Ultimate Load
Pedestal Axial Load
Bonding Strength of Pedestal Adhesive
Electrical Resistance
Field Tests

SD-07 Certificates

Compliance with ICC-ES AC300
Compliance with ICC IBC
Certificate of Compliance
Qualification of Manufacturer

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals; G
SD-11 Closeout Submittals

- Recycled Content of Access Flooring Systems; S
- Reduced VOC's for Pedestal Adhesive; S
- Reduced VOC's for Floor Covering Adhesives; S
- Lifting Device; G
- Warranty; G

1.3 QUALITY CONTROL

1.3.1 Qualification of Manufacturer

Access flooring manufacturer must have at least 5 years experience in manufacturing access flooring systems. Certify that the manufacturer of the access flooring system meets requirements specified under paragraph entitled QUALIFICATION OF MANUFACTURER.

1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery

Deliver materials to site in undamaged condition, in original containers or packages, complete with accessories and instructions. Label packages with manufacturer's name and brand designations. Package materials covered by specific references bearing specification number, type and class as applicable.

1.4.2 Storage

Store all materials in original protective packaging in a safe, dry, and clean location. Store panels at temperatures between 40 and 90 degrees F, and between 20 and 70 percent humidity. Replace defective or damaged materials.

1.4.3 Handling

Handle and protect materials in a manner to prevent damage during the entire construction period.

1.5 WARRANTY

Minimum manufacturer warranty must have no dollar limit, cover full system, and must have a minimum duration of 5 years. Include an agreement to repair or replace floor panels or pedestals that fail within the warranty period in the standard performance guarantee or warranty. Failures include, but are not limited to, sagging and warping of panels; rusting; and manufacturer's defects of panels or support system. For high pressure laminate provide manufacturer's standard performance guarantees or warranties that extend beyond a one-year period for finish materials.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:
2.1.1 Recycled Content of Access Flooring Systems

Provide Access Flooring Systems (panels and pedestals) with a minimum recycled content of 20 percent and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT.

2.1.2 Reduced VOC's for Pedestal Adhesive

Pedestal adhesive must meet reduced VOC requirements as stated in this section. Provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS.

2.1.3 Reduced VOC's for Floor Covering Adhesives

Coordinate requirement for reduced VOC's for floor covering adhesives and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS.

2.2 BASIS OF DESIGN

The basis of design shall be ConCore access floor panels with stringerless or rigid stringer understructure as scheduled, as manufactured by Tate Access Floors. Manufacturer and product specified as basis of design is not intended to limit the selection of equal products from other manufacturers.

2.3 SYSTEM DESCRIPTION

a. Provide for self-alignment of floor panels, adjustable pedestals and readily removable floor panels covered as specified.

b. Make lateral stability of floor support system integral with panels. Finished assembly must be stable and free of vibration, noises, and rocking panels. Provide stringerless system with equipotential plane grounding.

c. Submit certificate of compliance attesting that the installed access floor system meets specification requirements, including all special equipment loads and specific electrical and or cable requirements for the complete access flooring system including, but not limited to the following:

 (1) Compliance with ICC-ES AC300 and compliance with ICC IBC Acceptance Criteria for Access Floors.

 (2) Load-bearing capabilities of pedestals, floor panels, and pedestal adhesive resisting force.

 (3) Supporting independent laboratory test reports. For panel and pedestal load test results include concentrated loads at center of panel, panel edge midpoint, ultimate loads and uniform loads.

 (4) Floor electrical characteristics.

 (5) Material requirements.

 (6) An elevated floor system free of defects in materials, fabrication, finish, and installation, that will remain so for a period of not less than 5 years after completion.
d. Submit manufacturer’s product data for access flooring system consisting of descriptive data, catalog cuts, and installation instructions. Include in the data information about design and production techniques of the total system including all accessories and finish coatings of under-floor components; and procedures and policies used to conserve energy, reduce material, improve waste management or incorporate green building/recycled products into the manufacturer of their components or products. Include cleaning and maintenance instructions. Systems which contain zinc electroplated anti-corrosion coatings are prohibited.

2.3.1 Design Requirements

Conduct floor panel testing in accordance with CISCA Access Floors. When tested as specified, make all deflection and deformation measurements at the point of load application on the top surface of the panel. Floor panels must be capable of supporting the following loads:

a. Concentrated load as indicated in the Raised Access Flooring Schedule on one square inch, at any point on panel, without a top-surface deflection more than 0.10 inch, and a permanent set not to exceed 0.01 inch in any of the specified tests. Testing must be in accordance with CISCA Access Floors, Section 1 Concentrated Loads with test panels being supported by understructure to be used with installed system instead of steel support blocks.

b. Uniform live load as indicated in the Raised Access Flooring Schedule, without a top-surface deflection more than 0.06 inch, and a permanent set not to exceed 0.01 inch in any of the specified tests, when tested in accordance with CISCA Access Floors, Section 7 Uniform Load Test with test panels being supported by understructure to be used with installed system instead of steel support blocks.

c. A rolling load as indicated in the Raised Access Flooring Schedule applied through hard rubber surfaced wheel 6 inch diameter by 2 inch wide for 10,000 cycles over the same path. Permanent set at conclusion of test must not exceed 0.040 inch when tested in accordance with CISCA Access Floors, Section 3 Rolling Loads.

d. A rolling load as indicated in the Raised Access Flooring Schedule applied through a 3 inch diameter by 1-13/16 inch wide caster for 10 cycles over the same path, without developing a local overall surface deformation greater than 0.04 inch. In accordance with CISCA Access Floors, Section 3 Rolling Loads, the permanent deformation limit under rolling load must be satisfied in all of the specified tests.

e. An impact load of 150 pounds anywhere on the panel dropped from a height of 36 inches onto a 1 square inch area without failure of the system, according to CISCA Access Floors, Section 8 Drop Impact Load Test.

f. Safety Factor. Panels must provide a minimum Safety Factor of 2 times the uniform load specified above.
2.3.2 Allowable Tolerances

2.3.2.1 Floor Panel Flatness

Plus or minus 0.035 inches on diagonal on top of panel or underneath edge.

2.3.2.2 Floor Panel Length

Plus or minus 0.015 inch.

2.3.2.3 Floor Panel Squareness

Plus or minus 0.02 inch in panel length.

2.3.3 Stringers

Provide stringers capable of supporting concentrated loads as scheduled at
midspan without permanent deformation in excess of 0.010 inch.

2.3.4 Pedestals

Pedestals must be capable of supporting a 5000 pound axial load without
permanent deformation, when tested in accordance with CISCA Access Floors,
Section 5 Pedestal Axial Load Test.

2.3.5 Bonding Strength of Pedestal Adhesive

Adhesive for anchoring pedestal bases must have a bonding strength capable
of resisting an overturning moment of 1,000 lbf-in when a force is applied
to the top of the pedestal in any direction, when tested in accordance with
CISCA Access Floors, Section 6 Pedestal Overturning Moment Test. For
pedestal adhesive comply with applicable regulations regarding reduced
VOC's as specified in Section 01 33 29 SUSTAINABILITY REPORTING.

2.3.6 Bond Strength of Factory Installed Floor Covering

Bond strength of floor covering must be sufficient to permit handling of
the panels by use of the panel lifting device, and to withstand moving
caster loads up to 1500 pounds, without separation of the covering from the
panel.

2.3.7 Seismic Calculations

Submit seismic calculations for special bracing to resist the effects of
seismic or other forces in accordance with ICC IBC and ASCE 7. Submit
design calculations which demonstrate that the proposed floor system meets
requirements for seismic loading. Certified copies of test reports may be
submitted in lieu of calculations.

2.4 FLOOR PANELS

2.4.1 Floor System Drawings And Planer Quality

a. Submit Fabrication Drawings for elevated floor systems consisting of
fabrication and assembly details to be performed in the factory.

b. Indicate on Location Drawings exact location of pedestals, ventilation
openings, cable cutouts, and the panel installation pattern.
c. Provide Detail Drawings showing details of the pedestals, pedestal-floor interlocks, floor panels, panel edging, floor openings, floor opening edging, floor registers, floor grilles, cable cutout treatment, perimeter base, expansion, and peripheral support facilities.

d. Design and workmanship of the floor, as installed, must be completely planar within plus or minus 0.060 inch in 10 feet, 0.100 inch for the entire floor, and 0.030 inch across panel joints.

e. Floor-panel joint-width tolerances must not exceed 0.017 inch as measured with a feeler gage at any point in any joint when the panels are installed and as long as the air leakage requirements specified in this section are met.

f. Submit one complete sample of each type of floor panel.

2.4.2 Detailed Installation Drawings

Submit Detailed Installation Drawings at a minimum indicate the following:

a. Location of panels
b. Layout of supports, panels, and cutout locations
c. Stair, handrail, and ramp framing
d. Sizes and details of components
e. Details at floor perimeter and height above structural floor
f. Method of anchorage to structural subfloor
g. Lateral bracing
h. Typical cutout details
i. Gasketing and air supply panels. Include air transfer capacity of grilles, registers and panels.

j. Description of factory coating
k. Floor finishes
l. Location of connection to building grounding electrode

2.4.3 Panel Construction

a. Base access floor system on a 24 by 24 inch square module providing minimum of 14 inch clearance between structural floor and underside of panel. Fabricate so accurate job cutting and fitting may be done using standard sizes for perimeters and around columns.

b. Do not expose metal on finished top surface of panels. Provide cutouts and cutout closures to accommodate utility systems and equipment intercabling. Reinforce cutouts to meet design load requirements. Provide extra support pedestals at each corner of cutout for cutout panels that do not meet specified design load requirements.

c. Panel design must provide for convenient panel removal for underfloor
servicing and for openings for new equipment. Use panels of uniform dimensions within specified tolerances. Permanently mark panels to indicate load rating and model number.

d. Machine square floor panels to within plus or minus 0.015 inch with edge straightness plus or minus 0.0025 inch. If plastic edging is applied to the panel, the tolerances apply to the panel before the plastic edging is applied.

e. Provide panels with holes drilled in corners to align precisely with threaded holes in pedestal heads and to accept countersunk corrosion resistant screws with heads that are flush with top of panel.

2.4.3.1 Cementitious-Filled Formed Steel (Composite Panels)

Provide composite panels of die-formed steel construction totally enclosing the panel, including the top surface. The void spaces between the top sheet and the formed steel bottom sheet must be completely filled with an incombustible cementitious or concrete material. Seal cut edges in accordance with manufacturer's recommendations.

2.4.4 Floor Covering

Where noted on the Raised Access Flooring Schedule, surface floor panels with factory applied finish materials firmly bonded in place with waterproof adhesive. Bolt heads or similar attachments must not rise above the traffic surface. Submit three separate samples of each specified floor covering finish and color.

Floor covering shall comply with applicable regulations regarding reduced VOC's as specified in Section 01 33 29 SUSTAINABILITY REPORTING.

2.4.4.1 High Pressure Laminate

Provide factory applied high pressure laminate surfacing conforming to ANSI/NEMA LD 3, High-Wear type, Grade HDH, 1/8 inch thickness. Finish material must consist of one piece to cover the face of the panel. Provide edge detail that is integral to the finish material. The total system electrical resistance from the wearing surface of the floor to the ground connection must be between 1,000,000 (1.0 x 10^6) ohms and 20,000,000,000 ohms (2.0 x 10^{10}).

2.4.5 Adhesives

Provide adhesives as recommended by the manufacturer.

2.4.6 Lifting Device

At turnover, provide two floor panel lifting devices standard with the floor manufacturer.

2.5 PANEL SUPPORT SYSTEM

Design panel and support system to allow for 360 degree clearance in laying out cable and cutouts for service to machines.

2.5.1 Pedestals

Provide pedestals made of steel or aluminum or a combination thereof.
Ferrous materials must have a factory-applied corrosion-resistant finish. Provide pedestal base plates with a minimum of 16 square inches of bearing surface and a minimum of 1/8 inch thickness. Pedestal shafts must be threaded to permit height adjustment within a range of approximately 2 inches, to permit overall floor adjustment within plus or minus 0.10 inch of the required elevation, and to permit leveling of the finished floor surface within 0.062 inch in 10 feet in all directions. Provide locking devices to positively lock the final pedestal vertical adjustments in place. Pedestal caps must interlock with panels to preclude tilting or rocking of the panels.

2.5.2 Stringers

Stringers shall be of rolled steel or extruded aluminum, and shall interlock with the pedestal heads and form a grid pattern placing stringers under each edge of each floor panel and a pedestal under each corner of each floor panel. Fasten end of each stringer and mid-point of each 4-foot stringer positively to pedestal heads, using manufacturer's standard fasteners. Stringers shall be bolt-type connected to pedestals with threaded fasteners accessible from above.

2.5.3 Bracing

Provide lateral bracing of stringers and pedestals to meet structural and seismic requirements. Coordinate bracing locations with underfloor ductwork and equipment.

2.6 FASCIA

Provide aluminum fascia plates at open ends of floor, at sides of ramps and steps, and elsewhere as required to enclose the free area under the raised floor. Finish on aluminum plates must be standard with the floor system manufacturer. Fascia plates must be reinforced on the back, and supported using the manufacturer's standard lateral bracing at maximum 4 feet on center. Provide trim, angles, and fasteners as required.

2.7 STEPS AND RAMPS

Securely fasten steps and ramps to the access flooring system and to the structural floor. Include in the construction standard floor system components and custom components as required, and all supports, fasteners, and trim necessary for a finished installation. Step nosings, threshold strips, and floor bevel strips must be cast or extruded aluminum with non-slip traffic surfaces.

2.7.1 Steps

Height of risers must comply with applicable codes. Design steps to support a uniform load of 150 psf. Surface treads with the manufacturer's standard non-slip floor finish.

2.7.2 Ramps

Slope of ramps must comply with applicable codes and 36 CFR 1191 Americans with Disabilities Act (ADA). Design ramps to support the same loads as specified for floor panels. Surface ramps with the manufacturer's standard non-slip floor finish.
2.8 RAILINGS FOR SERVER ROOM 163

Provide railings compliant with applicable codes and 36 CFR 1191 Americans with Disabilities Act (ADA). As a minimum railings must be of the double rail and post type, fabricated of at least 1 inch round seamless aluminum tubing with a satin natural anodized finish. At steps and ramps, make the top rail a minimum of 36 inches high and parallel to the incline. Make the top rail 42 inches high at open ends of the floor. Guardrails must have intermediate rails or an ornamental pattern such that a sphere 4 inches in diameter cannot pass through. Space posts maximum of 4 feet oc. Provide railings complete with anchorages, floor plates, and end caps.

2.9 FACTORY TESTS

Factory test access flooring, using an independent laboratory, at the same position and maximum design elevation and in the same arrangement as shown on the drawings for installation so as to duplicate service conditions as much as possible.

2.9.1 Load Tests

Conduct floor panel and pedestal testing in accordance with CISCA Access Floors to determine deformation and permanent set of panels and system due to concentrated, uniform, rolling, impact and ultimate loading when panels are supported by actual understructure.

2.9.2 Bond Strength of Covering

Conduct test for bond strength of covering in accordance with CISCA Access Floors for rolling loads, except as specified. Panels must be tested with specified hard surface flooring and on the pedestals and stringers as specified for the installed floor. Brace the supports as necessary to prevent sideways movement during the test. Impose a test load of 1500 pounds on the test assembly through a 3 inches in diameter and 1 inch wide hard plastic caster. Roll the caster completely across the center of the panel. The panel shall withstand 20 passes of the caster with no delamination or separation of the covering.

2.10 AIR SUPPLY PANELS

2.10.1 Steel Grate Panels

Steel grate airflow panels designed for static loads of 1250 lbs shall be interchangeable with standard field panels and shall have 25 percent open surface area. Panels shall be provided with dampers. Panels shall have a uniform perforated pattern to allow even air distribution. Panel air distribution capability shall be 740 cfm at 0.1 water gauge, positive pressure. Submit three color samples of steel grate panel.

2.10.2 Aluminum Grate Panels

Provide air supply floor panels that meet or exceed the design criteria specified for standard panels, are fabricated of light weight die cast aluminum with powder coat finish. Panels shall be provided with dampers. Panel air distribution capability shall be 2100 cfm at 0.1 water gauge, positive pressure. Submit three color samples of aluminum grate panel.
2.11 CUT OUTS

Cut outs shall be provided by Electrical.

2.12 EDGE CLOSURE

Provide 1/16 inch aluminum closure plate and extruded aluminum nosing at exposed edge of floor. Back up the closure plates with aluminum or steel framing braced diagonally, or anchor at bottom to continuous angle.

2.13 COLOR

High pressure laminate shall be in accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Color listed is not intended to limit the selection of equal colors from other manufacturers.

PART 3 EXECUTION

3.1 INSTALLATION

Install access flooring at the location and elevation and in the arrangement shown on the approved detailed installation drawings. The floor system must be of the stringerless type, complete with all supplemental items, and be the standard product of a manufacturer specializing in access flooring systems.

Install the floor system in accordance with the manufacturer's instructions. Open ends of the floor, where the floor system does not abut wall or other construction, must have positive anchorage and rigid support. Maintain areas to receive access flooring between 60 and 90 degrees F, and between 20 and 70 percent humidity for 24 hours prior to and during installation.

3.1.1 Coordination

Coordinate panel layout with data rack layout in Server Room, to assure racks align with edge of panels, and that adjacent solid and air supply panels are easily removable.

3.1.2 Preparation for Installation

Clear out all debris in the area in which the floor system is to be installed. Thoroughly clean structural floor surfaces and remove all dust.

3.1.3 Pedestals

Pedestals must be accurately spaced, and set plumb and in true alignment. Set base plates in full and firm contact with the structural floor, and secured to the structural floor with adhesive in accordance with manufacturer's instructions.

3.1.4 Stringers

Interlock stringers with pedestal caps to preclude lateral movement, spaced uniformly in parallel lines at the indicated elevation.

3.1.5 Auxiliary Framing

Provide auxiliary framing or pedestals around columns and other permanent...
construction, at sides of ramps, at open ends of the floor, and beneath panels that are substantially cut to accommodate utility systems. Use special framing for additional lateral support as shown on the approved detailed installation drawings. Provide additional pedestals designed to specific heights and lengths to meet structural irregularities and design loads. Connect auxiliary framing to main framing.

3.1.6 Panels

Interlock panels with supports in a manner that will preclude lateral movement. Fasten perimeter panels, cutout panels, and panels adjoining columns, stairs, and ramps to the supporting components to form a rigid boundary for the interior panels. Level floors within the specified tolerances. Cut edges of panels must be finished as recommended by the panel manufacturer. Secure extruded vinyl edging in place at all cut edges of all panel cut-outs to prevent abrasion of cables. Where the space below the floor is a plenum, close cutouts for conduit and similar penetrations using self-extinguishing sponge rubber or air sealing grommets.

3.1.7 Fascia Plates

Cover exposed floor ends and exposed openings of ramps and stairs with aluminum finish material as indicated.

3.1.8 Repair of Zinc Coating

Repair zinc coating that has been damaged, and cut edges of zinc-coated components and accessories, by the application of a galvanizing repair paint conforming to ASTM A780/A780M. Areas to be repaired must be thoroughly cleaned prior to application of the paint.

3.2 FIELD TESTS

Submit certified copies of test reports from an approved testing laboratory, attesting that the proposed floor system components meet the performance requirements specified.

3.2.1 Acceptance Tests

Conduct acceptance tests after installation of floor system. Make at least one test for each 1000 square feet of floor area. Conduct tests in presence of Contracting Officer and representatives of manufacturer and installer. Submit certified copies of test reports from an approved testing laboratory, attesting that the proposed floor system components meet the performance requirements specified.

3.2.2 Air Leakage

When the space below the finished floor is an air plenum, air leakage through the joints between panels and around the perimeter of the floor system must not exceed 0.1 cubic foot of air per minute per linear foot of joint subjected to .05 inches h2o (Pa), water gauge, positive pressure in the plenum, when tested in accordance with CISCA Access Floors, Section 10 Air Leakage Test. Measure the leakage rate on the finished raised floor system.

3.2.3 Grounding

Ground the access flooring system for safety hazard and static
suppression. Provide positive contact between components for safe, continuous electrical grounding of entire floor system. Total system resistance from wearing surface of floor to building grounding electrode must be within range of 0.5 to 20,000 megohms.

3.2.4 Electrical Resistance

Conduct testing of electrical resistance, in the completed installation, in the presence of the Contracting Officer in accordance with NFPA 99, modified by placing one electrode on the center of the panel surface and connecting the other electrode to the metal flooring support. Take measurements at five or more locations. Each measurement must be the average of five readings of 15 seconds duration at each location. During the tests, relative humidity must be 45 to 55 percent and temperature set at 69 to 75 degrees F. Select panels used in the testing at random and include two panels most distant from the ground connection. Measure electrical resistance with instruments that are accurate within 2 percent and that have been calibrated within 60 days prior to the performance of the resistance tests. The metal-to-metal resistance from panel to supporting pedestal must not exceed 10 ohms. The resistance between the wearing surface of the floor covering and the ground connection, as measured on the completed installation, must be in accordance with paragraph FLOOR COVERING.

3.2.5 SEISMIC SPECIAL INSPECTION AND TESTING

Perform special inspections and testing for seismic-resisting systems and components in accordance with Section 01 45 35 SPECIAL INSPECTIONS.

3.3 CLEANING AND PROTECTION

3.3.1 Cleaning

Keep the space below the completed floor free of all debris. Before any traffic or other work on the completed raised floor is started, clean the completed floor in accordance with the floor covering manufacturer's instructions. Do not permit seepage of cleaner between individual panels.

3.3.2 Protection

Protect traffic areas of raised floor systems with a covering of building paper, fiberboard, or other suitable material to prevent damage to the surface. Cover cutouts with material of sufficient strength to support the loads to be encountered. Place plywood or similar material on the floor to serve as runways for installation of heavy equipment not in excess of design load capacity. Maintain protection until the raised floor system is accepted.

3.3.3 Surplus Material Removal

Clean surfaces of the work, and adjacent surfaces soiled as a result of the work. Remove all installation equipment, surplus materials, and rubbish from the work site.

3.4 OPERATION AND MAINTENANCE MANUALS

Submit maintenance instructions for proper care of the floor panel surface. When conductive flooring is specified, also submit maintenance instructions to identify special cleaning and maintenance requirements to
maintain "conductivity" properties of the panel finish.

-- End of Section --
Raised Access Flooring (RAF) Schedule

<table>
<thead>
<tr>
<th>System</th>
<th>Concentrated Load (PSF)</th>
<th>Uniform Load (PSF)</th>
<th>10 Pass Rolling Load (LBS)</th>
<th>10K Pass Rolling Load (LBS)</th>
<th>Impact Load (LBS)</th>
<th>Panel</th>
<th>Finish Floor Type</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAF-1</td>
<td>1000</td>
<td>350</td>
<td>800</td>
<td>600</td>
<td>150</td>
<td>Solid Bare Panel</td>
<td>18" and PosiLock</td>
<td>Under</td>
</tr>
<tr>
<td>RAF-2</td>
<td>1500</td>
<td>450</td>
<td>1250</td>
<td>1000</td>
<td>150</td>
<td>Solid Panel with 1/8" HPL</td>
<td>18" and Bolted Stringer</td>
<td>Under</td>
</tr>
<tr>
<td>RAF-3</td>
<td>1250</td>
<td>450</td>
<td>--</td>
<td>--</td>
<td>150</td>
<td>Perforated Panel with 1/8" HPL</td>
<td>18" and Bolted Stringer</td>
<td>Under</td>
</tr>
<tr>
<td>RAF-4</td>
<td>1000</td>
<td>350</td>
<td>1000</td>
<td>800</td>
<td>100</td>
<td>Aluminum Grate Panel</td>
<td>18" and PosiLock</td>
<td>Under</td>
</tr>
</tbody>
</table>
SECTION 09 84 20
ACOUSTICAL WALL PANELS
08/16

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC)

AATCC 16 (2004; E 2008; E 2010) Colorfastness to Light

ASTM INTERNATIONAL (ASTM)

ASTM C423 (2009a) Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

ASTM D5034 (2009; R 2013) Breaking Strength and Elongation of Textile Fabrics (Grab Test)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
 Approved Detail Drawings; G

SD-03 Product Data
 Acoustical Wall Panels; G

SD-04 Samples
 Acoustical Wall Panels; G

SD-11 Closeout Submittals
 Recycled Content for Fabric Panels; S
1.3 DELIVERY, STORAGE, AND HANDLING

Protect materials delivered and placed in storage from the weather, humidity and temperature variations, dirt, dust, or other contaminants.

1.4 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Recycled Content for Acoustical Wall Panel Materials

Recycled content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT. Other products listed in this section may be available with recycled content; identify those products that meet project requirements for recycled content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph RECYCLED CONTENT.

2.1.2 Reduce Volatile Organic Compounds (VOC) (LOW-EMITTING MATERIALS) for Products

Reduced VOC content is identified for some products in this section; provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS). Other products listed in this section may be available with reduced VOC content; identify those products that meet project requirements for reduced VOC content, and provide documentation in accordance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC) (LOW-EMITTING MATERIALS).

2.2 SYSTEM DESCRIPTION

2.2.1 Design

Provide fabric wrapped acoustical wall panel materials in the manufacturer's standard sizes and finishes of the type, design and configuration indicated.

2.2.1.1 Fabric Recycled Content

Fabric Panels must contain a minimum of 60 percent post-industrial recycled content. Provide data identifying percentage of recycled content for fabric panels.

2.3 FABRIC COVERED ACOUSTICAL WALL PANELS

Provide acoustical wall panels consisting of prefinished, factory
assembled, seamless fabric covered, fiber glass, mineral fiber, or polyester core system as described below, manufactured to the dimensions and configurations shown on the approved detail drawings; submit drawings showing plan locations, elevations and details of method of anchorage, location of doors and other openings, base detail and shape and thickness of materials. Perimeter edges must be reinforced by a formulated resin edge hardener. Submit manufacturer's descriptive data and catalog cuts; fabric swatches, minimum 18 inches wide by 24 inches long, 3 samples of each color range specified; and certificates of compliance from an independent laboratory accredited by the National Laboratory Accreditation Program of the National Institute of Standards. A label or listing from the testing laboratory will be acceptable evidence of compliance. Wall panels must conform to the following:

2.3.1 Basis of Design

Fabric covered acoustical wall panels shall be Ecocore Panels by Vertical Interior Solutions, or approved equal (www.verticalinteriorsolutions.com). Basis of design is not intended to limit equal products from other manufacturers.

2.3.2 Panel Width

Panel width must be as detailed.

2.3.3 Panel Height

Panel height must be as detailed.

2.3.4 Thickness

Panel thickness as required to meet the indicated NRC range.

2.3.5 Fabric Covering

Seamless plain woven 2-ply 100 percent polyester, minimum 15 ounces/linear yard. Tear strength a minimum 29 pounds. Tensile strength 150 pounds minimum in accordance with ASTM D5034. Stretch fabric covering free of wrinkles and then bond to the edges and back or bond directly to the panel face, edges, and back of panel a minimum distance standard with the manufacturer. Light fastness (fadeometer) approximately 40 hours in accordance with AATCC 16.

2.3.6 Fire Rating for the Complete Composite System

Class A, 200 or less smoke density and flame spread less than 25, when tested in accordance with ASTM E84.

2.3.7 Substrate

Fiber glass or mineral fiber

2.3.8 Noise Reduction Coefficient (NRC) Range

0.80-0.90, per ASTM C423

2.3.9 Edge Detail

Bevel edge with fabric wrapped on all four sides.
2.3.10 Core Type

High impact acoustical core.

2.3.11 Mounting Acoustical Panels

Mount acoustical panels by manufacturer's standard concealed mechanical fasteners.

2.4 COLOR

In accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Color listed is not intended to limit the selection of equal colors from other manufacturers.

PART 3 EXECUTION

3.1 SURFACE CONDITIONS

Wall surface shall be clean, smooth, oil free and prepared in accordance with panel manufacturer's instructions. Do not begin installation until all wet work, such as, plastering, painting, and concrete are completely dry.

3.2 INSTALLATION

Panel installation must be by personnel familiar with and normally engaged in installation of acoustical wall panels. Apply panels in accordance with the manufacturer's installation instructions. Submit manufacturer's installation instructions and recommended cleaning instructions.

3.3 CLEANING

Following installation, clean dirty or stained panel surfaces in accordance with manufacturer's instructions and leave free from defects. Remove and replace panels that are damaged, discolored, or improperly installed.

-- End of Section --
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH)

ACGIH 0100 (2015) Documentation of the Threshold Limit Values and Biological Exposure Indices

ASTM INTERNATIONAL (ASTM)

ASTM D4263 (1983; R 2012) Indicating Moisture in Concrete by the Plastic Sheet Method

MASTER PAINTERS INSTITUTE (MPI)

MPI 107 (Oct 2009) Rust Inhibitive Primer (Water-Based)

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC PA 1 (2016) Shop, Field, and Maintenance Coating of Metals

SSPC SP 1 (2015) Solvent Cleaning
SSPC SP 12/NACE No.5 (2002) Surface Preparation and Cleaning of Metals by Waterjetting Prior to Recoating

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. ARMY CORPS OF ENGINEERS (USACE)

U.S. DEPARTMENT OF DEFENSE (DOD)

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.1000 Air Contaminants

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

Samples of specified materials may be taken and tested for compliance with specification requirements.

SD-03 Product Data

Coating; G
Manufacturer's Technical Data Sheets; G

SD-04 Samples
Color; G

Submit manufacturer's samples of paint colors. Cross reference color samples to color scheme as indicated.

SD-08 Manufacturer's Instructions

Application instructions
Mixing

Detailed mixing instructions, minimum and maximum application temperature and humidity, potlife, and curing and drying times between coats.

Manufacturer's Material Safety Data Sheets

Submit manufacturer's Material Safety Data Sheets for coatings, solvents, and other potentially hazardous materials, as defined in FED-STD-313.

SD-11 Closeout Submittals

Reduced VOC's for Paints and Coatings; S

1.3 APPLICATOR'S QUALIFICATIONS

1.3.1 SSPC QP 1 Certification

All contractors and subcontractors that perform surface preparation or coating application shall be certified by the Society for Protective Coatings (formerly Steel Structures Painting Council) (SSPC) to the requirements of SSPC QP 1 prior to contract award, and shall remain certified while accomplishing any surface preparation or coating application. The painting contractors and painting subcontractors must remain so certified for the duration of the project. If a contractor's or subcontractor's certification expires, the firm will not be allowed to perform any work until the certification is reissued. Requests for extension of time for any delay to the completion of the project due to an inactive certification will not be considered and liquidated damages will apply. Notify the Contracting Officer of any change in contractor certification status.

1.4 QUALITY ASSURANCE

1.4.1 Field Samples and Tests

The Contracting Officer may choose up to two coatings that have been delivered to the site to be tested at no cost to the Government. Take samples of each chosen product as specified in the paragraph "Sampling Procedures." Test each chosen product as specified in the paragraph "Testing Procedure." Products which do not conform, shall be removed from the job site and replaced with new products that conform to the referenced specification. Testing of replacement products that failed initial testing shall be at no cost to the Government.

1.4.1.1 Sampling Procedure

The Contracting Officer will select paint at random from the products that have been delivered to the job site for sample testing. The Contractor
shall provide one quart samples of the selected paint materials. The samples shall be taken in the presence of the Contracting Officer, and labeled, identifying each sample. Provide labels in accordance with the paragraph "Packaging, Labeling, and Storage" of this specification.

1.4.1.2 Testing Procedure

Provide Batch Quality Conformance Testing for specified products, as defined by and performed by MPI. As an alternative to Batch Quality Conformance Testing, the Contractor may provide Qualification Testing for specified products above to the appropriate MPI product specification, using the third-party laboratory approved under the paragraph "Qualification Testing" laboratory for coatings. The qualification testing lab report shall include the backup data and summary of the test results. The summary shall list all of the reference specification requirements and the result of each test. The summary shall clearly indicate whether the tested paint meets each test requirement. Note that Qualification Testing may take 4 to 6 weeks to perform, due to the extent of testing required.

Submit name, address, telephone number, FAX number, and e-mail address of the independent third party laboratory selected to perform testing of coating samples for compliance with specification requirements. Submit documentation that laboratory is regularly engaged in testing of paint samples for conformance with specifications, and that employees performing testing are qualified. If the Contractor chooses MPI to perform the Batch Quality Conformance testing, the above submittal information is not required, only a letter is required from the Contractor stating that MPI will perform the testing.

1.5 REGULATORY REQUIREMENTS

1.5.1 Environmental Protection

In addition to requirements specified elsewhere for environmental protection, provide coating materials that conform to the restrictions of the local Air Pollution Control District and regional jurisdiction. Notify Contracting Officer of any paint specified herein which fails to conform.

1.5.2 Lead Content

Do not use coatings having a lead content over 0.06 percent by weight of nonvolatile content.

1.5.3 Chromate Content

Do not use coatings containing zinc-chromate or strontium-chromate.

1.5.4 Asbestos Content

Materials shall not contain asbestos.

1.5.5 Mercury Content

Materials shall not contain mercury or mercury compounds.

1.5.6 Silica

Abrasive blast media shall not contain free crystalline silica.
1.5.7 Human Carcinogens

Materials shall not contain ACGIH 0100 confirmed human carcinogens (A1) or suspected human carcinogens (A2).

1.6 PACKAGING, LABELING, AND STORAGE

Paints shall be in sealed containers that legibly show the contract specification number, designation name, formula or specification number, batch number, color, quantity, date of manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name and address of manufacturer. Pigmented paints shall be furnished in containers not larger than 5 gallons. Paints and thinners shall be stored in accordance with the manufacturer's written directions, and as a minimum, stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors, and at temperatures between 40 to 95 degrees F.

1.7 SAFETY AND HEALTH

Apply coating materials using safety methods and equipment in accordance with the following:

Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis as specified in Appendix A of EM 385-1-1. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.

1.7.1 Safety Methods Used During Coating Application

Comply with the requirements of SSPC PA Guide 3.

1.7.2 Toxic Materials

To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:

a. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.

b. 29 CFR 1910.1000.

c. ACGIH 0100, threshold limit values.

1.8 ENVIRONMENTAL CONDITIONS

Comply, at minimum, with manufacturer recommendations for space ventilation during and after installation. Isolate area of application from rest of building when applying high-emission paints or coatings.

1.8.1 Coatings

Do not apply coating when air or substrate conditions are:

a. Less than 5 degrees F above dew point;
b. Below 50 degrees F or over 95 degrees F, unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.

1.9 COLOR SELECTION

Colors of finish coats shall be as indicated or specified. Where not indicated or specified, colors shall be selected by the Contracting Officer. Manufacturers' names and color identification are used for the purpose of color identification only. Named products are acceptable for use only if they conform to specified requirements. Products of other manufacturers are acceptable if the colors approximate colors indicated and the product conforms to specified requirements.

Tint each coat progressively darker to enable confirmation of the number of coats.

Color, texture, and pattern of wall coating systems shall be in accordance with Section 09 06 00 SCHEDULES FOR FINISHES.

1.10 LOCATION AND SURFACE TYPE TO BE PAINTED

1.10.1 Painting Included

Where a space or surface is indicated to be painted, include the following unless indicated otherwise.

a. Surfaces behind portable objects and surface mounted articles readily detachable by removal of fasteners, such as screws and bolts.

b. New factory finished surfaces that require identification or color coding and factory finished surfaces that are damaged during performance of the work.

c. Existing coated surfaces that are damaged during performance of the work.

1.10.1.1 Exterior Painting

Includes new surfaces, and existing coated surfaces of the building and appurtenances. Also included are existing coated surfaces made bare by cleaning operations.

1.10.1.2 Interior Painting

Includes new surfaces and existing coated and uncoated surfaces of the building and appurtenances as indicated and existing coated surfaces made bare by cleaning operations. Where a space or surface is indicated to be painted, include the following items, unless indicated otherwise.

a. Exposed beams, joists, and metal deck.

b. Other contiguous surfaces.

1.10.2 Mechanical and Electrical Painting

Includes field coating of interior and exterior new and existing surfaces.
a. Where a space or surface is indicated to be painted, include the following items unless indicated otherwise.
 (1) Exposed piping, conduit, and ductwork;
 (2) Supports, hangers, air grilles, and registers;
 (3) Miscellaneous metalwork and insulation coverings.

b. Do not paint the following, unless indicated otherwise:
 (1) New zinc-coated, aluminum, and copper surfaces under insulation
 (2) New aluminum jacket on piping
 (3) New interior ferrous piping under insulation.

1.10.3 Painting Excluded

Do not paint the following unless indicated otherwise.

a. Surfaces concealed and made inaccessible by panelboards, fixed ductwork, machinery, and equipment fixed in place.

b. Surfaces in concealed spaces. Concealed spaces are defined as enclosed spaces above suspended ceilings, furred spaces, attic spaces, crawl spaces, elevator shafts and chases.

c. Steel to be embedded in concrete.

d. Copper, stainless steel, aluminum, brass, and lead except existing coated surfaces.

e. Hardware, fittings, and other factory finished items.

1.10.4 Mechanical and Electrical Painting

1.10.4.1 Fire Extinguishing Sprinkler Systems

Clean, pretreat, prime, and paint new fire extinguishing sprinkler systems including valves, piping, conduit, hangers, supports, miscellaneous metalwork, and accessories. Apply coatings to clean, dry surfaces, using clean brushes. Clean the surfaces to remove dust, dirt, rust, and loose mill scale. Immediately after cleaning, provide the metal surfaces with one coat primer per schedules. Shield sprinkler heads with protective covering while painting is in progress. Upon completion of painting, remove protective covering from sprinkler heads. Remove sprinkler heads which have been painted and replace with new sprinkler heads. Provide primed surfaces with the following:

a. Piping in Unfinished Areas: Provide primed surfaces with one coat of red alkyd gloss enamel applied to a minimum dry film thickness of 1.0 mil in attic spaces, spaces above suspended ceilings, crawl spaces, pipe chases, mechanical equipment room, and spaces where walls or ceiling are not painted or not constructed of a prefinished material. In lieu of red enamel finish coat, provide piping with 2 inch wide red enamel bands or self-adhering red plastic bands spaced at maximum of 20 foot intervals.
b. Piping in Finished Areas: Provide primed surfaces with two coats of paint to match adjacent surfaces, except provide valves and operating accessories with one coat of red alkyd gloss enamel applied to a minimum dry film thickness of 1.0 mil. Provide piping with 2 inch wide red enamel bands or self-adhering red plastic bands spaced at maximum of 20 foot intervals throughout the piping systems.

1.10.5 Definitions and Abbreviations

1.10.5.1 Qualification Testing

Qualification testing is the performance of all test requirements listed in the product specification. This testing is accomplished by MPI to qualify each product for the MPI Approved Product List, and may also be accomplished by Contractor's third party testing lab if an alternative to Batch Quality Conformance Testing by MPI is desired.

1.10.5.2 Batch Quality Conformance Testing

Batch quality conformance testing determines that the product provided is the same as the product qualified to the appropriate product specification. This testing shall only be accomplished by MPI testing lab.

1.10.5.3 Coating

A film or thin layer applied to a base material called a substrate. A coating may be a metal, alloy, paint, or solid/liquid suspensions on various substrates (metals, plastics, wood, paper, leather, cloth, etc.). They may be applied by electrolysis, vapor deposition, vacuum, or mechanical means such as brushing, spraying, calendaring, and roller coating. A coating may be applied for aesthetic or protective purposes or both. The term "coating" as used herein includes emulsions, enamels, stains, varnishes, sealers, epoxies, and other coatings, whether used as primer, intermediate, or finish coat. The terms paint and coating are used interchangeably.

1.10.5.4 DFT or dft

Dry film thickness, the film thickness of the fully cured, dry paint or coating.

1.10.5.5 DSD

Degree of Surface Degradation, the MPI system of defining degree of surface degradation. Five (5) levels are generically defined under the Assessment sections in the MPI Maintenance Repainting Manual.

1.10.5.6 EPP

Environmentally Preferred Products, a standard for determining environmental preferability in support of Executive Order 13101.

1.10.5.7 EXT

MPI short term designation for an exterior coating system.

1.10.5.8 INT

MPI short term designation for an interior coating system.
1.10.5.9 micron / microns

The metric measurement for 0.001 mm or one/thousandth of a millimeter.

1.10.5.10 mil / mils

The English measurement for 0.001 in or one/thousandth of an inch, equal to 25.4 microns or 0.0254 mm.

1.10.5.11 mm

The metric measurement for millimeter, 0.001 meter or one/thousandth of a meter.

1.10.5.12 Paint

See Coating definition.

1.10.5.13 REX

MPI short term designation for an exterior coating system used in repainting projects or over existing coating systems.

1.10.5.14 RIN

MPI short term designation for an interior coating system used in repainting projects or over existing coating systems.

PART 2 PRODUCTS

2.1 MATERIALS

PART 3 EXECUTION

3.1 PROTECTION OF AREAS AND SPACES NOT TO BE PAINTED

Prior to surface preparation and coating applications, remove, mask, or otherwise protect, hardware, hardware accessories, machined surfaces, radiator covers, plates, lighting fixtures, public and private property, and other such items not to be coated that are in contact with surfaces to be coated. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Restore surfaces contaminated by coating materials, to original condition and repair damaged items.

3.2 RESEALING OF EXISTING EXTERIOR JOINTS

3.2.1 Surface Condition

Surfaces shall be clean, dry to the touch, and free from frost and moisture; remove grease, oil, wax, lacquer, paint, defective backstop, or other foreign matter that would prevent or impair adhesion. Where adequate
grooves have not been provided, clean out to a depth of 1/2 inch and grind to a minimum width of 1/4 inch without damage to adjoining work. Grinding shall not be required on metal surfaces.

3.2.2 Backstops

In joints more than 1/2 inch deep, install glass fiber roving or neoprene, butyl, polyurethane, or polyethylene foams free of oil or other staining elements as recommended by sealant manufacturer. Backstop material shall be compatible with sealant. Do not use oakum and other types of absorptive materials as backstops.

3.2.3 Primer and Bond Breaker

Install the type recommended by the sealant manufacturer.

3.2.4 Ambient Temperature

Between 38 degrees F and 95 degrees F when applying sealant.

3.2.5 Exterior Sealant

For joints in vertical surfaces, provide ASTM C920, Type S or M, Grade NS, Class 25, Use NT. For joints in horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T. Color(s) shall be selected by the Contracting Officer. Apply the sealant in accordance with the manufacturer's printed instructions. Force sealant into joints with sufficient pressure to fill the joints solidly. Sealant shall be uniformly smooth and free of wrinkles.

3.2.6 Cleaning

Immediately remove fresh sealant from adjacent areas using a solvent recommended by the sealant manufacturer. Upon completion of sealant application, remove remaining smears and stains and leave the work in a clean condition. Allow sealant time to cure, in accordance with manufacturer's recommendations, prior to coating.

3.3 SURFACE PREPARATION

Remove dirt, splinters, loose particles, grease, oil, disintegrated coatings, and other foreign matter and substances deleterious to coating performance as specified for each substrate before application of paint or surface treatments. Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas.

3.3.1 Additional Requirements for Preparation of Surfaces With Existing Coatings

Before application of coatings, perform the following on surfaces covered by soundly-adhered coatings, defined as those which cannot be removed with a putty knife:

a. Test existing finishes for lead before sanding, scraping, or removing.
If lead is present, refer to paragraph Toxic Materials.

b. Wipe previously painted surfaces to receive solvent-based coatings, except stucco and similarly rough surfaces clean with a clean, dry cloth saturated with mineral spirits, ASTM D235. Allow surface to dry. Wiping shall immediately precede the application of the first coat of any coating, unless specified otherwise.

c. Sand existing glossy surfaces to be painted to reduce gloss. Brush, and wipe clean with a damp cloth to remove dust.

d. The requirements specified are minimum. Comply also with the application instructions of the paint manufacturer.

e. Previously painted surfaces specified to be repainted or damaged during construction shall be thoroughly cleaned of all grease, dirt, dust or other foreign matter.

f. Blistering, cracking, flaking and peeling or other deteriorated coatings shall be removed.

g. Chalk shall be removed so that when tested in accordance with ASTM D4214, the chalk resistance rating is no less than 8.

h. Slick surfaces shall be roughened. Damaged areas such as, but not limited to, nail holes, cracks, chips, and spalls shall be repaired with suitable material to match adjacent undamaged areas.

i. Edges of chipped paint shall be feather edged and sanded smooth.

j. Rusty metal surfaces shall be cleaned as per SSPC requirements. Solvent, mechanical, or chemical cleaning methods shall be used to provide surfaces suitable for painting.

k. New, proposed coatings shall be compatible with existing coatings.

3.3.2 Existing Coated Surfaces with Minor Defects

Sand, spackle, and treat minor defects to render them smooth. Minor defects are defined as scratches, nicks, cracks, gouges, spalls, alligatoring, chalking, and irregularities due to partial peeling of previous coatings. Remove chalking by sanding so that when tested in accordance with ASTM D4214, the chalk rating is not less than 8.

3.3.3 Removal of Existing Coatings

Remove existing coatings from the following surfaces:

a. Surfaces containing large areas of minor defects;

b. Surfaces containing more than 20 percent peeling area; and

c. Surfaces designated by the Contracting Officer, such as surfaces where rust shows through existing coatings.

3.3.4 Substrate Repair

a. Repair substrate surface damaged during coating removal;
b. Sand edges of adjacent soundly-adhered existing coatings so they are tapered as smooth as practical to areas involved with coating removal; and

c. Clean and prime the substrate as specified.

3.4 PREPARATION OF METAL SURFACES

3.4.1 Existing and New Ferrous Surfaces

a. Ferrous Surfaces including Shop-coated Surfaces and Small Areas That Contain Rust, Mill Scale and Other Foreign Substances: Solvent clean or detergent wash in accordance with SSPC SP 1 to remove oil and grease. Where shop coat is missing or damaged, clean according to SSPC SP 3. Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection.

b. Surfaces With More Than 20 Percent Rust, Mill Scale, and Other Foreign Substances: Clean entire surface in accordance with SSPC SP 6/NACE No.3.

3.4.2 Final Ferrous Surface Condition:

For tool cleaned surfaces, the requirements are stated in SSPC SP 2 and SSPC SP 3. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 3.

For waterjet cleaned surfaces, the requirements are stated in SSPC SP 12/NACE No.5. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 4/NACE VIS 7.

3.4.3 Galvanized Surfaces

a. New or Existing Galvanized Surfaces With Only Dirt and Zinc Oxidation Products: Clean with solvent or non-alkaline detergent solution in accordance with SSPC SP 1. If the galvanized metal has been passivated or stabilized, the coating shall be completely removed by brush-off abrasive blast. New galvanized steel to be coated shall not be "passivated" or "stabilized" If the absence of hexavalent stain inhibitors is not documented, test as described in ASTM D6386, Appendix X2, and remove by one of the methods described therein.

b. Galvanized with Slight Coating Deterioration or with Little or No Rusting: Water jetting to SSPC SP 12/NACE No.5 WJ3 to remove loose coating from surfaces with less than 20 percent coating deterioration and no blistering, peeling, or cracking. Use inhibitor as recommended by the coating manufacturer to prevent rusting.

c. Galvanized With Severe Deteriorated Coating or Severe Rusting: Spot abrasive blast rusted areas as described for steel in SSPC SP 6/NACE No.3, and waterjet to SSPC SP 12/NACE No.5, WJ3 to remove existing coating.

3.4.4 Non-Ferrous Metallic Surfaces

Aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces.

Surface Cleaning: Solvent clean in accordance with SSPC SP 1 and wash with
mild non-alkaline detergent to remove dirt and water soluble contaminants.

3.5 PREPARATION

3.5.1 Gypsum Board

a. Surface Cleaning: Gypsum board shall be dry. Remove loose dirt and dust by brushing with a soft brush, rubbing with a dry cloth, or vacuum-cleaning prior to application of the first coat material. A damp cloth or sponge may be used if paint will be water-based.

b. Repair of Minor Defects: Prior to painting, repair joints, cracks, holes, surface irregularities, and other minor defects with spackling compound and sand smooth.

c. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not surfaces with droplets of water. Do not apply epoxies to damp surfaces as determined by ASTM D4263.

3.6 PREPARATION OF WOOD SURFACES

3.6.1 Interior Wood Surfaces, Stain Finish

Interior wood surfaces to receive stain shall be sanded. Oak and other open-grain wood to receive stain shall be given a coat of wood filler not less than 8 hours before the application of stain; excess filler shall be removed and the surface sanded smooth.

3.7 APPLICATION

3.7.1 Coating Application

Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Apply coating materials in accordance with SSPC PA 1. SSPC PA 1 methods are applicable to all substrates, except as modified herein.

At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application.

Unless otherwise specified or recommended by the paint manufacturer, paint may be applied by brush, roller, or spray. Use trigger operated spray nozzles for water hoses. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Wear protective clothing and respirators when applying oil-based paints or using spray equipment with any paints.

Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch.

Thoroughly work coating materials into joints, crevices, and open spaces. Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness equal to that of adjacent painted surfaces.

Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish. Hiding shall be complete.
Touch up damaged coatings before applying subsequent coats. Interior areas shall be broom clean and dust free before and during the application of coating material.

Apply paint to new fire extinguishing sprinkler systems including valves, piping, conduit, hangers, supports, miscellaneous metal work, and accessories. Shield sprinkler heads with protective coverings while painting is in progress. Remove sprinkler heads which have been painted and replace with new sprinkler heads. For piping in unfinished spaces, provide primed surfaces with one coat of red alkyd gloss enamel to a minimum dry film thickness of 1.0 mil. Unfinished spaces include attic spaces, spaces above suspended ceilings, crawl spaces, pipe chases, mechanical equipment room, and space where walls or ceiling are not painted or not constructed of a prefinished material. For piping in finished areas, provide prime surfaces with two coats of paint to match adjacent surfaces, except provide valves and operating accessories with one coat of red alkyd gloss enamel. Upon completion of painting, remove protective covering from sprinkler heads.

a. Drying Time: Allow time between coats, as recommended by the coating manufacturer, to permit thorough drying, but not to present topcoat adhesion problems. Provide each coat in specified condition to receive next coat.

b. Primers, and Intermediate Coats: Do not allow primers or intermediate coats to dry more than 30 days, or longer than recommended by manufacturer, before applying subsequent coats. Follow manufacturer's recommendations for surface preparation if primers or intermediate coats are allowed to dry longer than recommended by manufacturers of subsequent coatings. Each coat shall cover surface of preceding coat or surface completely, and there shall be a visually perceptible difference in shades of successive coats.

c. Finished Surfaces: Provide finished surfaces free from runs, drops, ridges, waves, laps, brush marks, and variations in colors.

d. Thermosetting Paints: Topcoats over thermosetting paints (epoxies and urethanes) should be applied within the overcoating window recommended by the manufacturer.

3.7.2 Mixing and Thinning of Paints

Reduce paints to proper consistency by adding fresh paint, except when thinning is mandatory to suit surface, temperature, weather conditions, application methods, or for the type of paint being used. Obtain written permission from the Contracting Officer to use thinners. The written permission shall include quantities and types of thinners to use.

When thinning is allowed, paints shall be thinned immediately prior to application with not more than 1 pint of suitable thinner per gallon. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different manufacturers shall not be mixed.

3.7.3 Two-Component Systems

Two-component systems shall be mixed in accordance with manufacturer's
instructions. Any thinning of the first coat to ensure proper penetration and sealing shall be as recommended by the manufacturer for each type of substrate.

3.7.4 Coating Systems

a. Minimum Dry Film Thickness (DFT): Apply paints, primers, varnishes, enamels, undercoats, and other coatings to a minimum dry film thickness of 1.5 mil each coat unless specified otherwise in the Tables. Coating thickness where specified, refers to the minimum dry film thickness.

b. Coatings for Surfaces Not Specified Otherwise: Coat surfaces which have not been specified, the same as surfaces having similar conditions of exposure.

c. Existing Surfaces Damaged During Performance of the Work, Including New Patches In Existing Surfaces: Coat surfaces with the following:
 (1) One coat of primer.
 (2) One coat of undercoat or intermediate coat.
 (3) One topcoat to match adjacent surfaces.

d. Existing Coated Surfaces To Be Painted: Apply coatings conforming to the respective specifications listed in the Tables herein, except that pretreatments, sealers and fillers need not be provided on surfaces where existing coatings are soundly adhered and in good condition. Do not omit undercoats or primers.

3.8 COATING SYSTEMS FOR METAL

a. Apply specified ferrous metal primer on the same day that surface is cleaned, to surfaces that meet all specified surface preparation requirements at time of application.

b. Inaccessible Surfaces: Prior to erection, use one coat of specified primer on metal surfaces that will be inaccessible after erection.

c. Shop-primed Surfaces: Touch up exposed substrates and damaged coatings to protect from rusting prior to applying field primer.

d. Surface Previously Coated with Epoxy or Urethane: Apply MPI 101, 1.5 mils DFT immediately prior to application of epoxy or urethane coatings.

e. Pipes and Tubing: The semitransparent film applied to some pipes and tubing at the mill is not to be considered a shop coat, but shall be overcoated with the specified ferrous-metal primer prior to application of finish coats.

f. Exposed Nails, Screws, Fasteners, and Miscellaneous Ferrous Surfaces. On surfaces to be coated with water thinned coatings, spot prime exposed nails and other ferrous metal with latex primer MPI 107.

3.9 PIPING IDENTIFICATION

Piping Identification, Including Surfaces In Concealed Spaces: Provide in accordance with MIL-STD-101. Place stenciling in clearly visible locations. On piping not covered by MIL-STD-101, stencil approved names or
code letters, in letters a minimum of 1/2 inch high for piping and a minimum of 2 inches high elsewhere. Stencil arrow-shaped markings on piping to indicate direction of flow using black stencil paint.

3.10 INSPECTION AND ACCEPTANCE

In addition to meeting previously specified requirements, demonstrate mobility of moving components, including swinging and sliding doors, cabinets, and windows with operable sash, for inspection by the Contracting Officer. Perform this demonstration after appropriate curing and drying times of coatings have elapsed and prior to invoicing for final payment.

3.11 WASTE MANAGEMENT

As specified in the Waste Management Plan and as follows. Do not use kerosene or any such organic solvents to clean up water based paints. Properly dispose of paints or solvents in designated containers. Close and seal partially used containers of paint to maintain quality as necessary for reuse. Store in protected, well-ventilated, fire-safe area at moderate temperature. Place materials defined as hazardous or toxic waste in designated containers. Coordinate with manufacturer for take-back program. Set aside scrap to be returned to manufacturer for recycling into new product. When such a service is not available, local recyclers shall be sought after to reclaim the materials. Set aside extra paint for future color matches or reuse by the Government. Where local options exist for leftover paint recycling, collect all waste paint by type and provide for delivery to recycling or collection facility for reuse by local organizations.

3.12 PAINT TABLES

All DFT's are minimum values.

Paint and coating products scheduled below are by PPG Pittsburgh Paints. The listing of manufacturers and products is not meant to limit equal products from other manufacturers.

3.12.1 EXTERIOR PAINT TABLES

FERROUS METAL (EXCEPT PREFINISHED METAL WALL PANELS) AND NON-PREFINISHED ALUMINUM ITEMS
Surface Prep: SSPC-SP6 Commercial Blast Cleaning
1 coat 2.0 - 4.0 mils DFT PITT-TECH Plus 90-912 Series Int/Ext DTM Industrial Primer
2 coats 2.0 - 4.0 mils DFT each PITT-TECH Plus 90-1210 Series Int/Ext Semi-Gloss Industrial Enamel

WALL VENTS AND HVAC INTAKE/EXHAUST TUBES
2 coats S-W Duration Exterior Latex Acrylic Satin Coating, K33 Series (7 mils wet, 2.8 mils dry per coat)

GALVANIZED METAL
Surface Prep; sweep blast to create min. 1 mil of anchor profile
1 coat 2.5-3.5 dry mils Themec Series 66 Hi-Build Epoxoline
1 coat 2.5-3.5 dry mils Themec Series 750 UVX; Semi-Gloss
Or
1 coat 2.5-3.5 dry mils S-W Macropoxy 646 Fast Cure Epoxy B58W00610
1 coat 3-4 dry mils S-W Series HS Polyurethane Semi-Gloss B65-600
3.12.2 INTERIOR PAINT TABLES

FERROUS METAL AND ALUMINUM ITEMS (INTERIOR METAL DOORS, FRAMES, SHOP-PRIMED STEEL, ETC.)
1 coat 2.0 - 4.0 mils DFT PITT-TECH Plus 90-912 Series Int/Ext DTM Industrial Primer
2 coats 2.0 - 4.0 mils DFT each PITT-TECH Plus 90-1210 Series Int/Ext Semi-Gloss Industrial Enamel

EXPOSED SURFACES OF STEEL ROOF STRUCTURE, DECKING, DUCTWORK, CONDUITS, JUNCTION BOXES, CABLE TRAY, PIPING, ETC. IN ROOMS LABELED "EXPOSED STRUCTURE" ON ROOM FINISH SCHEDULE
1 coat 2-3.5 dry mils per coat Tnemec Series 115 Uni-Bond DF
Or
2 coats 2-4 dry mils per coat S-W Waterborne Acrylic Dry Fall, Eg Shel, B42W2

EXISTING GWB WALLS (EXCEPT AS NOTED BELOW)
2 coats 1.5 - 1.7 mils DFT each PPG 6-411 Series SPEEDHIDE Interior Enamel Latex Eggshell

NEW GWB WALLS (EXCEPT AS NOTED BELOW)
1 coat 1.0 - 1.3 mils DFT PPG 6-2 Series SPEEDHIDE Interior Latex Sealer
2 coats 1.5 - 1.7 mils DFT each PPG 6-411 Series SPEEDHIDE Interior Enamel Latex Eggshell

NEW AND EXISTING PREVIOUSLY-PAINTED GWB SCHEDULED TO RECEIVE SPECIAL COATING (SC)
1 coat Scuffmaster Primemaster Primer/Sealer (Acrylic Latex); 3.5 mils wet, 1.0 mil dry; no substitutions
2 coats Scuffmaster ScrubTough Water-Based Two-Component Polyurethane-Fortified Coating; no substitutions. Apply in a continuous, even film per manufacturer-specified coverage rate.

NEW AND EXISTING GWB WALLS SCHEDULED TO RECEIVE GLAZED PAINT (GP)
1 coat 1.0 - 1.3 mils DFT PPG 6-2 Series SPEEDHIDE Interior Latex Sealer
2 coats 1.5 - 1.7 mils DFT each PPG 16-510 Series PITT-GLAZE WB1 Interior Semi-Gloss Pre-Catalyzed Water-Borne Acrylic Epoxy

HARDWOOD FOR STAINED FINISH
1 coat Olympic Premium Interior Oil Based Wood Stain
2 coats Olympic Premium Interior Water Based Polyurethane Clear, Satin

3.12.3 Paint and Stain Location Schedule

See Section 09 06 00 SCHEDULES FOR FINISHES.

-- End of Section --
SECTION 10 11 00
VISUAL DISPLAY UNITS
08/17

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

UNDERWRITERS LABORATORIES (UL)

UL 2818 (2013) GREENGUARD Certification Program For Chemical Emissions For Building Materials, Finishes And Furnishings

1.2 DEFINITIONS OR ADMINISTRATIVE REQUIREMENTS

The term visual display board when used herein includes marker boards; submit manufacturer's descriptive data and catalog cuts plus manufacturer's installation instructions, and cleaning and maintenance instructions. Visual display boards must be from manufacturer's standard product line. Submit certificate of compliance signed by Contractor attesting that visual display boards conform to the requirements specified.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-03 Product Data
Visual Display Board; G
Projection Screen; G
SD-11 Closeout Submittals

Indoor air quality for markerboards; S

1.4 CERTIFICATIONS

1.4.1 Indoor Air Quality

1.4.1.1 Indoor Air Quality for Markerboard Products

Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or provide certification or validation by other third-party program that products meet the requirements of this Section. Provide current product certification documentation from certification body.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the building site in the manufacturer's original unopened containers and store them in a clean dry area with temperature maintained above 50 degrees F. Stack materials according to manufacturer's recommendations. Visual display boards must be allowed to acclimate to the building temperature for 24 hours prior to installation.

1.6 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a one year period.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Porcelain Enamel

Provide marker board writing surface composed of porcelain enamel fused to a nominal 28 gauge thick steel, laminated to a minimum 1/4 inch thick core material with a steel or foil backing sheet.

2.1.2 Aluminum

Aluminum frame extrusions must be alloy 6063-T5 or 6063-T6, conform to ASTM B221, and be a minimum 0.06 inches thick. Exposed aluminum must have an anodized, satin finish. Straight, single lengths must be used wherever possible. Joints must be kept to a minimum. Corners must be mitered and must have a hairline closure. Submit sections of frame, map rail and chalktray.

2.2 MARKERBOARD

Markerboard must have a porcelain enamel writing surface and a chalktray. Markerboard must be a factory assembled unit complete in one piece, without joints whenever possible. When markerboard dimensions require delivery in separate sections, components must be prefit at the factory, disassembled for delivery and jointed at the site. Frame must be aluminum. Chalktray
must be the same material as the frame and extend the full length of the liquid markerboard. The map rail with a tackable insert must extend the full length of the liquid chalkboard. Dry erase markings must be removable with a felt eraser or dry cloth without ghosting. Each unit must come complete with an eraser and four different color compatible dry erase markers. The size must be as shown on the drawings. Provide markerboards that meet the emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type).

2.3 PROJECTION SCREEN

Size shall be 9' - 8" W. x 5' - 5" H. Recessed mount motorized projection screen shall have 120V motor that is lubricated for life, quick reversal type, has overload protector, integral gears, and preset accessible limit switches. Screen shall have an operable closure door that opens and closes automatically, and an access panel. Screen shall be flame retardant, mildew resistant, and white matte with black masking borders and shall be cable tensioned. Bottom of screen fabric shall be weighted with metal rod. Roller must be a rigid metal at least 3 inches in diameter mounted on sound absorbing supports. Motor shall be motor-in-roller design. Screen shall have a 3 position control switch to stop or reverse screen at any point. The switch shall be installed in a flush electrical box with cover plate, location(s) as shown on the electrical drawings. All wiring from the control switch to the projection screen shall be furnished and installed by the Contractor. Ceiling recessed case shall be extruded aluminum, white color. Screen shall be UL listed. Provide projection screen that meet the emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type).

2.4 COLOR

Finish colors for markerboards must be as specified in Section 09 06 00 SCHEDULES FOR FINISHES.

PART 3 EXECUTION

3.1 INSTALLATION

Do not install items that show visual evidence of biological growth. Perform installation and assembly in accordance with manufacturer's printed instructions. Use concealed fasteners. Visual display boards must be attached to the walls with suitable devices to anchor each unit. furnish and install trim items, accessories and miscellaneous items in total, including but not limited to hardware, grounds, clips, backing materials, adhesives, brackets, and anchorages incidental to or necessary for a sound, secure, complete and finished installation. Installation must not be initiated until completion of room painting and finishing operations. Visual display boards must be installed in locations and at mounting heights indicated. Visual display boards must be installed level and plumb, and if applicable doors must be aligned and hardware must be adjusted. Damaged units must be repaired or replaced as directed by the Contracting Officer.

3.2 CLEANING

Writing surfaces must be cleaned in accordance with manufacturer's instructions.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASTM INTERNATIONAL (ASTM)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines

1.2 SUSTAINABILITY REPORTING

Materials in this technical specification may contribute towards contract compliance with sustainability requirements. See Section 01 33 29 SUSTAINABILITY REPORTING for recycled content, low emitting materials, and documentation requirements.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings

Detail Drawings; G

SD-03 Product Data

Installation; G
Warranty; G

SD-04 Samples

Interior Signage; G
1.4 QUALITY ASSURANCE

1.4.1 Samples

Submit interior signage samples of each of the following sign types showing typical quality, workmanship and color: Standard Room sign and changeable message strip sign. The samples may be installed in the work, provided each sample is identified and location recorded.

1.4.2 Detail Drawings

Submit detail drawings showing elevations of each type of sign, dimensions, details and methods of mounting or anchoring, mounting height, shape and thickness of materials, and details of construction. Include a schedule showing the location, each sign type, and message.

1.5 DELIVERY, STORAGE, AND HANDLING

Materials shall be packaged to prevent damage and deterioration during shipment, handling, storage and installation. Product shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions.

1.6 WARRANTY

Warrant the interior signage for a period of 2 years against defective workmanship and material. Warranties shall be signed by the authorized representative of the manufacturer. Submit warranty accompanied by the document authenticating the signer as an authorized representative of the guarantor. Guarantee that the signage products and the installation are free from any defects in material and workmanship from the date of delivery.

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Signs, plaques, directories, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products that essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening. Obtain signage from a single manufacturer with edges and corners of finished letterforms and graphics true and clean.

2.2 REFERENCE TO MANUFACTURER'S NAMES

Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturer's and products specified are not intended to limit the selection of equal
products from other manufacturers.

2.2.1 Basis of Design

Sign system shall be manufactured by ASI-Modulex, 3860 W. Northwest Highway, Suite 350, Dallas, TX 75220, (800-274-7732) to match sign types shown on the Drawings. Other manufacturers with similar systems include 2/90 Sign Systems, Best Sign Systems or equal.

2.3 SIGNS

2.3.1 Standard Room Signs

Signs shall be InTouch ADA-Ready Signs by ASI-Modulex. Signs shall consist of a core of acrylic plastic 0.080 inch thickness minimum, matte finish, meeting ASTM D635. Tactile graphics, text and Grade 2 Braille shall be raised 1/32 inch minimum from plaque first surface by manufacturer's photopolymer bonded process. Sign face shall be 0.125 inch thickness photopolymer material with integral tactile characters and Braille. Adhesive-fixed characters are not acceptable. Provide lettering and graphics precisely formed and uniformly opaque to comply with relevant ADA regulations and requirements indicated for size, style, spacing, content, position, and colors. Computerized translation of sign copy to be responsibility of the manufacturer.

2.3.2 Changeable Message Strip Signs

Signs shall be InTouch ADA-Ready Window Signs by ASI-Modulex. Changeable message strip signs shall be of same construction as standard room signs to include a clear sleeve that will accept a paper insert or plastic insert identifying changeable text. Provide paper and software for creating text and symbols for IBM-compatible computers for Government production of paper inserts after project completion.

2.3.3 Mounting

Signs shall be mounted with 1/16 inch thick vinyl foam tape fabricated from materials that are not corrosive to sign material and mounting surfaces.

2.3.4 Character Proportions and Heights

Letters and numbers on signs shall conform to ADA and 36 CFR 1191.

2.3.5 Raised and Braille Characters and Pictorial Symbol Signs (Pictograms)

Raised letters and numbers on signs shall conform to ADA and 36 CFR 1191.

2.4 COLOR, FINISH, AND CONTRAST

Color shall be in accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Finish of all signs shall be eggshell, matte, or other non-glare finish as required in handicapped-accessible buildings.

PART 3 EXECUTION

3.1 INSTALLATION

Signs shall be installed plumb and true and in accordance with approved manufacturer's instructions at locations shown on the drawings. Mounting
height and mounting location shall conform to 36 CFR 1191. Signs on doors or other surfaces shall not be installed until finishes on such surfaces have been installed. Signs installed on glass surfaces shall be installed with matching blank back-up plates in accordance with manufacturer's instructions.

3.1.1 Anchorage

Anchorage shall be in accordance with approved manufacturer's instructions.

3.1.2 Protection and Cleaning

Protect the work against damage during construction. Glass, frames, and other sign surfaces shall be cleaned at completion of sign installation in accordance with the manufacturer's approved instructions and the requirements of Section 01000. Submit three copies of maintenance instructions listing routine procedures, repairs, and guides.

-- End of Section --
SECTION 10 21 13
TOILET COMPARTMENTS
01/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ALUMINUM ASSOCIATION (AA)

AA DAF45 (2003; Reaffirmed 2009) Designation System for Aluminum Finishes

ASTM INTERNATIONAL (ASTM)

INTERNATIONAL CODE COUNCIL (ICC)

SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE)

SAE AMS2460 (2013; Rev A) Plating, Chromium

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

CID A-A-60003 (Basic) Partitions, Toilet, Complete

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

36 CFR 1191 Americans with Disabilities Act (ADA) Accessibility Guidelines for Buildings and Facilities; Architectural Barriers Act (ABA) Accessibility Guidelines
1.2 SUSTAINABILITY REPORTING

Materials in this technical specification may contribute towards contract compliance with sustainability requirements.

1.2.1 CERTIFICATION REQUIREMENTS

See Section 01 33 29 SUSTAINABILITY REPORTING for project certification for recycled content and documentation requirements.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
 Fabrication Drawings; G
 Installation Drawings

SD-03 Product Data
 Cleaning and Maintenance Instructions; G
 Colors And Finishes; G
 Anchoring Devices and Fasteners; G
 Hardware and Fittings; G
 Brackets; G
 Door Hardware; G

SD-04 Samples
 Colors and Finishes; G
 Hardware and Fittings
 Anchoring Devices and Fasteners

SD-07 Certificates
 Warranty; G

SD-11 Closeout Submittals
 Recycled Content for Plastic Material; S

1.4 REGULATORY REQUIREMENTS

Conform to ICC A117.1 code for access for the handicapped operation of toilet compartment door and hardware.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver materials in the manufacturer's original unopened packages with the brand, item identification, and project reference clearly marked. Store components in a dry location that is adequately ventilated; free from dust, water, other contaminants, and damage during delivery, storage, and
1.6 WARRANTY

Provide certification or warranties that toilet partitions will be free of defects in materials, fabrication, finish, and installation and will remain so for a period of not less than 2 years after completion.

PART 2 PRODUCTS

2.1 SYSTEM REQUIREMENTS

Provide a complete and usable toilet partition system, including toilet enclosures, urinal screens, system of panels, hardware, and support components. Comply with EPA requirements in accordance with Section 01 33 29 SUSTAINABILITY REPORTING and Affirmative Procurement guidelines. Furnish the partition system from a single manufacturer, with a standard product as shown in the most recent catalog data. Submit Fabrication Drawings for toilet partitions and urinal screens consisting of fabrication and assembly details to be performed in the factory. Submit manufacturer's Cleaning and Maintenance Instructions with Fabrication Drawings for review.

2.1.1 Sustainable Design Requirements

2.1.1.1 Environmental Data

Submit documentation indicating percentage of post-industrial and post-consumer recycled content per unit of product. Indicate relative dollar value of recycled content products to total dollar value of products included in project.

2.1.2 Plastic Identification

Verify that plastic products to be incorporated into the project are labeled in accordance with ASTM D7611/D7611M. Where products are not labeled, provide product data indicating polymeric information in the Operation and Maintenance Manual.

| Type 2 | High Density Polyethylene (HDPE) |

2.2 MATERIALS

2.2.1 Anchoring Devices and Fasteners

Provide steel anchoring devices and fasteners hot-dipped galvanized after fabrication, in conformance with ASTM A385/A385M and ASTM A123/A123M. Conceal all galvanized anchoring devices.

2.2.2 Brackets

Wall brackets shall be full length heavy duty clear anodized extruded aluminum. Provide stirrup style panel-to-pilaster brackets.

2.2.3 Hardware and Fittings

2.2.3.1 General Requirements

Conform hardware for the toilet partition system to CID A-A-60003 for the specified type and style of partitions. Provide hardware finish highly
resistant to alkalis, urine, and other common toilet room acids. Comply latching devices and hinges for handicap compartments with 36 CFR 1191; provide chrome-plated steel devices and hinges with door latches that operate without either tight grasping or twisting of the wrist of the operator. Submit three samples of each item, including anchoring devices and fasteners. Approved hardware samples may be installed in the work if properly identified.

2.2.3.2 Finishes

a. Chrome plating shall conform to ASTM B456.
b. Finish shall conform to SAE AMS2460, Class I, Type I.
c. Aluminum shall have a clear anodic coating conforming to AA DAF45.
d. Corrosion-resistant steel shall have a No. 4 finish.
e. Exposed fasteners shall match the hardware and fittings.

2.2.4 Door Hardware

2.2.4.1 Hinges

Hinges shall be adjustable to hold in-swinging doors open at any angle up to 90 degrees and outswinging doors to 10 degrees. Provide self-lubricating hinges with the indicated swing. Hinges shall be the surface-mounted type with gravity return movement.

2.2.4.2 Latch and Pull

Latch and pull shall be a combination rubber-faced door strike and keeper equipped with emergency access.

2.2.4.3 Coat Hooks

Coat hooks shall be combination units with hooks and rubber tipped pins.

2.3 PARTITION PANELS AND DOORS

Fabricate partition panels and doors not less than 1 inch thick.

2.3.1 Toilet Enclosures

Conform toilet enclosures to CID A-A-60003, Type I, Style C, overhead braced. Furnish width, length, and height of toilet enclosures as shown. Finish surface of panels shall be solid polyethylene, Finish 5; water resistant; graffiti resistant; and non-absorbent. See Section 01 33 29 SUSTAINABILITY REPORTING for cumulative total recycled content requirements.

2.3.2 Urinal Screens

Conform urinal screens to CID A-A-60003, Type III wall hung with continuous bracket. Provide finish for surface of screens as solid polyethylene, Finish 5; water resistant; graffiti resistant and non-absorbent. See Section 01 33 29 SUSTAINABILITY REPORTING for cumulative total recycled content requirements. This item may contain post-consumer or post-industrial recycled content. Furnish urinal screens 18 inches wide. Provide thickness of 1 inch. Secure wall hung urinal screens with 42 inch
long, continuous flanges. Fabricate screens from the same types of panels as the toilet partitions. Use corrosion-resistant steel fittings and fasteners.

2.4 OVERHEAD-BRACED PARTITIONS

Pilasters shall be not less than 1 inch thick. Provide anchoring device at the bottom of the pilaster consisting of a channel-shaped floor stirrup fabricated from not less than 0.0635 inch thick material and a leveling bolt. Secure the stirrup to the pilaster with not less than a 3/16 inch bolt and nut after the pilaster is leveled. Secure the stirrup to the floor with not less than two lead expansion shields and sheetmetal screws. Fabricate overhead brace from a continuous extruded aluminum tube not less than 1 inch wide by 1-1/2 inch high, 0.125-inch wall thickness. Finish shall be AA-C22A31 in accordance with AA DAF45. Set and secure brace into the top of each pilaster. Fabricate 3 inch high trim piece at the floor from not less than 0.030 inch thick corrosion-resistant steel.

2.5 PILASTER SHOES

Provide shoes at pilasters to conceal floor-mounted anchorage. Pilaster shoes shall be stainless steel. Height shall be 3 inches.

2.6 HARDWARE

Provide hardware for the toilet partition system that conforms to CID A-A-60003 for the specified type and style of partitions. Provide hardware pre-drilled by manufacturer. Use a hardware finish that is highly resistant to alkalis, urine, and other common toilet room acids. Hardware includes: chrome plated non ferrous cast pivot hinges, gravity type, adjustable for door close positioning; nylon bearings; chrome plated aluminum door latch; door strike and keeper with rubber bumper; and cast alloy chrome plated coat hook and bumper. Provide latching devices and hinges for handicap compartments complying with 36 CFR 1191 and chrome-plated steel or stainless steel door latches that operate without either tight grasping or twisting of the wrist of the operator. Use stainless steel, tamper proof type screws and bolts. Wall mounting brackets must be continuous, full height, aluminum, in accordance with toilet compartment manufacturer's instructions. Provide floor-mounted anchorage consisting of corrosion-resistant anchoring assemblies with threaded rods, lock washers, and leveling adjustment nuts at pilasters for structural connection to floor.

2.7 COLORS AND FINISHES

2.7.1 Colors

Provide toilet compartment finish colors as specified in Section 09 06 00 SCHEDULES FOR FINISHES.

2.7.2 Finish No. 5

Provide solid plastic fabricated of polymer resins (polyethylene) formed under high pressure rendering a single component section not less than one inch thick. Colors shall extend throughout the panel thickness. Provide exposed finish surfaces smooth, waterproof, non-absorbent, and resistant to staining and marking with pens, pencils, or other writing devices. Solid plastic partitions shall not show any sign of deterioration when immersed in the following chemicals and maintained at a temperature of 80 degrees F.
for a minimum of 30 days:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic Acid (80 percent)</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>Hydrochloric Acid (40 percent)</td>
</tr>
<tr>
<td>Ammonia (liquid)</td>
<td>Hydrogen Peroxide (30 percent)</td>
</tr>
<tr>
<td>Ammonia Phosphate</td>
<td>Isopropyl Alcohol</td>
</tr>
<tr>
<td>Bleach (12 percent)</td>
<td>Lactic Acid (25 percent)</td>
</tr>
<tr>
<td>Borax</td>
<td>Lime Sulfur</td>
</tr>
<tr>
<td>Brine</td>
<td>Nicotine</td>
</tr>
<tr>
<td>Caustic Soda</td>
<td>Potassium Bromide</td>
</tr>
<tr>
<td>Chlorine Water</td>
<td>Sodium Bicarbonate</td>
</tr>
<tr>
<td>Citric Acid</td>
<td>Trisodium Phosphate</td>
</tr>
<tr>
<td>Copper Chloride</td>
<td>Urea; Urine</td>
</tr>
<tr>
<td>Core Oils</td>
<td>Vinegar</td>
</tr>
</tbody>
</table>

PART 3 EXECUTION

3.1 PREPARATION

Take field measurements prior to the preparation of drawing and fabrication to ensure proper fits. Verify that field measurements, surfaces, substrates and conditions are as required, and ready to receive work. Verify correct spacing of plumbing fixtures. Verify correct location of built in framing, anchorage, and bracing. Report in writing to Contracting Officer prevailing conditions that will adversely affect satisfactory execution of the work of this section. Do not proceed with work until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

Install partitions rigid, straight, plumb, and level, with the panels centered between the fixtures. Provide a panel clearance of not more than 1/2 inch and secure the panels to walls and pilasters with continuous brackets. Secure panels to pilasters with brackets matching the wall brackets. Provide for adjustment due to minor floor variations. Locate head rail joints at pilaster center lines. Install adjacent components for consistency of line and plane. Equip each door with hinges, one door latch, and one coat hook and bumper. Align hardware to uniform clearance at vertical edges of doors.

a. Secure panels to walls with toggle bolts using not less than 1/4-20 screws of the length required for the wall thickness. Toggle bolts shall have a load-carrying strength of not less than 600 pounds per anchor.

b. Submit Installation Drawings for toilet partitions and urinal screens.
showing plans, elevations, details of construction, hardware, reinforcing and blocking, fittings, mountings and escutcheons. Indicate on drawings the type of partition, location, mounting height, cutouts, and reinforcement required for toilet-room accessories.

3.3 OVERHEAD-BRACED PARTITIONS

Secure pilasters to the floor with the anchorage device specified. Make all leveling devices readily accessible for leveling, plumbing, and tightening the installation. Secure overhead brace to the pilaster face with not less than two fasteners per face. Expansion shields shall have a minimum 2-inch penetration into the concrete slab. Make tops of doors parallel with the overhead brace when doors are in a closed position.

3.4 FINAL ADJUSTMENT

After completion of the installation, make final adjustments to the pilaster-leveling devices, door hardware, and other working parts of the partition assembly. Doors shall have a uniform vertical edge clearance of approximately 3/16 inch and shall rest open at approximately 30 degrees when unlatched.

3.5 CLEANING

Clean all surfaces of the work, and adjacent surfaces soiled as a result of the work, in an approved manner compliant with the manufacturer's recommended cleaning and protection from damage procedures until accepted. Remove all equipment, tools, surplus materials, and work debris from the site.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM E413 (2016) Classification for Rating Sound Insulation

ASTM E557 (2012) Installation of Operable Partitions

CALIFORNIA DEPARTMENT OF PUBLIC HEALTH (CDPH)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

UNDERWRITERS LABORATORIES (UL)

UL 2818 (2013) GREENGUARD Certification Program For Chemical Emissions For Building Materials, Finishes And Furnishings
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01000:

SD-01 Preconstruction Submittals
 Manufacturer's Qualifications
 Verification of Field Measurements; G

SD-02 Shop Drawings
 Layouts; G
 Fabrication Drawings; G

SD-03 Product Data
 Folding Panel Partitions; G
 Installation Instructions

SD-04 Samples
 Folding Panel Partitions; G

SD-06 Test Reports
 Acoustical Test; G
 Flame and Smoke Development Tests; G

SD-10 Operation and Maintenance Data
 Folding Panel Partitions; G

SD-11 Closeout Submittals
 Indoor Air Quality; S
 Warranty; G

1.3 CERTIFICATIONS

1.3.1 Indoor Air Quality

1.3.1.1 Finish Covering

Provide products certified to meet indoor air quality requirements by UL 2818 (Greenguard) Gold, SCS Global Services Indoor Advantage Gold or provide certification or validation by other third-party program that products meet the requirements of this Section. Provide current product certification documentation from certification body.
1.4 DELIVERY, STORAGE, AND HANDLING

Deliver materials to the jobsite in the manufacturer's original, unopened, and undamaged packages with labels legible and intact. Provide labels to indicate the manufacturer, brand name, size, finish, and placement location. Store partitions and accessories in unopened packages in a manner that will prevent damage. Handle partition materials in accordance with manufacturer's instructions. Protect materials from the weather, humidity and temperature variations, dirt and dust, or other contaminants.

1.5 WARRANTY

Provide Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period. In addition, provide guarantee of the pantographs, trolleys and tracks for 10 years from date of acceptance for beneficial use.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

a. No less than 30 calendar days prior to the scheduled commencement of installation, submit the following to the Contracting Officer:

Manufacturer's Qualifications

Manufacturer's Sample Warranty

Verification of Field Measurements

Fabrication Drawings

Installation Instructions

b. Provide manual operation, acoustical folding panel partitions, factory finished, supported from overhead track without floor guides, as shown on the drawings including all hardware, seals, track and rollers as needed to close the specified opening.

c. Submit drawings to demonstrate that the system has been coordinated and will properly function as a unit. Show layout of the work; track and jamb fastening methods; seal and installation details; and equipment relationship to other parts of the work including clearances for maintenance and operation.

2.1.1 Manual Operation

The manual operation must be a force no greater than 20 lb to start movement at the rate of 3.33 ft/s. Use a removable handle to extend and retract the bottom operable seals; vertical movement of seals must be 2 inches. Provide closure to the lead wall with the use of a flexible bulb; accomplish final closing by means of a lever exerting pressure against the wall.
2.1.2 Performance Requirements

2.1.2.1 Fire Endurance

For partitions more than 60 square feet in area, provide covering and lining with flame spread rating of 25 or less, fuel contribution rating of 15 or less, smoke generation of 50 or less in accordance with NFPA 101 when tested in accordance with ASTM E84. Submit flame and smoke development tests reports. Provide door and partition finishes with a Class A rating when tested in accordance with ASTM E84.

2.1.2.2 Laboratory Acoustical Requirements

Provide partitions tested in accordance with ASTM E90, by a laboratory accredited by the U.S. Bureau of Standards, that have attained a sound transmission class (STC) of not less than 50 in a fully extended position, with a Noise Reduction Coefficient (NRC) of 0.25-0.30 for napped, tufted or looped fabric. Provide documentation that the partition tested is the same construction, materials, and model number as the partition to be provided and be fully operable. Test specimen must be not less than 126 square feet in area. Panel weight must be a minimum of 8.5 psf for STC up to 50. Design panel thickness (4 inch nominal) and composition to provide the required STC rating in accordance with ASTM E90 and ASTM E413.

2.2 MATERIALS

Provide material and equipment which are the standard products of a manufacturer regularly engaged in the manufacture of such products and essentially duplicate items that have been in satisfactory use for at least 2 year prior to bid opening. Submit Certificate attesting that the materials meet the requirements specified. Equipment must be supported by a service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site. Provide heavy-duty type hardware standard with the manufacturer. Provide pulls and latches for all partitions. Provide partitions with privacy latches. Provide clear anodized aluminum finish hardware.

2.3 FOLDING PANEL PARTITIONS

Provide folding panel partitions using top hung ball bearing carriers which support modular panels.

a. Provide partitions made up of a series of rigid panels, each panel being a one-piece assembly. Unless otherwise specified, use the least number of panels. The mechanical seal of the panel must actuate with a single operating action.

b. Provide paired panels type as indicated.

2.3.1 Panels

Provide panels of steel skin, laminated to appropriate structural acoustical backing, mounted in full perimeter protective frame. Steel for the panel frames must be a minimum of 16 gauge thick steel with minimum 22 gauge thick face panels spot welded to the frame. Frame must enclose and protect all edges of the surface material. Panels must be not more than 4 feet wide, except for end closure panels, and be full height to track. Panels must lock in place to form a stable, rigid partition; low profile hinges may not project more than 1/4 inch maximum from panel edge. Panel
surfacing must wrap around the vertical panel edges without vertical trim.

2.3.2 Finish Covering

Finish covering material must be minimum 54 inches wide woven polyester fabric as indicated in Section 09 06 00, Schedules for Finishes. Provide non-allergenic stain and mildew resistant fabric which will not rot or support growth of bacteria. Provide finish covering that meets emissions requirements of CDPH SECTION 01350 (limit requirements for either office or classroom spaces regardless of space type).

2.3.3 Track

Provide recess extruded aluminum track as shown. Conform aluminum to ASTM B221. Provide track that is the manufacturer's standard product designed for the weight of the finished partition, including door. Provide track sections in the maximum lengths practicable, and not less than 6 feet long except for narrow doors and at ends of runs where short length is required. Provide suitable joint devices such as interlocking keys at each joint to provide permanent alignment of track.

2.3.4 Suspension System

Provide a suspension system consisting of heavy duty extruded aluminum track connected to the structural support by threaded rods, and trolleys designed to support the weight of the partition. Provide center hung panel with 1 trolley with four ball bearing nylon or steel tired wheels per panel.

2.4 ACCESSORIES

2.4.1 Doors

Provide non-fire rated, manually operated doors with vinyl sweep top seals which compress against the bottom of the top track.

2.4.2 Ceiling Guards

Furnish partitions with ceiling guards or integral track and ceiling guards as recommended by the manufacturer.

2.5 SEALS AND SWEEPSTRIPS

Provide perimeter seals or sound insulation, of manufacturer's standard product, to achieve the sound transmission class specified, without crack or craze when subjected to severe usage. Provide mechanical bottom seal that can be raised or lowered for positive control. Provide manufacturer's vertical seals between panels to ensure acoustical rating. Bottom seals must consist of a vinyl sweep mechanical seal which will expand in place, or provide panels which can be lowered by a removable operating device. Provide vertical seal between panels which is anodized, architectural grade, aluminum extrusion with vinyl sound seal. Sweep strips must be vinyl or other material that will not crack or craze with severe usage. Provide sweep strip STC to the specified rating.

2.6 COLOR

Color in accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Color listed is not intended to limit selection of equal colors from other manufacturers.
Submit three color samples of specified surfaces and finishes to match those specified. Finish and color requirements are not limited to manufacturer's standard selections in order to meet these requirements. Also submit certificate attesting that partitions have specified acoustical and flame retardant properties, as determined by test.

PART 3 EXECUTION

3.1 INSTALLATION

Do not install building construction materials that show visual evidence of biological growth. Install in accordance with the manufacturer's approved instructions.

3.1.1 Preparation Work

Verify dimensions and condition of openings scheduled to receive folding panel partitions. Install partitions in accordance with the approved partition layouts, manufacturer's directions, and ASTM E557. Provide structural support for the track support elements as indicated.

3.1.2 Adjustment

Adjust manually operated partitions to open and close from any position with a maximum horizontal force as specified in paragraph Manual Operation applied to pendant pull, box or handle.

3.2 FIELD TESTS

3.2.1 Operational Test

In the presence of the Contracting Officer, operate partition at least three times to demonstrate that partition is capable of being moved from the stored position to the fully extended position smoothly and quietly. Adjust partitions which do not operate properly and retest.

3.2.2 Visual Test

Conduct visual field tests for light leakage with all room lights turned on in the space on one side of the partition. Darken space on the other side of the partition. Light leakage from the lighted space to the darkened space is not acceptable. If light leakage does occur, adjust the partition to correct the problem and retest.

3.2.3 Acoustical Test

Field sound performance: provide partition testing by an independent certified acoustical consultant in accordance with ASTM E336, and achieve an STC rating as indicated under paragraph above titled "Laboratory Acoustical Requirements". Adjust and/or modify partitions which do not comply, and retest. Submit test reports.

3.3 CLEANING

Clean any soiled parts of the partition in accordance with manufacturer's printed instructions.
3.4 MAINTENANCE

Submit six complete copies of maintenance instructions explaining routine maintenance procedures including inspection, adjustments, lubrication, and cleaning. List possible breakdown, methods of repair, and a troubleshooting guide. Include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and operating features. Include a complete list of parts and supplies, with current unit prices and source of supply, and a list of the parts recommended by the manufacturer to be replaced after 1 year and 3 years of service.

Submit Data Package 1 for folding panel partitions in accordance with Section 01000.

-- End of Section --
SECTION 10 28 13

TOILET ACCESSORIES

08/17

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

 Finishes; G

 Accessory Items; G

1.3 DELIVERY, STORAGE, AND HANDLING

Wrap toilet accessories for shipment and storage, then deliver to the jobsite in manufacturer's original packaging, and store in a clean, dry area protected from construction damage and vandalism.

1.4 WARRANTY

Provide manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period.

PART 2 PRODUCTS

2.1 MANUFACTURED UNITS

Provide toilet accessories where indicated in accordance with paragraph SCHEDULE. Provide each accessory item complete with the necessary mounting plates of sturdy construction with corrosion resistant surface.

2.1.1 Anchors and Fasteners

Provide anchors and fasteners capable of developing a restraining force commensurate with the strength of the accessory to be mounted and suited for use with the supporting construction. Provide tamperproof design exposed fasteners with finish to match the accessory.
2.1.2 Finishes

Except where noted otherwise, provide the following finishes on metal:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel</td>
<td>No. 4 satin finish</td>
</tr>
<tr>
<td>Carbon steel, copper alloy,</td>
<td>Chromium plated, bright</td>
</tr>
<tr>
<td>and brass</td>
<td></td>
</tr>
</tbody>
</table>

2.2 ACCESSORY ITEMS

Conform to the requirements for accessory items specified below. Submit fasteners proposed for use for each type of wall construction, mounting, operation, and cleaning instructions and one sample of each other accessory proposed for use. Incorporate approved samples into the finished work, provided they are identified and their locations noted. Submit certificate for each type of accessory specified, attesting that the items meet the specified requirements.

2.2.1 Grab Bar (GB)

Provide an 18 gauge, 1-1/4 inch grab bar OD Type 304 stainless steel. Provide form and length for grab bar as indicated. Provide exposed mounting flange. Provide bars with satin finish. Furnish installed bars capable of withstanding a 500 pound vertical load without coming loose from the fastenings and without obvious permanent deformation. Allow 1-1/2 inch space between wall and grab bar.

2.2.2 Mirrors, Glass (MG)

Provide Type I transparent flat type, Class 1-clear glass for mirrors. Glazing Quality q1 1/4 inch thick conforming to ASTM C1036. Coat glass on one surface with silver coating, copper protective coating, and mirror backing paint. Provide highly adhesive pure silver coating of a thickness which provides reflectivity of 83 percent or more of incident light when viewed through 1/4 inch thick glass, free of pinholes or other defects. Provide copper protective coating with pure bright reflective copper, homogeneous without sludge, pinholes or other defects, of proper thickness to prevent "adhesion pull" by mirror backing paint. Provide mirror backing paint with two coats of special scratch and abrasion-resistant paint and baked in uniform thickness to provide a protection for silver and copper coatings which will permit normal cutting and edge fabrication.

2.2.3 Towel Dispenser (TD-1)

Provide paper towel dispenser constructed of a minimum 0.03 inch Type 304 stainless steel, surface. Furnish tumbler key lock mechanism.

2.2.4 Combination Towel Dispenser/Waste Receptacle (TD-2)

Provide semi-recessed paper towel dispenser/receptacle with a minimum capacity of 400 sheets of C-fold, single-fold, or quarter-fold towels. Design waste receptacle to be locked in unit and removable for service. Provide tumbler key lock mechanism. Fabricate a minimum 0.03 inch stainless steel welded construction unit with all exposed surfaces having a satin finish. Provide waste receptacle that accepts reusable liner.
standard for unit manufacturer.

2.2.5 Napkin Disposal (ND)

Construct a Type 304 stainless steel surfaced mounted sanitary napkin disposal with removable leak-proof receptacle for disposable liners. Provide fifty disposable liners of the type standard with the manufacturer. Retain receptacle in cabinet by tumbler lock. Provide disposer with a door for inserting disposed napkins.

2.2.6 Shower Curtain (SC)

Provide white shower curtain, size to suit conditions. Provide anti-bacterial nylon/vinyl fabric curtain.

2.2.7 Shower Curtain Rods (SCR)

Provide Type 304 stainless steel shower curtain rods 1-1/4 inch OD by 0.049 inch minimum straight to meet installation conditions.

2.2.8 Soap Dispenser (SD)

Provide soap dispenser surface mounted in locations shown on the drawings. The dispenser shall dispense liquid soap in controlled dosage with single pump operation easy push button. The dispenser shall be manufactured from durable plastic with sight window and locking mechanism capable of using a 2 liter air tight collapsable cartridge.

2.2.9 Robe Hook (RH)

Provide robe hook with concealed wall fastenings, and a dual hook integral with or permanently fastened to wall flange with maximum projection of 4 inch. Provide satin finish.

2.2.10 Toilet Paper Holder (PH)

Furnish surface mounted toilet tissue holder with two rolls of standard tissue mounted horizontally. Provide stainless steel, satin finish cabinet.

2.2.11 Mop and Broom Holder (MH)

Stainless steel with grip jaw cam mechanism securing 4 mop or broom handles. Also include hooks and storage shelf.

PART 3 EXECUTION

3.1 INSTALLATION

Do not install items that show visual evidence of biological growth. Provide the same finish for the surfaces of fastening devices exposed after installation as the attached accessory. Provide oval exposed screw heads. Install accessories at the location and height indicated. Protect exposed surfaces of accessories with strippable plastic or by other means until the installation is accepted. After acceptance of accessories, remove and dispose of strippable plastic protection. Coordinate accessory manufacturer's mounting details with other trades as their work progresses. After installation, thoroughly clean exposed surfaces and restore damaged work to its original condition or replace with new work.
3.1.1 Recessed Accessories
Fasten accessories with wood screws to studs, blocking or rough frame in wood construction. Set anchors in mortar in masonry construction. Fasten to metal studs or framing with sheet metal screws in metal construction.

3.1.2 Surface Mounted Accessories
Mount on concealed backplates, unless specified otherwise. Conceal fasteners on accessories without backplates. Install accessories with sheet metal screws or wood screws in lead-lined braided jute, PTFE or neoprene sleeves, or lead expansion shields, or with toggle bolts or other approved fasteners as required by the construction. Install backplates in the same manner, or provide with lugs or anchors set in mortar, as required by the construction. Fasten accessories mounted on gypsum board and plaster walls without solid backing into the metal or wood studs or to solid wood blocking secured between wood studs, or to metal backplates secured to metal studs.

3.1.3 Mounting Heights
Mount toilet accessories to comply with ABA requirements, and as follows:

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ITEM</th>
<th>MOUNTING HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>Grab Bar</td>
<td>34" to center</td>
</tr>
<tr>
<td>MG</td>
<td>Mirror</td>
<td>40" to bottom</td>
</tr>
<tr>
<td>TD-1</td>
<td>Towel Dispenser</td>
<td>44" to bottom</td>
</tr>
<tr>
<td>TD-2</td>
<td>Towel Dispenser/Disposal</td>
<td>Infill in existing wall opening</td>
</tr>
<tr>
<td>ND</td>
<td>Napkin Disposal</td>
<td>30" to top</td>
</tr>
<tr>
<td>SCR</td>
<td>Shower Curtain Rod</td>
<td>80" to center</td>
</tr>
<tr>
<td>RH</td>
<td>Robe Hook</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Soap Dispenser</td>
<td>Push button 8" above sink rink but not above 44" A.F.F.</td>
</tr>
<tr>
<td>PH</td>
<td>Toilet Paper Holder</td>
<td>30" to top</td>
</tr>
<tr>
<td>MH</td>
<td>Mop and Broom Holder</td>
<td>72" to center</td>
</tr>
</tbody>
</table>

3.2 SCHEDULE

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ASI</th>
<th>BOBRICK</th>
<th>BRADLEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Bar Set GB</td>
<td>3800</td>
<td>B-6806</td>
<td>812</td>
</tr>
<tr>
<td>Two wall mount horizontal units; 36" grab bar mounted on back wall 6" from corner; 42" grab bar mounted on side wall 12" from corner</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mirror MG</td>
<td>0605</td>
<td>B-292</td>
<td>7815</td>
</tr>
<tr>
<td>18" wide x 36" high with shelf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towel Dispenser TD-1</td>
<td>0245-SS</td>
<td>B-263</td>
<td>251-15</td>
</tr>
<tr>
<td>Designed and/or factory set to dispense only single-fold towels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Towel Dispenser TD-2</td>
<td>0469</td>
<td>B-3947</td>
<td>2271-10</td>
</tr>
<tr>
<td>Designed and/or factory set to dispense only single-fold towels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Napkin Disposal ND</td>
<td>0852</td>
<td>B-270</td>
<td>4781-15</td>
</tr>
<tr>
<td>Shower Curtain SC</td>
<td>1200-V</td>
<td>204</td>
<td>9537</td>
</tr>
</tbody>
</table>
Shower Curtain Rod SCR 1204 B-6047 9531
with Shower Curtain Hooks 1200-SHU 204-1 9536

Soap Dispenser SD Deb manual pump 2 liter
dispenser, black with sight
window and locking mechanism
for non-foam Deb Stoko
cartridge. Proline Curve 2000,
BKS2LDP, no substitutions.

Robe Hook RH 7345 B-6727 9124

Toilet Paper Holder PH 0030 B-2888 5402
Centered 7" - 9" in front of water closet

Mop and Broom Holder MH 8215-4 B-223x36 9954

3.3 CLEANING

Clean material in accordance with manufacturer's recommendations. Do not
use alkaline or abrasive agents. Take precautions to avoid scratching or
marring exposed surfaces.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 10 (2013) Standard for Portable Fire Extinguishers

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

UNDERWRITERS LABORATORIES (UL)

UL 2129 (2017) UL Standard for Safety Halocarbon Clean Agent Fire Extinguishers

UL 299 (2012) Dry Chemical Fire Extinguishers

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Fire Extinguishers; G

Cabinets; G

Wall Brackets; G

Replacement Parts List; G

1.3 DELIVERY, STORAGE, AND HANDLING

Protect materials from weather, soil, and damage during delivery, storage,
and construction.

Deliver materials in their original packages, containers, or bundles bearing the brand name and the name and type of the material.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

2.1.1 Types

Submit certificates that show fire extinguishers comply with local codes and regulations.

Provide multi-purpose dry chemical type fire extinguishers compliant with UL 299 for all non-electrical and electronic spaces.

Provide clean agent type fire extinguishers compliant with UL 2129 for all electrical and electronic spaces.

Submit manufacturer's data for each type of Fire Extinguisher required, detailing all related Cabinet, Wall Mounting and Accessories information, complete with manufacturer's warranty with inspection tag.

2.1.2 Material

Provide enameled steel extinguisher shell.

2.1.3 Size

10 pound extinguishers.

2.2 EQUIPMENT

2.2.1 Cabinets

2.2.1.1 Material

Provide enameled steel cabinets.

2.2.1.2 Type

Provide surface type cabinets at locations shown on the Drawings.

Provide semi-recessed cabinet for 4-inch walls at locations shown on the Drawings.

2.2.1.3 Size

Dimension cabinets to accommodate the specified fire extinguishers.

2.2.2 Wall Brackets

Provide wall-hook fire extinguisher wall brackets at locations shown on the Drawings.
Provide wall bracket and accessories as approved.

PART 3 EXECUTION

3.1 INSTALLATION

Fire Extinguishers where indicated on the drawings. Verify exact locations prior to installation.

Provide extinguishers which are fully charged and ready for operation upon installation. Provide extinguishers complete with Manufacturer's Warranty with Inspection Tag attached.

Comply with the manufacturer's recommendations for all installations.

3.2 PROTECTION

3.2.1 Repairing

Remove and replace damaged and unacceptable portions of completed work with new work at no additional cost to the Government.

Submit replacement parts list indicating specified items replacement part, replacement cost, and name, address and contact for replacement parts distributor.

3.2.2 Cleaning

Clean all surfaces of the work, and adjacent surfaces which are soiled as a result of the work. Remove from the site all construction equipment, tools, surplus materials and rubbish resulting from the work.

-- End of Section --
SECTION 10 51 13
METAL LOCKERS
05/11

PART 1 GENERAL

1.1 REFERENCES
The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)
ASTM A1008/A1008M (2016) Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardened

U.S. GENERAL SERVICES ADMINISTRATION (GSA)
FS AA-L-00486 (Rev J) Lockers, Clothing, Steel

1.2 SUBMITTALS
Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
Types; G
Location; G
Installation; G
Numbering system; G

SD-03 Product Data
Material; G
Locking Devices; G
Handles; G
Finish; G
Locker components; G
SD-04 Samples
Color chips; G
Submit actual color chips of all available colors on metal; not printed reproductions.

1.3 DELIVERY, HANDLING, AND STORAGE
Deliver lockers and associated materials in their original packages, containers, or bundles bearing the manufacturer's name and the name of the material. Protect from weather, soil, and damage during delivery, storage, and construction.

1.4 FIELD MEASUREMENTS
To ensure proper fits, make field measurements prior to the preparation of drawings and fabrication. Verify correct location.

1.5 QUALITY ASSURANCE
1.5.1 Color Chips
Provide a minimum of three color chips, not less than 3 inches square, of each color scheduled.

Government may request performance-characteristic tests on assembled lockers. Tests and results must conform to FS AA-L-00486. Lockers not conforming will be rejected.

PART 2 PRODUCTS
2.1 REFERENCES TO MANUFACTURER’S NAMES
Where manufacturer's names are mentioned herein, an equivalent product by another manufacturer may be submitted for approval. Manufacturers and products specified are not intended to limit the selection of equal products from other manufacturers.

2.2 TYPES
Locker must have the following type and size in the location and quantities indicated. Locker finish colors will be as scheduled in Section 09 06 00 SCHEDULES FOR FINISHES.

2.2.1 Lockers
Lockers shall be as follows:
Type DTW-1: Wall-mounted two-person/one-wide locker 15 inches wide, 15 inches deep, and 72 inches high, without base, but with sloping top. Basis of Design: Penco Guardian Two-Person Locker #6501G-1W-073 by Global Industries. All locks shall be keyed differently; provide two keys per lock and two master keys. Color to be selected from manufacturer's standard colors during the Submittal process. Each locker door shall have an engraved aluminum number plate; number will be assigned by the Government during the Submittal process.
Type CPW-1: Wall-mounted cell phone locker without electrical plugs; 12 units high x 4 units wide: 36 inches wide, 15 inches deep, and 82.75 inches high, without base, but with sloping top. Basis of Design: Tennsco Cell Phone Storage Locker #WYB222896 by Global Industries. All locks shall be keyed differently; provide two keys per lock and two master keys. Color to be selected from manufacturer's standard colors during the Submittal process. Each locker door shall have an engraved aluminum number plate; number will be assigned by the Government during the Submittal process.

Type CPW-2: Wall-mounted cell phone locker with 12 Volt electrical plugs; 2 units high x 4 units wide: 28.5 inches wide, 11.25 inches deep, and 28.5 inches high, without base or sloping top. Units shall be supplied with an electrical cord and plug, which shall power a transformer to provide 12 volt power for charging cell phones inside each locker compartment. Basis of Design: Global Tablet and Cell Phone Locker Charging Locker #WY493361 by Global Industries. All locks shall be keyed differently; provide two keys per lock and two master keys. Color to be selected from manufacturer's standard colors during the Submittal process. Each locker door shall have an engraved aluminum number plate; number will be assigned by the Government during the Submittal process.

2.3 MATERIAL

2.3.1 Steel Sheet

ASTM A1008/A1008M, commercial quality, minimized spangle material. Prepare material surfaces for baked enamel finishing in accordance with FS AA-L-00486. Fabricate locker bodies from not less than 0.0239-inch thick steel sheet.

2.3.2 Chromium Coating

Nickel and chromium electrodeposited on the specified base metal. Conform to ASTM B456, SC-3, as applicable to the base metal.

2.3.3 Finish

FS AA-L-00486.

2.4 COMPONENTS

2.4.1 Built-In Locks

Provide locking devices as a padlock eye in the door latching mechanism. Built-in locks are not required.

2.4.2 Coat Hooks

FS AA-L-00486, chromium or zinc plated.

2.4.3 Door Handles

FS AA-L-00486. Provide zinc alloy or steel handles with a chromium coating.
2.4.4 Doors

FS AA-L-00486, not less than 0.0598 inch thick steel sheet.

2.4.4.1 Hinges

In addition to the requirements of FS AA-L-00486, provide 5-knuckle hinges, minimum 2 inches high. Fabricate knuckle hinges from not less than 0.0787 inch thick steel sheet. A full height piano hinge may be provided if standard with the manufacturer. Weld or bolt hinges to the door frame. Weld, bolt, or rivet hinges to the door.

2.4.4.2 Latching Mechanisms

FS AA-L-00486.

2.4.5 Latch Strikes

FS AA-L-00486. Fabricate from not less than 0.0787 inch thick steel sheet, except latch strike may be continuous from top to bottom and fabricated as part of the door framing.

2.4.6 Silencers

FS AA-L-00486.

2.4.7 Back and Side Panels, Tops, and Bottoms

FS AA-L-00486, not less than 0.0474 inch thick steel sheet.

2.4.8 Shelves

FS AA-L-00486. Fabricate from not less than 0.0598 inch thick steel sheet.

2.4.9 Number Plates

FS AA-L-00486. Aluminum.

2.4.10 Fastening Devices

Provide bolts, nuts, and rivets as specified in FS AA-L-00486.

PART 3 EXECUTION

3.1 ASSEMBLY AND INSTALLATION

Assemble lockers according to the locker manufacturer's instructions. Align lockers horizontally and vertically. Secure lockers to wall and base with screws as indicated. Bolt adjacent lockers together. Adjust doors to operate freely without sticking or binding and to ensure they close tightly.

3.2 NUMBERING SYSTEM

Install number plates on lockers consecutively. Coordinate with Government during Submittal process.
3.3 FIELD QUALITY CONTROL

3.3.1 Repairing

Remove and replace damaged and unacceptable portions of completed work with new.

3.3.2 Cleaning

Clean surfaces of the work, and adjacent surfaces soiled as a result of the work, in an approved manner. Remove equipment, surplus materials, and rubbish from the site.

-- End of Section --
SECTION 12 24 13
ROLLER WINDOW SHADES
08/10

PART 1 GENERAL

1.1 GENERAL REQUIREMENTS

Provide roller window shades, complete with necessary brackets, fittings, and hardware at windows indicated on the Drawings. Mount and operate equipment in accordance with manufacturer's instructions. Windows to receive a shade shall be completely covered.

a. Submit drawings showing plans, elevations, sections, product details, installation details, operational clearances, wiring diagrams and relationship to adjacent work. Include the use of same room designations as indicated on the drawings.

b. Provide manufacturer's data composed of catalog cuts, brochures, product information, and operating and maintenance instructions on each product to be used. Include styles, profiles and features.

c. Furnish samples of roller shade fabric. Shade material shall be minimum 6 by 6 inch in size. Mark face of material to indicate interior faces.

d. Submit fire resistance data, flame spread and smoke contribution data.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

ASTM INTERNATIONAL (ASTM)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-02 Shop Drawings
Window Shades; G
1.4 QUALITY ASSURANCE

1.4.1 Qualifications

1.4.1.1 Manufacturer's Qualifications

Obtain roller shades through one source from a single manufacturer with a minimum of twenty years experience and minimum of three projects of similar scope and size in manufacturing products comparable to those specified in this section.

1.4.1.2 Installer's Qualifications

Installer trained and certified by the manufacturer with a minimum of ten years experience in installing products comparable to those specified in this section.

1.4.2 Flammability Requirements

Passes in accordance with NFPA 701 small and large-scale vertical burn. Materials tested shall be identical to products proposed for use.

1.4.3 Anti-Microbial Requirements

'No Growth' per ASTM G21 results for fungi ATCC9642, ATCC 9644, ATCC9645.

1.5 DELIVERY, STORAGE, AND HANDLING

Deliver components to the jobsite in the manufacturer's original packaging with the brand or company name, item identification, and project reference clearly marked. Store components in a dry location that is adequately ventilated and free from dust, water, or other contaminants and has easy access for inspection and handling. Store materials flat in a clean dry area with temperature maintained above 50 degrees F. Do not open containers until needed for installation unless verification inspection is required.
1.6 WARRANTY

Provide 10 year minimum limited warranty.

PART 2 PRODUCTS

2.1 WINDOW SHADES

Roller tube shall operate smoothly and be of sufficient diameter and thickness to prevent excessive deflection. Provide brackets that are appropriate for ceiling mount. The shade cloth shall meet the performance described in NFPA 701, small scale test. Treat steel features for corrosion resistance.

2.1.1 Light Filtering Shades

Provide light filtering window shades to conform with the following:

a. Roller tube shall be extruded aluminum or steel. Diameter, wall thickness, and material to be selected by the manufacturer to accommodate the shade size. Provide roller idler assembly of molded nylon and zinc-plated steel pin. Sliding pin shall allow easy installation and removal of roller. Fabric shall be connected to the roller tube with double sided adhesive specifically developed to attach coated textiles to metal to eliminate horizontal impressions in fabric or attached with a spline lock system.

b. Fascia shall be L-shaped aluminum extrusion to conceal shade roller and hardware that snaps onto end caps without requiring exposed fasteners of any kind. Fascia can be mounted continuously across two or more shade bands.

c. End caps shall be stamped steel with universal design suitable for mounting to window mullions. Provide size compatible with roller size. End cap covers shall match fascia/headbox finish.

d. Provide hardware that allows for field adjustment or removal of shade roller tube and other operable hardware component without requiring removal of brackets and end or center supports. Provide hardware system that allows for operation of multiple shade bands by a single operator. Connectors shall be offset to assure alignment from the first to the last shade band. Provide shade hardware constructed of minimum 1/8 inch thick plated steel or heavier as required to support 150 percent of the full weight of each shade.

e. Manual Operated Chain Drive Hardware shall provide for universal, regular and offset drive capacity, allowing drive chain to fall at front, rear or non-offset for all shade drive end brackets. Universal offset shall be adjustable for future change. Provide positive mechanical engagement of drive mechanism to shade roller tube. The drive bracket shall be fully integrated with all accessories. Drive chain shall be #10 stainless steel chain rated to 90 lb. minimum breaking strength.

f. Operating function: Stop and hold shade at any position.

g. Accessories: Include all hardware, brackets, anchors, fasteners, and accessories necessary for a complete, finished installation.
2.2 COLOR

Provide color, pattern and texture for metal and shade fabric in accordance with Section 09 06 00 SCHEDULES FOR FINISHES. Color listed is not intended to limit the selection of equal colors from other manufacturers. Openness factor of shade fabric must be 10 percent.

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS

After becoming familiar with details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION

Perform installation in accordance with the approved detail drawings and manufacturer's installation instructions. Install units level, plumb, secure, and at proper height and location relative to window units. Provide and install supplementary or miscellaneous items in total, including clips, brackets, or anchorages incidental to or necessary for a sound, secure, and complete installation. Do not start installation until completion of room painting and finishing operations.

Ensure shades installed in recessed pockets can be removed without disturbing the pocket. The entire shade, when retracted, shall be contained inside the pocket. For shades installed outside the jambs and mullions, overlap each jamb and mullion 0.75 inch or more when the jamb and mullion sizes permit.

3.3 CLEAN-UP

Upon completion of the installation, clean window treatments and adjust them for form and appearance and proper operating condition. Repair or replace damaged units as directed by the Contracting Officer.

-- End of Section --
PART 1 GENERAL

This section shall be used for all new underground fire suppression piping and fire hydrant installation, to include installation of post indicator valve (PIV).

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN IRON AND STEEL INSTITUTE (AISI)

AISC/AISI 121 (2004) Standard Definitions for Use in the Design of Steel Structures

ASME INTERNATIONAL (ASME)

ASME B16.34 (2017) Valves - Flanged, Threaded and Welding End

ASME B31.1 (2016; Errata 2016) Power Piping

ASTM INTERNATIONAL (ASTM)

FM GLOBAL (FM)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-58 (1993; Reaffirmed 2010) Pipe Hangers and
1.2 ADMINISTRATIVE REQUIREMENTS

Conduct a survey of the work area. Submit a record of existing conditions showing the results of the survey of work area conditions and features of existing structures and facilities within and adjacent to the jobsite. Commencement of work constitutes acceptance of existing conditions.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Record of Existing Conditions; G

SD-02 Shop Drawings

Supporting Elements; G

Fire-Department Connections; G
PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Ensure fire-protection system materials and equipment provided under this section conform to the requirements of Underwriters Laboratories (UL) or the Factory Mutual (FM APP GUIDE).

Products with UL label or seal or listing in UL 6, and products with FM label or listed in the FM APP GUIDE are acceptable fire-protection system materials and equipment. Furnish materials and equipment compatible with existing system.

Submit equipment and performance data for fire protection sprinkler systems consisting of information on use life, system functional flows, safety features, and mechanical automated details.

2.2 EQUIPMENT

2.2.1 Underground Piping Materials

Provide ells, tees, reducing tees, wyes, couplings, increasers, crosses, transitions, and end caps of the same type and class of material as the pipe or have equal or superior physical and chemical properties.

2.2.1.1 Polyvinyl Chloride (PVC) Water Pipe

Provide polyvinyl chloride (PVC) pipe with bell end with gasket, and with spigot end conforming to the provisions of AWWA C900-16 Class 150. Pipe shall be listed for fire protection service. PVC fittings shall be of same class as pipe and gasketed joints.

PVC fittings shall conform to AWWA C900-16 and shall be Class 150 with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.

Restrain all changes in direction using concrete thrust blocks. Provide calculations per NFPA 24 guidelines.
2.2.2 Supporting Elements

Provide piping system components and miscellaneous supporting elements, including, but not limited to, building-structure attachments; supplementary steel; hanger rods, stanchions, and fixtures; vertical-pipe attachments; horizontal-pipe attachments; restraining anchors; and guides. Ensure supporting elements are suitable for stresses imposed by systems pressures and temperatures, natural, and other external forces.

Provide FM approved or UL listed supporting elements conforming to ASME B31.1, MSS SP-58, and ASME B16.34.

2.2.2.1 Building-Structure Attachments

For cast-in floor-mounted equipment-anchor devices, ensure adjustable positions are available.

Do not use powder-actuated anchoring devices to support mechanical-systems components.

a. Anchor Devices, Concrete and Masonry

(1) Ensure anchor devices conform to FS FF-S-325:

(2) Group I: Shield, expansion (lead, bolt, and stud anchors)

(3) Group II: Shield, expansion (bolt anchors), Type 2, Class 2, Style 1 or 2

(4) Group III: Shield, expansion (self drilling tubular expansion shell bolt anchors

b. Beam Clamps

(1) Provide center-loading beam clamps, Types 21, 28, 29, and 30, UL listed, cataloged, and load-rated commercially manufactured products.

(2) Use Type 20 beam clamps for pipe 2 inches and under.

(3) Use two Type 25 beam clamps per point of pipe support.

c. C-Clamps

(1) Ensure C-clamps are used to support piping sizes 1-1/2 inches and smaller. Use FM approved and UL listed C-clamps, with hardened cup-tip setscrew, locknut, and retaining strap. Retaining-strap section cannot be less than 1/8 by 1 inch. Beam-flange thickness to which clamps are attached cannot exceed 0.60 inch.

d. Concrete Inserts

(1) Construct concrete inserts in accordance with the requirements of MSS SP-58 for Type 18 and ASME B16.34. When applied to piping in sizes 2-inch iron pipe size (ips) and larger, and where otherwise required by imposed loads, insert and wire a 1-foot length of 1/2-inch reinforcing rod through wing slots.
2.2.2.2 Horizontal-Pipe Attachments

a. Single Pipes

(1) Support piping in sizes up to and including 2-inch ips by using Type 1, 5, 6, 7, 9, 10, 11, or 12 solid, split-ring, or band type attachments.

(2) Support piping in sizes 2-1/2 inches and larger by using Type 1, 2, 3, or 4 attachments or with Type 41 or Type 49 pipe rolls.

b. Parallel Fire-Protection Pipes

(1) Use trapeze hangers fabricated from approved structural steel shapes, with U-bolts, when so specified. Ensure structural-steel shapes conform to supplementary steel requirements or the support is commercially available, approved proprietary-design rolled steel.

2.2.2.3 Vertical-Pipe Attachments

Provide Type B single vertical-pipe attachments.

2.2.2.4 Hanger Rods and Fixtures

Use only circular solid cross section rod hangers to connect building structure attachments to pipe-support devices. Use pipe, straps, or bars of equivalent strength for hangers.

Provide turnbuckles, swing eyes, and clevises as required by support system to accommodate temperature changes, pipe accessibility, and adjustment for load and pitch.

2.2.2.5 Supplementary Steel

Where it is necessary to frame structural members between existing members or where structural members are used in lieu of commercially rated supports, design such supplementary steel and fabricate in accordance with AISC/AISI 121.

2.2.3 Fire-Department Connections

2.2.3.1 Fire Hydrants

Provide dry-barrel type hydrants, with low-profile and modern appearance. Design hydrants to remain closed if hydrant barrel is sheared or damaged. Select hydrants that have two 2-1/2-inch, hose outlets and one 4-1/2-inch hose outlet complete with non-binding caps and cap chains. Ensure hydrant direction of opening is counterclockwise. Ensure surface is filled, primed, and finished with a multiple-coat high-gloss weather-resistant enamel. All surfaces below grade receive a coating of bitumen not less than 20 mils thick. Exercise care not to plug barrel drainage provisions. Ensure hydrant color is standard for the project site.

2.2.4 Valves

2.2.4.1 Post Indicator Valve Assembly (PIV)

Assembly consists of a standard FM-approved or UL-listed inside-screw gate
valve with an above-grade post indicator or a completely factory-assembled FM-approved quarter-turn valve and above-grade post indicator-operator. Direction to open is counterclockwise.

Quarter-turn valve is a wafer-type butterfly valve, rated at 175 psi, elastomer-lined and sealed. Ensure the liner acts as a gasket between ASME B16.1, Class 125 or Class 250 flanges. Ensure post has a fail-safe feature to keep valve intact in case of breaking off above grade. Provide a worm-gear operator with permanently oil-lubricated watertight gear case complete with handle.

Apply a coating of bitumen not less than 20 mils thick on surfaces below grade. Fill, prime and finish above grade surfaces with a multiple coat of high-gloss, weather-resistant, red enamel.

Fit post indicator valves to accommodate electrical supervisory switches.

Provide electrical supervisory switches for interconnection to the building fire alarm system. Ensure switches and connections meet the requirements of Section 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM.

2.2.4.2 Fire-Hydrant Service Valves

Provide fire-hydrant service valves that are standard FM-approved or UL-listed inside-screw gate valve, with valve box connection flange.

2.2.4.3 Valve Boxes

Install valve boxes with not less than 3/16-inch thick cast-iron construction with locking cover that has a cast-in identification legend. Select adjustable extension type boxes with screw- or slide-type adjustment. Fit the base flange to the valve flange. Ensure the full extended length of box is greater than required by depth of cover by not less than 4 inches. Supply one valve-operating wrench for each size valve nut. Provide guide rings where operating rods are longer than 6 feet.

2.2.5 Painting

Furnish equipment of the manufacturer's standard product with the manufacturer's standard finish coat.

Furnish other mechanical equipment with a shop-applied prime paint.

2.3 MATERIALS

2.3.1 Bituminous Coating

Bituminous coating is a solvent cutback, heavy-bodied material to produce not less than a 12-mil dry-film thickness in one coat and is as recommended by the conduit manufacturer for compatibility with factory coating and rubber joints.

For previously coal-tar-coated and for uncoated ferrous surfaces underground, ensure the bituminous coating is a solvent cutback coal-tar type, conforming to MIL-C-18480.

2.3.2 Bolting

Ensure flange and general-purpose bolting is hex-head and conforms to
ASTM A307, Grade B. Ensure heavy hex-nuts conform to ASTM A563. Square-head bolts and nuts are not acceptable.

2.3.3 Elastomer Caulk

Use two component polysulfide- or polyurethane-base elastomer-caulking material, conforming to ASTM C920.

PART 3 EXECUTION

3.1 PREPARATION

3.2 INSTALLATION

Ensure installation of system materials and equipment is in accordance with the recommendations and provisions of NFPA 13 and NFPA 24. Perform work in the presence of the Contracting Officer. Notify the Contracting Officer 48 hours in advance of the start of work.

Perform all installation work by licensed fire protection sprinkler contractors, licensed for such work in the state where the work is to be performed.

3.2.1 Underground Piping Installation

Ensure installation of piping materials conforms to the written or published instructions of the manufacturer.

For pipes passing through walls below grade and ground-floor slab, insert the pipe through pipe sleeves one size larger than pipe. Caulk the pipe sleeve watertight with lead and oakum or mechanically expandable chloroprene inserts with bitumen sealed metal components.

In fill areas, ensure the pipe passing under or through building grade beams has a minimum clearance of 4 inches in all directions.

For rubber- or elastomer-jointed piping embedded in concrete walls, install a joint within 6 inches of the face of the wall capable of absorbing movement without leakage.

Use extended-joint or flange-bolt pipe when penetrating earth or concrete grade to a height 6 inches above the grade.

Support underground piping below supported or suspended slabs from the slab with a minimum of two supports per length of pipe. Protect supports with a coating of bitumen.

On excavations near and below building footings, use the backfilling material consisting of 2,000-psi cured-strength concrete, poured or pressure-grouted up to the level of the footing.

After piping has been inspected, and not less than 48 hours prior to being lowered into a trench, coat external surfaces of the piping, valves, valve operators, and valve boxes with a compatible bituminous coating suitable for protection against brackish ground water. Apply coating in accordance with the manufacturer's instructions to a dry-film thickness of not less than 12 mils.
3.2.1.1 Fire Hydrants

Set hydrant outlet elevations between 24 inches, minimum, to 36 inches, maximum, above grade. Face the 4-1/2-inch outlet toward the road or area of access.

3.2.1.2 Valve Boxes

Set valve and valve boxes plumb. Center valve boxes on the valves. Where feasible, locate valves outside traffic areas. Carefully tamp soil around each valve box to a distance of 4 feet on all sides of the box or to the undisturbed trench face when less than 4 feet.

Install Class 3000A concrete slabs 2 feet square by 4 inches thick to protect valve boxes, unless other protection is indicated.

3.2.1.3 Thrust Blocks

Construct 3,000-psi cured-strength thrust blocks to absorb hydraulic thrust at caps, plugs, and at system change-of-direction fittings. Place concrete against undisturbed soil, with an area sufficient to provide load transmittal.

3.2.1.4 Polyvinyl Chloride (PVC) Pipe Installation

Comply with NFPA 24 for fire-service-main piping materials and installation.

Install PVC, AWWA pipe according to ASTM F645 and AWWA M23.

Install underground piping with restrained joints at horizontal and vertical changes in direction. Use restrained-joint piping, thrust blocks, anchors, tie-rods and clamps, and other supports.

Joint Construction: Use joining materials according to AWWA C900-16. Construct joints with elastomeric seals and lubricant according to ASTM D 2774 or ASTM D 3139.

Dissimilar Materials Piping Joints: Use adapters compatible with both piping materials, with OD and with system working pressure.

3.2.2 Aboveground Piping-Systems Installation

Run piping parallel with the lines of the building. Space and install piping and components so that a threaded pipe fitting may be removed between adjacent pipes and so that there is not less than 1/2 inch of clear space between the finished surface and other work and between the finished surface of parallel adjacent piping. Arrange hangers on different adjacent service lines running parallel to be in line with each other and parallel to the lines of the building.

Base the load rating for pipe-hanger supports on all lines filled with water. Deflection per span cannot not exceed slope gradient of pipe. Ensure Schedule 40 and heavier ferrous pipe supports are in accordance with the following minimum rod size and maximum allowable hanger spacing. For concentrated loads such as valves, reduce the allowable span proportionately.
<table>
<thead>
<tr>
<th>PIPE SIZE (INCHES)</th>
<th>ROD SIZE (INCHES)</th>
<th>HANGER SPACING FOR STEEL PIPE (FEET)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1</td>
<td>3/8</td>
<td>8</td>
</tr>
<tr>
<td>1-1/4</td>
<td>3/8</td>
<td>12</td>
</tr>
<tr>
<td>1-1/2</td>
<td>3/8</td>
<td>15</td>
</tr>
<tr>
<td>2-1/2 to 3-1/2</td>
<td>3/8</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1/2</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>1/2</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>1/2</td>
<td>15</td>
</tr>
</tbody>
</table>

Support vertical risers at the base where possible and at intervals specified. Guide piping for lateral stability as necessary. Place clamps under fittings wherever possible. Support carbon-steel pipe at each floor at not more than 15-foot intervals for pipe 2 inches and smaller, and at not more than 20-foot intervals for pipe 2-1/2 inches and larger.

Securely support pipe with allowance for thrust forces, thermal expansion and contraction, and not be subject to mechanical, chemical, vibrational, or other damage, in conformance with ASME B31.1.

3.2.3 Sound Stopping

Provide effective sound stopping and adequate operating clearance to prevent structure contact where piping penetrates walls, floors, or ceilings; into occupied spaces adjacent to equipment rooms; where similar penetrations occur between occupied spaces; and where penetrations occur from pipe chases into occupied spaces. Occupied spaces include space above ceiling where no special acoustic treatment of ceiling is provided. Construct penetrations with finishes compatible with surface being penetrated.

Sound stopping and vapor-barrier sealing of pipe shafts, and large floor and wall openings may be accomplished by packing with properly supported mineral fiber insulation or by foaming-in-place with self-extinguishing, 2-pound density polyurethane foam to a depth not less than 6 inches. Finish foam with a rasp. Ensure vapor barrier is not less than 1/8-inch thickness of vinyl mastic applied to visible and accessible surfaces. Where fire stopping is a consideration, use only mineral fiber, and, in addition, cover openings with 16-gage sheet metal.

3.2.4 Sleeves

Provide sleeves where piping passes through roofs, masonry or concrete walls, or floors.

Continuously weld or braze sleeves to the deck when passing through steel decks.

Install sleeves that are continuous when extending through floors, roofs,
or load-bearing walls, and sleeves through fire barriers. Fabricate sleeves from Schedule 40 steel pipe with welded anchor lugs. Form other sleeves by molded linear polyethylene liners or similar materials that are removable. Ensure diameter of sleeves is large enough to accommodate pipe, insulation, and jacketing without touching the sleeve, and additionally provides a minimum 3/8-inch clearance. Install sleeve to accommodate mechanical and thermal motion of pipe and to preclude transmission of vibration to walls and generation of noise.

Pack solid the space between a pipe and the inside of a pipe sleeve or a construction surface penetration or wherever the piping passes through firewalls, equipment-room walls, floors, and ceilings connected to occupied spaces, and other locations where sleeves or construction-surface penetrations occur between occupied spaces. Use a mineral fiber conforming to ASTM C592. Where sleeves or construction-surface penetrations occur between conditioned and unconditioned spaces, fill the space between a pipe, bare or insulated, and the inside of a pipe sleeve or construction-surface penetration with an elastomer caulk to a depth of 1/2 inch. Ensure surfaces are oil- and grease-free before caulking.

Caulk exterior wall sleeves watertight with lead and oakum or mechanically expandable chloroprene inserts with mastic-sealed components.

3.2.5 Escutcheons

Install escutcheons at penetrations of piping into finished areas. Where finished areas are separated by partitions through which piping passes, provide escutcheons on both sides of the partition. Where suspended ceilings are installed, attach plates at the underside only of such ceilings. Use chrome plated escutcheons in occupied spaces and conceal openings in building construction. Ensure escutcheons are firmly attached.

3.2.6 Electrical Work

Electrical work is specified in DIVISION 26 ELECTRICAL except for control and fire alarm wiring which is provided under this section in accordance with NFPA 70. Use rigid metal conduit or intermediate metal conduit, except that electrical metallic tubing may be used in dry locations not enclosed in concrete or where not subject to mechanical damage.

Furnish motors, controllers, contactors, and disconnects with their respective pieces of equipment, except that controllers indicated as part of the motor control centers are provided under Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Ensure motors, controllers, contactors, and disconnects conform to and have electrical connections provided under Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Ensure controllers and contactors have maximum 120-volt control circuits, and auxiliary contacts for use with the controls furnished.

3.3 FIELD QUALITY CONTROL

3.3.1 Fire-Protection System Identification

Create a coordinated system of piping and equipment identification which includes the following:

a. Framed and plastic-protected diagrammatic layout of all piping systems, identifying and locating piping, equipment, and valves. Where existing systems are being modified, bring existing layouts up to date.
b. Metal-tag-identified major valves, piping-system components, and equipment.

c. Metal identification plate at controlling alarm valve identifying system and area protected.

d. Service-labeled piping.

3.3.1.1 Diagrams

Chart listing of equipment is by designation number and shows pertinent data. Mount mechanical drawings in extruded aluminum frames with 1/8-inch thick acrylic plastic protection. Location is as directed by the Contracting Officer. Provide a minimum of one mounted chart and diagram, plus one extra copy of each, for each fire-protection system.

3.3.1.2 Metal Tags

Install identification tags made of brass or aluminum and indicating function of valve or similar component, on such system devices. Furnish tags not less than 2 inches in diameter with a stamped marking.

Install equipment with metal identification tags that bear an equipment designation number matching the drawing or diagram designations.

Secure tags to valve or equipment items with 12-gage galvanized wire.

3.3.1.3 Service Labeling

Label piping, including that concealed in accessible spaces, to designate service. Include on each label, an arrow or arrows to indicate flow direction. Labels or tag designations are as follows:

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>LABEL OR TAG DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main sprinkler supply</td>
<td>MAIN SPRINKLER SUPPLY</td>
</tr>
<tr>
<td>Sprinkler riser number</td>
<td>SPRINKLER RISER NO.</td>
</tr>
<tr>
<td>Sprinkler branch</td>
<td>SPRINKLER BRANCH</td>
</tr>
<tr>
<td>Standpipe piping</td>
<td>STANDPIPE</td>
</tr>
</tbody>
</table>

Label piping and arrow in accordance with the following:

a. Each point of entry and exit through walls.

b. Each change in direction.

c. In congested or hidden areas, at each point required to clarify service or indicate hazard.

d. In long straight runs, locate labels at a distance visible to each other, but in no case have the distance between labels exceed 40 feet.

e. Ensure lettering is 2 inches high. Where the size of pipes is...
2-1/2-inch outside diameter and smaller, attach labels to 16-gage aluminum sheet and attach to the pipe with 12-gage galvanized wire. Ensure labels are legible from the primary service and operating area.

f. Make labels of self-sticking plastic film designed for permanent installation. Provide labels with red letters on white background.

g. The label and valve tag schedule above is not construed as defining or limiting the work. Label all piping.

3.3.2 Branch-Line Testers

Ensure branch-line testers permit testing and flushing lines without shutdown of system or loss of fire-protection capability. Fit line testers with chain-attached caps.

Install line testers where indicated and on most remote branch lines being served by cross mains, so that testing may be accomplished at the dead corners of each sprinkler system.

3.3.3 System Testing

Government will supply testing water at a location determined by the Contracting Officer. The Contractor is responsible for approved disposal of contaminated water.

Prior to acceptance of the work, test completed systems in the presence of the Contracting Officer. Upon approval, provide certificates of testing.

Conduct a hydrostatic test, unless otherwise specified. Use only potable water for testing.

Prepare and maintain test records of piping-system tests. Ensure records show personnel responsibilities, dates, test-gage identification numbers, ambient and test-water temperatures, pressure ranges, rates of pressure drops, and leakage rates. Each test acceptance requires the signature of the Contracting Officer.

3.3.4 Test Gages

Acceptable test gages have 4-1/2-inch dials or larger with accuracy of plus or minus 1/2 of 1 percent of full-scale range and dial graduations and pointer width compatible with readability to within one-half of the accuracy extremes. Maximum permissible scale range for a given test is such that the pointer during a test has a starting position at midpoint of the dial or within the middle third of the scale range. Ensure the Certification of accuracy and correction table has: a date within 90 calendar days prior to the test, the test gage number, and the project number.

3.3.5 Test and Acceptable Criteria

Perform above ground systems pressure tests at 200 psi and maintain the applied pressure without further addition of test media for not less than 2 hours. No pressure drop is allowed.

Test underground rubber-jointed ferrous-pipe water systems at 200 psi, and maintain the applied test pressure for not less than 2 hours. Maximum allowable pressure drop is 2 psi. After satisfactory hydrostatic testing,
test piping for leakage as follows:

a. Duration of each leakage test is not less than 2 hours; during the test, subject the main to 200 psi pressure based on the elevation of the lowest section under test and corrected to the elevation of the test gage.

b. Leakage is defined as the quantity of water supplied into the laid pipe, or any valved section thereof, necessary to maintain the specified leakage test pressure after the pipe has been filled with water and the air expelled.

c. No piping installation will be accepted if the leakage in gallons per hour exceeds 0.00054 times the number of joints in the length of the pipe line tested times the nominal diameter of the pipe in inches times the square root of the average test pressure expressed as psig. Amount of leakage at the joints cannot exceed 2 quarts per 100 joints regardless of pipe diameter.

d. Apply hydrostatic tests to piping with concrete thrust blocking only after the concrete has cured for more than 7 calendar days.

Test backflow prevention into connected potable-water systems and system devices for proper functioning under conditions normal to their application.

Repair dripping or weeping joints.

3.4 ADJUSTING AND CLEANING

At the completion of the work, clean all parts of the installation. Clean equipment, pipes, valves, and fittings of grease, metal cuttings, and sludge that may have accumulated from the installation and testing of the system. Adjust automatic control devices for proper operation.

3.5 PROTECTION

3.5.1 Disinfection

Disinfect water piping, including valves, fittings, and other devices, with a solution of chlorine and water. Use a solution containing not less than 50 parts per million (ppm) of available chlorine. Hold solution for a period of not less than 8 hours, at which time the solution contains a minimum residue of 2 ppm of available chlorine or repeat disinfection of the system. After successful disinfection the piping, thoroughly flush the system before placing into service. Water for both disinfection and flushing will be furnished by the Government.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1015 (2011) Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies - (ANSI approved 2010)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

ASME INTERNATIONAL (ASME)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded
ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges
ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300
ASME B16.4 (2011) Standard for Gray Iron Threaded Fittings; Classes 125 and 250
Steel Buttwelding Fittings

ASTM INTERNATIONAL (ASTM)

ASTM F436 (2011) Hardened Steel Washers

FM GLOBAL (FM)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-71 (2011; Errata 2013) Gray Iron Swing Check Valves, Flanged and Threaded Ends

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 13 (2016; TIA 16-1; TIA 16-2; TIA 16-3 2016; Errata 17-1; Errata 17-2) Standard for the Installation of Sprinkler Systems

1.2 SYSTEM DESCRIPTION

Furnish piping offsets, fittings, and any other accessories as required to provide a complete installation and to eliminate interference with other construction. Install sprinkler system over and under ducts, piping and platforms when such equipment can negatively effect or disrupt the sprinkler discharge pattern and coverage. Provide wet pipe sprinkler system in all areas of the building. Except as modified herein, the system shall be designed and installed in accordance with NFPA 13. Pipe sizes which are not indicated on drawings shall be determined by hydraulic calculation. Design any portions of the sprinkler system that are not indicated on the drawings including locating sprinklers, piping and equipment, and size piping and equipment when this information is not indicated on the drawings or is not specified herein. The design of the sprinkler system shall be based on hydraulic calculations, and the other provisions specified herein.

1.2.1 Hydraulic Design

Hydraulically design the system to discharge a minimum density of 0.20 gpm/square foot over the hydraulically most demanding 2500 square feet of floor area except where noted otherwise on drawings. The minimum pipe size for branch lines in gridded systems shall be 1-1/4 inch. Hydraulic calculations shall be in accordance with the Area/Density Method of NFPA 13. Water velocity in the piping shall not exceed 20 ft/s.

1.2.1.1 Hose Demand

Add an allowance for exterior hose streams of 250 gpm to the sprinkler system demand at the point of connection to the existing system.

1.2.1.2 Basis for Calculations

The design of the system shall be based upon a water supply with a static pressure of 57 psi, and a flow of 2300 GPM at a residual pressure of 46 psi. Water supply shall be presumed available at the point of connection to existing. Hydraulic calculations shall be based upon the Hazen-Williams formula with a "C" value of 120 for steel piping, 150 for pvc underground piping, 140 for new cement-lined ductile-iron piping, and 100 for existing ductile iron underground piping.

1.2.1.3 Hydraulic Calculations

Submit hydraulic calculations, including a drawing showing hydraulic
reference points and pipe segments and as outlined in NFPA 13, except that
calculations shall be performed by computer using software intended
specifically for fire protection system design using the design data shown
on the drawings. Software that uses k-factors for typical branch lines is
not acceptable. Calculations shall be based on the water supply data shown
on the drawings to substantiate that the design area used in the
calculations is the most demanding hydraulically. Water supply curves and
system requirements shall be plotted on semi-logarithmic graph paper so as
to present a summary of the complete hydraulic calculation. Provide a
summary sheet listing sprinklers in the design area and their respective
hydraulic reference points, elevations, actual discharge pressures and
actual flows. Elevations of hydraulic reference points (nodes) shall be
indicated. Documentation shall identify each pipe individually and the
nodes connected thereto. Indicate the diameter, length, flow, velocity,
friction loss, number and type fittings, total friction loss in the pipe,
equivalent pipe length and Hazen-Williams coefficient for each pipe. For
gridded systems, calculations shall show peaking of demand area friction
loss to verify that the hydraulically most demanding area is being used.
Also for gridded systems, a flow diagram indicating the quantity and
direction of flows shall be included. A drawing showing hydraulic
reference points (nodes) and pipe designations used in the calculations
shall be included and shall be independent of shop drawings.

1.2.2 Sprinkler Coverage

Sprinklers shall be uniformly spaced on branch lines. In buildings
protected by automatic sprinklers, sprinklers shall provide coverage
throughout 100 percent of the building. This includes, but is not limited
to, telephone rooms, electrical equipment rooms, boiler rooms, switchgear
rooms, transformer rooms, and other electrical and mechanical spaces.
Coverage per sprinkler shall be in accordance with NFPA 13, but shall not
exceed 100 square feet for extra hazard occupancies, 130 square feet for
ordinary hazard occupancies, and 225 square feet for light hazard
occupancies.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation;
submittals not having a "G" designation are for Contractor Quality Control
approval. Submittals with an "S" are for inclusion in the Sustainability
eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING.
Submit the following in accordance with Section 01 33 00 SUBMITTAL
PROCEDURES:

SD-02 Shop Drawings

Shop Drawings; G
As-Built Drawings

SD-03 Product Data

Fire Protection Related Submittals
Materials and Equipment; G
Spare Parts
Preliminary Tests; G
Final Acceptance Test; G
Onsite Training; G
Fire Protection Specialist; G
Sprinkler System Installer; G
1.4 QUALITY ASSURANCE

Compliance with referenced NFPA standards is mandatory. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification governs. Interpret reference to "authority having jurisdiction" to mean the Contracting Officer.

1.4.1 Fire Protection Specialist

Perform work specified in this section under the supervision of and certified by the Fire Protection Specialist who is an individual registered professional engineer who has passed the fire protection engineering written examination administered by the National Council of Examiners for Engineering and Surveys (NCEES) in a related engineering discipline with a minimum of 5 years experience, dedicated to fire protection engineering that can be verified with documentation or who is certified as a Level III Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014-7. Submit the name and documentation of certification of the proposed Fire Protection Specialists, no later than 14 days after the Notice to Proceed and prior to the submittal of the sprinkler system drawings and hydraulic calculations. The Fire Protection Specialist shall prepare and submit a list of the fire protection related submittals, no later than 7 days after the approval of the Fire Protection Specialist, from the Contract Submittal Register that relate to the successful installation of the sprinkler systems(s). The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months.

1.4.2 Sprinkler System Installer

Work specified in this section shall be performed by the Sprinkler System Installer who is regularly engaged in the installation of the type and complexity of system specified in the contract documents, and who has served in a similar capacity for at least three systems that have performed
in the manner intended for a period of not less than 6 months. Submit the name and documentation of certification of the proposed Sprinkler System Installer, concurrent with submittal of the Fire Protection Specialist Qualifications.

1.4.3 Shop Drawings

Shop Drawings shall conform to the requirements established for working plans as prescribed in NFPA 13. Submit 3 copies of the Sprinkler System shop drawings, no later than 21 days prior to the start of sprinkler system installation. Drawings shall include plan and elevation views demonstrating that the equipment will fit the allotted spaces with clearance for installation and maintenance. Each set of drawings shall include the following:

a. Descriptive index of drawings in the submittal with drawings listed in sequence by drawing number. A legend identifying device symbols, nomenclature, and conventions used.

b. Floor plans drawn to a scale not less than 1/8" = 1'-0" which clearly show locations of sprinklers, risers, pipe hangers, seismic separation assemblies, sway bracing, inspector's test connections, drains, and other applicable details necessary to clearly describe the proposed arrangement. Each type of fitting used and the locations of bushings, reducing couplings, and welded joints shall be indicated.

c. Actual center-to-center dimensions between sprinklers on branch lines and between branch lines; from end sprinklers to adjacent walls; from walls to branch lines; from sprinkler feed mains, cross-mains and branch lines to finished floor and roof or ceiling. A detail shall show the dimension from the sprinkler and sprinkler deflector to the ceiling in finished areas.

d. Longitudinal and transverse building sections showing typical branch line and cross-main pipe routing as well as elevation of each typical sprinkler above finished floor.

e. Details of each type of riser assembly; pipe hanger; and restraint of underground water main at point-of-entry into the building, and electrical devices and interconnecting wiring. Submit load calculations for sizing of sway bracing, for systems that are required to be protected against damage from earthquakes.

1.5 DELIVERY, STORAGE, AND HANDLING

All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed.

1.6 EXTRA MATERIALS

Submit spare parts data for each different item of material and equipment specified. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, and a list of parts recommended by the manufacturer to be replaced after 1 year and 3 years of service. Include a list of special tools and test equipment required for maintenance and testing of the products supplied.
PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide materials and equipment which are standard products of a manufacturer regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening.

2.2 NAMEPLATES

All equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number.

2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE

Provide Materials and Equipment that have been tested by Underwriters Laboratories, Inc. and are listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM APP GUIDE. Submit manufacturer's catalog data included with the Sprinkler System Drawings for all items specified herein. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with all contract requirements. In addition, provide a complete equipment list that includes equipment description, model number and quantity.

2.4 UNDERGROUND PIPING COMPONENTS

2.4.1 Pipe

Piping from a point 6 inches above the floor to a point 5 feet outside the building wall shall be ductile iron with a rated working pressure of 150 psi conforming to AWWA C151/A21.51, with cement mortar lining conforming to AWWA C104/A21.4. Piping more than 5 feet outside the building walls shall comply with Section 33 11 00 WATER UTILITY DISTRIBUTION PIPING.

2.4.2 Fittings and Gaskets

Fittings shall be ductile iron conforming to AWWA C110/A21.10 with cement mortar lining conforming to AWWA C104/A21.4. Gaskets shall be suitable in design and size for the pipe with which such gaskets are to be used. Gaskets for ductile iron pipe joints shall conform to AWWA C111/A21.11.

2.5 ABOVEGROUND PIPING COMPONENTS

Aboveground piping shall be steel.

2.5.1 Steel Piping Components

2.5.1.1 Steel Pipe

Except as modified herein, steel pipe shall be blackas permitted by NFPA 13 and shall conform to applicable provisions of ASTM A795/A795M, ASTM A53/A53M, or ASTM A135/A135M. Pipe in which threads or grooves are cut or rolled formed shall be Schedule 40 or shall be listed by Underwriters' Laboratories to have a corrosion resistance ratio (CRR) of 1.0 or greater after threads or grooves are cut or rolled formed. Pipe shall be marked
with the name of the manufacturer, kind of pipe, and ASTM designation.

2.5.1.2 Fittings for Non-Grooved Steel Pipe

Fittings shall be cast iron conforming to ASME B16.4, steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used.

2.5.1.3 Grooved Mechanical Joints and Fittings

Joints and fittings shall be designed for not less than 175 psi service and shall be the product of the same manufacturer; segmented welded fittings shall not be used. Fitting and coupling houses shall be malleable iron conforming to ASTM A47/A47M, Grade 32510; ductile iron conforming to ASTM A536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A183 and shall be cadmium plated or zinc electroplated.

2.5.1.4 Flanges

Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos compressed material in accordance with ASME B16.21, 1/16 inch thick, and full face or self-centering flat ring type.

2.5.1.5 Bolts, Nut, and Washers

Bolts shall be conform to ASTM A449, Type 1 and shall extend no less than three full threads beyond the nut with bolts tightened to the required torque. Nuts shall be hexagon type conforming to ASME B18.2.2. Washers shall meet the requirements of ASTM F436. Flat circular washers shall be provided under all bolt heads and nuts.

2.5.2 Pipe Hangers

Hangers shall be listed in UL Fire Prot Dir or FM APP GUIDE and of the type suitable for the application, construction, and pipe type and sized to be supported.

2.5.3 Valves

2.5.3.1 Control Valve and Gate Valve

Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) type and shall be listed in UL Bld Mat Dir or FM APP GUIDE.

2.5.3.2 Check Valve

Check valve 2 inches and larger shall be listed in UL Bld Mat Dir or FM APP GUIDE. Check valves 4 inches and larger shall be of the swing type with flanged cast iron body and flanged inspection plate, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4.
2.6 WATERFLOW ALARM

Electrically operated, exterior-mounted, waterflow alarm bell shall be provided and installed in accordance with NFPA 13. Waterflow alarm bell shall be rated 24 VDC and shall be connected to the Fire Alarm Control Panel (FACP) in accordance with Section 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM.

2.7 ALARM INITIATING AND SUPERVISORY DEVICES

2.7.1 Sprinkler Waterflow Indicator Switch, Vane Type

Switch shall be vane type with a pipe saddle and cast aluminum housing. The electro-mechanical device shall include a flexible, low-density polyethylene paddle conforming to the inside diameter of the fire protection pipe. The device shall sense water movements and be capable of detecting a sustained flow of 10 gpm or greater. The device shall contain a retard device adjustable from 0 to 90 seconds to reduce the possibility of false alarms caused by transient flow surges. The switch shall be tamper resistant and contain two SPDT (Form C) contacts arranged to transfer upon removal of the housing cover, and shall be equipped with a silicone rubber gasket to assure positive water seal and a dustproof cover and gasket to seal the mechanism from dirt and moisture.

2.7.2 Valve Supervisory (Tamper) Switch

Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem.

2.8 FIRE DEPARTMENT CONNECTION

Fire department connection shall be flush type with cast brass body, matching wall escutcheon lettered "Auto Spkr" with a polished brass finish. The connection shall have two inlets with individual self-closing clappers, caps with drip drains and chains. Female inlets shall have 2-1/2 inch diameter American National Fire Hose Connection Screw Threads (NH) per NFPA 1963.

2.9 SPRINKLERS

Sprinklers with internal O-rings shall not be used. Sprinklers shall be quick response type. Sprinklers shall be used in accordance with their listed coverage limitations. Temperature classification shall be ordinary unless otherwise noted on plans. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Extended coverage sprinklers shall not be used.

2.9.1 Concealed Sprinkler

Concealed sprinkler shall be white polyester quick-response type and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.2 Recessed Sprinkler

Recessed sprinkler shall be white polyester and shall have a nominal 1/2 inch or 17/32 inch orifice.
2.9.3 Flush Sprinkler

Flush sprinkler shall be white polyester quick-response type and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.4 Pendent Sprinkler

Pendent sprinkler shall be of the fusible strut or glass bulb type, recessed quick-response type with nominal 1/2 inch orifice. Pendent sprinklers shall have a white polyester finish.

2.9.5 Upright Sprinkler

Upright sprinkler shall be brass quick-response type and shall have a nominal 1/2 inch or 17/32 inch orifice.

2.9.6 Sidewall Sprinkler

Sidewall sprinkler shall have a nominal 1/2 inch orifice. Sidewall sprinkler shall have a white polyester finish. Sidewall sprinkler shall be the quick-response type.

2.9.7 Dry Sprinkler Assembly

Dry sprinkler assembly shall be of the pendent or sidewall type as indicated. Assembly shall include an integral escutcheon. Maximum length shall not exceed maximum indicated in UL Fire Prot Dir. Sprinklers shall have a polished chrome or white enamel finish.

2.10 ACCESSORIES

2.10.1 Sprinkler Cabinet

Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required shall be provided.

2.10.2 Pendent Sprinkler Escutcheon

Escutcheon shall be one-piece metallic type with a depth of less than 3/4 inch and suitable for installation on pendent sprinklers. The escutcheon shall have a factory finish that matches the pendent sprinkler heads.

2.10.3 Pipe Escutcheon

Escutcheon shall be polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or set screw.

2.10.4 Sprinkler Guard

Guard shall be a steel wire cage designed to encase the sprinkler and protect it from mechanical damage. Guards shall be provided on sprinklers located as indicated.
2.10.5 Identification Sign

Valve identification sign shall be minimum 6 inches wide by 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components.

2.11 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY

Double-check backflow prevention assembly shall comply with ASSE 1015. The assembly shall have a bronze, cast-iron or stainless steel body with flanged ends. The assembly shall include pressure gauge test ports and OS&Y shutoff valves on the inlet and outlet, 2-positive-seating check valve for continuous pressure application, and four test cocks. Assemblies shall be rated for working pressure of 150 psi. The maximum pressure loss shall be 6 psi at a flow rate equal to the sprinkler water demand, at the location of the assembly. A test port for a pressure gauge shall be provided both upstream and downstream of the double check backflow prevention assembly valves.

PART 3 EXECUTION

3.1 FIELD MEASUREMENTS

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 INSTALLATION REQUIREMENTS

The installation shall be in accordance with the applicable provisions of NFPA 13, NFPA 24 and publications referenced therein. Installation of in-rack sprinklers shall comply with applicable provisions of NFPA 13.

3.3 INSPECTION BY FIRE PROTECTION SPECIALIST

Prior to ceiling installation and concurrent with the Final Acceptance Test Report, certification by the Fire Protection Specialist that the sprinkler system is installed in accordance with the contract requirements, including signed approval of the Preliminary and Final Acceptance Test Reports. The Fire Protection Specialist shall: 1) inspect the sprinkler system periodically during the installation to assure that the sprinkler system is being provided and installed in accordance with the contract requirements, 2) witness the preliminary and final tests, and sign the test results, 3) after completion of the system inspections and a successful final test, certify in writing that the system has been installed in accordance with the contract requirements. Any discrepancy shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered.

3.4 ABOVEGROUND PIPING INSTALLATION

3.4.1 Piping in Exposed Areas

Install exposed piping without diminishing exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom.
3.4.2 Piping in Finished Areas

In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed.

3.4.3 Pendent Sprinklers

Drop nipples to pendent sprinklers shall consist of minimum 1 inch pipe with a reducing coupling into which the sprinkler shall be threaded. Hangers shall be provided on arm-overs to drop nipples supplying pendent sprinklers when the arm-over exceeds 12 inches for steel pipe or 6 inches for copper tubing. Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 1 inch below the underside of the ceiling. On pendent sprinklers installed below suspended or dropped ceilings, the distance from the sprinkler deflector to the underside of the ceiling shall not exceed 4 inches. Recessed pendent sprinklers shall be installed such that the distance from the sprinkler deflector to the underside of the ceiling shall not exceed the manufacturer's listed range and shall be of uniform depth throughout the finished area. Pendent sprinklers in suspended ceilings shall be a minimum of 6 inches from ceiling grid.

3.4.4 Upright Sprinklers

Riser nipples or "sprigs" to upright sprinklers shall contain no fittings between the branch line tee and the reducing coupling at the sprinkler. Riser nipples exceeding 30 inches in length shall be individually supported.

3.4.5 Pipe Joints

Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest published specification according to pipe material, wall thickness and size. Grooved couplings, fittings and grooving tools shall be products of the same manufacturer. For copper tubing, pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations, such as behind solid walls or ceilings, unless an access panel is shown on the drawings for servicing or adjusting the joint.

3.4.6 Reducers

Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings
will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch.

3.4.7 Pipe Penetrations

Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. Where pipes penetrate fire walls, fire partitions, or floors, pipes shall be fire stopped in accordance with Section 07 84 00 FIRESTOPPING. In penetrations that are not fire-rated or not a floor penetration, the space between the sleeve and the pipe shall be sealed at both ends with plastic waterproof cement that will dry to a firm but pliable mass or with a mechanically adjustable segmented elastomer seal.

3.4.8 Escutcheons

Escutcheons shall be provided for pipe penetration of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes.

3.4.9 Inspector's Test Connection

Unless otherwise indicated, test connection shall consist of 1 inch pipe connected at the riser as a combination test and drain valve; a test valve located approximately 7 feet above the floor; a smooth bore brass outlet equivalent to the smallest orifice sprinkler used in the system; and a painted metal identification sign affixed to the valve with the words "Inspector's Test." The discharge orifice shall be located outside the building wall directed so as not to cause damage to adjacent construction or landscaping during full flow discharge.

3.4.10 Drains

Main drain piping shall be provided to discharge at the location indicated. Auxiliary drains shall be provided as required by NFPA 13.

3.4.11 Installation of Fire Department Connection

Connection shall be mounted on the exterior wall approximately 3 feet above finished grade adjacent to and on the sprinkler system side of the backflow preventer. The piping between the connection and the check valve shall be provided with an automatic drip in accordance with NFPA 13 and arranged to drain to the outside.

3.4.12 Identification Signs

Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Hydraulic design data nameplates shall be permanently
affixed to each sprinkler riser as specified in NFPA 13.

3.5 UNDERGROUND PIPING INSTALLATION

The fire protection water main shall be laid, and joints anchored, in accordance with NFPA 24. Minimum depth of cover shall be 6 feet. The supply line shall terminate inside the building with a flanged piece, the bottom of which shall be set not less than 6 inches above the finished floor. A blind flange shall be installed temporarily on top of the flanged piece to prevent the entrance of foreign matter into the supply line. A concrete thrust block shall be provided at the elbow where the pipe turns up toward the floor. In addition, joints shall be anchored in accordance with NFPA 24 using pipe clamps and steel rods from the elbow to the flange above the floor and from the elbow to a pipe clamp in the horizontal run of pipe. Buried steel components shall be provided with a corrosion protective coating in accordance with AWWA C203. Piping more than 5 feet outside the building walls shall meet the requirements of Section 33 11 00 WATER UTILITY DISTRIBUTION PIPING.

3.6 ELECTRICAL WORK

Except as modified herein, electric equipment and wiring shall be in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Alarm signal wiring connected to the building fire alarm control system shall be in accordance with Section 28 31 76 INTERIOR FIRE ALARM AND MASS NOTIFICATION SYSTEM. All wiring for supervisory and alarm circuits shall be #14 AWG solid copper installed in metallic tubing or conduit. Wiring color code shall remain uniform throughout the system.

3.7 PIPE COLOR CODE MARKING

Color code mark piping as specified in Section 09 90 00 PAINTS AND COATINGS.

3.8 PRELIMINARY TESTS

The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. Submit proposed procedures for Preliminary Tests, no later than 14 days prior to the proposed start of the tests and proposed date and time to begin the preliminary tests. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Upon completion of specified tests, submit 3 copies of the completed Preliminary Test Report, no later than 7 days after the completion of the Tests. The Report shall include both the Contractor's Material and Test Certificate for Underground Piping and the Contractor's Material and Test Certificate for Aboveground Piping. All items in the Preliminary Tests Report shall be signed by the Fire Protection Specialist.

3.8.1 Underground Piping

3.8.1.1 Flushing

Underground piping shall be flushed in accordance with NFPA 24. This includes the requirement to flush the lead-in connection to the fire protection system at a flow rate not less that the calculated maximum water demand rate of the system.
3.8.1.2 Hydrostatic Testing

New underground piping shall be hydrostatically tested in accordance with NFPA 24. The allowable leakage shall be measured at the specified test pressure by pumping from a calibrated container. The amount of leakage at the joints shall not exceed 2 quarts per hour per 100 gaskets or joints, regardless of pipe diameter.

3.8.2 Aboveground Piping

3.8.2.1 Hydrostatic Testing

Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 200 psi or 50 psi in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested.

3.8.2.2 Backflow Prevention Assembly Forward Flow Test

Each backflow prevention assembly shall be tested at system flow demand, including all applicable hose streams, as specified in NFPA 13. Provide all equipment and instruments necessary to conduct a complete forward flow test, including 2.5 inch diameter hoses, playpipe nozzles, calibrated pressure gauges, pitot tube gauge, plus all necessary supports to safely secure hoses and nozzles during the test. At the system demand flow, the pressure readings and pressure drop (friction) across the assembly shall be recorded. Provide a metal placard on the backflow prevention assembly that lists the pressure readings both upstream and downstream of the assembly, total pressure drop, and the system test flow rate. The pressure drop shall be compared to the manufacturer’s data.

3.8.3 Testing of Alarm Devices

Each alarm switch shall be tested by flowing water through the inspector's test connection. Each water-operated alarm devices shall be tested to verify proper operation.

3.8.4 Main Drain Flow Test

Following flushing of the underground piping, a main drain test shall be made to verify the adequacy of the water supply. Static and residual pressures shall be recorded on the certificate specified in paragraph SUBMITTALS. In addition, a main drain test shall be conducted each time after a main control valve is shut and opened.

3.9 FINAL ACCEPTANCE TEST

Begin the Final Acceptance Test only when the Preliminary Test Report has been approved. Submit proposed procedures for Final Acceptance Test, no later than 14 days prior to the proposed start of the tests, and proposed date and time to begin the Test, submitted with the procedures. Notification shall be provided at least 14 days prior to the proposed start of the test. Notification shall include a copy of the Contractor’s Material & Test Certificates. The Fire Protection Specialist shall conduct the Final Acceptance Test and shall provide a complete demonstration of the operation of the system. This shall include operation of control valves.
and flowing of inspector's test connections to verify operation of associated waterflow alarm switches. After operation of control valves has been completed, the main drain test shall be repeated to assure that control valves are in the open position. Submit as-built shop drawings, at least 14 days after completion of the Final Tests, updated to reflect as-built conditions after all related work is completed. Drawings shall be on reproducible full-size mylar film. In addition, the representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation shall not be considered accepted until identified discrepancies have been corrected and test documentation is properly completed and received. Submit 3 copies of the completed Final Acceptance Test Report no later than 7 days after the completion of the Final Acceptance Tests. All items in the Final Acceptance Report shall be signed by the Fire Protection Specialist as specified.

3.10 ONSITE TRAINING

The Fire Protection Specialist shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Submit proposed schedule, at least 14 days prior to the start of related training. Training shall be provided for a period of 2 hours of normal working time and shall start after the system is functionally complete and after the Final Acceptance Test. Submit 6 Operating and Maintenance Manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 14 days prior to field training. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4 hour on-site response to a service call on an emergency basis. The Onsite Training shall cover all of the items contained in the approved manuals.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 1010 (2002) Self-Contained, Mechanically Refrigerated Drinking-Water Coolers

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

ASSE 1001 (2016) Performance Requirements for Atmospheric Type Vacuum Breakers

ASSE 1011 (2004; Errata 2004) Performance
Requirements for Hose Connection Vacuum Breakers (ANSI approved 2004)

ASSE 1012

ASSE 1013
(2011) Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers - (ANSI approved 2010)

ASSE 1018

ASSE 1019
(2011; R 2016) Performance Requirements for Wall Hydrant with Backflow Protection and Freeze Resistance

ASSE 1020
(2004; Errata 2004; Errata 2004) Performance Requirements for Pressure Vacuum Breaker Assembly (ANSI Approved 2004)

ASSE 1037
(2015) Performance Requirements for Pressurized Flushing Devices (Flushometers) for Plumbing Fixtures

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA 10084
(2005) Standard Methods for the Examination of Water and Wastewater

AWWA B300
(2010; Addenda 2011) Hypochlorites

AWWA B301
(2010) Liquid Chlorine

AWWA C203

AWWA C606
(2015) Grooved and Shouldered Joints

AWWA C651
(2014) Standard for Disinfecting Water Mains

AWWA C652
(2011) Disinfection of Water-Storage Facilities

AWWA C700
(2015) Standard for Cold Water Meters - Displacement Type, Bronze Main Case

AWWA C701
AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Brazing and Braze Welding

ASME INTERNATIONAL (ASME)

ASME A112.1.2 (2012; R 2017) Air Gaps in Plumbing Systems (For Plumbing Fixtures and Water-Connected Receptors)

ASME A112.19.5 (2011; R 2016) Trim for Water-Closet Bowls, Tanks and Urinals

ASME A112.36.2M (1991; R 2017) Cleanouts

ASME A112.6.1M (1997; R 2017) Floor Affixed Supports for Off-the-Floor Plumbing Fixtures for Public Use

ASME A112.6.3 (2016) Standard for Floor and Trench Drains

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.15 (2013) Cast Copper Alloy Threaded Fittings Classes 125 and 250

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.23 (2011) Cast Copper Alloy Solder Joint Drainage Fittings - DWV

ASME B16.24 (2011) Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500

ASME B16.29 (2012) Wrought Copper and Wrought Copper Alloy Solder Joint Drainage Fittings - DWV
ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300
ASME B16.34 (2017) Valves - Flanged, Threaded and Welding End
ASME B16.4 (2011) Standard for Gray Iron Threaded Fittings; Classes 125 and 250
ASME B16.50 (2013) Wrought Copper and Copper Alloy Braze-Joint Pressure Fittings
ASME B31.1 (2016; Errata 2016) Power Piping
ASME B40.100 (2013) Pressure Gauges and Gauge Attachments
ASME BPVC SEC IV (2010) BPVC Section IV-Rules for Construction of Heating Boilers
ASME BPVC SEC IX (2010) BPVC Section IX-Welding and Brazing Qualifications
ASME CSD-1 (2016) Control and Safety Devices for Automatically Fired Boilers

ASTM INTERNATIONAL (ASTM)

Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service

Gaskets for Cast Iron Soil Pipe and Fittings

ASTM D3311 (2011; R 2016) Drain, Waste, and Vent (DWV) Plastic Fittings Patterns

CAST IRON SOIL PIPE INSTITUTE (CISPI)

CISPI 310 (2011) Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings
for Sanitary and Storm Drain, Waste, and Vent Piping Applications

COPPER DEVELOPMENT ASSOCIATION (CDA)

CSA GROUP (CSA)

INTERNATIONAL ASSOCIATION OF PLUMBING AND MECHANICAL OFFICIALS (IAPMO)

IAPMO PS 117 (2005b) Press Type Or Plain End Rub Gasketed W/ Nail CU & CU Alloy Fittings 4 Install On CU Tubing

INTERNATIONAL CODE COUNCIL (ICC)

INTERNATIONAL SAFETY EQUIPMENT ASSOCIATION (ISEA)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-110 (2010) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

MSS SP-44 (2016) Steel Pipeline Flanges

MSS SP-67 (2017) Butterfly Valves

MSS SP-70 (2011) Gray Iron Gate Valves, Flanged and Threaded Ends

MSS SP-71 (2011; Errata 2013) Gray Iron Swing Check Valves, Flanged and Threaded Ends

MSS SP-72 (2010a) Ball Valves with Flanged or Butt-Welding Ends for General Service
<table>
<thead>
<tr>
<th>Standard</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSS SP-78</td>
<td>2011</td>
<td>Cast Iron Plug Valves, Flanged and Threaded Ends</td>
</tr>
<tr>
<td>MSS SP-80</td>
<td>2013</td>
<td>Bronze Gate, Globe, Angle and Check Valves</td>
</tr>
<tr>
<td>MSS SP-83</td>
<td>2014</td>
<td>Class 3000 Steel Pipe Unions Socket Welding and Threaded</td>
</tr>
<tr>
<td>MSS SP-85</td>
<td>2011</td>
<td>Gray Iron Globe & Angle Valves Flanged and Threaded</td>
</tr>
<tr>
<td>NACE SP0169</td>
<td>2015</td>
<td>Control of External Corrosion on Underground or Submerged Metallic Piping Systems</td>
</tr>
<tr>
<td>NEMA 250</td>
<td>2014</td>
<td>Enclosures for Electrical Equipment (1000 Volts Maximum)</td>
</tr>
<tr>
<td>NEMA MG 1</td>
<td>2016; SUPP 2016</td>
<td>Motors and Generators</td>
</tr>
<tr>
<td>NFPA 54</td>
<td>2015</td>
<td>National Fuel Gas Code</td>
</tr>
<tr>
<td>NFPA 90A</td>
<td>2015</td>
<td>Standard for the Installation of Air Conditioning and Ventilating Systems</td>
</tr>
<tr>
<td>NSF 372</td>
<td>2011</td>
<td>Drinking Water System Components - Lead Content</td>
</tr>
<tr>
<td>NSF/ANSI 14</td>
<td>2017b</td>
<td>Plastics Piping System Components and Related Materials</td>
</tr>
<tr>
<td>NSF/ANSI 61</td>
<td>2016</td>
<td>Drinking Water System Components - Health Effects</td>
</tr>
<tr>
<td>PPFA Fire Man</td>
<td>2010</td>
<td>Firestopping: Plastic Pipe in Fire Resistive Construction</td>
</tr>
<tr>
<td>PDI WH 201</td>
<td>2010</td>
<td>Water Hammer Arresters Standard</td>
</tr>
<tr>
<td>SAE J1508</td>
<td>2009</td>
<td>Hose Clamp Specifications</td>
</tr>
</tbody>
</table>
U.S. DEPARTMENT OF ENERGY (DOE)

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

PL 93-523 (1974; A 1999) Safe Drinking Water Act

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

10 CFR 430 Energy Conservation Program for Consumer Products

40 CFR 141.80 National Primary Drinking Water Regulations; Control of Lead and Copper; General Requirements

UNDERWRITERS LABORATORIES (UL)

UL 1951 (2011; Reprint Oct 2016) UL Standard for Safety Electric Plumbing Accessories

UL 499 (2014; Reprint Feb 2016) UL Standard for Safety Electric Heating Appliances

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Plumbing System; G

SD-03 Product Data

Fixtures

List of installed fixtures with manufacturer, model, and flow rate.

Flush Valve Water Closets; G

Flush Valve Urinals; G

Wall Hung Lavatories; G

Countertop Lavatories; G

Kitchen Sinks; G
Drinking-Water Coolers; G
Plastic Shower Stalls; G
Water Heaters; G
Pumps; G
Backflow Prevention Assemblies; G
Shower Faucets; G
Welding

A copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators.

Vibration-Absorbing Features; G

Details of vibration-absorbing features, including arrangement, foundation plan, dimensions and specifications.

Plumbing System

Diagrams, instructions, and other sheets proposed for posting. Manufacturer's recommendations for the installation of bell and spigot and hubless joints for cast iron soil pipe.

SD-06 Test Reports

Tests, Flushing and Disinfection

Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, completion and testing of the installed system. Each test report shall indicate the final position of controls.

Test of Backflow Prevention Assemblies; G.

Certification of proper operation shall be as accomplished in accordance with state regulations by an individual certified by the state to perform such tests. If no state requirement exists, the Contractor shall have the manufacturer's representative test the device, to ensure the unit is properly installed and performing as intended. The Contractor shall provide written documentation of the tests performed and signed by the individual performing the tests.

SD-07 Certificates

Materials and Equipment

Where equipment is specified to conform to requirements of the ASME Boiler and Pressure Vessel Code, the design, fabrication, and installation shall conform to the code.

Bolts

SECTION 22 00 00 Page 10
Written certification by the bolt manufacturer that the bolts furnished comply with the specified requirements.

SD-10 Operation and Maintenance Data

Plumbing System; G

Submit in accordance with Section 01000 OPERATION AND MAINTENANCE DATA.

SD-11 Closeout Submittals

Water-Efficient Products; S

Energy-Efficient Water Heaters; S

1.3 STANDARD PRODUCTS

Specified materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products. Specified equipment shall essentially duplicate equipment that has performed satisfactorily at least two years prior to bid opening. Standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.3.1 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.3.2 Service Support

The equipment items shall be supported by service organizations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.3.3 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.3.4 Modification of References

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.
1.3.4.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall." Reference to the "code official" shall be interpreted to mean the "Contracting Officer." For Navy owned property, references to the "owner" shall be interpreted to mean the "Contracting Officer." For leased facilities, references to the "owner" shall be interpreted to mean the "lessor." References to the "permit holder" shall be interpreted to mean the "Contractor."

1.3.4.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, shall be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.

1.4 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before and during installation in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.5 PERFORMANCE REQUIREMENTS

1.5.1 Welding

Piping shall be welded in accordance with qualified procedures using performance-qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPVC SEC IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer, may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests, and the tests shall be performed at the work site if practicable. Welders or welding operators shall apply their assigned symbols near each weld they make as a permanent record. Structural members shall be welded in accordance with Section 05 12 00 STRUCTURAL STEEL. Structural members shall be welded in accordance with Section 05 12 00 STRUCTURAL STEEL.

1.5.2 Cathodic Protection and Pipe Joint Bonding

Cathodic protection and pipe joint bonding systems shall be in accordance with Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE).

1.6 REGULATORY REQUIREMENTS

Unless otherwise required herein, plumbing work shall be in accordance with ICC IPC. Energy consuming products and systems shall be in accordance with PL 109-58 and ASHRAE 90.1 - IP.
1.7 PROJECT/SITE CONDITIONS

The Contractor shall become familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.8 INSTRUCTION TO GOVERNMENT PERSONNEL

When specified in other sections, furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the specified equipment or system. Instructors shall be thoroughly familiar with all parts of the installation and shall be trained in operating theory as well as practical operation and maintenance work.

Instruction shall be given during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be as specified in the individual section. When more than 4 man-days of instruction are specified, use approximately half of the time for classroom instruction. Use other time for instruction with the equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

1.9 ACCESSIBILITY OF EQUIPMENT

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Water-Efficient Products

Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING that the following products meet water efficiency requirements as outlined in this section and when applicable, that they are EPA WaterSense labeled products:

a. Fixtures
b. Flush valve water closets
c. Flush valve urinals
e. Wall hung lavatories
f. Countertop lavatories
g. Kitchen sinks
i. Drinking-water coolers
j. Water heaters
k. Pumps
l. Showerheads

2.1.2 Energy-Efficient Water Heaters

Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING that the following products meet energy efficiency requirements as outlined in this section and when applicable, that they are Energy Star certified or FEMP-designated products:

a. Electric Resistance Water Heaters (Residential)

b. Gas Water Heaters (Commercial)

2.2 Materials

Materials for various services shall be in accordance with TABLES I and II. PVC pipe shall contain a minimum of 25 percent recycled content in accordance with ASTM F1760. HDPE pipe shall contain a minimum of 100 percent post-consumer recycled content. Steel pipe shall contain a minimum of 25 percent recycled content, with a minimum of 16 percent post-consumer recycled content. Pipe schedules shall be selected based on service requirements. Pipe fittings shall be compatible with the applicable pipe materials. Plastic pipe, fittings, and solvent cement shall meet NSF/ANSI 14 and shall be NSF listed for the service intended. Plastic pipe, fittings, and solvent cement used for potable hot and cold water service shall bear the NSF seal "NSF-PW." Pipe threads (except dry seal) shall conform to ASME B1.20.1. Grooved pipe couplings and fittings shall be from the same manufacturer. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF/ANSI 61, Annex G or NSF 372. In line devices such as water meters, building valves, check valves, meter stops, valves, fittings and back flow preventers shall comply with PL 93-523 and NSF/ANSI 61, Section 8. End point devices such as drinking water fountains, lavatory faucets, kitchen and bar faucets, residential ice makers, supply stops and end point control valves used to dispense water for drinking must meet the requirements of NSF/ANSI 61, Section 9. Hubless cast-iron soil pipe shall not be installed underground, under concrete floor slabs, or in crawl spaces below kitchen floors. Plastic pipe shall not be installed in air plenums. Plastic pipe shall not be installed in a pressure piping system in buildings greater than three stories including any basement levels.

2.2.1 Pipe Joint Materials

Grooved pipe and hubless cast-iron soil pipe shall not be used underground. Solder containing lead shall not be used with copper pipe. Cast iron soil pipe and fittings shall be marked with the collective trademark of the Cast Iron Soil Institute. Joints and gasket materials shall conform to the following:
a. Coupling for Cast-Iron Pipe: for hub and spigot type ASTM A74, AWWA C606. For hubless type: CISPI 310

d. Flange Gaskets: Gaskets shall be made of non-asbestos material in accordance with ASME B16.21. Gaskets shall be flat, 1/16 inch thick, and contain Aramid fibers bonded with Styrene Butadiene Rubber (SBR) or Nitro Butadiene Rubber (NBR). Gaskets shall be the full face or self centering flat ring type. Gaskets used for hydrocarbon service shall be bonded with NBR.

e. Brazing Material: Brazing material shall conform to AWS A5.8/A5.8M, BCuP-5.

f. Brazing Flux: Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides; and contain fluorides.

g. Solder Material: Solder metal shall conform to ASTM B32.

h. Solder Flux: Flux shall be liquid form, non-corrosive, and conform to ASTM B813, Standard Test 1.

i. PTFE Tape: PTFE Tape, for use with Threaded Metal or Plastic Pipe.

r. Flanged fittings including, but not limited to, flanges, bolts, nuts and bolt patterns shall be in accordance with ASME B16.5 class 150 and shall have the manufacturer's trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A105/A105M. Blind flange material shall conform to ASTM A516/A516M cold service and ASTM A515/A515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A193/A193M.

t. Press fittings for Copper Pipe and Tube: Copper press fittings shall conform to the material and sizing requirements of ASME B16.18 or ASME B16.22 and performance criteria of IAPMO PS 117. Sealing elements for copper press fittings shall be EPDM, FKM or HNBR. Sealing elements shall be factory installed or an alternative supplied fitting manufacturer. Sealing element shall be selected based on
manufacturer's approved application guidelines.

u. Copper tubing shall conform to ASTM B88, Type K, L or M.

2.2.2 Miscellaneous Materials

Miscellaneous materials shall conform to the following:

c. Asphalt Roof Cement: ASTM D2822/D2822M.

d. Hose Clamps: SAE J1508.

e. Supports for Off-The-Floor Plumbing Fixtures: ASME A112.6.1M.

f. Metallic Cleanouts: ASME A112.36.2M.

g. Plumbing Fixture Setting Compound: A preformed flexible ring seal molded from hydrocarbon wax material. The seal material shall be nonvolatile nonasphaltic and contain germicide and provide watertight, gastight, odorproof and verminproof properties.

h. Coal-Tar Protective Coatings and Linings for Steel Water Pipelines: AWWA C203.

i. Hypochlorites: AWWA B300.

j. Liquid Chlorine: AWWA B301.

k. Gauges - Pressure and Vacuum Indicating Dial Type - Elastic Element: ASME B40.100.

l. Thermometers: ASTM E1. Mercury shall not be used in thermometers.

2.2.3 Pipe Insulation Material

Insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.3 PIPE HANGERS, INSERTS, AND SUPPORTS

Pipe hangers, inserts, and supports shall conform to MSS SP-58.

2.4 VALVES

Valves shall be provided on supplies to equipment and fixtures. Valves 2-1/2 inches and smaller shall be bronze with threaded bodies for pipe and solder-type connections for tubing. Valves 3 inches and larger shall have flanged iron bodies and bronze trim. Pressure ratings shall be based upon the application. Grooved end valves may be provided if the manufacturer certifies that the valves meet the performance requirements of applicable MSS standard. Valves shall conform to the following standards:
<table>
<thead>
<tr>
<th>Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterfly Valves</td>
<td>MSS SP-67</td>
</tr>
<tr>
<td>Cast-Iron Gate Valves, Flanged and Threaded Ends</td>
<td>MSS SP-70</td>
</tr>
<tr>
<td>Cast-Iron Swing Check Valves, Flanged and Threaded Ends</td>
<td>MSS SP-71</td>
</tr>
<tr>
<td>Ball Valves with Flanged Butt-Welding Ends for General Service</td>
<td>MSS SP-72</td>
</tr>
<tr>
<td>Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends</td>
<td>MSS SP-110</td>
</tr>
<tr>
<td>Cast-Iron Plug Valves, Flanged and Threaded Ends</td>
<td>MSS SP-78</td>
</tr>
<tr>
<td>Bronze Gate, Globe, Angle, and Check Valves</td>
<td>MSS SP-80</td>
</tr>
<tr>
<td>Steel Valves, Socket Welding and Threaded Ends</td>
<td>ASME B16.34</td>
</tr>
<tr>
<td>Cast-Iron Globe and Angle Valves, Flanged and Threaded Ends</td>
<td>MSS SP-85</td>
</tr>
<tr>
<td>Backwater Valves</td>
<td>ASME A112.14.1</td>
</tr>
<tr>
<td>Vacuum Relief Valves</td>
<td>ANSI Z21.22/CSA 4.4</td>
</tr>
<tr>
<td>Water Pressure Reducing Valves</td>
<td>ASSE 1003</td>
</tr>
<tr>
<td>Water Heater Drain Valves</td>
<td>ASME BPVC SEC IV, Part HLW-810: Requirements for Potable-Water Heaters Bottom Drain Valve</td>
</tr>
<tr>
<td>Trap Seal Primer Valves</td>
<td>ASSE 1018</td>
</tr>
<tr>
<td>Temperature and Pressure Relief Valves for Hot Water Supply Systems</td>
<td>ANSI Z21.22/CSA 4.4</td>
</tr>
</tbody>
</table>
| Temperature and Pressure Relief Valves for Automatically Fired Hot Water Boilers | ASME CSD-1
Safety Code No., Part CW, Article 5 |
2.4.1 Backwater Valves

Backwater valves shall be either separate from the floor drain or a combination floor drain, P-trap, and backwater valve, as shown. Valves shall have cast-iron bodies with cleanouts large enough to permit removal of interior parts. Valves shall be of the flap type, hinged or pivoted, with revolving disks. Hinge pivots, disks, and seats shall be nonferrous metal. Disks shall be slightly open in a no-flow no-backwater condition. Cleanouts shall extend to finished floor and be fitted with threaded countersunk plugs.

2.4.2 Wall Faucets

Wall faucets with vacuum-breaker backflow preventer shall be brass with 3/4 inch male inlet threads, hexagon shoulder, and 3/4 inch hose connection. Faucet handle shall be securely attached to stem.

2.4.3 Wall Hydrants (Frostproof)

ASSE 1019 with vacuum-breaker backflow preventer shall have a nickel-brass or nickel-bronze wall plate or flange with nozzle and detachable key handle. A brass or bronze operating rod shall be provided within a galvanized iron casing of sufficient length to extend through the wall so that the valve is inside the building, and the portion of the hydrant between the outlet and valve is self-draining. A brass or bronze valve with coupling and union elbow having metal-to-metal seat shall be provided. Valve rod and seat washer shall be removable through the face of the hydrant. The hydrant shall have 3/4 inch exposed hose thread on spout and 3/4 inch male pipe thread on inlet.

2.4.4 Relief Valves

Water heaters and hot water storage tanks shall have a combination pressure and temperature (P&T) relief valve. The pressure relief element of a P&T relief valve shall have adequate capacity to prevent excessive pressure buildup in the system when the system is operating at the maximum rate of heat input. The temperature element of a P&T relief valve shall have a relieving capacity which is at least equal to the total input of the heaters when operating at their maximum capacity. Relief valves shall be rated according to ANSI Z21.22/CSA 4.4. Relief valves for systems where the maximum rate of heat input is less than 200,000 Btuh shall have 3/4 inch minimum inlets, and 3/4 inch outlets. Relief valves for systems where the maximum rate of heat input is greater than 200,000 Btuh shall have 1 inch minimum inlets, and 1 inch outlets. The discharge pipe from the relief valve shall be the size of the valve outlet.

2.4.5 Thermostatic Mixing Valves

Provide thermostatic mixing valve for lavatory faucets. Mixing valves, thermostatic type, pressure-balanced or combination thermostatic and pressure-balanced shall be line size and shall be constructed with rough or finish bodies either with or without plating. Each valve shall be constructed to control the mixing of hot and cold water and to deliver water at a desired temperature regardless of pressure or input temperature changes. The control element shall be of an approved type. The body shall be of heavy cast bronze, and interior parts shall be brass, bronze, corrosion-resisting steel or copper. The valve shall be equipped with necessary stops, check valves, unions, and sediment strainers on the inlets. Mixing valves shall maintain water temperature within 5 degrees F.
of any setting.

2.5 FIXTURES

Fixtures shall be water conservation type, in accordance with ASHRAE 189.1 Section 6.3.2.1 (Plumbing fixtures and Fittings). Water closet replacements in major renovations may have a flush valve of up to 1.6 GPF to accommodate existing plumbing capacity. Fixtures for use by the physically handicapped shall be in accordance with ICC A117.1 COMM. Vitreous China, nonabsorbent, hard-burned, and vitrified throughout the body shall be provided. Porcelain enameled ware shall have specially selected, clear white, acid-resisting enamel coating evenly applied on surfaces. No fixture will be accepted that shows cracks, crazes, blisters, thin spots, or other flaws. Fixtures shall be equipped with appurtenances such as traps, faucets, stop valves, and drain fittings. Each fixture and piece of equipment requiring connections to the drainage system, except grease interceptors, shall be equipped with a trap. Brass expansion or toggle bolts capped with acorn nuts shall be provided for supports, and polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Fixtures with the supply discharge below the rim shall be equipped with backflow preventers. Internal parts of flush valves and flushometer valves, shower mixing valves, shower head face plates, pop-up stoppers of lavatory waste drains, and pop-up stoppers and overflow tees and shoes of bathtub waste drains shall be copper alloy with all visible surfaces chrome plated.

2.5.1 Lavatories

Vitreous china lavatories shall be provided with two integral molded lugs on the back-underside of the fixture and drilled for bolting to the wall in a manner similar to the hanger plate. Lavatory faucets and lavatory faucet accessories must meet the EPA WaterSense product definition specified in http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products.

2.5.2 Automatic Controls

Provide automatic, sensor operated faucets and flush valves to comply with ASSE 1037 and UL 1951 for lavatory faucets, urinals, and water closets. Flushing and faucet systems shall consist of solenoid-activated valves with light beam sensors. Flush valve for water closet shall include an override pushbutton. Flushing devices shall be provided as described in paragraph FIXTURES AND FIXTURE TRIMMINGS.

2.5.3 Flush Valve Water Closets

ASME A112.19.2/CSA B45.1, white vitreous china, siphon jet, elongated bowl, wall mounted, wall outlet. Top of toilet seat height above floor shall be 14 to 15 inches, except 17 to 19 inches for wheelchair water closets. Provide wax bowl ring including plastic sleeve. Provide white solid plastic elongated open-front seat.

Water flushing volume of the water closet and flush valve combination shall not exceed 1.28 gallons per flush. Water closets must meet the EPA WaterSense product definition specified in http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products.

Provide large diameter flush valve including angle control-stop valve,
vacuum breaker, tail pieces, slip nuts, and wall plates; exposed to view components shall be chromium-plated or polished stainless steel. Flush valves shall be nonhold-open type. Mount flush valves not less than 11 inches above the fixture. Mounted height of flush valve shall not interfere with the hand rail in ADA stalls. Provide solenoid-activated flush valves including electrical-operated light-beam-sensor to energize the solenoid.

2.5.4 Flush Valve Urinals

ASME A112.19.2/CSA B45.1, white vitreous china, wall-mounted, wall outlet, siphon jet, integral trap, and extended side shields. Provide urinal with the rim 17 inches above the floor. Provide urinal with the rim 24 inches above the floor. Water flushing volume of the urinal and flush valve combination shall not exceed 0.5 gallons per flush. Urinals must meet the specifications of http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products. Provide ASME A112.6.1M concealed chair carriers with vertical steel pipe supports. Provide large diameter flush valve including angle control-stop valve, vacuum breaker, tail pieces, slip nuts, and wall plates; exposed to view components shall be chromium-plated or polished stainless steel. Flush valves shall be nonhold-open type. Mount flush valves not less than 11 inches above the fixture. Provide solenoid-activated flush valves including electrical-operated light-beam-sensor to energize the solenoid.

2.5.5 Wheelchair Flush Valve Type Urinals

ASME A112.19.2/CSA B45.1, white vitreous china, wall-mounted, wall outlet, blowout action, integral trap, elongated projecting bowl, 20 inches long from wall to front of flare, and ASME A112.19.5 trim. Provide large diaphragm (not less than 2.625 inches upper chamber inside diameter at the point where the diaphragm is sealed between the upper and lower chambers), nonhold-open flush valve of chrome plated cast brass conforming to ASTM B584, including vacuum breaker and angle (control-stop) valve with back check. The water flushing volume of the flush valve and urinal combination shall not exceed 0.5 gallon per flush. Urinals must meet the specifications of http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products. Furnish urinal manufacturer's certification of conformance. Provide ASME A112.6.1M concealed chair carriers. Mount urinal with front rim a maximum of 17 inches above floor and flush valve handle a maximum of 44 inches above floor for use by handicapped on wheelchair. Provide solenoid-activated flush valves including electrical-operated light-beam-sensor to energize the solenoid.

2.5.6 Wall Hung Lavatories

ASME A112.19.2/CSA B45.1, white vitreous china, straight back type, minimum dimensions of 19 inches, wide by 17 inches front to rear, with supply openings for use with top mounted centerset faucets, and openings for concealed arm carrier installation. Provide aerator with faucet. Water flow rate shall not exceed 0.5 gpm when measured at a flowing water pressure of 60 psi. Lavatory faucets and lavatory faucet accessories must meet the EPA WaterSense product definition specified in http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products. Provide ASME A112.6.1M concealed chair carriers with vertical steel pipe supports and concealed arms for the lavatory. Mount lavatory with the front rim 34 inches above floor and with 29 inches minimum clearance from bottom of the front rim to floor. Provide
top mounted washerless centerset lavatory faucets.

2.5.7 Countertop Lavatories

ASME A112.19.2/CSA B45.1, white vitreous china, self-rimming, minimum dimensions of 19 inches wide by 17 inches front to rear, with supply openings for use with top mounted centerset faucets. Furnish template and mounting kit by lavatory manufacturer. Provide aerator with faucet. Water flow rate shall not exceed 0.5 gpm when measured at a flowing water pressure of 60 psi. Lavatory faucets and lavatory faucet accessories must meet the EPA WaterSense product definition specified in http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products. Mount counter with the top surface 34 inches above floor and with 29 inches minimum clearance from bottom of the counter face to floor. Provide top-mounted solenoid-activated lavatory faucets including electrical-operated light-beam-sensor to energize the solenoid.

2.5.8 Kitchen Sinks

ASME A112.19.3/CSA B45.4, 20 gage stainless steel with integral mounting rim for flush installation, minimum dimensions of 33 inches wide by 21 inches front to rear, two compartments, with undersides fully sound deadened, with supply openings for use with top mounted washerless sink faucets with hose spray, and with 3.5 inch drain outlet. Provide aerator with faucet. Water flow rate shall not exceed 2.2 gpm when measured at a flowing water pressure of 60 psi. Provide stainless steel drain outlets and stainless steel cup strainers. Provide separate 1.5 inch P-trap and drain piping to vertical vent piping from each compartment. Provide top mounted washerless sink faucets with hose spray.

2.5.9 Drinking-Water Coolers

AHRI 1010 with more than a single thickness of metal between the potable water and the refrigerant in the heat exchanger, wall-hung, bubbler style, air-cooled condensing unit, 4.75 gph minimum capacity, stainless steel splash receptor and basin, bottle filler and stainless steel cabinet. Bubblers shall be controlled by push levers or push bars, front mounted or side mounted near the front edge of the cabinet. Bubbler spouts shall be mounted at maximum of 36 inches above floor and at front of unit basin. Spouts shall direct water flow at least 4 inches above unit basin and trajectory parallel or nearly parallel to the front of unit. Provide ASME A112.6.1M concealed steel pipe chair carriers.

2.5.10 Wheelchair Drinking Water cooler

AHRI 1010, wall-mounted bubbler style with ASME A112.6.1M concealed chair carrier, air-cooled condensing unit, 4.75 gph minimum capacity, stainless steel splash receptor, and all stainless steel cabinet, with 27 inch minimum knee clearance from front bottom of unit to floor and 36 inch maximum spout height above floor and bottle filler. Bubblers shall also be controlled by push levers, by push bars, or touch pads one on each side or one on front and both sides of the cabinet.

2.5.11 Plastic Shower Stalls

CSA B45.5-11/IAPMO Z124 four piece white solid acrylic pressure molded fiberglass reinforced plastic shower stalls. Shower stalls shall be scratch resistant, waterproof, and reinforced. Showerhead water flow rate
shall not exceed 1.5 gpm when measured at a flowing water pressure of 80 psi. Provide flow restrictor in handshower to flow 1.5 gpm. Provide recessed type shower stalls approximately 36 inches wide, 36 inches front to rear, 76 inches high, and 5 inch high curb with shower stall bottom or feet firmly supported by a smooth level floor. Provide PVC shower floor drains and stainless steel strainers. Shower stalls shall meet performance requirements of CSA B45.5-11/IAPMO Z124 and shall be labeled by NAHB Research Foundation, Inc. for compliance. Install shower stall in accordance with the manufacturer's written instructions. Finish installation by covering shower stall attachment flanges with dry-wall in accordance with shower stall manufacturer's recommendation. Provide smooth 100 percent silicone rubber white bathtub caulk between the top, sides, and bottom of shower stalls and bathroom walls and floors.

2.5.12 Precast Terrazzo Mop Sinks

Terrazzo shall be made of marble chips cast in white portland cement to produce 3000 psi minimum compressive strength 7 days after casting. Provide floor or wall outlet copper alloy body drain cast integral with terrazzo, with polished stainless steel strainers.

2.5.13 Emergency Eyewash and Shower

ANSI/ISEA Z358.1, floor supported free standing unit. Provide deluge shower head, stay-open ball valve operated by pull rod and ring or triangular handle. Provide eyewash and stay-open ball valve operated by foot treadle or push handle.

2.6 BACKFLOW PREVENTERS

Backflow prevention devices must be approved by the State or local regulatory agencies. If there is no State or local regulatory agency requirements, the backflow prevention devices must be listed by the Foundation for Cross-Connection Control & Hydraulic Research, or any other approved testing laboratory having equivalent capabilities for both laboratory and field evaluation of backflow prevention devices and assemblies.

Reduced pressure principle assemblies, double check valve assemblies, atmospheric (nonpressure) type vacuum breakers, and pressure type vacuum breakers shall meet the above requirements.

Backflow preventers with intermediate atmospheric vent shall conform to ASSE 1012. Reduced pressure principle backflow preventers shall conform to ASSE 1013. Hose connection vacuum breakers shall conform to ASSE 1011. Pipe applied atmospheric type vacuum breakers shall conform to ASSE 1001. Pressure vacuum breaker assembly shall conform to ASSE 1020. Air gaps in plumbing systems shall conform to ASME A112.1.2.

2.7 DRAINS

2.7.1 Floor and Shower Drains

Floor and shower drains shall consist of a galvanized body, integral seepage pan, and adjustable perforated or slotted chromium-plated bronze, nickel-bronce, or nickel-brass strainer, consisting of grate and threaded collar. Floor drains shall be cast iron except where metallic waterproofing membrane is installed. Drains shall be of double drainage pattern for embedding in the floor construction. The seepage pan shall
have weep holes or channels for drainage to the drainpipe. The strainer shall be adjustable to floor thickness. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or waterproofing membrane shall be provided when required. Drains shall be provided with threaded connection. Between the drain outlet and waste pipe, a neoprene rubber gasket conforming to ASTM C564 may be installed, provided that the drain is specifically designed for the rubber gasket compression type joint. Floor and shower drains shall conform to ASME A112.6.3.

2.7.2 Bathtub and Shower Faucets and Drain Fittings

Provide single control pressure equalizing bathtub and shower faucets with body mounted from behind the wall with threaded connections. Provide ball joint self-cleaning shower heads. Provide shower heads which deliver a maximum of 2.0 GPM per ASHRAE 189.1 Section 6.3.2.1 (Plumbing Fixtures and Fittings) requirements. Showerheads must meet the EPA WaterSense product definition specified in http://www.epa.gov/watersense/partners/product_program_specs.html and must be EPA WaterSense labeled products. Provide tubing mounted from behind the wall between bathtub faucets and shower heads and bathtub diverter spouts. Provide separate globe valves or angle valves with union connections in each supply to faucet. Provide trip-lever pop-up drain fittings for above-the-floor drain installations. The top of drain pop-ups, drain outlets, tub overflow outlet, and control handle for pop-up drain shall be chromium-plated or polished stainless steel. Linkage between drain pop-up and pop-up control handle at bathtub overflow outlet shall be copper alloy or stainless steel. Provide 1.5 inch copper alloy adjustable tubing with slip nuts and gaskets between bathtub overflow and drain outlet; chromium-plated finish is not required.

2.7.3 Area Drains

Area drains shall be plain pattern with polished stainless steel perforated or slotted grate and bottom outlet. The drain shall be circular or square with a 12 inch nominal overall width or diameter and 10 inch nominal overall depth. Drains shall be cast iron with manufacturer’s standard coating. Grate shall be easily lifted out for cleaning. Outlet shall be suitable for inside caulked connection to drain pipe. Drains shall conform to ASME A112.6.3.

2.7.4 Boiler Room Drains

Boiler room drains shall have combined drain and trap, hinged grate, removable bucket, and threaded brass cleanout with brass backwater valve. The removable galvanized cast-iron sediment bucket shall have rounded corners to eliminate fouling and shall be equipped with hand grips. Drain shall have a minimum water seal of 4 inches. The grate area shall be not less than 100 square inches.

2.8 TRAPS

Unless otherwise specified, traps shall be copper-alloy adjustable tube type with slip joint inlet and swivel. Traps shall be without a cleanout. Tubes shall be copper alloy with walls not less than 0.032 inch thick within commercial tolerances, except on the outside of bends where the thickness may be reduced slightly in manufacture by usual commercial methods. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level. Swivel joints shall be below the
discharge level and shall be of metal-to-metal or metal-to-plastic type as required for the application. Nuts shall have flats for wrench grip. Outlets shall have internal pipe thread, except that when required for the application, the outlets shall have sockets for solder-joint connections. The depth of the water seal shall be not less than 2 inches. The interior diameter shall be not more than 1/8 inch over or under the nominal size, and interior surfaces shall be reasonably smooth throughout. A copper alloy "P" trap assembly consisting of an adjustable "P" trap and threaded trap wall nipple with cast brass wall flange shall be provided for lavatories. The assembly shall be a standard manufactured unit and may have a rubber-gasketed swivel joint.

2.9 WATER HEATERS

Water heater types and capacities shall be as indicated. Each water heater shall have replaceable anodes. Each primary water heater shall have controls with an adjustable range that includes 90 to 160 degrees F. Each gas-fired water heater and booster water heater shall have controls with an adjustable range that includes 120 to 180 degrees F. Hot water systems utilizing recirculation systems shall be tied into building off-hour controls. The thermal efficiencies and standby heat losses shall conform to TABLE III for each type of water heater specified. The only exception is that storage water heaters and hot water storage tanks having more than 500 gallons storage capacity need not meet the standard loss requirement if the tank surface area is insulated to R-12.5 and if a standing light is not used. Plastic materials polyetherimide (PEI) and polyethersulfone (PES) are forbidden to be used for vent piping of combustion gases. A factory pre-charged expansion tank shall be installed on the cold water supply to each water heater. Expansion tanks shall be specifically designed for use on potable water systems and shall be rated for 200 degrees F water temperature and 150 psi working pressure. The expansion tank size and acceptance volume shall be as indicated.

2.9.1 Automatic Storage Type

Heaters shall be complete with control system, and shall have ASME rated combination pressure and temperature relief valve. Automatic storage type heaters must meet the Energy Star product definition specified in https://www.energystar.gov/products/spec and must be Energy Star certified.

2.9.1.1 Gas-Fired Type

Gas-fired water heaters shall conform to ANSI Z21.10.1/CSA 4.1 when input is 75,000 BTU per hour or less or ANSI Z21.10.3/CSA 4.3 for heaters with input greater than 75,000 BTU per hour.

2.9.2 Electric Instantaneous Water Heaters (Tankless)

UL 499 and UL listed flow switch activated, tankless electric instantaneous water heater for wall mounting below sink or lavatory. Electric instantaneous (tankless) type heaters must meet the Energy Star product definition specified in https://www.energystar.gov/products/spec and must be Energy Star certified.

2.10 PUMPS

2.10.1 Circulating Pumps

Domestic hot water circulating pumps shall be electrically driven,
single-stage, centrifugal, with mechanical seals, suitable for the intended service. Pump and motor shall be close-coupled with an overhung impeller, or supported by the piping on which it is installed. The shaft shall be one-piece, heat-treated, corrosion-resisting steel with impeller and smooth-surfaced housing of bronze.

Motor shall be totally enclosed, fan-cooled and shall have sufficient horsepower for the service required. Each pump motor shall be equipped with an across-the-line magnetic controller in a NEMA 250, Type 1 enclosure with "START-STOP" switch in cover.

Integral size motors shall be premium efficiency type in accordance with NEMA MG 1. Pump motors smaller than 1 hp Fractional horsepower pump motors shall have integral thermal overload protection in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Guards shall shield exposed moving parts.

2.11 DOMESTIC WATER SERVICE METER

Cold water meters 2 inches and smaller shall be positive displacement type conforming to AWWA C700. Cold water meters 2-1/2 inches and larger shall be turbine type conforming to AWWA C701. Meter register may be round or straight reading type, as provided by the local utility. Meter shall be provided with a pulse generator, remote readout register and all necessary wiring and accessories.

Provide water meters to monitor use in building consuming indoor and outdoor water as required by DODI 4170.11 (Installation Energy Management). Implement sub-metering when authorized in writing by the installation. Refer to ASHRAE 189.1 Section 7.3.3 (Energy Consumption Management) for subsystem implementation.

Meters must be connected to the base wide energy and utility monitoring and control system (if this system exists) using the installation's advanced metering protocols.

2.12 ELECTRICAL WORK

Provide electrical motor driven equipment specified complete with motors, motor starters, and controls as specified herein and in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide internal wiring for components of packaged equipment as an integral part of the equipment. Provide high efficiency type, single-phase, fractional-horsepower alternating-current motors, including motors that are part of a system, corresponding to the applications in accordance with NEMA MG 11. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor.

Motors shall be rated for continuous duty with the enclosure specified. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of the enclosure.

Controllers and contactors shall have auxiliary contacts for use with the controls provided. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring
required for controls and devices specified, but not shown, shall be provided. For packaged equipment, the manufacturer shall provide controllers, including the required monitors and timed restart.

Power wiring and conduit for field installed equipment shall be provided under and conform to the requirements of Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.13 MISCELLANEOUS PIPING ITEMS

2.13.1 Escutcheon Plates

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Provide chromium-plated on copper alloy plates or polished stainless steel finish in finished spaces. Provide paint finish on plates in unfinished spaces.

2.13.2 Pipe Sleeves

Provide where piping passes entirely through walls, ceilings, roofs, and floors. Sleeves are not required where supply drain, waste, and vent (DWV) piping passes through concrete floor slabs located on grade, except where penetrating a membrane waterproof floor.

2.13.2.1 Sleeves in Masonry and Concrete

Provide steel pipe sleeves or schedule 40 PVC plastic pipe sleeves. Sleeves are not required where drain, waste, and vent (DWV) piping passes through concrete floor slabs located on grade. Core drilling of masonry and concrete may be provided in lieu of pipe sleeves when cavities in the core-drilled hole are completely grouted smooth.

2.13.2.2 Sleeves Not in Masonry and Concrete

Provide 26 gage galvanized steel sheet or PVC plastic pipe sleeves.

2.13.3 Pipe Hangers (Supports)

Provide MSS SP-58 Type 1 with adjustable type steel support rods, except as specified or indicated otherwise. Attach to steel joists with Type 19 or 23 clamps and retaining straps. Attach to Steel W or S beams with Type 21, 28, 29, or 30 clamps. Attach to steel angles and vertical web steel channels with Type 20 clamp with beam clamp channel adapter. Attach to horizontal web steel channel and wood with drilled hole on centerline and double nut and washer. Attach to concrete with Type 18 insert or drilled expansion anchor. Provide Type 40 insulation protection shield for insulated piping.

2.13.4 Nameplates

Provide 0.125 inch thick melamine laminated plastic nameplates, black matte finish with white center core, for equipment, gauges, thermometers, and valves; valves in supplies to faucets will not require nameplates. Accurately align lettering and engrave minimum of 0.25 inch high normal block lettering into the white core. Minimum size of nameplates shall be 1.0 by 2.5 inches. Key nameplates to a chart and schedule for each system. Frame charts and schedules under glass and place where directed near each system. Furnish two copies of each chart and schedule.
2.13.5 Labels

Provide labels for sensor operators at flush valves and faucets. Include the following information on each label:

a. Identification of the sensor and its operation with graphic written description.

b. Range of the sensor.

c. Battery replacement schedule.

PART 3 EXECUTION

3.1 GENERAL INSTALLATION REQUIREMENTS

Piping located in air plenums shall conform to NFPA 90A requirements. Piping located in shafts that constitute air ducts or that enclose air ducts shall be noncombustible in accordance with NFPA 90A. Installation of plastic pipe where in compliance with NFPA may be installed in accordance with PPFA Fire Man. The plumbing system shall be installed complete with necessary fixtures, fittings, traps, valves, and accessories. Water and drainage piping shall be extended 5 feet outside the building, unless otherwise indicated. A full port ball valve and drain shall be installed on the water service line inside the building approximately 6 inches above the floor from point of entry. Piping shall be connected to the exterior service lines or capped or plugged if the exterior service is not in place. Sewer and water pipes shall be laid in separate trenches, except when otherwise shown. Exterior underground utilities shall be at least 12 inches below the average local frost depth or as indicated on the drawings. If trenches are closed or the pipes are otherwise covered before being connected to the service lines, the location of the end of each plumbing utility shall be marked with a stake or other acceptable means. Valves shall be installed with control no lower than the valve body.

3.1.1 Water Pipe, Fittings, and Connections

3.1.1.1 Utilities

The piping shall be extended to fixtures, outlets, and equipment. The hot-water and cold-water piping system shall be arranged and installed to permit draining. The supply line to each item of equipment or fixture, except faucets, flush valves, or other control valves which are supplied with integral stops, shall be equipped with a shutoff valve to enable isolation of the item for repair and maintenance without interfering with operation of other equipment or fixtures. Supply piping to fixtures, faucets, hydrants, shower heads, and flushing devices shall be anchored to prevent movement.

3.1.1.2 Cutting and Repairing

The work shall be carefully laid out in advance, and unnecessary cutting of construction shall be avoided. Damage to building, piping, wiring, or equipment as a result of cutting shall be repaired by mechanics skilled in the trade involved.

3.1.1.3 Protection of Fixtures, Materials, and Equipment

Pipe openings shall be closed with caps or plugs during installation.
Fixtures and equipment shall be tightly covered and protected against dirt, water, chemicals, and mechanical injury. Upon completion of the work, the fixtures, materials, and equipment shall be thoroughly cleaned, adjusted, and operated. Safety guards shall be provided for exposed rotating equipment.

3.1.1.4 Mains, Branches, and Runouts

Piping shall be installed as indicated. Pipe shall be accurately cut and worked into place without springing or forcing. Structural portions of the building shall not be weakened. Aboveground piping shall run parallel with the lines of the building, unless otherwise indicated. Branch pipes from service lines may be taken from top, bottom, or side of main, using crossover fittings required by structural or installation conditions. Supply pipes, valves, and fittings shall be kept a sufficient distance from other work and other services to permit not less than 1/2 inch between finished covering on the different services. Bare and insulated water lines shall not bear directly against building structural elements so as to transmit sound to the structure or to prevent flexible movement of the lines. Water pipe shall not be buried in or under floors unless specifically indicated or approved. Changes in pipe sizes shall be made with reducing fittings. Use of bushings will not be permitted except for use in situations in which standard factory fabricated components are furnished to accommodate specific accepted installation practice. Change in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center-line radius of bends shall be not less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be acceptable.

3.1.1.5 Pipe Drains

Pipe drains indicated shall consist of 3/4 inch hose bibb with renewable seat and full port ball valve ahead of hose bibb. At other low points, 3/4 inch brass plugs or caps shall be provided. Disconnection of the supply piping at the fixture is an acceptable drain.

3.1.1.6 Expansion and Contraction of Piping

Allowance shall be made throughout for expansion and contraction of water pipe. Each hot-water and hot-water circulation riser shall have expansion loops or other provisions such as offsets and changes in direction where indicated and required. Risers shall be securely anchored as required or where indicated to force expansion to loops. Branch connections from risers shall be made with ample swing or offset to avoid undue strain on fittings or short pipe lengths. Horizontal runs of pipe over 50 feet in length shall be anchored to the wall or the supporting construction about midway on the run to force expansion, evenly divided, toward the ends. Sufficient flexibility shall be provided on branch runouts from mains and risers to provide for expansion and contraction of piping. Flexibility shall be provided by installing one or more turns in the line so that piping will spring enough to allow for expansion without straining. If mechanical grooved pipe coupling systems are provided, the deviation from design requirements for expansion and contraction may be allowed pending approval of Contracting Officer.

3.1.1.7 Thrust Restraint

Plugs, caps, tees, valves and bends deflecting 11.25 degrees or more,
either vertically or horizontally, in waterlines 4 inches in diameter or larger shall be provided with thrust blocks, where indicated, to prevent movement. Thrust blocking shall be concrete of a mix not leaner than: 1 cement, 2-1/2 sand, 5 gravel; and having a compressive strength of not less than 2000 psi after 28 days. Blocking shall be placed between solid ground and the fitting to be anchored. Unless otherwise indicated or directed, the base and thrust bearing sides of the thrust block shall be poured against undisturbed earth. The side of the thrust block not subject to thrust shall be poured against forms. The area of bearing will be as shown. Blocking shall be placed so that the joints of the fitting are accessible for repair. Steel rods and clamps, protected by galvanizing or by coating with bituminous paint, shall be used to anchor vertical down bends into gravity thrust blocks.

3.1.1.8 Commercial-Type Water Hammer Arresters

Commercial-type water hammer arresters shall be provided on hot- and cold-water supplies and shall be located as generally indicated, with precise location and sizing to be in accordance with PDI WH 201. Water hammer arresters, where concealed, shall be accessible by means of access doors or removable panels. Commercial-type water hammer arresters shall conform to ASSE 1010. Vertical capped pipe columns will not be permitted.

3.1.2 Joints

Installation of pipe and fittings shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints shall be made up with fittings of compatible material and made for the specific purpose intended.

3.1.2.1 Threaded

Threaded joints shall have American Standard taper pipe threads conforming to ASME B1.20.1. Only male pipe threads shall be coated with graphite or with an approved graphite compound, or with an inert filler and oil, or shall have a polytetrafluoroethylene tape applied.

3.1.2.2 Unions and Flanges

Unions, flanges and mechanical couplings shall not be concealed in walls, ceilings, or partitions. Unions shall be used on pipe sizes 2-1/2 inches and smaller; flanges shall be used on pipe sizes 3 inches and larger.

3.1.2.3 Cast Iron Soil, Waste and Vent Pipe

Bell and spigot compression and hubless gasketed clamp joints for soil, waste and vent piping shall be installed per the manufacturer's recommendations.

3.1.2.4 Copper Tube and Pipe

a. Brazed. Brazed joints shall be made in conformance with AWS B2.2/B2.2M, ASME B16.50, and CDA A4015 with flux and are acceptable for all pipe sizes. Copper to copper joints shall include the use of copper-phosphorus or copper-phosphorus-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorus, copper-phosphorus-silver or a silver brazing filler metal.
b. Soldered. Soldered joints shall be made with flux and are only acceptable for piping 2 inches and smaller. Soldered joints shall conform to ASME B31.5 and CDA A4015. Soldered joints shall not be used in compressed air piping between the air compressor and the receiver.

c. Copper Tube Extracted Joint. Mechanically extracted joints shall be made in accordance with ICC IPC.

d. Press connection. Copper press connections shall be made in strict accordance with the manufacturer's installation instructions for manufactured rated size. The joints shall be pressed using the tool(s) approved by the manufacturer of that joint. Minimum distance between fittings shall be in accordance with the manufacturer's requirements.

3.1.3 Dissimilar Pipe Materials

Connections between ferrous and non-ferrous copper water pipe shall be made with dielectric unions or flange waterways. Dielectric waterways shall have temperature and pressure rating equal to or greater than that specified for the connecting piping. Waterways shall have metal connections on both ends suited to match connecting piping. Dielectric waterways shall be internally lined with an insulator specifically designed to prevent current flow between dissimilar metals. Dielectric flanges shall meet the performance requirements described herein for dielectric waterways. Connecting joints between plastic and metallic pipe shall be made with transition fitting for the specific purpose.

3.1.4 Corrosion Protection for Buried Pipe and Fittings

Ductile iron, cast iron, and steel pipe, fittings, and joints shall have a protective coating. Additionally, ductile iron, cast iron, and steel pressure pipe shall have a cathodic protection system and joint bonding. The cathodic protection system, protective coating system, and joint bonding for cathodically protected pipe shall be in accordance with Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE). Coatings shall be selected, applied, and inspected in accordance with NACE SP0169 and as otherwise specified. The pipe shall be cleaned and the coating system applied prior to pipe tightness testing. Joints and fittings shall be cleaned and the coating system applied after pipe tightness testing. For tape coating systems, the tape shall conform to AWWA C203 and shall be applied with a 50 percent overlap. Primer utilized with tape type coating systems shall be as recommended by the tape manufacturer.

3.1.5 Pipe Sleeves and Flashing

Pipe sleeves shall be furnished and set in their proper and permanent location.

3.1.5.1 Sleeve Requirements

Unless indicated otherwise, provide pipe sleeves meeting the following requirements:

Secure sleeves in position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, ceilings, roofs, and floors.

A modular mechanical type sealing assembly may be installed in lieu of a...
waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and sleeve using galvanized steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe and sleeve involved.

Sleeves shall not be installed in structural members, except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective floor, or roof, and shall be cut flush with each surface, except for special circumstances. Pipe sleeves passing through floors in wet areas such as mechanical equipment rooms, lavatories, kitchens, and other plumbing fixture areas shall extend a minimum of 4 inches above the finished floor.

Unless otherwise indicated, sleeves shall be of a size to provide a minimum of 1/4 inch clearance between bare pipe or insulation and inside of sleeve or between insulation and inside of sleeve. Sleeves in bearing walls and concrete slab on grade floors shall be steel pipe or cast-iron pipe. Sleeves in nonbearing walls or ceilings may be steel pipe, cast-iron pipe, galvanized sheet metal with lock-type longitudinal seam, or plastic.

Except as otherwise specified, the annular space between pipe and sleeve, or between jacket over insulation and sleeve, shall be sealed as indicated with sealants conforming to ASTM C920 and with a primer, backstop material and surface preparation as specified in Section 07 92 00 JOINT SEALANTS. The annular space between pipe and sleeve, between bare insulation and sleeve or between jacket over insulation and sleeve shall not be sealed for interior walls which are not designated as fire rated.

Sleeves through below-grade walls in contact with earth shall be recessed 1/2 inch from wall surfaces on both sides. Annular space between pipe and sleeve shall be filled with backing material and sealants in the joint between the pipe and concrete wall as specified above. Sealant selected for the earth side of the wall shall be compatible with dampproofing/waterproofing materials that are to be applied over the joint sealant. Pipe sleeves in fire-rated walls shall conform to the requirements in Section 07 84 00 FIRESTOPPING.

3.1.5.2 Flashing Requirements

Pipes passing through roof shall be installed through a 16 ounce copper flashing, each within an integral skirt or flange. Flashing shall be suitably formed, and the skirt or flange shall extend not less than 8 inches from the pipe and shall be set over the roof or floor membrane in a solid coating of bituminous cement. The flashing shall extend up the pipe a minimum of 10 inches. For cleanouts, the flashing shall be turned down into the hub and caulked after placing the ferrule. Pipes passing through pitched roofs shall be flashed, using lead or copper flashing, with an adjustable integral flange of adequate size to extend not less than 8 inches from the pipe in all directions and lapped into the roofing to provide a watertight seal. The annular space between the flashing and the bare pipe or between the flashing and the metal-jacket-covered insulation shall be sealed as indicated. Flashing for dry vents shall be turned down into the
pipe to form a waterproof joint. Pipes, up to and including 10 inches in diameter, passing through roof or floor waterproofing membrane may be installed through a cast-iron sleeve with caulking recess, anchor lugs, flashing-clamp device, and pressure ring with brass bolts. Flashing shield shall be fitted into the sleeve clamping device. Pipes passing through wall waterproofing membrane shall be sleeved as described above. A waterproofing clamping flange shall be installed.

3.1.5.3 Pipe Penetrations of Slab on Grade Floors

Where pipes, fixture drains, floor drains, cleanouts or similar items penetrate slab on grade floors, except at penetrations of floors with waterproofing membrane as specified in paragraphs FLASHING REQUIREMENTS and WATERPROOFING, a groove 1/4 to 1/2 inch wide by 1/4 to 3/8 inch deep shall be formed around the pipe, fitting or drain. The groove shall be filled with a sealant as specified in Section 07 92 00 JOINT SEALANTS.

3.1.5.4 Pipe Penetrations

Provide sealants for all pipe penetrations. All pipe penetrations shall be sealed to prevent infiltration of air, insects, and vermin.

3.1.6 Fire Seal

Where pipes pass through fire walls, fire-partitions, fire-rated pipe chase walls or floors above grade, a fire seal shall be provided as specified in Section 07 84 00 FIRESTOPPING.

3.1.7 Supports

3.1.7.1 General

Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. Threaded sections of rods shall not be formed or bent.

3.1.7.2 Pipe Hangers, Inserts, and Supports

Installation of pipe hangers, inserts and supports shall conform to MSS SP-58 except as modified herein.

a. Types 5, 12, and 26 shall not be used.

b. Type 3 shall not be used on insulated pipe.

c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for type 18 inserts.

d. Type 19 and 23 C-clamps shall be torqued per MSS SP-58 and shall have...
both locknuts and retaining devices furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

e. Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

f. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

g. Type 39 saddles shall be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 39 saddles shall be welded to the pipe.

h. Type 40 shields shall:
 (1) Be used on insulated pipe less than 4 inches.
 (2) Be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or less.
 (3) Have a high density insert for all pipe sizes. High density inserts shall have a density of 8 pcf or greater.

i. Horizontal pipe supports shall be spaced as specified in MSS SP-58 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Horizontal pipe runs shall include allowances for expansion and contraction.

j. Vertical pipe shall be supported at each floor, except at slab-on-grade, at intervals of not more than 15 feet nor more than 8 feet from end of risers, and at vent terminations. Vertical pipe risers shall include allowances for expansion and contraction.

k. Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided to allow longitudinal pipe movement. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. Lateral restraints shall be provided as needed. Where steel slides do not require provisions for lateral restraint the following may be used:
 (1) On pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher, a Type 39 saddle, welded to the pipe, may freely rest on a steel plate.
 (2) On pipe less than 4 inches a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate.
 (3) On pipe 4 inches and larger carrying medium less that 60 degrees F a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate.

l. Pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. The insulation shall be continuous through the hanger on all pipe sizes and applications.

m. Where there are high system temperatures and welding to piping is not desirable, the type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be
separated from the slide material by at least 4 inches or by an amount adequate for the insulation, whichever is greater.

n. Hangers and supports for plastic pipe shall not compress, distort, cut or abrade the piping, and shall allow free movement of pipe except where otherwise required in the control of expansion/contraction.

3.1.7.3 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Supports shall not be attached to the underside of concrete filled floor or concrete roof decks unless approved by the Contracting Officer. Masonry anchors for overhead applications shall be constructed of ferrous materials only.

3.1.8 Welded Installation

Plumbing pipe weldments shall be as indicated. Changes in direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connection may be made with either welding tees or forged branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. After filler metal has been removed from its original package, it shall be protected or stored so that its characteristics or welding properties are not affected. Electrodes that have been wetted or that have lost any of their coating shall not be used.

3.1.9 Pipe Cleanouts

Pipe cleanouts shall be the same size as the pipe except that cleanout plugs larger than 4 inches will not be required. A cleanout installed in connection with cast-iron soil pipe shall consist of a long-sweep 1/4 bend or one or two 1/8 bends extended to the place shown. An extra-heavy cast-brass or cast-iron ferrule with countersunk cast-brass head screw plug shall be caulked into the hub of the fitting and shall be flush with the floor. Cleanouts in connection with other pipe, where indicated, shall be T-pattern, 90-degree branch drainage fittings with cast-brass screw plugs, except plastic plugs shall be installed in plastic pipe. Plugs shall be the same size as the pipe up to and including 4 inches. Cleanout tee branches with screw plug shall be installed at the foot of soil and waste stacks, at the foot of interior downspouts, on each connection to building storm drain where interior downspouts are indicated, and on each building drain outside the building. Cleanout tee branches may be omitted on stacks in single story buildings with slab-on-grade construction or where less than 18 inches of crawl space is provided under the floor. Cleanouts on pipe concealed in partitions shall be provided with chromium plated bronze, nickel bronze, nickel brass or stainless steel flush type access cover plates. Round access covers shall be provided and secured to plugs with securing screw. Square access covers may be provided with matching frames, anchoring lugs and cover screws. Cleanouts in finished walls shall have access covers and frames installed flush with the finished wall. Cleanouts installed in finished floors subject to foot traffic shall be provided with a chrome-plated cast brass, nickel brass, or nickel bronze cover secured to
the plug or cover frame and set flush with the finished floor. Heads of fastening screws shall not project above the cover surface. Where cleanouts are provided with adjustable heads, the heads shall be cast iron.

3.2 WATER HEATERS AND HOT WATER STORAGE TANKS

3.2.1 Relief Valves

No valves shall be installed between a relief valve and its water heater or storage tank. The P&T relief valve shall be installed where the valve actuator comes in contact with the hottest water in the heater. Whenever possible, the relief valve shall be installed directly in a tapping in the tank or heater; otherwise, the P&T valve shall be installed in the hot-water outlet piping. A vacuum relief valve shall be provided on the cold water supply line to the hot-water storage tank or water heater and mounted above and within 6 inches above the top of the tank or water heater.

3.2.2 Installation of Gas- and Oil-Fired Water Heater

Installation shall conform to NFPA 54 for gas fired. Storage water heaters that are not equipped with integral heat traps and having vertical pipe risers shall be installed with heat traps directly on both the inlet and outlet. Circulating systems need not have heat traps installed. An acceptable heat trap may be a piping arrangement such as elbows connected so that the inlet and outlet piping make vertically upward runs of not less than 24 inches just before turning downward or directly horizontal into the water heater's inlet and outlet fittings. Commercially available heat traps, specifically designed by the manufacturer for the purpose of effectively restricting the natural tendency of hot water to rise through vertical inlet and outlet piping during standby periods may also be approved.

3.2.3 Heat Traps

Piping to and from each water heater and hot water storage tank shall be routed horizontally and downward a minimum of 2 feet before turning in an upward direction.

3.2.4 Connections to Water Heaters

Connections of metallic pipe to water heaters shall be made with dielectric unions or flanges.

3.2.5 Expansion Tank

A pre-charged expansion tank shall be installed on the cold water supply between the water heater inlet and the cold water supply shut-off valve. The Contractor shall adjust the expansion tank air pressure, as recommended by the tank manufacturer, to match incoming water pressure.

3.2.6 Direct Fired and Domestic Water Heaters

Notify the Contracting Officer when any direct fired domestic water heater over 400,000 BTU/hour is operational and ready to be inspected and certified.

3.3 FIXTURES AND FIXTURE TRIMMINGS

Polished chromium-plated pipe, valves, and fittings shall be provided where
exposed to view. Angle stops, straight stops, stops integral with the faucets, or concealed type of lock-shield, and loose-key pattern stops for supplies with threaded, sweat or solvent weld inlets shall be furnished and installed with fixtures. Where connections between copper tubing and faucets are made by rubber compression fittings, a beading tool shall be used to mechanically deform the tubing above the compression fitting. Exposed traps and supply pipes for fixtures and equipment shall be connected to the rough piping systems at the wall, unless otherwise specified under the item. Floor and wall escutcheons shall be as specified. Drain lines and hot water lines of fixtures for handicapped personnel shall be insulated and do not require polished chrome finish. Plumbing fixtures and accessories shall be installed within the space shown.

3.3.1 Fixture Connections

Where space limitations prohibit standard fittings in conjunction with the cast-iron floor flange, special short-radius fittings shall be provided. Connections between earthenware fixtures and flanges on soil pipe shall be made gastight and watertight with a closet-setting compound or neoprene gasket and seal. Use of natural rubber gaskets or putty will not be permitted. Fixtures with outlet flanges shall be set the proper distance from floor or wall to make a first-class joint with the closet-setting compound or gasket and fixture used.

3.3.2 Flushometer Valves

Flushometer valves shall be secured to prevent movement by anchoring the long finished top spud connecting tube to wall adjacent to valve with approved metal bracket. Flushometer valves for water closets shall be installed 39 inches above the floor, except at water closets intended for use by the physically handicapped where flushometer valves shall be mounted at approximately 30 inches above the floor and arranged to avoid interference with grab bars. In addition, for water closets intended for handicap use, the flush valve handle shall be installed on the wide side of the enclosure.

3.3.3 Height of Fixture Rims Above Floor

Lavatories shall be mounted with rim 31 inches above finished floor. Wall-hung drinking fountains and water coolers shall be installed with rim 42 inches above floor. Wall-hung service sinks shall be mounted with rim 28 inches above the floor. Installation of fixtures for use by the physically handicapped shall be in accordance with ICC A117.1 COMM.

3.3.4 Shower Bath Outfits

The area around the water supply piping to the mixing valves and behind the escutcheon plate shall be made watertight by caulking or gasketing.

3.3.5 Fixture Supports

Fixture supports for off-the-floor lavatories, urinals, water closets, and other fixtures of similar size, design, and use, shall be of the chair-carrier type. The carrier shall provide the necessary means of mounting the fixture, with a foot or feet to anchor the assembly to the floor slab. Adjustability shall be provided to locate the fixture at the desired height and in proper relation to the wall. Support plates, in lieu of chair carrier, shall be fastened to the wall structure only where it is not possible to anchor a floor-mounted chair carrier to the floor slab.
3.3.5.1 Support for Solid Masonry Construction

Chair carrier shall be anchored to the floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be imbedded in the masonry wall.

3.3.5.2 Support for Concrete-Masonry Wall Construction

Chair carrier shall be anchored to floor slab. Where a floor-anchored chair carrier cannot be used, a suitable wall plate shall be fastened to the concrete wall using through bolts and a back-up plate.

3.3.5.3 Support for Steel Stud Frame Partitions

Chair carrier shall be used. The anchor feet and tubular uprights shall be of the heavy duty design; and feet (bases) shall be steel and welded to a square or rectangular steel tube upright. Wall plates, in lieu of floor-anchored chair carriers, shall be used only if adjoining steel partition studs are suitably reinforced to support a wall plate bolted to these studs.

3.3.5.4 Support for Wood Stud Construction

Where floor is a concrete slab, a floor-anchored chair carrier shall be used. Where entire construction is wood, wood crosspieces shall be installed. Fixture hanger plates, supports, brackets, or mounting lugs shall be fastened with not less than No. 10 wood screws, 1/4 inch thick minimum steel hanger, or toggle bolts with nut. The wood crosspieces shall extend the full width of the fixture and shall be securely supported.

3.3.5.5 Wall-Mounted Water Closet Gaskets

Where wall-mounted water closets are provided, reinforced wax, treated felt, or neoprene gaskets shall be provided. The type of gasket furnished shall be as recommended by the chair-carrier manufacturer.

3.3.6 Backflow Prevention Devices

Plumbing fixtures, equipment, and pipe connections shall not cross connect or interconnect between a potable water supply and any source of nonpotable water. Backflow preventers shall be installed where indicated and in accordance with ICC IPCICC IPC at all other locations necessary to preclude a cross-connect or interconnect between a potable water supply and any nonpotable substance. In addition backflow preventers shall be installed at all locations where the potable water outlet is below the flood level of the equipment, or where the potable water outlet will be located below the level of the nonpotable substance. Backflow preventers shall be installed so that no part of the device will be submerged. Backflow preventers shall be of sufficient size to allow unrestricted flow of water to the equipment, and preclude the backflow of any nonpotable substance into the potable water system. Bypass piping shall not be provided around backflow preventers. Access shall be provided for maintenance and testing. Each device shall be a standard commercial unit.

3.3.7 Access Panels

Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of
sufficient size and located so that the concealed items may be serviced, maintained, or replaced. Access panels shall be as specified in Section 05 50 13 MISCELLANEOUS METAL FABRICATIONS.

3.3.8 Traps

Each trap shall be placed as near the fixture as possible, and no fixture shall be double-trapped. Traps installed on cast-iron soil pipe shall be cast iron. Traps installed on steel pipe or copper tubing shall be recess-drainage pattern, or brass-tube type. Traps installed on plastic pipe may be plastic conforming to ASTM D3311. Traps for acid-resisting waste shall be of the same material as the pipe.

3.4 VIBRATION-ABSORBING FEATURES

Mechanical equipment, including compressors and pumps, shall be isolated from the building structure by approved vibration-absorbing features, unless otherwise shown. Each foundation shall include an adequate number of standard isolation units. Each unit shall consist of machine and floor or foundation fastening, together with intermediate isolation material, and shall be a standard product with printed load rating. Piping connected to mechanical equipment shall be provided with flexible connectors.

3.5 WATER METER REMOTE READOUT REGISTER

The remote readout register shall be mounted at the location indicated or as directed by the Contracting Officer.

3.6 IDENTIFICATION SYSTEMS

3.6.1 Identification Tags

Identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and valve number shall be installed on valves, except those valves installed on supplies at plumbing fixtures. Tags shall be 1-3/8 inch minimum diameter, and marking shall be stamped or engraved. Indentations shall be black, for reading clarity. Tags shall be attached to valves with No. 12 AWG, copper wire, chrome-plated beaded chain, or plastic straps designed for that purpose.

3.6.2 Pipe Color Code Marking

Color code marking of piping shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.6.3 Color Coding Scheme for Locating Hidden Utility Components

Scheme shall be provided in buildings having suspended grid ceilings. The color coding scheme shall identify points of access for maintenance and operation of operable components which are not visible from the finished space and installed in the space directly above the suspended grid ceiling. The operable components shall include valves, dampers, switches, linkages and thermostats. The color coding scheme shall consist of a color code board and colored metal disks. Each colored metal disk shall be approximately 3/8 inch in diameter and secured to removable ceiling panels with fasteners. The fasteners shall be inserted into the ceiling panels so that the fasteners will be concealed from view. The fasteners shall be manually removable without tools and shall not separate from the ceiling panels when panels are dropped from ceiling height. Installation of
colored metal disks shall follow completion of the finished surface on
which the disks are to be fastened. The color code board shall have the
approximate dimensions of 3 foot width, 30 inches height, and 1/2 inch
thickness. The board shall be made of wood fiberboard and framed under
glass or 1/16 inch transparent plastic cover. Unless otherwise directed,
the color code symbols shall be approximately 3/4 inch in diameter and the
related lettering in 1/2 inch high capital letters. The color code board
shall be mounted and located in the mechanical or equipment room. The
color code system shall be as indicated below:

3.7 ESCUTCHEONS

Escutcheons shall be provided at finished surfaces where bare or insulated
piping, exposed to view, passes through floors, walls, or ceilings, except
in boiler, utility, or equipment rooms. Escutcheons shall be fastened
securely to pipe or pipe covering and shall be satin-finish,
corrosion-resisting steel, polished chromium-plated zinc alloy, or polished
chromium-plated copper alloy. Escutcheons shall be either one-piece or
split-pattern, held in place by internal spring tension or setscrew.

3.8 PAINTING

Painting of pipes, hangers, supports, and other iron work, either in
concealed spaces or exposed spaces, is specified in Section 09 90 00 PAINTS
AND COATINGS.

3.8.1 Painting of New Equipment

New equipment painting shall be factory applied or shop applied, and shall
be as specified herein, and provided under each individual section.

3.8.1.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided subject to
certification that the factory painting system applied will withstand 125
hours in a salt-spray fog test, except that equipment located outdoors
shall withstand 500 hours in a salt-spray fog test. Salt-spray fog test
shall be in accordance with ASTM B117, and for that test the acceptance
criteria shall be as follows: immediately after completion of the test,
the paint shall show no signs of blistering, wrinkling, or cracking, and no
loss of adhesion; and the specimen shall show no signs of rust creepage
beyond 0.125 inch on either side of the scratch mark.

The film thickness of the factory painting system applied on the equipment
shall not be less than the film thickness used on the test specimen. If
manufacturer's standard factory painting system is being proposed for use
on surfaces subject to temperatures above 120 degrees F, the factory
painting system shall be designed for the temperature service.

3.8.1.2 Shop Painting Systems for Metal Surfaces

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces
need not be painted. Apply coatings to clean dry surfaces. Clean the
surfaces to remove dust, dirt, rust, oil and grease by wire brushing and
solvent degreasing prior to application of paint, except metal surfaces
subject to temperatures in excess of 120 degrees F shall be cleaned to bare
metal.

Where more than one coat of paint is specified, apply the second coat after
the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

b. Temperatures Between 120 and 400 Degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F shall receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of 2 mils.

c. Temperatures Greater Than 400 Degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.

3.9 TESTS, FLUSHING AND DISINFECTION

3.9.1 Plumbing System

The following tests shall be performed on the plumbing system in accordance with ICC IPC, except that the drainage and vent system final test shall include the smoke test. The Contractor has the option to perform a peppermint test in lieu of the smoke test. If a peppermint test is chosen, the Contractor must submit a testing procedure and reasons for choosing this option in lieu of the smoke test to the Contracting Officer for approval.

a. Drainage and Vent Systems Test. The final test shall include a smoke test.

b. Building Sewers Tests.

3.9.1.1 Test of Backflow Prevention Assemblies

Backflow prevention assembly shall be tested using gauges specifically designed for the testing of backflow prevention assemblies.

Backflow prevention assembly test gauges shall be tested annually for accuracy in accordance with the requirements of State or local regulatory agencies. If there is no State or local regulatory agency requirements, gauges shall be tested annually for accuracy in accordance with the requirements of University of Southern California's Foundation of Cross Connection Control and Hydraulic Research or the American Water Works Association Manual of Cross Connection (Manual M-14), or any other approved testing laboratory having equivalent capabilities for both laboratory and field evaluation of backflow prevention assembly test gauges. Report form for each assembly shall include, as a minimum, the following:
If the unit fails to meet specified requirements, the unit shall be repaired and retested.

3.9.2 Defective Work

If inspection or test shows defects, such defective work or material shall be replaced or repaired as necessary and inspection and tests shall be repeated. Repairs to piping shall be made with new materials. Caulking of screwed joints or holes will not be acceptable.

3.9.3 System Flushing

3.9.3.1 During Flushing

Before operational tests or disinfection, potable water piping system shall be flushed with hot potable water. Sufficient water shall be used to produce a water velocity that is capable of entraining and removing debris in all portions of the piping system. This requires simultaneous operation of all fixtures on a common branch or main in order to produce a flushing velocity of approximately 4 fps through all portions of the piping system. In the event that this is impossible due to size of system, the Contracting Officer (or the designated representative) shall specify the number of fixtures to be operated during flushing. Contractor shall provide adequate personnel to monitor the flushing operation and to ensure that drain lines are unobstructed in order to prevent flooding of the facility. Contractor shall be responsible for any flood damage resulting from flushing of the system. Flushing shall be continued until entrained dirt and other foreign materials have been removed and until discharge water shows no discoloration. All faucets and drinking water fountains, to include any device considered as an end point device by NSF/ANSI 61, Section 9, shall be flushed a minimum of 0.25 gallons per 24 hour period, ten times over a 14 day period.

3.9.3.2 After Flushing

System shall be drained at low points. Strainer screens shall be removed, cleaned, and replaced. After flushing and cleaning, systems shall be prepared for testing by immediately filling water piping with clean, fresh potable water. Any stoppage, discoloration, or other damage to the finish, furnishings, or parts of the building due to the Contractor's failure to properly clean the piping system shall be repaired by the Contractor.
the system flushing is complete, the hot-water system shall be adjusted for uniform circulation. Flushing devices and automatic control systems shall be adjusted for proper operation according to manufacturer's instructions. Comply with ASHRAE 90.1 - IP for minimum efficiency requirements. Unless more stringent local requirements exist, lead levels shall not exceed limits established by 40 CFR 141.80 (c)(1). The water supply to the building shall be tested separately to ensure that any lead contamination found during potable water system testing is due to work being performed inside the building.

3.9.4 Operational Test

Upon completion of flushing and prior to disinfection procedures, the Contractor shall subject the plumbing system to operating tests to demonstrate satisfactory installation, connections, adjustments, and functional and operational efficiency. Such operating tests shall cover a period of not less than 8 hours for each system and shall include the following information in a report with conclusion as to the adequacy of the system:

a. Time, date, and duration of test.

b. Water pressures at the most remote and the highest fixtures.

c. Operation of each fixture and fixture trim.

d. Operation of each valve, hydrant, and faucet.

e. Pump suction and discharge pressures.

f. Temperature of each domestic hot-water supply.

g. Operation of each floor and roof drain by flooding with water.

h. Operation of each vacuum breaker and backflow preventer.

3.9.5 Disinfection

After all system components are provided and operational tests are complete, the entire domestic hot- and cold-water distribution system shall be disinfected. Before introducing disinfecting chlorination material, entire system shall be flushed with potable water until any entrained dirt and other foreign materials have been removed.

Water chlorination procedure shall be in accordance with AWWA C651 and AWWA C652 as modified and supplemented by this specification. The chlorinating material shall be hypochlorites or liquid chlorine. The chlorinating material shall be fed into the water piping system at a constant rate at a concentration of at least 50 parts per million (ppm). Feed a properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or inject liquid chlorine into the system through a solution-feed chlorinator and booster pump until the entire system is completely filled.

Test the chlorine residual level in the water at 6 hour intervals for a continuous period of 24 hours. If at the end of a 6 hour interval, the chlorine residual has dropped to less than 25 ppm, flush the piping including tanks with potable water, and repeat the above chlorination
procedures. During the chlorination period, each valve and faucet shall be opened and closed several times.

After the second 24 hour period, verify that no less than 25 ppm chlorine residual remains in the treated system. The 24 hour chlorination procedure must be repeated until no less than 25 ppm chlorine residual remains in the treated system.

Upon the specified verification, the system including tanks shall then be flushed with potable water until the residual chlorine level is reduced to less than one part per million. During the flushing period, each valve and faucet shall be opened and closed several times.

Take additional samples of water in disinfected containers, for bacterial examination, at locations specified by the Contracting Officer. Test these samples for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA 10084. The testing method used shall be EPA approved for drinking water systems and shall comply with applicable local and state requirements.

Disinfection shall be repeated until bacterial tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained.

3.10 POSTED INSTRUCTIONS

Framed instructions under glass or in laminated plastic, including wiring and control diagrams showing the complete layout of the entire system, shall be posted where directed. Condensed operating instructions explaining preventive maintenance procedures, methods of checking the system for normal safe operation, and procedures for safely starting and stopping the system shall be prepared in typed form, framed as specified above for the wiring and control diagrams and posted beside the diagrams. The framed instructions shall be posted before acceptance testing of the systems.

3.11 PERFORMANCE OF WATER HEATING EQUIPMENT

Standard rating condition terms are as follows:

EF = Energy factor, minimum overall efficiency.

ET = Minimum thermal efficiency with 70 degrees F delta T.

SL = Standby loss is maximum (Btu/h) based on a 70 degrees F temperature difference between stored water and ambient requirements.

V = Rated volume in gallons

Q = Nameplate input rate in kW (Btu/h)

3.11.1 Storage Water Heaters

3.11.1.1 Gas

a. Storage capacity of 50 gallons or less shall have a minimum energy
factor (EF) of 0.67 or higher per FEMP requirements.

b. Storage capacity of 20 gallons or more and input rating of 75,000 Btu/h or less: minimum EF shall be 0.62 - 0.0019V per 10 CFR 430.

c. Rating of less than 22980 W: (75,000 Btu/h) ET shall be 80 percent; maximum SL shall be (Q/800+110x(V^1/2)), per ANSI Z21.10.3/CSA 4.3

3.12 TABLES

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
<th>SERVICE E</th>
<th>SERVICE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cast iron soil pipe and fittings, hub and spigot, ASTM A74 with compression gaskets. Pipe and fittings shall be marked with the CISPI trademark.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Cast iron soil pipe and fittings hubless, CISPI 301 and ASTM A888 Pipe and fittings shall be marked with the CISPI trademark.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cast iron drainage fittings, threaded, ASME B16.12 for use with Item 10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cast iron screwed fittings (threaded) ASME B16.4 for use with Item 10</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I

PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
<th>SERVICE E</th>
<th>SERVICE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Ductile iron grooved joint fittings for ferrous pipe ASTM A536 and ASTM A47/A47M for use with Item 5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>Bronze sand casting grooved joint pressure fittings for non-ferrous pipe ASTM B584, for use with Item 5</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>Malleable-iron threaded fittings, galvanized ASME B16.3 for use with Item 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Steel pipe, seamless galvanized, ASTM A53/A53M, Type S, Grade B</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Seamless red brass pipe, ASTM B43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Bronzed flanged fittings, ASME B16.24 for use with Items 11 and 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
TABLE I
PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
<th>SERVICE E</th>
<th>SERVICE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Cast copper alloy solder joint pressure fittings, ASME B16.18 for use with Item 14</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cast bronze threaded fittings, ASME B16.15</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Copper drainage tube, (DWV), ASTM B306</td>
<td>X*</td>
<td>X</td>
<td>X*</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>Wrought copper and wrought alloy solder-joint drainage fittings. ASME B16.29</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Cast copper alloy solder joint drainage fittings, DWV, ASME B16.23</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Polyvinyl Chloride plastic drain, waste and vent pipe and fittings, ASTM D2665, ASTM F891, (Sch 40) ASTM F1760</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I

PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPE SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
<th>SERVICE E</th>
<th>SERVICE F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE:

- **A** - Underground Building Soil, Waste and Storm Drain
- **B** - Aboveground Soil, Waste, Drain In Buildings
- **C** - Underground Vent
- **D** - Aboveground Vent
- **E** - Interior Rainwater Conductors Aboveground
- **F** - Corrosive Waste And Vent Above And Belowground
- ***** - Hard Temper

TABLE II

PIPE AND FITTING MATERIALS FOR PRESSURE PIPE SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Malleable-iron threaded fittings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Galvanized, ASME B16.3 for use with Item 4a</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Same as "a" but not galvanized for use with Item 4b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE II

PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS

<table>
<thead>
<tr>
<th>Item #</th>
<th>Pipe and Fitting Materials</th>
<th>SERVICE A</th>
<th>SERVICE B</th>
<th>SERVICE C</th>
<th>SERVICE D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ductile iron grooved joint fittings for ferrous pipe ASTM A536 and ASTM A47/A47M, for use with Item 2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Steel pipe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Seamless, galvanized, ASTM A53/A53M, Type S, Grade B</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Seamless red brass pipe, ASTM B43</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bronze flanged fittings, ASME B16.24 for use with Items 5 and 7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Seamless copper pipe, ASTM B42</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>Seamless copper water tube, ASTM B88, ASTM B88M</td>
<td>X**</td>
<td>X**</td>
<td></td>
<td>X***</td>
</tr>
<tr>
<td>9</td>
<td>Cast bronze threaded fittings, ASME B16.15 for use with Items 5 and 7</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>Wrought copper and bronze solder-joint pressure fittings, ASME B16.22 for use with Items 5, 7 and 8</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>Cast copper alloy solder-joint pressure fittings, ASME B16.18 for use with Item 8</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>Bronze and sand castings grooved joint pressure fittings for non-ferrous pipe ASTM B584, for use with Item 2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Pipe and Fitting Materials</td>
<td>SERVICE A</td>
<td>SERVICE B</td>
<td>SERVICE C</td>
<td>SERVICE D</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Pipe and Fitting Materials</td>
<td>SERVICE A</td>
<td>SERVICE B</td>
<td>SERVICE C</td>
<td>SERVICE D</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>32</td>
<td>Steel pipeline flanges, MSS SP-44</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Pipe and Fitting Materials</td>
<td>SERVICE A</td>
<td>SERVICE B</td>
<td>SERVICE C</td>
<td>SERVICE D</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>33</td>
<td>Fittings: brass or bronze; ASME B16.15, and ASME B16.18 ASTM B828</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Carbon steel pipe unions, socket-welding and threaded, MSS SP-83</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Malleable-iron threaded pipe unions ASME B16.39</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Nipples, pipe threaded ASTM A733</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Press Fittings</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE:
- **A** - Cold Water Service Aboveground
- **B** - Hot and Cold Water Distribution
- **180 degrees F Maximum Aboveground**
- **C** - Compressed Air Lubricated
- **D** - Cold Water Service Belowground

Indicated types are minimum wall thicknesses.

- **** - Type L - Hard
- ***** - Type K - Hard temper with brazed joints only or type K-soft temper without joints in or under floors
- **** - In or under slab floors only brazed joints
<table>
<thead>
<tr>
<th>FUEL</th>
<th>STORAGE CAPACITY</th>
<th>INPUT RATING</th>
<th>TEST PROCEDURE</th>
<th>REQUIRED PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GALLONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>STORAGE WATER HEATERS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>50 max.</td>
<td>10 CFR 430</td>
<td>EF = 0.67</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>20 min.</td>
<td>75,000 Btu/h</td>
<td>10 CFR 430</td>
<td>EF = 80–0.0019V min.</td>
</tr>
<tr>
<td>Gas</td>
<td>1,000 (Btu/h)/gal max.</td>
<td>75,000 Btu/h</td>
<td>ANSI Z21.10.3</td>
<td>ET = 80 percent min. SL = 1.3+38/V max.</td>
</tr>
</tbody>
</table>
TABLE III

STANDARD RATING CONDITIONS AND MINIMUM PERFORMANCE RATINGS FOR WATER HEATING EQUIPMENT

<table>
<thead>
<tr>
<th>FUEL</th>
<th>STORAGE CAPACITY GALLONS</th>
<th>INPUT RATING</th>
<th>TEST PROCEDURE</th>
<th>REQUIRED PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TERMS:

EF = Energy factor, minimum overall efficiency.
ET = Minimum thermal efficiency with 70 degrees F delta T.
SL = Standby loss is maximum Btu/h based on a 70 degree F temperature difference between stored water and ambient requirements.
V = Rated storage volume in gallons
Q = Nameplate input rate in Btu/h

-- End of Section --
SECTION 23 00 00

AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS

08/10

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 201 (2002; R 2011) Fans and Systems
AMCA 210 (2016) Laboratory Methods of Testing Fans for Aerodynamic Performance Rating
AMCA 300 (2014) Reverberant Room Method for Sound Testing of Fans
AMCA 301 (2014) Methods for Calculating Fan Sound Ratings from Laboratory Test Data
AMCA 500-D (2012) Laboratory Methods of Testing Dampers for Rating

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 410 (2001; Addendum 1 2002; Addendum 2 2005; Addendum 3 2011) Forced-Circulation Air-Cooling and Air-Heating Coils
AHRI 430 (2009) Central-Station Air-Handling Units
AHRI 880 I-P (2011) Performance Rating of Air Terminals
AHRI 885 (2008; Addendum 2011) Procedure for Estimating Occupied Space Sound Levels in the Application of Air Terminals and Air Outlets
AHRI Guideline D (1996) Application and Installation of Central Station Air-Handling Units

AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABMA)

ABMA 11 (2014) Load Ratings and Fatigue Life for Roller Bearings
ABMA 9 (2015) Load Ratings and Fatigue Life for Ball Bearings
AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 70 (2006; R 2011) Method of Testing for Rating the Performance of Air Outlets and Inlets

ASME INTERNATIONAL (ASME)

ASTM INTERNATIONAL (ASTM)

ASTM A924/A924M (2017a) Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process

ASTM D520 (2000; R 2011) Zinc Dust Pigment

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

SCIENTIFIC CERTIFICATION SYSTEMS (SCS)

SCS SCS Global Services (SCS) Indoor Advantage

SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)

SMACNA 1972 CD (2012) HVAC Air Duct Leakage Test Manual -
1.2 SYSTEM DESCRIPTION

Furnish ductwork, piping offsets, fittings, and accessories as required to provide a complete installation. Coordinate the work of the different trades to avoid interference between piping, equipment, structural, and electrical work. Provide complete, in place, all necessary offsets in piping and ductwork, and all fittings, and other components, required to
install the work as indicated and specified.

1.2.1 Mechanical Equipment Identification

The number of charts and diagrams shall be equal to or greater than the number of mechanical equipment rooms. Where more than one chart or diagram per space is required, mount these in edge pivoted, swinging leaf, extruded aluminum frame holders which open to 170 degrees.

1.2.1.1 Charts

Provide chart listing of equipment by designation numbers and capacities such as flow rates, pressure and temperature differences, heating and cooling capacities, horsepower, pipe sizes, and voltage and current characteristics.

1.2.1.2 Diagrams

Submit proposed diagrams, at least 2 weeks prior to start of related testing. Provide neat mechanical drawings provided with extruded aluminum frame under 1/8-inch glass or laminated plastic, system diagrams that show the layout of equipment, piping, and ductwork, and typed condensed operation manuals explaining preventative maintenance procedures, methods of checking the system for normal, safe operation, and procedures for safely starting and stopping the system. After approval, post these items where directed.

1.2.2 Service Labeling

Label equipment, including fans, air handlers, terminal units, etc. with labels made of self-sticking, plastic film designed for permanent installation. Labels shall be in accordance with the typical examples below:

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>LABEL AND TAG DESIGNATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air handling unit Number</td>
<td>AHU -</td>
</tr>
<tr>
<td>Control and instrument air</td>
<td>CONTROL AND INSTR.</td>
</tr>
<tr>
<td>Exhaust Fan Number</td>
<td>EF -</td>
</tr>
<tr>
<td>VAV Box Number</td>
<td>VAV -</td>
</tr>
<tr>
<td>Fan Coil Unit Number</td>
<td>FC -</td>
</tr>
<tr>
<td>Terminal Box Number</td>
<td>TB -</td>
</tr>
<tr>
<td>Unit Ventilator Number</td>
<td>UV -</td>
</tr>
</tbody>
</table>

Identify similar services with different temperatures or pressures. Where pressures could exceed 125 pounds per square inch, gage, include the maximum system pressure in the label. Label and arrow piping in accordance with the following:
a. Each point of entry and exit of pipe passing through walls.

b. Each change in direction, i.e., elbows, tees.

c. In congested or hidden areas and at all access panels at each point required to clarify service or indicated hazard.

d. In long straight runs, locate labels at distances within eyesight of each other not to exceed 75 feet. All labels shall be visible and legible from the primary service and operating area.

<table>
<thead>
<tr>
<th>For Bare or Insulated Pipes</th>
</tr>
</thead>
<tbody>
<tr>
<td>for Outside Diameters of</td>
</tr>
<tr>
<td>1/2 thru 1-3/8 inch</td>
</tr>
<tr>
<td>1-1/2 thru 2-3/8 inch</td>
</tr>
<tr>
<td>2-1/2 inch and larger</td>
</tr>
</tbody>
</table>

1.2.3 Color Coding

Color coding of all piping systems shall be in accordance with ASME A13.1.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Detail Drawings; G

SD-03 Product Data

Metallic Flexible Duct
Insulated Nonmetallic Flexible Duct Runouts
Duct Connectors
Duct Access Doors; G
Fire Dampers; G
Manual Balancing Dampers; G
Automatic Smoke-Fire Dampers; G
Automatic Smoke Dampers; G
Sound Attenuation Equipment; G
Acoustical Duct Liner; G
Diffusers; G
Registers and Grilles; G
Air Vents, Penthouses, Louvers, and Goosenecks; G
Centrifugal Fans; G
In-Line Centrifugal Fans; G
Centrifugal Type Power Wall Ventilators; G
Ceiling Exhaust Fans; G
Air Handling Units; G
Constant Volume, Single Duct Terminal Units; G
Variable Volume, Single Duct Terminal Units; G
Reheat Units; G
Energy Recovery Devices; G
Test Procedures
Diagrams; G

SD-06 Test Reports

Performance Tests; G
Damper Acceptance Test; G

SD-07 Certificates

Certification
Ozone Depleting Substances

SD-08 Manufacturer's Instructions

Manufacturer's Installation Instructions
Operation and Maintenance Training

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals; G
Fire Dampers; G
Manual Balancing Dampers; G
Automatic Smoke-Fire Dampers; G
Automatic Smoke Dampers; G
Centrifugal Fans; G
In-Line Centrifugal Fans; G
Centrifugal Type Power Wall Ventilators; G
Ceiling Exhaust Fans; G
Air Handling Units; G
Constant Volume, Single Duct Terminal Units; G
Variable Volume, Single Duct Terminal Units; G
Reheat Units; G
Energy Recovery Devices; G

SD-11 Closeout Submittals

Energy Efficient Equipment; S
Reduce Volatile Organic Compounds (VOC); S
Indoor Air Quality During Construction; S
Ozone Depleting Substances for Refrigerants; S

1.4 QUALITY ASSURANCE

Except as otherwise specified, approval of materials and equipment is based on manufacturer's published data.

a. Where materials and equipment are specified to conform to the standards of the Underwriters Laboratories, the label of or listing with reexamination in UL Bld Mat Dir, and UL 6 is acceptable as sufficient evidence that the items conform to Underwriters Laboratories requirements. In lieu of such label or listing, submit a written certificate from any nationally recognized testing agency, adequately equipped and competent to perform such services, stating that the items
have been tested and that the units conform to the specified requirements. Outline methods of testing used by the specified agencies.

b. Where materials or equipment are specified to be constructed or tested, or both, in accordance with the standards of the ASTM International (ASTM), the ASME International (ASME), or other standards, a manufacturer's certificate of compliance of each item is acceptable as proof of compliance.

c. Conformance to such agency requirements does not relieve the item from compliance with other requirements of these specifications.

d. Where products are specified to meet or exceed the specified energy efficiency requirement of FEMP-designated or Energy Star certified product categories, equipment selected shall have as a minimum the efficiency rating identified under "Energy-Efficient Products" at http://www1.eere.energy.gov/femp/procurement.

These specifications conform to the efficiency requirements as defined in Public Law PL 109-58, "Energy Policy Act of 2005" for federal procurement of energy-efficient products. Equipment having a lower efficiency than Energy Star or FEMP requirements may be specified if the designer determines the equipment to be more life-cycle cost effective using the life-cycle cost analysis methodology and procedure in 10 CFR 436.

1.4.1 Prevention of Corrosion

Protect metallic materials against corrosion. Manufacturer shall provide rust-inhibiting treatment and standard finish for the equipment enclosures. Do not use aluminum in contact with earth, and where connected to dissimilar metal. Protect aluminum by approved fittings, barrier material, or treatment. Ferrous parts such as anchors, bolts, braces, boxes, bodies, clamps, fittings, guards, nuts, pins, rods, shims, thimbles, washers, and miscellaneous parts not of corrosion-resistant steel or nonferrous materials shall be hot-dip galvanized in accordance with ASTM A123/A123M for exterior locations and cadmium-plated in conformance with ASTM B766 for interior locations.

1.4.2 Asbestos Prohibition

Do not use asbestos and asbestos-containing products.

1.4.3 Ozone Depleting Substances Used as Refrigerants

Minimize releases of Ozone Depleting Substances (ODS) during repair, maintenance, servicing or disposal of appliances containing ODS's by complying with all applicable sections of 40 CFR 82 Part 82 Subpart F. Any person conducting repair, maintenance, servicing or disposal of equipment containing refrigerants must comply with the following:

a. Do not knowingly vent or otherwise release into the environment, Class I or Class II substances used as a refrigerant.

b. Do not open appliances without meeting the requirements of 40 CFR 82 Part 82.156 Subpart F, regarding required practices for evacuation and collection of refrigerant, and 40 CFR 82 Part 82.158 Subpart F, regarding standards of recycling and recovery equipment.
c. Only persons who comply with 40 CFR 82 Part 82.161 Subpart F, regarding technician certification, can conduct work on appliances containing refrigerant.

In addition, provide copies of all applicable certifications to the Contracting Officer at least 14 calendar days prior to initiating maintenance, repair, servicing, dismantling or disposal of appliances, including:

a. Proof of Technician Certification

b. Proof of Equipment Certification for recovery or recycling equipment.

c. Proof of availability of certified recovery or recycling equipment.

1.4.4 Use of Ozone Depleting Substances, Other than Refrigerants

The use of Class I or Class II ODS's listed as nonessential in 40 CFR 82 Part 82.66 Subpart C is prohibited. These prohibited materials and uses include:

a. Any plastic party spray streamer or noise horn which is propelled by a chlorofluorocarbon

b. Any cleaning fluid for electronic and photographic equipment which contains a chlorofluorocarbon; including liquid packaging, solvent wipes, solvent sprays, and gas sprays.

c. Any plastic flexible or packaging foam product which is manufactured with or contains a chlorofluorocarbon, including, open cell foam, open cell rigid polyurethane poured foam, closed cell extruded polystyrene sheet foam, closed cell polyethylene foam and closed cell polypropylene foam except for flexible or packaging foam used in coaxial cabling.

d. Any aerosol product or other pressurized dispenser which contains a chlorofluorocarbon, except for those listed in 40 CFR 82 Part 82.66 Subpart C.

Request a waiver if a facility requirement dictates that a prohibited material is necessary to achieve project goals. Submit the waiver request in writing to the Contracting Officer. The waiver will be evaluated and dispositioned.

1.4.5 Detail Drawings

Submit detail drawings showing equipment layout, including assembly and installation details and electrical connection diagrams; ductwork layout showing the location of all supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and static pressure and seal classifications. Include any information required to demonstrate that the system has been coordinated and functions properly as a unit on the drawings and show equipment relationship to other parts of the work, including clearances required for operation and maintenance. Submit drawings showing bolt-setting information, and foundation bolts prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Submit function designation of the equipment and any other requirements specified throughout this Section with the shop drawings.
1.4.6 Test Procedures

Submit proposed test procedures and test schedules for the ductwork leak test, and performance tests of systems, at least 2 weeks prior to the start of related testing.

1.4.7 Sustainable Design Certification

Product shall be third party certified in accordance with ULE Greenguard, SCS Scientific Certification Systems Indoor Advantage or equal. Certification shall be performed annually and shall be current. Products to be addressed from the ULE Greenguard product list: adhesives/sealants, air filters, building construction materials, HVAC system equipment and insulation.

1.5 DELIVERY, STORAGE, AND HANDLING

Protect stored equipment at the jobsite from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, cap or plug all pipes until installed.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Energy Efficient Equipment

Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph ENERGY EFFICIENT EQUIPMENT that the following products meet energy efficiency requirements as outlined in this section:

- Centrifugal Fans
- In-Line Centrifugal Fans
- Centrifugal Type Power Wall Ventilators
- Ceiling Exhaust Fans
- Air Handling Units
- Room Fan-Coil Units
- Reheat Units
- Energy Recovery Devices

2.1.2 Reduce Volatile Organic Compounds (VOC) for sealants, coatings or adhesives

Low or no VOC's and no added urea formaldehyde for duct sealants, coatings or adhesives, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC).

2.1.3 Ozone Depleting Substances for Refrigerants

Do not use any Ozone Depleting Substances (ODS) as Refrigerants per requirements in 01 33 29 SUSTAINABILITY REPORTING paragraph OZONE DEPLETING SUBSTANCES.
2.2 STANDARD PRODUCTS

Provide components and equipment that are "standard products" of a manufacturer regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. "Standard products" is defined as being in satisfactory commercial or industrial use for 2 years before bid opening, including applications of components and equipment under similar circumstances and of similar size, satisfactorily completed by a product that is sold on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a 2-year field service record are acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Provide equipment items that are supported by a service organization.

2.3 STANDARD PRODUCTS

Except for the fabricated duct, plenums and casings specified in paragraphs "Metal Ductwork" and "Plenums and Casings for Field-Fabricated Units", provide components and equipment that are standard products of manufacturers regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. This requirement applies to all equipment, including diffusers, registers, fire dampers, and balancing dampers. All energy consuming HVAC equipment must be Energy Star or Federal Energy management Program (FEMP) designated efficiency in conformance to Section 01 33 29 SUSTAINABILITY REPORTING paragraph ENERGY EFFICIENT EQUIPMENT.

a. Standard products are defined as components and equipment that have been in satisfactory commercial or industrial use in similar applications of similar size for at least two years before bid opening.

b. Prior to this two year period, these standard products shall have been sold on the commercial market using advertisements in manufacturers' catalogs or brochures. These manufacturers' catalogs, or brochures shall have been copyrighted documents or have been identified with a manufacturer's document number.

c. Provide equipment items that are supported by a service organization.
 In product categories covered by Energy Star or the Federal Energy Management Program, provide equipment that is listed on the Energy Star Qualified Products List or that meets or exceeds the FEMP-designated Efficiency Requirements.

2.4 IDENTIFICATION PLATES

In addition to standard manufacturer's identification plates, provide engraved laminated phenolic identification plates for each piece of mechanical equipment. Identification plates are to designate the function of the equipment. Submit designation with the shop drawings. Identification plates shall be three layers, black-white-black, engraved to show white letters on black background. Letters shall be upper case. Identification plates 1-1/2-inches high and smaller shall be 1/16-inch thick, with engraved lettering 1/8-inch high; identification plates larger than 1-1/2-inches high shall be 1/8-inch thick, with engraved lettering of suitable height. Identification plates 1-1/2-inches high and larger shall have beveled edges. Install identification plates using a compatible adhesive.
2.5 EQUIPMENT GUARDS AND ACCESS

Fully enclose or guard belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact according to OSHA requirements. Properly guard or cover with insulation of a type specified, high temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard.

2.6 ELECTRICAL WORK

a. Provide motors, controllers, integral disconnects, contactors, and controls with their respective pieces of equipment, except controllers indicated as part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide manual or automatic control and protective or signal devices required for the operation specified and control wiring required for controls and devices specified, but not shown. For packaged equipment, include manufacturer provided controllers with the required monitors and timed restart.

b. For single-phase motors, provide high-efficiency type, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11. Integral size motors shall be the premium efficiency type in accordance with NEMA MG 1.

c. For polyphase motors, provide squirrel-cage medium induction motors, including motors that are part of a system, and that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Select premium efficiency polyphase motors in accordance with NEMA MG 10.

d. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor. Provide motors rated for continuous duty with the enclosure specified. Provide motor duty that allows for maximum frequency start-stop operation and minimum encountered interval between start and stop. Provide motor torque capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Fit motor bearings with grease supply fittings and grease relief to outside of the enclosure.

e. Where two-speed or variable-speed motors are indicated, solid-state variable-speed controllers are allowed to accomplish the same function. Use solid-state variable-speed controllers for motors rated 10 hp or less and adjustable frequency drives for larger motors. Provide variable frequency drives for motors as specified in Section 26 29 23 VARIABLE FREQUENCY DRIVE SYSTEMS UNDER 600 VOLTS.

2.7 ANCHOR BOLTS

Provide anchor bolts for equipment placed on concrete equipment pads or on concrete slabs. Bolts to be of the size and number recommended by the equipment manufacturer and located by means of suitable templates. Installation of anchor bolts shall not degrade the surrounding concrete.
2.8 PAINTING

Paint equipment units in accordance with approved equipment manufacturer's standards unless specified otherwise. Field retouch only if approved. Otherwise, return equipment to the factory for refinishing.

2.9 INDOOR AIR QUALITY

Provide equipment and components that comply with the requirements of ASHRAE 62.1 unless more stringent requirements are specified herein.

2.10 DUCT SYSTEMS

2.10.1 Metal Ductwork

Provide metal ductwork construction, including all fittings and components, that complies with SMACNA 1966, as supplemented and modified by this specification.

a. Ductwork shall be constructed meeting the requirements for the duct system static pressure specified in APPENDIX D of Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC.

b. Provide radius type elbows with a centerline radius of 1.5 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes are allowed.

c. Provide ductwork that meets the requirements of Seal Class A. Provide ductwork in VAV systems upstream of the VAV boxes that meets the requirements of Seal Class A.

d. Provide sealants that conform to fire hazard classification specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS and are suitable for the range of air distribution and ambient temperatures to which it is exposed. Do not use pressure sensitive tape as a sealant.

e. Make spiral lock seam duct, and flat oval with duct sealant and lock with not less than 3 equally spaced drive screws or other approved methods indicated in SMACNA 1966. Apply the sealant to the exposed male part of the fitting collar so that the sealer is on the inside of the joint and fully protected by the metal of the duct fitting. Apply one brush coat of the sealant over the outside of the joint to at least 2 inch band width covering all screw heads and joint gap. Dents in the male portion of the slip fitting collar are not acceptable. Fabricate outdoor air intake ducts and plenums with watertight soldered or brazed joints and seams.

2.10.1.1 Metallic Flexible Duct

a. Provide duct that conforms to UL 181 and NFPA 90A with factory-applied insulation, vapor barrier, and end connections. Provide duct assembly that does not exceed 25 for flame spread and 50 for smoke developed. Provide ducts designed for working pressures of 2 inches water gauge positive and 1.5 inches water gauge negative. Provide flexible round duct length that does not exceed 5 feet. Secure connections by applying adhesive for 2 inches over rigid duct, apply flexible duct 2 inches over rigid duct, apply metal clamp, and provide minimum of three No. 8 sheet metal screws through clamp and rigid duct.
b. Inner duct core: Provide interlocking spiral or helically corrugated flexible core constructed of zinc-coated steel, aluminum, or stainless steel; or constructed of inner liner of continuous galvanized spring steel wire helix fused to continuous, fire-retardant, flexible vapor barrier film, inner duct core.

c. Insulation: Provide inner duct core that is insulated with mineral fiber blanket type flexible insulation, minimum of 1 inch thick. Provide insulation covered on exterior with manufacturer's standard fire retardant vapor barrier jacket for flexible round duct.

2.10.1.2 Insulated Nonmetallic Flexible Duct Runouts

Use flexible duct runouts only where indicated. Runout length is indicated on the drawings, and is not to exceed 5 feet. Provide runouts that are preinsulated, factory fabricated, and that comply with NFPA 90A and UL 181. Provide either field or factory applied vapor barrier. Provide not less than 20 ounce glass fabric duct connectors coated on both sides with neoprene. Where coil induction or high velocity units are supplied with vertical air inlets, use a streamlined, vaned and mitered elbow transition piece for connection to the flexible duct or hose. Provide a die-stamped elbow and not a flexible connector as the last elbow to these units other than the vertical air inlet type. Insulated flexible connectors are allowed as runouts. Provide insulated material and vapor barrier that conform to the requirements of Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. Do not expose the insulation material surface to the air stream.

2.10.1.3 General Service Duct Connectors

Provide a flexible duct connector approximately 6 inches in width where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, secure the flexible material by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, install the flexible material locked to metal collars using normal duct construction methods. Provide a composite connector system that complies with NFPA 701 and is classified as "flame-retardent fabrics" in UL Bld Mat Dir.

2.10.1.4 Corrosion Resisting (Stainless) Steel Sheets

ASTM A167

2.10.2 Duct Access Doors

Provide hinged access doors conforming to SMACNA 1966 in ductwork and plenums where indicated and at all air flow measuring primaries, automatic dampers, fire dampers, coils, thermostats, and other apparatus requiring service and inspection in the duct system. Provide access doors upstream and downstream of air flow measuring primaries and heating and cooling coils. Provide doors that are a minimum 15 by 18 inches, unless otherwise shown. Where duct size does not accommodate this size door, make the doors as large as practicable. Equip doors 24 by 24 inches or larger with fasteners operable from inside and outside the duct. Use insulated type doors in insulated ducts.
2.10.3 Fire Dampers

Use 1.5 hour rated fire dampers unless otherwise indicated. Provide fire dampers that conform to the requirements of NFPA 90A and UL 555. Perform the fire damper test as outlined in NFPA 90A. Provide a pressure relief door upstream of the fire damper. If the ductwork connected to the fire damper is to be insulated then provide a factory installed pressure relief damper. Provide automatic operating fire dampers with a dynamic rating suitable for the maximum air velocity and pressure differential to which it is subjected. Provide fire dampers approved for the specific application, and install according to their listing. Equip fire dampers with a steel sleeve or adequately sized frame installed in such a manner that disruption of the attached ductwork, if any, does not impair the operation of the damper. Equip sleeves or frames with perimeter mounting angles attached on both sides of the wall or floor opening. Construct ductwork in fire-rated floor-ceiling or roof-ceiling assembly systems with air ducts that pierce the ceiling of the assemblies in conformance with UL Fire Resistance. Provide curtain type with damper blades out of the air stream or single blade type or multi-blade type fire dampers. Install dampers that do not reduce the duct or the air transfer opening cross-sectional area. Install dampers so that the centerline of the damper depth or thickness is located in the centerline of the wall, partition or floor slab depth or thickness. Unless otherwise indicated, comply with the installation details given in SMACNA 1819 and in manufacturer's instructions for fire dampers. Perform acceptance testing of fire dampers according to paragraph Fire Damper Acceptance Test and NFPA 90A.

2.10.4 Manual Balancing Dampers

Furnish manual balancing dampers with accessible operating mechanisms. Use chromium plated operators (with all exposed edges rounded) in finished portions of the building. Provide manual volume control dampers that are operated by locking-type quadrant operators. Install dampers that are 2 gauges heavier than the duct in which installed. Unless otherwise indicated, provide opposed blade type multileaf dampers with maximum blade width of 12 inches. Provide access doors or panels for all concealed damper operators and locking setscrews. Provide stand-off mounting brackets, bases, or adapters not less than the thickness of the insulation when the locking-type quadrant operators for dampers are installed on ducts to be thermally insulated, to provide clearance between the duct surface and the operator. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.

2.10.5 Manual Balancing Dampers

a. Furnish manual balancing dampers with accessible operating mechanisms. Use chromium plated operators (with all exposed edges rounded) in finished portions of the building. Provide manual volume control dampers that are operated by locking-type quadrant operators.

b. Unless otherwise indicated, provide opposed blade type multileaf dampers with maximum blade width of 12 inches. Provide access doors or panels for all concealed damper operators and locking setscrews. Provide access doors or panels in hard ceilings, partitions and walls for access to all concealed damper operators and damper locking setscrews. Coordinate location of doors or panels with other affected contractors.

c. Provide stand-off mounting brackets, bases, or adapters not less than
the thickness of the insulation when the locking-type quadrant operators for dampers are installed on ducts to be thermally insulated, to provide clearance between the duct surface and the operator. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.

2.10.5.1 Square or Rectangular Dampers

2.10.5.1.1 Duct Height 12 inches and Less

2.10.5.1.1.1 Frames

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Galvanized Steel Thickness</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 19 inches</td>
<td>Maximum 12 inches</td>
<td>Minimum 20 gauge</td>
<td>Minimum 3 inches</td>
</tr>
<tr>
<td>More than 19 inches</td>
<td>Maximum 12 inches</td>
<td>Minimum 16 gauge</td>
<td>Minimum 3 inches</td>
</tr>
</tbody>
</table>

2.10.5.1.1.2 Single Leaf Blades

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Galvanized Steel Thickness</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 19 inches</td>
<td>Maximum 12 inches</td>
<td>Minimum 20 gauge</td>
<td>Minimum 3 inches</td>
</tr>
<tr>
<td>More than 19 inches</td>
<td>Maximum 12 inches</td>
<td>Minimum 16 gauge</td>
<td>Minimum 3 inches</td>
</tr>
</tbody>
</table>

2.10.5.1.1.3 Blade Axles

To support the blades of round dampers, provide galvanized steel shafts supporting the blade the entire duct diameter frame-to-frame. Axle shafts shall extend through standoff bracket and hand quadrant.

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Material</th>
<th>Square Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 19 inches</td>
<td>Maximum 12 inches</td>
<td>Galvanized Steel</td>
<td>Minimum 3/8 inch</td>
</tr>
<tr>
<td>More than 19 inches</td>
<td>Maximum 12 inches</td>
<td>Galvanized Steel</td>
<td>Minimum 1/2 inch</td>
</tr>
</tbody>
</table>

2.10.5.1.1.4 Axle Bearings

Support the shaft on each end at the frames with shaft bearings. Shaft bearings configuration shall be a pressed fit to provide a tight joint between blade shaft and damper frame.
2.10.5.1.1.5 Control Shaft/Hand Quadrant

Provide dampers with accessible locking-type control shaft/hand quadrant operators.

Provide stand-off mounting brackets, bases, or adapters for the locking-type quadrant operators on dampers installed on ducts to be thermally insulated. Stand-off distance shall be a minimum of 2 inches off the metal duct surface. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.

2.10.5.1.1.6 Finish

Mill Galvanized

2.10.5.1.2 Duct Height Greater than 12 inches

2.10.5.1.2.1 Dampers

Provide dampers with multi-leaf opposed-type blades.

2.10.5.1.2.2 Frames

Maximum 48 inches in height; maximum 48 inches in width; minimum of 16 gauge galvanized steel, minimum of 5 inches long.

2.10.5.1.2.3 Blades

Minimum of 16 gauge galvanized steel; 6 inch nominal width.

2.10.5.1.2.4 Blade Axles

To support the blades of round dampers, provide galvanized square steel shafts supporting the blade the entire duct diameter frame-to-frame. Axle shafts shall extend through standoff bracket and hand quadrant.

2.10.5.1.2.5 Axle Bearings

Support the shaft on each end at the frames with shaft bearings constructed of oil-impregnated bronze, or solid nylon, or a solid plastic equivalent to nylon. Shaft bearings configuration shall be a pressed fit to provide a tight joint between blade shaft and damper frame.

2.10.5.1.2.6 Blade Actuator

Minimum 1/2 inch diameter galvanized steel.

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum 19 inches</td>
<td>Maximum 12 inches</td>
<td>solid nylon, or equivalent solid plastic, or oil-impregnated bronze</td>
</tr>
<tr>
<td>More than 19 inches</td>
<td>Maximum 12 inches</td>
<td>oil-impregnated bronze</td>
</tr>
</tbody>
</table>
2.10.5.1.2.7 Blade Actuator Linkage

Mill Galvanized steel bar and crank plate with stainless steel pivots.

2.10.5.1.2.8 Control Shaft/Hand Quadrant

Provide dampers with accessible locking-type control shaft/hand quadrant operators.

Provide stand-off mounting brackets, bases, or adapters for the locking-type quadrant operators on dampers installed on ducts to be thermally insulated. Stand-off distance shall be a minimum of 2 inches off the metal duct surface. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.

2.10.5.1.2.9 Finish

Mill Galvanized

2.10.5.2 Round Dampers

2.10.5.2.1 Frames

<table>
<thead>
<tr>
<th>Size</th>
<th>Galvanized Steel Thickness</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 20 inches</td>
<td>Minimum 20 gauge</td>
<td>Minimum 6 inches</td>
</tr>
<tr>
<td>22 to 30 inches</td>
<td>Minimum 20 gauge</td>
<td>Minimum 10 inches</td>
</tr>
<tr>
<td>32 to 40 inches</td>
<td>Minimum 16 gauge</td>
<td>Minimum 10 inches</td>
</tr>
</tbody>
</table>

2.10.5.2.2 Blades

<table>
<thead>
<tr>
<th>Size</th>
<th>Galvanized Steel Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 20 inches</td>
<td>Minimum 20 gauge</td>
</tr>
<tr>
<td>22 to 30 inches</td>
<td>Minimum 16 gauge</td>
</tr>
<tr>
<td>32 to 40 inches</td>
<td>Minimum 10 gauge</td>
</tr>
</tbody>
</table>

2.10.5.2.3 Blade Axles

To support the blades of round dampers, provide galvanized steel shafts supporting the blade the entire duct diameter frame-to-frame. Axle shafts shall extend through standoff bracket and hand quadrant.
2.10.5.2.4 Axle Bearings

Support the shaft on each end at the frames with shaft bearings constructed of oil-impregnated bronze, or solid nylon, or a solid plastic equivalent to nylon. Shaft bearings configuration shall be a pressed fit to provide a tight joint between blade shaft and damper frame.

<table>
<thead>
<tr>
<th>Size</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 20 inches</td>
<td>solid nylon, or equivalent solid plastic, or oil-impregnated bronze</td>
</tr>
<tr>
<td>22 to 30 inches</td>
<td>solid nylon, or equivalent solid plastic, or oil-impregnated bronze</td>
</tr>
<tr>
<td>32 to 40 inches</td>
<td>oil-impregnated bronze, or stainless steel sleeve bearing</td>
</tr>
</tbody>
</table>

2.10.5.2.5 Control Shaft/Hand Quadrant

Provide dampers with accessible locking-type control shaft/hand quadrant operators.

Provide stand-off mounting brackets, bases, or adapters for the locking-type quadrant operators on dampers installed on ducts to be thermally insulated. Stand-off distance shall be a minimum of 2 inches off the metal duct surface. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer.

2.10.5.2.6 Finish

Mill Galvanized

2.10.6 Automatic Balancing Dampers

Provide dampers as specified in paragraph SUPPLEMENTAL COMPONENTS/SERVICES, subparagraph CONTROLS.

2.10.7 Automatic Smoke-Fire Dampers

Multiple blade type, 180 degrees F fusible fire damper link; smoke damper assembly to include electric damper operator. UL 555 as a 1.5 hour rated fire damper; further qualified under UL 555S as a leakage rated damper. Provide a leakage rating under UL 555S that is no higher than Class II or III at an elevated temperature Category B (250 degrees F for 30 minutes). Ensure that pressure drop in the damper open position does not exceed 0.1 inch water gauge with average duct velocities of 2500 fpm.
2.10.8 Automatic Smoke Dampers

UL listed multiple blade type, supplied by smoke damper manufacturer, with electric damper operator as part of assembly. Qualified under UL 555S with a leakage rating no higher than Class II or III at an elevated temperature Category B (250 degrees F for 30 minutes). Ensure that pressure drop in the damper open position does not exceed 0.1 inch water gauge with average duct velocities of 2500 fpm.

2.10.9 Air Supply And Exhaust Air Dampers

Where outdoor air supply and exhaust air dampers are required they shall have a maximum leakage rate when tested in accordance with AMCA 500-D as required by ASHRAE 90.1-IP, including maximum Damper Leakage for:

a. Climate Zones 1, 2, 6, 7, 8 the maximum damper leakage at 1.0 inch w.g. for motorized dampers is 4 cfm per square foot of damper area and non-motorized dampers are not allowed.

b. All other Climate Zones the maximum damper leakage at 1.0 inch w.g. is 10 cfm per square foot and for non-motorized dampers is 20 cfm per square foot of damper area.

Dampers smaller than 24 inches in either direction may have leakage of 40 cfm per square foot.

2.10.10 Plenums and Casings for Field-Fabricated Units

2.10.10.1 Plenum and Casings

Fabricate and erect plenums and casings as shown in SMACNA 1966, as applicable. Construct system casing of not less than 16 gauge galvanized sheet steel. Furnish cooling coil drain pans with 1 inch threaded outlet to collect condensation from the cooling coils. Fabricate drain pans from not lighter than 16 gauge steel, galvanized after fabrication or of 18 gauge corrosion-resisting sheet steel conforming to ASTM A167, Type 304, welded and stiffened. Thermally insulate drain pans exposed to the atmosphere to prevent condensation. Coat insulation with a flame resistant waterproofing material. Provide separate drain pans for each vertical coil section, and a separate drain line for each pan. Size pans to ensure capture of entrained moisture on the downstream-air side of the coil. Seal openings in the casing, such as for piping connections, to prevent air leakage. Size the water seal for the drain to maintain a pressure of at least 2 inch water gauge greater than the maximum negative pressure in the coil space.

2.10.10.2 Casing

Terminate casings at the curb line and bolt each to the curb using galvanized angle, as indicated in SMACNA 1966.

2.10.10.3 Access Doors

Provide access doors in each section of the casing. Weld doorframes in place, gasket each door with neoprene, hinge with minimum of two brass hinges, and fasten with a minimum of two brass tension fasteners operable from inside and outside of the casing. Where possible, make doors 36 by 18 inches and locate them 18 inches above the floor. Where the space available does not accommodate doors of this size, use doors as large as...
the space accommodates. Swing doors so that fan suction or pressure holds doors in closed position, airtight. Provide a push-button station, located inside the casing, to stop the supply.

2.10.10.4 Factory-Fabricated Insulated Sheet Metal Panels

Factory-fabricated components are allowed for field-assembled units, provided all requirements specified for field-fabricated plenums and casings are met. Provide panels of modular design, pretested for structural strength, thermal control, condensation control, and acoustical control. Seal and insulate panel joints. Provide and gasket access doors to prevent air leakage. Provide panel construction that is not less than 20 gauge galvanized sheet steel, assembled with fasteners treated against corrosion. Provide standard length panels that deflect not more than 1/2 inch under operation. Construct details, including joint sealing, not specifically covered, as indicated in SMACNA 1966. Construct the plenums and casings to withstand the specified internal pressure of the air systems.

2.10.10.5 Duct Liner

Unless otherwise specified, duct liner is not permitted.

2.10.11 Sound Attenuation Equipment

2.10.11.1 Systems with total pressure above 4 Inches Water Gauge

Provide sound attenuators on the discharge duct of each fan operating at a total pressure above 4 inch water gauge, and, when indicated, at the intake of each fan system. Provide sound attenuators elsewhere as indicated. Provide factory fabricated sound attenuators, tested by an independent laboratory for sound and performance characteristics. Provide a net sound reduction as indicated. Maximum permissible pressure drop is not to exceed 0.63 inch water gauge. Construct traps to be airtight when operating under an internal static pressure of 10 inch water gauge. Provide air-side surface capable of withstanding air velocity of 10,000 fpm. Certify that the equipment can obtain the sound reduction values specified after the equipment is installed in the system and coordinated with the sound information of the system fan to be provided. Provide sound absorbing material conforming to ASTM C1071, Type I or II. Provide sound absorbing material that meets the fire hazard rating requirements for insulation specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. For connection to ductwork, provide a duct transition section. Factory fabricated double-walled internally insulated spiral lock seam and round duct and fittings designed for high pressure air system can be provided if complying with requirements specified for factory fabricated sound attenuators, in lieu of factory fabricated sound attenuators. Construct the double-walled duct and fittings from an outer metal pressure shell of zinc-coated steel sheet, 1 inch thick acoustical blanket insulation, and an internal perforated zinc-coated metal liner. Provide a sufficient length of run to obtain the noise reduction coefficient specified. Certify that the sound reduction value specified can be obtained within the length of duct run provided. Provide welded or spiral lock seams on the outer sheet metal of the double-walled duct to prevent water vapor penetration. Provide duct and fittings with an outer sheet that conforms to the metal thickness of high-pressure spiral and round ducts and fittings shown in SMACNA 1966. Provide acoustical insulation with a thermal conductivity "k" of not more than 0.27 Btu/inch/square foot/hour/degree F at 75 degrees F mean temperature. Provide an internal perforated zinc-coated metal liner that is not less than 24 gauge with perforations not larger than 1/4 inch
in diameter providing a net open area not less than 10 percent of the surface.

2.10.11.2 System with total pressure of 4 Inch Water Gauge and Lower

Use sound attenuators only where indicated. Provide factory fabricated sound attenuators that are constructed of galvanized steel sheets. Provide attenuator with outer casing that is not less than 22 gauge. Provide fibrous glass acoustical fill. Provide net sound reduction indicated. Obtain values on a test unit not less than 24 by 24 inches outside dimensions made by a certified nationally recognized independent acoustical laboratory. Provide air flow capacity as indicated or required. Provide pressure drop through the attenuator that does not exceed the value indicated, or that is not in excess of 15 percent of the total external static pressure of the air handling system, whichever is less. Acoustically test attenuators with metal duct inlet and outlet sections while under the rated air flow conditions. Include with the noise reduction data the effects of flanking paths and vibration transmission. Construct sound attenuators to be airtight when operating at the internal static pressure indicated or specified for the duct system, but in no case less than 2 inch water gauge.

2.10.11.3 Acoustical Duct Liner

Use fibrous glass designed or flexible elastomeric duct liner for lining ductwork and conforming to the requirements of ASTM C1071, Type I and II. Provide uniform density, graduated density, or dual density liner composition, as standard with the manufacturer. Provide not less than 1 inch thick coated lining. Where acoustical duct liner is used, provide the thermal equivalent of the insulation specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS for liner or combination of liner and insulation applied to the exterior of the ductwork. Increase duct sizes shown to compensate for the thickness of the lining used.

2.10.12 Diffusers, Registers, and Grilles

Provide factory-fabricated units of steel or aluminum that distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 50 fpm in occupied zone, or dead spots anywhere in the conditioned area. Provide outlets for diffusion, spread, throw, and noise level as required for specified performance. Certify performance according to ASHRAE 70. Provide sound rated and certified inlets and outlets according to ASHRAE 70. Provide sound power level as indicated. Provide diffusers and registers with volume damper with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device is acceptable. Provide opposed blade type volume dampers for all diffusers and registers, except linear slot diffusers. Provide linear slot diffusers with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 7 feet above the floor, protect them by a grille or screen according to NFPA 90A.

2.10.12.1 Diffusers

Provide diffuser types indicated. Furnish ceiling mounted units with anti-smudge devices, unless the diffuser unit minimizes ceiling smudging through design features. Provide diffusers with air deflectors of the type indicated. Provide air handling troffers or combination light and ceiling diffusers conforming to the requirements of UL Electrical Constructn for
the interchangeable use as cooled or heated air supply diffusers or return air units. Install ceiling mounted units with rims tight against ceiling. Provide sponge rubber gaskets between ceiling and surface mounted diffusers for air leakage control. Provide suitable trim for flush mounted diffusers. For connecting the duct to diffuser, provide duct collar that is airtight and does not interfere with volume controller. Provide return or exhaust units that are similar to supply diffusers.

2.10.12.2 Linear Diffusers

Make joints between diffuser sections that appear as hairline cracks. Provide alignment slots for insertion of key strips or other concealed means to align exposed butt edges of diffusers. Equip with plaster frames when mounted in plaster ceiling. Do not use screws and bolts in exposed face of frames or flanges. Metal-fill and ground smooth frames and flanges exposed below ceiling. Furnish separate pivoted or hinged adjustable air-volume-damper and separate air-deflection blades.

2.10.12.3 Registers and Grilles

Provide units that are four-way directional-control type, except provide return and exhaust registers that are fixed horizontal or vertical louver type similar in appearance to the supply register face. Furnish registers with sponge-rubber gasket between flanges and wall or ceiling. Install wall supply registers at least 6 inches below the ceiling unless otherwise indicated. Locate return and exhaust registers 6 inches above the floor unless otherwise indicated. Achieve four-way directional control by a grille face which can be rotated in 4 positions or by adjustment of horizontal and vertical vanes. Provide grilles as specified for registers, without volume control damper.

2.10.12.4 Registers

Double-deflection supply registers. Provide manufacturer-furnished volume dampers. Provide volume dampers of the group-operated, opposed-blade type and key adjustable by inserting key through face of register. Operating mechanism shall not project through any part of the register face. Automatic volume control devices are acceptable.

2.10.13 Air Vents, Penthouses, Louvers, and Goosenecks

Fabricate air vents, penthouses, louvers, and goosenecks from galvanized steel or aluminum sheets with galvanized or aluminum structural shapes. Provide sheet metal thickness, reinforcement, and fabrication that conform to SMACNA 1966. Accurately fit and secure louver blades to frames. Fold or bead edges of louver blades for rigidity and baffle these edges to exclude driving rain. Provide air vents, penthouses, louvers, and goosenecks with bird screen.

2.10.14 Bird Screens and Frames

Provide bird screens that conform to ASTM E2016, No. 2 mesh, aluminum or stainless steel. Provide "medium-light" rated aluminum screens. Provide "light" rated stainless steel screens. Provide removable type frames fabricated from either stainless steel or extruded aluminum.
2.11 AIR SYSTEMS EQUIPMENT

2.11.1 Fans

Test and rate fans according to AMCA 210. Calculate system effect on air moving devices in accordance with AMCA 201 where installed ductwork differs from that indicated on drawings. Install air moving devices to minimize fan system effect. Where system effect is unavoidable, determine the most effective way to accommodate the inefficiencies caused by system effect on the installed air moving device. The sound power level of the fans shall not exceed 85 dBA when tested according to AMCA 300 and rated in accordance with AMCA 301. Provide all fans with an AMCA seal. Connect fans to the motors either directly or indirectly with V-belt drive. Use V-belt drives designed for not less than 150 percent of the connected driving capacity. Provide variable pitch motor sheaves for 15 hp and below, and fixed pitch as defined by AHRI Guideline D (A fixed-pitch sheave is provided on both the fan shaft and the motor shaft. This is a non-adjustable speed drive.). Select variable pitch sheaves to drive the fan at a speed which can produce the specified capacity when set at the approximate midpoint of the sheave adjustment. Where fixed pitch sheaves are furnished, provide a replaceable sheave when needed to achieve system air balance. Provide motors for V-belt drives with adjustable rails or bases. Provide removable metal guards for all exposed V-belt drives, and provide speed-test openings at the center of all rotating shafts. Provide fans with personnel screens or guards on both suction and supply ends, except that the screens need not be provided, unless otherwise indicated, where ducts are connected to the fan. Provide fan and motor assemblies with vibration-isolation supports or mountings as indicated. Use vibration-isolation units that are standard products with published loading ratings. Select each fan to produce the capacity required at the fan static pressure indicated. Provide sound power level as indicated. Obtain the sound power level values according to AMCA 300. Provide standard AMCA arrangement, rotation, and discharge as indicated. Provide power ventilators that conform to UL 705 and have a UL label.

2.11.1.1 Centrifugal Fans

Provide fully enclosed, single-width single-inlet, or double-width double-inlet centrifugal fans, with AMCA Pressure Class I, II, or III as required or indicated for the design system pressure. Provide impeller wheels that are rigidly constructed and accurately balanced both statically and dynamically. Provide fan wheels over 36 inches in diameter with overhung pulleys and a bearing on each side of the wheel. Provide fan wheels 36 inches or less in diameter that have one or more extra long bearings between the fan wheel and the drive. Provide sleeve type, self-aligning and self-oiling bearings with oil reservoirs, or precision self-aligning roller or ball-type with accessible grease fittings or permanently lubricated type. Connect grease fittings to tubing for serviceability from a single accessible point. Provide L50 rated bearing life at not less than 200,000 hours as defined by ABMA 9 and ABMA 11. Provide steel, accurately finished fan shafts, with key seats and keys for impeller hubs and fan pulleys. Provide fan outlets of ample proportions, designed for the attachment of angles and bolts for attaching flexible connections. Unless otherwise indicated, provide motors that do not exceed 1800 rpm and have dripproof enclosures.

2.11.1.2 In-Line Centrifugal Fans

Provide in-line fans with centrifugal backward inclined blades, stationary
discharge conversion vanes, internal and external belt guards, and adjustable motor mounts. Mount fans in a welded tubular casing. Provide a fan that axially flows the air in and out. Streamline inlets with conversion vanes to eliminate turbulence and provide smooth discharge air flow. Enclose and isolate fan bearings and drive shafts from the air stream. Provide precision, self aligning ball or roller type fan bearings that are sealed against dust and dirt and are permanently lubricated. Provide L50 rated bearing life at not less than 200,000 hours as defined by ABMA 9 and ABMA 11. Provide motors with dripproof enclosure.

2.11.1.3 Centrifugal Type Power Wall Ventilators

Provide direct driven centrifugal type fans with backward inclined, non-overloading wheel. Provide removable and weatherproof motor housing. Provide unit housing that is designed for sealing to building surface and for discharge and condensate drippage away from building surface. Construct housing of heavy gauge aluminum. Equip unit with an aluminum or plated steel wire discharge bird screen, disconnect switch, manufacturer's standard motor-operated damper, an airtight and liquid-tight metallic wall sleeve. Provide totally enclosed fan cooled type motor enclosure. Use only lubricated bearings.

2.11.1.4 Ceiling Exhaust Fans

Provide centrifugal type, direct driven suspended cabinet-type ceiling exhaust fans. Provide fans with acoustically insulated housing. Provide chatter-proof backdraft damper. Provide egg-crate design or louver design integral face grille. Mount fan motors on vibration isolators. Furnish unit with mounting flange for hanging unit from above. Provide U.L. listed fans.

2.11.2 Coils

Provide fin-and-tube type coils constructed of seamless copper tubes and aluminum fins mechanically bonded or soldered to the tubes. Provide copper tube wall thickness that is a minimum of 0.016 inches. Provide aluminum fins that are 0.0055 inch minimum thickness. Provide casing and tube support sheets that are not lighter than 16 gauge galvanized steel, formed to provide structural strength. When required, provide multiple tube supports to prevent tube sag. Test each coil at the factory under water at not less than 400 psi air pressure and make suitable for 200 psi working pressure and 300 degrees F operating temperature unless otherwise stated. Mount coils for counterflow service. Rate and certify coils to meet the requirements of AHRI 410.

2.11.2.1 Direct-Expansion Coils

Provide suitable direct-expansion coils for the refrigerant involved. Provide refrigerant piping that conforms to ASTM B280 and clean, dehydrate and seal. Provide seamless copper tubing suction headers or seamless or resistance welded steel tube suction headers with copper connections. Provide supply headers that consist of a distributor which distributes the refrigerant through seamless copper tubing equally to all circuits in the coil. Provide circuited tubes to ensure minimum pressure drop and maximum heat transfer. Provide circuiting that permits refrigerant flow from inlet to suction outlet without causing oil slugging or restricting refrigerant flow in coil. Provide field installed coils which are completely dehydrated and sealed at the factory upon completion of pressure tests.
2.11.2.2 Water Coils

Install water coils with a pitch of not less than 1/8 inch/foot of the tube length toward the drain end. Use headers constructed of cast iron, welded steel or copper. Furnish each coil with a plugged vent and drain connection extending through the unit casing. Provide removable water coils with drain pans.

2.11.2.3 Eliminators

Equip each cooling coil having an air velocity of over 400 fpm through the net face area with moisture eliminators, unless the coil manufacturer guarantees, over the signature of a responsible company official, that no moisture can be carried beyond the drip pans under actual conditions of operation. Construct of minimum 24 gage zinc-coated steel or stainless steel, removable through the nearest access door in the casing or ductwork. Provide eliminators that have not less than two bends at 45 degrees and are spaced not more than 2-1/2 inches center-to-center on face.

2.11.3 Air Filters

List air filters according to requirements of UL 900, except list high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test method under the Label Service to meet the requirements of UL 586.

2.11.3.1 Extended Surface Pleated Panel Filters

Provide 2 inch depth, sectional, disposable type filters of the size indicated with a MERV of 8 when tested according to ASHRAE 52.2. Provide initial resistance at 500 fpm that does not exceed 0.36 inches water gauge. Provide UL Class 2 filters, and nonwoven cotton and synthetic fiber mat media. Attach a wire support grid bonded to the media to a moisture resistant fiberboard frame. Bond all four edges of the filter media to the inside of the frame to prevent air bypass and increase rigidity.

2.11.3.2 Cartridge Type Filters

Provide 12 inch depth, sectional, replaceable dry media type filters of the size indicated with a MERV of 13 when tested according to ASHRAE 52.2. Provide initial resistance at 500 fpm that does not exceed 0.56 inches water gauge. Provide UL class 1 filters, and pleated microglass paper media with corrugated aluminum separators, sealed inside the filter cell to form a totally rigid filter assembly. Fluctuations in filter face velocity or turbulent airflow have no effect on filter integrity or performance. Install each filter with an extended surface pleated media panel filter as a prefilter in a factory preassembled side access housing, or a factory-made sectional frame bank, as indicated.

2.11.3.3 Holding Frames

Fabricate frames from not lighter than 16 gauge sheet steel with rust-inhibitor coating. Equip each holding frame with suitable filter holding devices. Provide gasketed holding frame seats. Make all joints airtight.

2.11.3.4 Filter Gauges

Provide dial type filter gauges, diaphragm actuated draft for all filter stations, including those filters which are furnished as integral parts of
factory fabricated air handling units. Gauges shall be at least 3-7/8 inches in diameter, with white dials with black figures, and graduated in 0.01 inch of water, with a minimum range of 1 inch of water beyond the specified final resistance for the filter bank on which each gauge is applied. Provide each gauge with a screw operated zero adjustment and two static pressure tips with integral compression fittings, two molded plastic vent valves, two 5 foot minimum lengths of 1/4 inch diameter vinyl tubing, and all hardware and accessories for gauge mounting.

2.12 AIR HANDLING UNITS

2.12.1 Field-Fabricated Air Handling Units

Provide built-up units as specified in paragraph DUCT SYSTEMS. Provide fans, coils, spray-coil dehumidifiers, and air filters as specified in paragraph AIR SYSTEMS EQUIPMENT for types indicated.

2.12.2 Factory-Fabricated Air Handling Units

Provide single-zone draw-through type units as indicated. Units shall include fans, coils, airtight insulated casing, prefilters, secondary filter sections, and diffuser sections where indicated, air blender adjustable V-belt drives, belt guards for externally mounted motors, access sections where indicated, mixing box, vibration-isolators, and appurtenances required for specified operation. Provide vibration isolators as indicated. Physical dimensions of each air handling unit shall be suitable to fit space allotted to the unit with the capacity indicated. Provide air handling unit that is rated in accordance with AHRI 430 and AHRI certified for cooling.

2.12.2.1 Casings

Provide the following:

a. Casing sections 2 inch double wall type, constructed of a minimum 18 gauge galvanized steel, or 18 gauge corrosion-resisting sheet steel conforming to ASTM A167, Type 304. Inner casing of double-wall units that are a minimum 20 gauge solid galvanized steel or corrosion-resisting sheet steel conforming to ASTM A167, Type 304. Design and construct casing with an integral insulated structural galvanized steel frame such that exterior panels are non-load bearing.

b. Individually removable exterior panels with standard tools. Removal shall not affect the structural integrity of the unit. Furnish casings with access sections, according to paragraph AIR HANDLING UNITS, inspection doors, and access doors, all capable of opening a minimum of 90 degrees, as indicated.

c. Insulated, fully gasketed, double-wall type inspection and access doors, of a minimum 18 gauge outer and 20 gauge inner panels made of either galvanized steel or corrosion-resisting sheet steel conforming to ASTM A167, Type 304. Doors shall be rigid and provided with heavy duty hinges and latches. Inspection doors shall be a minimum 12 inches wide by 12 inches high. Access doors shall be a minimum 24 inches wide, the full height of the unit casing or a minimum of 6 foot, whichever is less. Install a minimum 8 by 8 inches sealed glass window suitable for the intended application, in all access doors.

d. Double-wall insulated type drain pan (thickness equal to exterior
casing) constructed of 16 gauge corrosion resisting sheet steel conforming to ASTM A167, Type 304, conforming to ASHRAE 62.1. Construct drain pans water tight, treated to prevent corrosion, and designed for positive condensate drainage. When 2 or more cooling coils are used, with one stacked above the other, condensate from the upper coils shall not flow across the face of lower coils. Provide intermediate drain pans or condensate collection channels and downspouts, as required to carry condensate to the unit drain pan out of the air stream and without moisture carryover. Construct drain pan to allow for easy visual inspection, including underneath the coil without removal of the coil and to allow complete and easy physical cleaning of the pan underneath the coil without removal of the coil. Coils shall be individually removable from the casing.

e. Casing insulation that conforms to NFPA 90A. Double-wall casing sections handling conditioned air shall be insulated with not less than 2 inches of the same insulation specified for single-wall casings. Foil-faced insulation is not an acceptable substitute for use with double wall casing. Double wall insulation shall be completely sealed by inner and outer panels.

f. Factory applied fibrous glass insulation that conforms to ASTM C1071, except that the minimum thickness and density requirements do not apply, and that meets the requirements of NFPA 90A. Make air handling unit casing insulation uniform over the entire casing. Foil-faced insulation is not an acceptable substitute for use on double-wall access doors and inspections doors and casing sections.

h. A latched and hinged inspection door, in the fan and coil sections. Plus additional inspection doors, access doors and access sections where indicated.

2.12.2.2 Heating and Cooling Coils

Provide coils as specified in paragraph AIR SYSTEMS EQUIPMENT.

2.12.2.3 Air Filters

Provide air filters as specified in paragraph AIR SYSTEMS EQUIPMENT for types and thickness indicated.

2.12.2.4 Fans

Provide the following:

a. Fans that are centrifugal type with each fan in a separate scroll. Dynamically balance fans and shafts prior to installation into air handling unit, then after it has been installed in the air handling unit, statically and dynamically balance the entire fan assembly. Mount fans on steel shafts, accurately ground and finished.

b. Fan bearings that are sealed against dust and dirt and are precision self-aligning ball or roller type, with L50 rated bearing life at not less than 200,000 hours as defined by ABMA 9 and ABMA 11. Bearings shall be permanently lubricated or lubricated type with lubrication fittings readily accessible at the drive side of the unit. Support bearings by structural shapes, or die formed sheet structural members, or support plates securely attached to the unit casing. Do not fasten bearings directly to the unit sheet metal casing. Furnish fans and
scrolls with coating indicated.

c. Fans that are driven by a unit-mounted, or a floor-mounted motor connected to fans by V-belt drive complete with belt guard for externally mounted motors. Furnish belt guards that are the three-sided enclosed type with solid or expanded metal face. Belt drives shall be designed for not less than a 1.3 service factor based on motor nameplate rating.

d. Where fixed sheaves are required, the use of variable pitch sheaves is allowed during air balance, but replace them with an appropriate fixed sheave after air balance is completed. Select variable pitch sheaves to drive the fan at a speed that produces the specified capacity when set at the approximate midpoint of the sheave adjustment. Furnish motors for V-belt drives with adjustable bases, and with splashproof enclosures.

2.12.2.5 Access Sections and Filter/Mixing Boxes

Provide access sections where indicated and furnish with access doors as shown. Construct access sections and filter/mixing boxes in a manner identical to the remainder of the unit casing and equip with access doors. Design mixing boxes to minimize air stratification and to promote thorough mixing of the air streams.

2.13 TERMINAL UNITS

2.13.1 Variable Air Volume (VAV) Terminal Units

a. Provide VAV terminal units that are the type, size, and capacity shown, mounted in the ceiling or wall cavity, plus units that are suitable for single duct system applications. Provide actuators and controls as specified in paragraph SUPPLEMENTAL COMPONENTS/SERVICES, subparagraph CONTROLS. For each VAV terminal unit, provide a temperature sensor in the unit discharge ductwork.

b. Provide unit enclosures that are constructed of galvanized steel not lighter than 22 gauge or aluminum sheet not lighter than 18 gauge. Provide single or multiple discharge outlets as required. Units with flow limiters are not acceptable. Provide unit air volume that is factory preset and readily field adjustable without special tools. Provide reheat coils as indicated.

c. Attach a flow chart to each unit. Base acoustic performance of the terminal units upon units tested according to AHRI 880 I-P with the calculations prepared in accordance with AHRI 885. Provide sound power level as indicated. Show discharge sound power for minimum and 1-1/2 inches water gauge inlet static pressure. Provide acoustical lining according to NFPA 90A.

2.13.1.1 Constant Volume, Single Duct Terminal Units

Provide constant volume, single duct, terminal units that contain within the casing, a constant volume regulator. Provide volume regulators that control air delivery to within plus or minus 5 percent of specified air flow subjected to inlet pressure from 3/4 to 6 inch water gauge.
2.13.1.2 Variable Volume, Single Duct Terminal Units

Provide variable volume, single duct, terminal units with a calibrated air volume sensing device, air valve or damper, actuator, and accessory relays. Provide units that control air volume to within plus or minus 5 percent of each air set point volume as determined by the thermostat with variations in inlet pressures from 3/4 to 6 inch water gauge. Provide units with an internal resistance not exceeding 0.4 inch water gauge at maximum flow range. Provide external differential pressure taps separate from the control pressure taps for air flow measurement with a 0 to 1 inch water gauge range.

2.13.1.3 Reheat Units

2.13.1.3.1 Hot Water Coils

Provide fin-and-tube type hot-water coils constructed of seamless copper tubes and copper or aluminum fins mechanically bonded or soldered to the tubes. Provide headers that are constructed of cast iron, welded steel or copper. Provide casing and tube support sheets that are 16 gauge, galvanized steel, formed to provide structural strength. Provide tubes that are correctly circuited for proper water velocity without excessive pressure drop and are drainable where required or indicated. At the factory, test each coil at not less than 250 psi air pressure and provide coils suitable for 200 psi working pressure. Install drainable coils in the air handling units with a pitch of not less than 1/8 inch per foot of tube length toward the drain end. Coils shall conform to the provisions of AHRI 410.

2.14 ENERGY RECOVERY DEVICES

2.14.1 Rotary Wheel

Provide unit that is a factory fabricated and tested assembly for air-to-air energy recovery by transfer of sensible heat from exhaust air to supply air stream, with device performance according to ASHRAE 84 and that delivers an energy transfer effectiveness of not less than 85 percent with cross-contamination not in excess of 1.0 percent of exhaust airflow rate at system design differential pressure, including purging sector if provided with wheel. Provide exchange media that is chemically inert, moisture-resistant, fire-retardant, laminated, nonmetallic material which complies with NFPA 90A. Isolate exhaust and supply streams by seals which are static, field adjustable, and replaceable. Equip chain drive mechanisms with ratcheting torque limiter or slip-clutch protective device. Fabricate enclosure from galvanized steel and include provisions for maintenance access. Provide recovery control and rotation failure provisions as indicated.

2.15 FACTORY PAINTING

Factory paint new equipment, which are not of galvanized construction. Paint with a corrosion resisting paint finish according to ASTM A123/A123M or ASTM A924/A924M. Clean, phosphatize and coat internal and external ferrous metal surfaces with a paint finish which has been tested according to ASTM B117, ASTM D1654, and ASTM D3359. Submit evidence of satisfactory paint performance for a minimum of 125 hours for units to be installed indoors and 500 hours for units to be installed outdoors. Provide rating of failure at the scribe mark that is not less than 6, average creepage not greater than 1/8 inch. Provide rating of the inscribed area that is not
less than 10, no failure. On units constructed of galvanized steel that have been welded, provide a final shop docket of zinc-rich protective paint on exterior surfaces of welds or welds that have burned through from the interior according to ASTM D520 Type I.

Factory painting that has been damaged prior to acceptance by the Contracting Officer shall be field painted in compliance with the requirements of paragraph FIELD PAINTING OF MECHANICAL EQUIPMENT.

2.16 SUPPLEMENTAL COMPONENTS/SERVICES

2.16.1 Chilled, Condenser, or Dual Service Water Piping

The requirements for chilled, condenser, or dual service water piping and accessories are specified in Section 23 64 26 CHILLED, CHILLED-HOT, AND CONDENSER WATER PIPING SYSTEMS.

2.16.2 Refrigerant Piping

The requirements for refrigerant piping are specified in Section 23 23 00 REFRIGERANT PIPING.

2.16.3 Water or Steam Heating System Accessories

The requirements for water or steam heating accessories such as expansion tanks and steam traps are specified in Section 23 52 43.00 20 LOW PRESSURE WATER HEATING BOILERS.

2.16.4 Condensate Drain Lines

Provide and install condensate drainage for each item of equipment that generates condensate in accordance with Section 23 64 26 CHILLED, CHILLED-HOT, AND CONDENSER WATER PIPING SYSTEMS except as modified herein.

2.16.5 Backflow Preventers

The requirements for backflow preventers are specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE.

2.16.6 Insulation

The requirements for shop and field applied insulation are specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.16.7 Controls

The requirements for controls are specified in Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

PART 3 EXECUTION

3.1 CONSTRUCTION-RELATED SUSTAINABILITY CRITERIA

Perform and document Indoor Air Quality During Construction. Provide documentation showing that after construction ends, and prior to occupancy, new filters were installed in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph INDOOR AIR QUALITY DURING CONSTRUCTION.
3.2 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.3 INSTALLATION

a. Install materials and equipment in accordance with the requirements of the contract drawings and approved manufacturer's installation instructions. Accomplish installation by workers skilled in this type of work. Perform installation so that there is no degradation of the designed fire ratings of walls, partitions, ceilings, and floors.

b. No installation is permitted to block or otherwise impede access to any existing machine or system. Install all hinged doors to swing open a minimum of 120 degrees. Provide an area in front of all access doors that clears a minimum of 3 feet. In front of all access doors to electrical circuits, clear the area the minimum distance to energized circuits as specified in OSHA Standards, part 1910.333 (Electrical-Safety Related work practices) and an additional 3 feet.

c. Except as otherwise indicated, install emergency switches and alarms in conspicuous locations. Mount all indicators, to include gauges, meters, and alarms in order to be easily visible by people in the area.

3.3.1 Condensate Drain Lines

Provide water seals in the condensate drain from all units. Provide a depth of each seal of 2 inches plus the number of inches, measured in water gauge, of the total static pressure rating of the unit to which the drain is connected. Provide water seals that are constructed of 2 tees and an appropriate U-bend with the open end of each tee plugged. Provide pipe cap or plug cleanouts where indicated. Connect drains indicated to connect to the sanitary waste system using an indirect waste fitting. Insulate air conditioner drain lines as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

3.3.2 Equipment and Installation

Provide frames and supports for tanks, compressors, pumps, valves, air handling units, fans, coils, dampers, and other similar items requiring supports. Floor mount or ceiling hang air handling units as indicated. Anchor and fasten as detailed. Set floor-mounted equipment on not less than 6 inch concrete pads or curbs doweled in place unless otherwise indicated. Make concrete foundations heavy enough to minimize the intensity of the vibrations transmitted to the piping, duct work and the surrounding structure, as recommended in writing by the equipment manufacturer. In lieu of a concrete pad foundation, build a concrete pedestal block with isolators placed between the pedestal block and the floor. Make the concrete foundation or concrete pedestal block a mass not less than three times the weight of the components to be supported. Provide the lines connected to the pump mounted on pedestal blocks with flexible connectors. Submit foundation drawings as specified in paragraph DETAIL DRAWINGS. Provide concrete for foundations as specified in Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.
3.3.3 Access Panels

Install access panels for concealed valves, vents, controls, dampers, and items requiring inspection or maintenance of sufficient size, and locate them so that the concealed items are easily serviced and maintained or completely removed and replaced. Provide access panels as specified in Section 05 50 13 MISCELLANEOUS METAL FABRICATIONS.

3.3.4 Flexible Duct

Install pre-insulated flexible duct in accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Provide hangers, when required to suspend the duct, of the type recommended by the duct manufacturer and set at the intervals recommended.

3.3.5 Metal Ductwork

Install according to SMACNA 1966 unless otherwise indicated. Install duct supports for sheet metal ductwork according to SMACNA 1966, unless otherwise specified. Do not use friction beam clamps indicated in SMACNA 1966. Anchor risers on high velocity ducts in the center of the vertical run to allow ends of riser to move due to thermal expansion. Erect supports on the risers that allow free vertical movement of the duct. Attach supports only to structural framing members and concrete slabs. Do not anchor supports to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, provide suitable intermediate metal framing. Where C-clamps are used, provide retainer clips.

3.3.6 Acoustical Duct Lining

Apply lining in cut-to-size pieces attached to the interior of the duct with nonflammable fire resistant adhesive conforming to ASTM C916, Type I, NFPA 90A, UL 723, and ASTM E84. Provide top and bottom pieces that lap the side pieces and are secured with welded pins, adhered clips of metal, nylon, or high impact plastic, and speed washers or welding cup-head pins installed according to SMACNA 1966. Provide welded pins, cup-head pins, or adhered clips that do not distort the duct, burn through, nor mar the finish or the surface of the duct. Make pins and washers flush with the surfaces of the duct liner and seal all breaks and punctures of the duct liner coating with the nonflammable, fire resistant adhesive. Coat exposed edges of the liner at the duct ends and at other joints where the lining is subject to erosion with a heavy brush coat of the nonflammable, fire resistant adhesive, to prevent delamination of glass fibers. Apply duct liner to flat sheet metal prior to forming duct through the sheet metal brake. Additionally secure lining at the top and bottom surfaces of the duct by welded pins or adhered clips as specified for cut-to-size pieces. Other methods indicated in SMACNA 1966 to obtain proper installation of duct liners in sheet metal ducts, including adhesives and fasteners, are acceptable.

3.3.7 Dust Control

To prevent the accumulation of dust, debris and foreign material during construction, perform temporary dust control protection. Protect the distribution system (supply and return) with temporary seal-offs at all inlets and outlets at the end of each day's work. Keep temporary protection in place until system is ready for startup.
3.3.8 Insulation

Provide thickness and application of insulation materials for ductwork, piping, and equipment according to Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.Externally insulate outdoor air intake ducts and plenums up to the point where the outdoor air reaches the conditioning unit.

3.3.9 Duct Test Holes

Provide holes with closures or threaded holes with plugs in ducts and plenums as indicated or where necessary for the use of pitot tube in balancing the air system. Plug insulated duct at the duct surface, patched over with insulation and then marked to indicate location of test hole if needed for future use.

3.3.10 Power Transmission Components Adjustment

Test V-belts and sheaves for proper alignment and tension prior to operation and after 72 hours of operation at final speed. Uniformly load belts on drive side to prevent bouncing. Make alignment of direct driven couplings to within 50 percent of manufacturer's maximum allowable range of misalignment.

3.4 EQUIPMENT PADS

Provide equipment pads to the dimensions shown or, if not shown, to conform to the shape of each piece of equipment served with a minimum 3-inch margin around the equipment and supports. Allow equipment bases and foundations, when constructed of concrete or grout, to cure a minimum of 14 calendar days before being loaded.

3.5 CUTTING AND PATCHING

Install work in such a manner and at such time that a minimum of cutting and patching of the building structure is required. Make holes in exposed locations, in or through existing floors, by drilling and smooth by sanding. Use of a jackhammer is permitted only where specifically approved. Make holes through masonry walls to accommodate sleeves with an iron pipe masonry core saw.

3.6 CLEANING

Thoroughly clean surfaces of piping and equipment that have become covered with dirt, plaster, or other material during handling and construction before such surfaces are prepared for final finish painting or are enclosed within the building structure. Before final acceptance, clean mechanical equipment, including piping, ducting, and fixtures, and free from dirt, grease, and finger marks. When the work area is in an occupied space such as office, laboratory or warehouse protect all furniture and equipment from dirt and debris. Incorporate housekeeping for field construction work which leaves all furniture and equipment in the affected area free of construction generated dust and debris; and, all floor surfaces vacuum-swept clean.

3.7 PENETRATIONS

Provide sleeves and prepared openings for duct mains, branches, and other penetrating items, and install during the construction of the surface to be

SECTION 23 00 00 Page 34
penetrated. Cut sleeves flush with each surface. Place sleeves for round duct 15 inches and smaller. Build framed, prepared openings for round duct larger than 15 inches and square, rectangular or oval ducts. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Provide one inch clearance between penetrating and penetrated surfaces except at grilles, registers, and diffusers. Pack spaces between sleeve or opening and duct or duct insulation with mineral fiber conforming with ASTM C553, Type 1, Class B-2.

3.7.1 Sleeves

Fabricate sleeves, except as otherwise specified or indicated, from 20 gauge thick mill galvanized sheet metal. Where sleeves are installed in bearing walls or partitions, provide black steel pipe conforming with ASTM A53/A53M, Schedule 20.

3.7.2 Framed Prepared Openings

Fabricate framed prepared openings from 20 gauge galvanized steel, unless otherwise indicated.

3.7.3 Insulation

Provide duct insulation in accordance with Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS continuous through sleeves and prepared openings except firewall penetrations. Terminate duct insulation at fire dampers and flexible connections. For duct handling air at or below 60 degrees F, provide insulation continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air.

3.7.4 Closure Collars

Provide closure collars of a minimum 4 inches wide, unless otherwise indicated, for exposed ducts and items on each side of penetrated surface, except where equipment is installed. Install collar tight against the surface and fit snugly around the duct or insulation. Grind sharp edges smooth to prevent damage to penetrating surface. Fabricate collars for round ducts 15 inches in diameter or less from 20 gauge galvanized steel. Fabricate collars for square and rectangular ducts, or round ducts with minimum dimension over 15 inches from 18 gauge galvanized steel. Fabricate collars for square and rectangular ducts with a maximum side of 15 inches or less from 20 gauge galvanized steel. Install collars with fasteners a maximum of 6 inches on center. Attach to collars a minimum of 4 fasteners where the opening is 12 inches in diameter or less, and a minimum of 8 fasteners where the opening is 20 inches in diameter or less.

3.7.5 Firestopping

Where ducts pass through fire-rated walls, fire partitions, and fire rated chase walls, seal the penetration with fire stopping materials as specified in Section 07 84 00 FIRESTopping.

3.8 FIELD PAINTING OF MECHANICAL EQUIPMENT

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except clean to bare metal on metal surfaces subject to temperatures in excess of 120 degrees F.
Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Provide aluminum or light gray finish coat.

3.8.1 Temperatures less than 120 degrees F

Immediately after cleaning, apply one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat to metal surfaces subject to temperatures less than 120 degrees F.

3.8.2 Temperatures between 120 and 400 degrees F

Apply two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of two mils to metal surfaces subject to temperatures between 120 and 400 degrees F.

3.8.3 Temperatures greater than 400 degrees F

Apply two coats of 315 degrees C 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of two mils to metal surfaces subject to temperatures greater than 400 degrees F.

3.8.4 Finish Painting

The requirements for finish painting of items only primed at the factory, and surfaces not specifically noted otherwise, are specified in Section 09 90 00 PAINTS AND COATINGS.

3.8.5 Color Coding Scheme for Locating Hidden Utility Components

Use scheme in buildings having suspended grid ceilings. Provide color coding scheme that identifies points of access for maintenance and operation of components and equipment that are not visible from the finished space and are accessible from the ceiling grid, consisting of a color code board and colored metal disks. Make each colored metal disk approximately 3/8 inch diameter and secure to removable ceiling panels with fasteners. Insert each fastener into the ceiling panel so as to be concealed from view. Provide fasteners that are manually removable without the use of tools and that do not separate from the ceiling panels when the panels are dropped from ceiling height. Make installation of colored metal disks follow completion of the finished surface on which the disks are to be fastened. Provide color code board that is approximately 3 foot wide, 30 inches high, and 1/2 inches thick. Make the board of wood fiberboard and frame under glass or 1/16 inch transparent plastic cover. Make the color code symbols approximately 3/4 inch in diameter and the related lettering in 1/2 inch high capital letters. Mount the color code board in the mechanical or equipment room.

3.9 IDENTIFICATION SYSTEMS

Provide identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and item number on all valves and dampers. Provide tags that are 1-3/8 inch minimum diameter with stamped or engraved markings. Make indentations black for reading clarity. Attach tags to valves with No. 12 AWG 0.0808-inch diameter
corrosion-resistant steel wire, copper wire, chrome-plated beaded chain or plastic straps designed for that purpose.

3.10 DUCTWORK LEAK TEST

Perform ductwork leak test for the entire air distribution and exhaust system, including fans, coils, filters, etc. Provide test procedure, apparatus, and report that conform to SMACNA 1972 CD. Complete ductwork leak test with satisfactory results prior to applying insulation to ductwork exterior.

3.11 DUCTWORK LEAK TESTS

The requirements for ductwork leak tests are specified in Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC.

3.12 DAMPER ACCEPTANCE TEST

Submit the proposed schedule, at least 2 weeks prior to the start of test. Operate all fire dampers and smoke dampers under normal operating conditions, prior to the occupancy of a building to determine that they function properly. Test each fire damper equipped with fusible link by having the fusible link cut in place. Test dynamic fire dampers with the air handling and distribution system running. Reset all fire dampers with the fusible links replaced after acceptance testing. To ensure optimum operation and performance, install the damper so it is square and free from racking.

3.13 TESTING, ADJUSTING, AND BALANCING

The requirements for testing, adjusting, and balancing are specified in Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC. Begin testing, adjusting, and balancing only when the air supply and distribution, including controls, has been completed, with the exception of performance tests.

3.14 PERFORMANCE TESTS

After testing, adjusting, and balancing is complete as specified, test each system as a whole to see that all items perform as integral parts of the system and temperatures and conditions are evenly controlled throughout the building. Record the testing during the applicable season. Make corrections and adjustments as necessary to produce the conditions indicated or specified. Conduct capacity tests and general operating tests by an experienced engineer. Provide tests that cover a period of not less than one day for each system and demonstrate that the entire system is functioning according to the specifications. Make coincidental chart recordings at points indicated on the drawings for the duration of the time period and record the temperature at space thermostats or space sensors, the humidity at space humidistats or space sensors and the ambient temperature and humidity in a shaded and weather protected area.

Submit test reports for the ductwork leak test, and performance tests in booklet form, upon completion of testing. Document phases of tests performed including initial test summary, repairs/adjustments made, and final test results in the reports.
3.15 CLEANING AND ADJUSTING

Provide a temporary bypass for water coils to prevent flushing water from passing through coils. Inside of air terminal units, thoroughly clean ducts, plenums, and casing of debris and blow free of small particles of rubbish and dust and then vacuum clean before installing outlet faces. Wipe equipment clean, with no traces of oil, dust, dirt, or paint spots. Provide temporary filters prior to startup of all fans that are operated during construction, and install new filters after all construction dirt has been removed from the building, and the ducts, plenums, casings, and other items specified have been vacuum cleaned. Maintain system in this clean condition until final acceptance. Properly lubricate bearings with oil or grease as recommended by the manufacturer. Tighten belts to proper tension. Adjust control valves and other miscellaneous equipment requiring adjustment to setting indicated or directed. Adjust fans to the speed indicated by the manufacturer to meet specified conditions. Maintain all equipment installed under the contract until close out documentation is received, the project is completed and the building has been documented as beneficially occupied.

3.16 OPERATION AND MAINTENANCE

3.16.1 Operation and Maintenance Manuals

Submit four manuals at least 2 weeks prior to field training. Submit data complying with the requirements specified in Section 01000 OPERATION AND MAINTENANCE DATA. Submit Data Package 3 for the items/units listed under SD-10 Operation and Maintenance Data.

3.16.2 Operation And Maintenance Training

Conduct a training course for the members of the operating staff as designated by the Contracting Officer. Make the training period consist of a total of 16 hours of normal working time and start it after all work specified herein is functionally completed and the Performance Tests have been approved. Conduct field instruction that covers all of the items contained in the Operation and Maintenance Manuals as well as demonstrations of routine maintenance operations. Submit the proposed On-site Training schedule concurrently with the Operation and Maintenance Manuals and at least 14 days prior to conducting the training course.

 -- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-11 Closeout Submittals
Energy Efficient Equipment for Motors; S
Reduce Volatile Organic Compounds (VOC) for paint/coatings; S

1.3 RELATED REQUIREMENTS

This section applies to all sections of Divisions: 21, FIRE SUPPRESSION;
22, PLUMBING; and 23, HEATING, VENTILATING, AND AIR CONDITIONING of this project specification, unless specified otherwise in the individual section.

1.4 QUALITY ASSURANCE

1.4.1 Material and Equipment Qualifications

Provide materials and equipment that are standard products of manufacturers regularly engaged in the manufacture of such products, which are of a similar material, design and workmanship. Standard products must have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year use must include applications of equipment and materials under similar circumstances and of similar size. The product must have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2 year period.

1.4.2 Alternative Qualifications

Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturer's factory or laboratory tests, can be shown.

1.4.3 Service Support

The equipment items must be supported by service organizations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. These service organizations must be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.4.4 Manufacturer's Nameplate

For each item of equipment, provide a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

1.4.5 Modification of References

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.

1.4.5.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract documents, advisory provisions must be considered mandatory, the word "should" is interpreted as "must." Reference to the "code official" must be interpreted to mean the "Contracting Officer." For Navy owned property, references to the "owner" must be interpreted to mean the "Contracting Officer." For leased facilities, references to the "owner" must be interpreted to mean the "lessor." References to the "permit holder" must be interpreted to mean the "Contractor."
1.4.5.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, must be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.

1.5 DELIVERY, STORAGE, AND HANDLING

Handle, store, and protect equipment and materials to prevent damage before and during installation in accordance with the manufacturer's recommendations, and as approved by the Contracting Officer. Replace damaged or defective items.

1.6 ELECTRICAL REQUIREMENTS

Furnish motors, controllers, disconnects and contactors with their respective pieces of equipment. Motors, controllers, disconnects and contactors must conform to and have electrical connections provided under Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Furnish internal wiring for components of packaged equipment as an integral part of the equipment. Extended voltage range motors will not be permitted. Controllers and contactors shall have a maximum of 120 volt control circuits, and must have auxiliary contacts for use with the controls furnished. When motors and equipment furnished are larger than sizes indicated, the cost of additional electrical service and related work must be included under the section that specified that motor or equipment. Power wiring and conduit for field installed equipment must be provided under and conform to the requirements of Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

1.7 ELECTRICAL INSTALLATION REQUIREMENTS

Electrical installations must conform to IEEE C2, NFPA 70, and requirements specified herein.

1.7.1 New Work

Provide electrical components of mechanical equipment, such as motors, motor starters (except starters/controllers which are indicated as part of a motor control center), control or push-button stations, float or pressure switches, solenoid valves, integral disconnects, and other devices functioning to control mechanical equipment, as well as control wiring and conduit for circuits rated 100 volts or less, to conform with the requirements of the section covering the mechanical equipment. Extended voltage range motors are not to be permitted. The interconnecting power wiring and conduit, control wiring rated 120 volts (nominal) and conduit, the motor control equipment forming a part of motor control centers, and the electrical power circuits must be provided under Division 26, except internal wiring for components of package equipment must be provided as an integral part of the equipment. When motors and equipment furnished are larger than sizes indicated, provide any required changes to the electrical service as may be necessary and related work as a part of the work for the section specifying that motor or equipment.
1.7.2 Modifications to Existing Systems

Where existing mechanical systems and motor-operated equipment require modifications, provide electrical components under Division 26.

1.7.3 High Efficiency Motors

1.7.3.1 High Efficiency Single-Phase Motors

Unless otherwise specified, single-phase fractional-horsepower alternating-current motors must be high efficiency types corresponding to the applications listed in NEMA MG 11.

1.7.3.2 High Efficiency Polyphase Motors

Unless otherwise specified, polyphase motors must be selected based on high efficiency characteristics relative to the applications as listed in NEMA MG 10. Additionally, polyphase squirrel-cage medium induction motors with continuous ratings must meet or exceed energy efficient ratings in accordance with Table 12-6C of NEMA MG 1.

1.7.4 Three-Phase Motor Protection

Provide controllers for motors rated one 1 horsepower and larger with electronic phase-voltage monitors designed to protect motors from phase-loss, undervoltage, and overvoltage. Provide protection for motors from immediate restart by a time adjustable restart relay.

1.8 INSTRUCTION TO GOVERNMENT PERSONNEL

When specified in other sections, furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the specified equipment or system. Instructors must be thoroughly familiar with all parts of the installation and must be trained in operating theory as well as practical operation and maintenance work.

Instruction must be given during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished must be as specified in the individual section. When more than 4 man-days of instruction are specified, use approximately half of the time for classroom instruction. Use other time for instruction with the equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

1.9 ACCESSIBILITY

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.
PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Energy Efficient Equipment for Motors

Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph ENERGY EFFICIENT EQUIPMENT that the motors meet energy efficiency requirements as outlined in this section.

2.1.2 Reduce Volatile Organic Compounds (VOC) for paint/coatings

Low or no VOC's and no added urea formaldehyde for paints or coatings, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC).

PART 3 EXECUTION

3.1 PAINTING OF NEW EQUIPMENT

New equipment painting must be factory applied or shop applied, and must be as specified herein, and provided under each individual section.

3.1.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided subject to certification that the factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors must withstand 500 hours in a salt-spray fog test. Salt-spray fog test must be in accordance with ASTM B117, and for that test the acceptance criteria must be as follows: immediately after completion of the test, the paint must show no signs of blistering, wrinkling, or cracking, and no loss of adhesion; and the specimen must show no signs of rust creepage beyond 0.125 inch on either side of the scratch mark.

The film thickness of the factory painting system applied on the equipment must not be less than the film thickness used on the test specimen. If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system must be designed for the temperature service.

3.1.2 Shop Painting Systems for Metal Surfaces

Clean, pretreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces subject to temperatures in excess of 120 degrees F must be cleaned to bare metal.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat must be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the
metal surfaces subject to temperatures less than 120 degrees F must receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of 1 mil; and two coats of enamel applied to a minimum dry film thickness of 1 mil per coat.

b. Temperatures Between 120 and 400 Degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F must receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of 2 mils.

c. Temperatures Greater Than 400 Degrees F: Metal surfaces subject to temperatures greater than 400 degrees F must receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.

-- End of Section --
SECTION 23 05 93
TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ACOUSTICAL SOCIETY OF AMERICA (ASA)

ASA S1.11 PART 1 (2014) American National Standard
 Electroacoustics - Octave-Band and
 Fractional-Octave-Band Filters - Part 1:
 Specifications

ASA S1.4 (1983; Amendment 1985; R 2006)
 Specification for Sound Level Meters (ASA 47)

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

AMCA 203 (1990; R 2011) Field Performance
 Measurements of Fan Systems

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASSOCIATED AIR BALANCE COUNCIL (AABC)

AABC MN-4 (1996) Test and Balance Procedures

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA)

NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB)

NEBB PROCEDURAL STANDARDS (2005) Procedural Standards for TAB (Testing, Adjusting and Balancing)
1.2 DEFINITIONS

a. AABC: Associated Air Balance Council

b. COTR: Contracting Officer's Technical Representative

c. DALT: Duct air leakage test

d. DALT'd: Duct air leakage tested

e. HVAC: Heating, ventilating, and air conditioning; or heating, ventilating, and cooling

f. NEBB: National Environmental Balancing Bureau

g. Out-of-tolerance data: Pertains only to field acceptance testing of Final DALT or TAB report. When applied to DALT work, this phase means "a leakage rate measured during DALT field acceptance testing which exceeds the leakage rate allowed by SMACNA Leak Test Manual for an indicated duct construction and sealant class." "A leakage rate measured during DALT field acceptance testing which exceeds the leakage rate allowed by Appendix D REQUIREMENTS FOR DUCT AIR LEAK TESTING." When applied to TAB work this phase means "a measurement taken during TAB field acceptance testing which does not fall within the range of plus 5 to minus 5 percent of the original measurement reported on the TAB Report for a specific parameter."

h. Season of maximum heating load: The time of year when the outdoor temperature at the project site remains within plus or minus 30 degrees Fahrenheit of the project site's winter outdoor design temperature, throughout the period of TAB data recording.

i. Season of maximum cooling load: The time of year when the outdoor temperature at the project site remains within plus or minus 5 degrees Fahrenheit of the project site's summer outdoor design temperature, throughout the period of TAB data recording.

j. Season 1, Season 2: Depending upon when the project HVAC is completed and ready for TAB, Season 1 is defined, thereby defining Season 2. Season 1 could be the season of maximum heating load, or the season of maximum cooling load.
k. Sound measurements terminology: Defined in AABC MN-1, NEBB MASV, or SMACNA 1858 (TABB).

l. TAB: Testing, adjusting, and balancing (of HVAC systems)

m. TAB'd: HVAC Testing/Adjusting/Balancing procedures performed

n. TAB Agency: TAB Firm

o. TAB team field leader: TAB team field leader

p. TAB team supervisor: TAB team engineer

q. TAB team technicians: TAB team assistants

r. TABB: Testing Adjusting and Balancing Bureau

1.2.1 Similar Terms

In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results.

The following table of similar terms is provided for clarification only. Contract requirements take precedence over the corresponding AABC, NEBB, or TABB requirements where differences exist.

<table>
<thead>
<tr>
<th>SIMILAR TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Term</td>
</tr>
<tr>
<td>TAB Specialist</td>
</tr>
<tr>
<td>Systems Readiness Check</td>
</tr>
</tbody>
</table>
1.3 WORK DESCRIPTION

The work includes duct air leakage testing (DALT) and testing, adjusting, and balancing (TAB) of new and existing heating, ventilating, and cooling (HVAC) air and water distribution systems including equipment and performance data, ducts, and piping which are located within, on, under, between, and adjacent to buildings, including records of existing conditions.

Perform TAB in accordance with the requirements of the TAB procedural standard recommended by the TAB trade association that approved the TAB Firm's qualifications. Comply with requirements of AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 (TABB) as supplemented and modified by this specification section. All recommendations and suggested practices contained in the TAB procedural standards are considered mandatory.

Conduct DALT and TAB of the indicated existing systems and equipment and submit the specified DALT and TAB reports for approval. Conduct DALT testing in compliance with the requirements specified in SMACNA 1972 CD, except as supplemented and modified by this section. Conduct DALT and TAB work in accordance with the requirements of this section.

1.3.1 Air Distribution Systems

Test, adjust, and balance systems (TAB) in compliance with this section. Obtain Contracting Officer's written approval before applying insulation to exterior of air distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.2 Water Distribution Systems

TAB systems in compliance with this section. Obtain Contracting Officer's written approval before applying insulation to water distribution systems as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS. At Contractor's option and with Contracting Officer's written approval, the piping systems may be insulated before systems are TAB'd.

Terminate piping insulation immediately adjacent to each flow control valve, automatic control valve, or device. Seal the ends of pipe insulation and the space between ends of pipe insulation and piping, with waterproof vapor barrier coating.

After completion of work under this section, insulate the flow control valves and devices as specified under Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

1.3.3 TAB SCHEMATIC DRAWINGS

Show the following information on TAB Schematic Drawings:

1. A unique number or mark for each piece of equipment or terminal.
2. Air quantities at air terminals.
3. Air quantities and temperatures in air handling unit schedules.
4. Water quantities and temperatures in thermal energy transfer equipment schedules.
5. Water quantities and heads in pump schedules.

6. Water flow measurement fittings and balancing fittings.

7. Ductwork Construction and Leakage Testing Table that defines the DALT test requirements, including each applicable HVAC duct system ID or mark, duct pressure class, duct seal class, and duct leakage test pressure. This table is included in the file for Graphics for Unified Facilities Guide Specifications: http://www.wbdg.org/FFC/NAVGRAPH/graphtoc.pdf

The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system, including records of existing conditions, and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation. The Testing, Adjusting, and Balancing (TAB) Specialist must review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the effective and accurate TAB of the system, including records of existing conditions, and systems readiness check. The TAB Specialist must provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

Submit four copies of the TAB Schematic Drawings and Report Forms to the Contracting Officer, no later than 21 days prior to the start of TAB field measurements.

1.3.4 Related Requirements

Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS applies to work specified in this section.

Specific requirements relating to Reliability Centered Maintenance (RCM) principals and Predictive Testing and Inspection (PTI), by the construction contractor to detect latent manufacturing and installation defects must be followed as part of the Contractor's Quality Control program. Refer to the paragraph SUSTAINABILITY for detailed requirements.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- SD-01 Preconstruction Submittals
 - Records of Existing Conditions; G
 - Independent TAB Agency and Personnel Qualifications; G
 - TAB Design Review Report; G
 - TAB Firm; G
Designation of TAB Team Assistants; G
Designation of TAB Team Engineer; G or TAB Specialist; G
Designation of TAB Team Field Leader; G

SD-02 Shop Drawings
TAB Schematic Drawings and Report Forms; G

SD-03 Product Data
Equipment and Performance Data; G
TAB Related HVAC Submittals; G

A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB team engineer and assistant.

TAB Procedures; G

Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms.

Calibration; G
Systems Readiness Check; G
TAB Execution; G
TAB Verification; G

SD-06 Test Reports
Completed Pre-Final DALT Report; G
Certified Final DALT Report; G
Prerequisite HVAC Work Checkout List For Proportional Balancing; G
Certified Final TAB Report for Proportional Balancing; G
Prerequisite HVAC Work Checkout List For Season 1; G
Certified Final TAB Report for Season 1; G
Prerequisite HVAC Work Checkout List For Season 2; G
Certified Final TAB Report for Season 2; G
TAB Design Review Report; G
TAB Report for Season 1; G
TAB Report for Season 2; G

SD-07 Certificates
Independent TAB Agency and Personnel Qualifications; G
DALT and TAB Submittal and Work Schedule; G
TAB Pre-Field Engineering Report; G
Instrument Calibration Certificates; G
DALT and TAB Procedures Summary; G
Completed Pre-Final DALT Work Checklist; G
Advance Notice of Pre-Final DALT Field Work; G
Advance Notice of TAB Field Work for Proportional Balancing; G
Advance Notice of TAB Field Work for Season 1; G
Advance Notice of TAB Field Work for Season 2 G
TAB Firm; G
Design Review Report; G
Pre-field DALT Preliminary Notification; G
Advanced Notice for Season 1 TAB Field Work; G
Prerequisite HVAC Work Check Out List For Season 1; G
Advanced Notice for Season 2 TAB Field Work; G
Prerequisite HVAC Work Check Out List For Season 2; G

1.5 QUALITY ASSURANCE

1.5.1 Independent TAB Agency and Personnel Qualifications

To secure approval for the proposed agency, submit information certifying that the TAB agency is a first tier subcontractor who is not affiliated with any other company participating in work on this contract, including design, furnishing equipment, or construction. Further, submit the following, for the agency, to Contracting Officer for approval:

a. Independent AABC or NEBB or TABB TAB agency:

 TAB agency: AABC registration number and expiration date of current certification; or NEBB certification number and expiration date of current certification; or TABB certification number and expiration date of current certification.

 TAB team supervisor: Name and copy of AABC or NEBB or TABB TAB supervisor certificate and expiration date of current certification.

 TAB team field leader: Name and documented evidence that the team field leader has satisfactorily performed full-time supervision of TAB work in the field for not less than 3 years immediately preceding this contract's bid opening date.
TAB team field technicians: Names and documented evidence that each field technician has satisfactorily assisted a TAB team field leader in performance of TAB work in the field for not less than one year immediately preceding this contract's bid opening date.

Current certificates: Registrations and certifications are current, and valid for the duration of this contract. Renew Certifications which expire prior to completion of the TAB work, in a timely manner so that there is no lapse in registration or certification. TAB agency or TAB team personnel without a current registration or current certification are not to perform TAB work on this contract.

b. TAB Team Members: TAB team approved to accomplish work on this contract are full-time employees of the TAB agency. No other personnel is allowed to do TAB work on this contract.

c. Replacement of TAB team members: Replacement of members may occur if each new member complies with the applicable personnel qualifications and each is approved by the Contracting Officer.

1.5.1.1 TAB Standard

Perform TAB in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard are considered mandatory. Use the provisions of the TAB Standard, including checklists, report forms, etc., as nearly as practical, to satisfy the Contract requirements. Use the TAB Standard for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, adhere to the manufacturer's recommendations.

All quality assurance provisions of the TAB Standard such as performance guarantees are part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures must be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC, NEBB, or TABB), the requirements and recommendations contained in these procedures and requirements are considered mandatory, including the latest requirements of ASHRAE 62.1.

1.5.1.2 Qualifications

a. TAB Firm

The TAB Firm must be either a member of AABC or certified by the NEBB or the TABB and certified in all categories and functions where measurements or performance are specified on the plans and specifications, including TAB of environmental systems building systems commissioning and the measuring of sound and vibration in environmental systems.

Certification must be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor must immediately
notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm will be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor.

These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm must be a prime subcontractor of the Contractor and be financially and corporately independent of the mechanical subcontractor, reporting directly to and paid by the Contractor.

b. TAB Specialist

The TAB Specialist must be either a member of AABC, an experienced technician of the Firm certified by the NEBB, or a Supervisor certified by the TABB. The certification must be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist will be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.

c. TAB Specialist Responsibilities

TAB Specialist responsibilities include all TAB work specified herein and in related sections under his direct guidance. The TAB specialist is required to be onsite on a daily basis to direct TAB efforts. The TAB Specialist must participate in the commissioning process.

1.5.1.3 TAB Related HVAC Submittals

The TAB Specialist must prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. Accompany the submittals identified on this list with a letter of approval signed and dated by the TAB Specialist when submitted to the Government. Ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

1.5.2 Responsibilities

The Contractor is responsible for ensuring compliance with the requirements of this section. The following delineation of specific work responsibilities is specified to facilitate TAB execution of the various work efforts by personnel from separate organizations. This breakdown of specific duties is specified to facilitate adherence to the schedule listed in the paragraph TAB SUBMITTAL AND WORK SCHEDULE.
1.5.2.1 Contractor

a. TAB personnel: Ensure that the DALT work and the TAB work is accomplished by a group meeting the requirements specified in the paragraph TAB PERSONNEL QUALIFICATION REQUIREMENTS.

b. Pre-DALT/TAB meeting: Attend the meeting with the TAB Supervisor, and ensure that a representative is present for the sheetmetal contractor, mechanical contractor, electrical contractor, and automatic temperature controls contractor.

c. HVAC documentation: Furnish one complete set of the following HVAC-related documentation to the TAB agency:

 (1) Contract drawings and specifications
 (2) Approved submittal data for equipment
 (3) Construction work schedule
 (4) Up-to-date revisions and change orders for the previously listed items

d. Submittal and work schedules: Ensure that the schedule for submittals and work required by this section and specified in the paragraph TAB SUBMITTAL AND WORK SCHEDULE is met.

e. Coordination of supporting personnel:

 Provide the technical personnel, such as factory representatives or HVAC controls installer required by the TAB field team to support the DALT and the TAB field measurement work.

 Provide equipment mechanics to operate HVAC equipment and ductwork mechanics to provide the field designated test ports to enable TAB field team to accomplish the DALT and the TAB field measurement work. Ensure these support personnel are present at the times required by the TAB team, and cause no delay in the DALT and the TAB field work.

 Conversely, ensure that the HVAC controls installer has required support from the TAB team field leader to complete the controls check out.

f. Deficiencies: Ensure that the TAB Agency supervisor submits all Design/Construction deficiency notifications directly to the Contracting officer within 3 days after the deficiency is encountered. Further, ensure that all such notification submittals are complete with explanation, including documentation, detailing deficiencies.

g. Prerequisite HVAC work: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as prerequisite work items, the deficiencies pointed out by the TAB team supervisor in the design review report.

h. Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team
supervisor's pre-field engineering report. Do not allow the TAB team to commence TAB field work until all of the following are completed.

(1) HVAC system installations are fully complete.

(2) HVAC prerequisite checkout work lists specified in the paragraph PRE-FIELD TAB ENGINEERING REPORT are completed, submitted, and approved. Ensure that the TAB Agency gets a copy of the approved prerequisite HVAC work checklist.

(3) DALT field checks for all systems are completed.

(4) HVAC system filters are clean for both Season 1 and Season 2 TAB field work.

i. Advance notice: Furnish to the Contracting Officer with advance written notice for the commencement of the DALT field work and for the commencement of the TAB field work.

j. Insulation work: For required DALT work, ensure that insulation is not installed on ducts to be DALT'd until DALT work on the subject ducts is complete. Later, ensure that openings in duct and machinery insulation coverings for TAB test ports are marked, closed and sealed.

1.5.2.2 TAB Agency

Provide the services of a TAB team which complies with the requirements of the paragraph INDEPENDENT TAB AGENCY PERSONNEL QUALIFICATIONS. The work to be performed by the TAB agency is limited to testing, adjusting, and balancing of HVAC air and water systems to satisfy the requirements of this specification section.

1.5.2.3 TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical DALT and TAB procedures and TAB team field work.

b. Pre-DALT/TAB meeting: Attend meeting with Contractor.

c. Design review report: Review project specifications and accompanying drawings to verify that the air systems and water systems are designed in such a way that the TAB engineer can accomplish the work in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

d. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the pre-field engineering report, the during the DALT or TAB field work.

e. Pre-field DALT preliminary notification: Monitor the completion of the duct installation of each system and provide the necessary written notification to the Contracting Officer.
f. Pre-field engineering report: Utilizing the following HVAC-related documentation; contract drawings and specifications, approved submittal data for equipment, up-to-date revisions and change orders; prepare this report.

g. Prerequisite HVAC work checklist: Ensure the Contractor gets a copy of this checklist at the same time as the pre-field engineering report is submitted.

h. Technical assistance for DALT work.

 (1) Technical assistance: Provide immediate technical assistance to TAB field team.

 (2) DALT field visit: Near the end of the DALT field work effort, visit the contract site to inspect the HVAC installation and the progress of the DALT field work. Conduct a site visit to the extent necessary to verify correct procedures are being implemented and to confirm the accuracy of the Pre-final DALT Report data which has been reported. Also, perform sufficient evaluation to allow the TAB supervisor to issue certification of the final report. Conduct the site visit full-time for a minimum of two 8 hour workdays duration.

i. Final DALT report: Certify the DALT report. This certification includes the following work:

 (1) Review: Review the Pre-final DALT report data. From these field reports, prepare the Certified Final DALT report.

 (2) TAB Verification: Verify adherence, by the TAB field team, to the procedures specified in this section.

j. Technical Assistance for TAB Work: Provide immediate technical assistance to the TAB field team for the TAB work.

 (1) TAB field visit: At the midpoint of the Season 1 and Season 2 TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site visit full-time for a minimum of one 8 hour workday duration.

 (2) TAB field visit: Near the end of the TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site visit full-time for a minimum of one 8 hour workday duration. Review the TAB final report data and certify the TAB final report.

k. Certified TAB report: Certify the TAB report. This certification includes the following work:

 (1) Review: Review the TAB field data report. From this field report, prepare the certified TAB report.

 (2) Verification: Verify adherence, by the TAB field team, to the TAB plan prescribed by the pre-field engineering report and verify adherence to the procedures specified in this section.

l. Design/Construction deficiencies: Within 3 working days after the TAB
Agency has encountered any design or construction deficiencies, the TAB Supervisor must submit written notification directly to the Contracting Officer, with a separate copy to the Contractor, of all such deficiencies. Provide in this submittal a complete explanation, including supporting documentation, detailing deficiencies. Where deficiencies are encountered that are believed to adversely impact successful completion of TAB, the TAB Agency must issue notice and request direction in the notification submittal.

m. TAB Field Check: The TAB team supervisor must attend and supervise Season 1 and Season 2 TAB field check.

1.5.2.4 TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, EXECUTION.

b. Full time: Be present at the contract site when DALT field work or TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC Checklist, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.

1.5.3 Project/Site Conditions

1.5.3.1 DALT and TAB Services to Obtain Existing Conditions

Conduct DALT and TAB of the indicated existing systems and equipment and submit the specified DALT and TAB reports for approval. Conduct this DALT and TAB work in accordance with the requirements of this section.

1.5.4 Sequencing and Scheduling

1.5.4.1 DALT and TAB Submittal and Work Schedule

Comply with additional requirements specified in Appendix C: DALT AND TAB SUBMITTAL AND WORK SCHEDULE included at the end of this section.

Submit this schedule, and TAB Schematic Drawings, adapted for this particular contract, to the Contracting Officer (CO) for review and approval. Include with the submittal the planned calendar dates for each submittal or work item. Resubmit an updated version for CO approval every 90 calendar days. Compliance with the following schedule is the Contractor's responsibility.

Qualify TAB Personnel: Within 45 calendar days after date of contract award, submit TAB agency and personnel qualifications.

Pre-DALT/TAB Meeting: Within 30 calendar days after the date of approval of the TAB agency and personnel, meet with the COTR.

Design Review Report: Within 60 calendar days after the date of the TAB agency personnel qualifications approval, submit design review report.

Pre-Field DALT Preliminary Notification: On completion of the duct
installation for each system, notify the Contracting Officer in writing
within 5 days after completion.

Ductwork Selected for DALT: Within 7 calendar days of Pre-Field DALT
Preliminary Notification, the COTR will select which of the project
ductwork must be DALT'd.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT
field work on selected.

Submit Pre-final DALT Report: Within one working day after completion
of DALT field work, submit Pre-final DALT Report. Separate Pre-final
DALT reports may be submitted to allow phased testing from system to
system.

DALT Work Field Check: Upon approval of the Pre-final DALT Report,
schedule the COTR's DALT field check work with the Contracting Officer.

Submit Final DALT Report: Within 15 calendar days after completion of
successful DALT field work, submit Season 1 TAB report.

Pre-Field TAB Engineering Report: Within 15 calendar days after
approval of the TAB agency Personnel Qualifications, submit the
Pre-Field TAB Engineering Report.

Prerequisite HVAC Work Check Out List For Season 1 and Advanced Notice
For Season 1 TAB Field Work: At a minimum of 115 calendar days prior
to CCD, submit Season 1 prerequisite HVAC work check out list
certified as complete, and submit advance notice of commencement of
Season 1 TAB field work.

Season 1 TAB Field Work: At a minimum of 90 calendar days prior to
CCD, and when the ambient temperature is within Season 1 limits,
accomplish Season 1 TAB field work.

Submit Season 1 TAB Report: Within 15 calendar days after completion
of Season 1 TAB field work, submit Season 1 TAB report.

Season 1 TAB Field Check: 30 calendar days after Season 1 TAB report
is approved by the Contracting Officer, conduct Season 1 field check.

Complete Season 1 TAB Work: Prior to CCD, complete all TAB work
except Season 2 TAB work.

Season 1 TAB Field Work: At a minimum of 90 calendar days prior to
CCD, and when the ambient temperature is within Season 1 limits,
accomplish Season 1 TAB field work; submit Season 1 TAB report; and
conduct Season 1 field check.

Complete Season 1 TAB Work: Prior to CCD, complete all TAB work
except Season 2 TAB work.

Prerequisite HVAC Work Check Out List For Season 2 and Advanced Notice
For Season 2 TAB Field Work: Within 150 calendar days after date of
the commencement of the Season 1 TAB field work, submit the Season 2
prerequisite HVAC work check out list certified as complete and submit
advance notice of commencement of Season 2 TAB field work.

Season 2 TAB Field Work: Within 180 calendar days after date of
commencement of the Season 1 TAB field work and when the ambient temperature is within Season 2 limits, accomplish Season 2 TAB field work.

Submit Season 2 TAB Report: Within 15 calendar days after completion of Season 2 TAB field work, submit Season 2 TAB report.

Season 2 TAB Field Check: 30 calendar days after the Season 2 TAB report is approved by the Contracting Officer, conduct Season 2 field check.

Complete Season 2 TAB Work: Within 15 calendar days after the completion of Season 2 TAB field data check, complete all TAB work.

Season 2 TAB Field Work: Within 180 calendar days after date of commencement of the Season 1 TAB field work and when the ambient temperature is within Season 2 limits, accomplish Season 2 TAB field work; submit Season 2 TAB report; and conduct Season 2 field check.

Complete Season 2 TAB Work: Within 15 calendar days after the completion of Season 2 field data check, complete TAB work.

a. TAB Design Review Report

Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

b. Pre-Field DALT Preliminary Notification

Notification: On completion of the installation of each duct system indicated to be DALT'd, notify the Contracting Officer in writing within 7 calendar days after completion.

1.5.4.2 TAB Pre-Field Engineering Report

Submit report containing the following information:

a. Step-by-step TAB procedure:

(1) Strategy: Describe the method of approach to the TAB field work from start to finish. Include in this description a complete methodology for accomplishing each seasonal TAB field work session.

(2) Air System Diagrams: Use the contract drawings and duct fabrication drawings if available to provide air system diagrams in the report showing the location of all terminal outlet supply, return, exhaust and transfer registers, grilles and diffusers. Use a key numbering system on the diagrams which identifies each outlet contained in the outlet airflow report sheets. Show intended locations of all traverses and static pressure readings.

(3) Procedural steps: Delineate fully the intended procedural steps to be taken by the TAB field team to accomplish the required TAB work of each air distribution system and each water distribution system. Include intended procedural steps for TAB work for
subsystems and system components.

b. Pre-field data: Submit AABC or NEBB or SMACNA 1780 data report forms with the following pre-field information filled in:

(1) Design data obtained from system drawings, specifications, and approved submittals.

(2) Notations detailing additional data to be obtained from the contract site by the TAB field team.

(3) Designate the actual data to be measured in the TAB field work.

(4) Provide a list of the types of instruments, and the measuring range of each, which are anticipated to be used for measuring in the TAB field work. By means of a keying scheme, specify on each TAB data report form submitted, which instruments will be used for measuring each item of TAB data. If the selection of which instrument to use, is to be made in the field, specify from which instruments the choice will be made. Place the instrument key number in the blank space where the measured data would be entered.

c. Prerequisite HVAC work checkout list: Provide a list of inspections and work items which are to be completed by the Contractor. This list must be acted upon and completed by the Contractor and then submitted and approved by the Contracting Officer prior to the TAB team coming to the contract site.

At a minimum, a list of the applicable inspections and work items listed in the NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" must be provided for each separate system to be TAB'd.

1.5.5 Instrument Calibration Certificates

It is the responsibility of the TAB firm to provide instrumentation that meets the minimum requirements of the standard under which the TAB Firm's qualifications are approved for use on a project. Instrumentation must be in proper operating condition and must be applied in accordance with the instrumentation's manufacturer recommendations.

All instrumentation must bear a valid NIST traceable calibration certificate during field work and during government acceptance testing. All instrumentation must be calibrated within no later than one year of the date of TAB work or government acceptance testing field work.

1.5.6 TAB Standard

Perform TAB in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1, NEBB PROCEDURAL STANDARDS, or SMACNA 1780 unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard are considered mandatory. Use the provisions of the TAB Standard, including checklists, report forms, etc., as nearly as practical, to satisfy the Contract requirements. Use the TAB Standard for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB
Standard, adhere to the manufacturer's recommendations.

All quality assurance provisions of the TAB Standard such as performance guarantees are part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures must be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC, NEBB, or TABB), the requirements and recommendations contained in these procedures and requirements are considered mandatory, including the latest requirements of ASHRAE 62.1.

1.5.7 Sustainability

Contractor must submit the following as part of the Quality Control Plan for acceptance testing:

a. List all test equipment to be used, including its manufacturer, model number, calibration date, and serial number.

b. Certificates of test personnel qualifications and certifications. Provide certification of compliance with 40 CFR 82.

c. Proof of equivalency if the contractor desires to substitute a test requirement.

Perform the following PTI as an integral part of the TAB process per the most recent edition of the NASA RCBEA GUIDE:

Fans:
 a. Vibration Analysis
 b. Balance Test and Measurement
 c. Alignment (laser preferred)
 d. Lubricating Oil Test
 e. Thermodynamic Performance Test

Heat Exchangers (General):
 a. Hydrostatic Test
 b. Airborne Ultrasonic Test
 c. Thermodynamic Performance Test
 d. Infrared Thermography (optional)

Heat Exchangers (Condenser Air Cooled):
 a. Hydrostatic Test
 b. Thermodynamic Performance Test
 c. Airborne Ultrasonic Test (optional)
 d. Pulse Ultrasonic Test (optional)
 e. Infrared Thermography (optional)

Heat Exchangers (Condenser Water Cooled):
 a. Hydrostatic Test
 b. Thermodynamic Performance Test
 c. Airborne Ultrasonic Test (optional)
 d. Pulse Ultrasonic Test (optional)
 e. Infrared Thermography (optional)

HVAC Ducts:
 a. Operational Test
 b. Ductwork Leak Testing (DALT); Pre-Final DALT report, Final
DALT report

Piping Systems:
 a. Vibration Analysis
 b. Infrared Thermography

1.5.8 Qualifications

1.5.8.1 TAB Firm

The TAB Firm must be either a member of AABC or certified by the NEBB or the TABB and certified in all categories and functions where measurements or performance are specified on the plans and specifications, including TAB of environmental systems building systems commissioning and the measuring of sound and vibration in environmental systems.

Certification must be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor must immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm will be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor.

These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm must be a prime subcontractor of the Contractor and be financially and corporately independent of the mechanical subcontractor, reporting directly to and paid by the Contractor.

1.5.8.2 TAB Specialist

The TAB Specialist must be either a member of AABC, an experienced technician of the Firm certified by the NEBB, or a Supervisor certified by the TABB. The certification must be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC, the NEBB, or the TABB within the five years preceding Contract Award is not eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist will be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor.

1.5.8.3 TAB Specialist Responsibilities

TAB Specialist responsibilities include all TAB work specified herein and in related sections under his direct guidance. The TAB specialist is required to be onsite on a daily basis to direct TAB efforts. The TAB Specialist must participate in the commissioning process specified in Section 01 91 00.15 TOTAL BUILDING COMMISSIONING.
1.5.8.4 TAB Related HVAC Submittals

The TAB Specialist must prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. Accompany the submittals identified on this list with a letter of approval signed and dated by the TAB Specialist when submitted to the Government. Ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals.

1.5.9 Responsibilities

The Contractor is responsible for ensuring compliance with the requirements of this section. The following delineation of specific work responsibilities is specified to facilitate TAB execution of the various work efforts by personnel from separate organizations. This breakdown of specific duties is specified to facilitate adherence to the schedule listed in the paragraph TAB SUBMITTAL AND WORK SCHEDULE.

1.5.9.1 Contractor

a. TAB personnel: Ensure that the DALT work and the TAB work is accomplished by a group meeting the requirements specified in the paragraph TAB PERSONNEL QUALIFICATION REQUIREMENTS.

b. Pre-DALT/TAB meeting: Attend the meeting with the TAB Supervisor, and ensure that a representative is present for the sheetmetal contractor, mechanical contractor, electrical contractor, and automatic temperature controls contractor.

c. HVAC documentation: Furnish one complete set of the following HVAC-related documentation to the TAB agency:

 (1) Contract drawings and specifications

 (2) Approved submittal data for equipment

 (3) Construction work schedule

 (4) Up-to-date revisions and change orders for the previously listed items

d. Submittal and work schedules: Ensure that the schedule for submittals and work required by this section and specified in the paragraph TAB SUBMITTAL AND WORK SCHEDULE is met.

e. Coordination of supporting personnel:

 Provide the technical personnel, such as factory representatives or HVAC controls installer required by the TAB field team to support the DALT and the TAB field measurement work.

 Provide equipment mechanics to operate HVAC equipment and ductwork mechanics to provide the field designated test ports to enable TAB field team to accomplish the DALT and the TAB field measurement work. Ensure these support personnel are present at the times required by the TAB team, and cause no delay in the DALT and the TAB field work.

 Conversely, ensure that the HVAC controls installer has required
support from the TAB team field leader to complete the controls check out.

f. Deficiencies: Ensure that the TAB Agency supervisor submits all Design/Construction deficiency notifications directly to the Contracting officer within 3 days after the deficiency is encountered. Further, ensure that all such notification submittals are complete with explanation, including documentation, detailing deficiencies.

g. Prerequisite HVAC work: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as prerequisite work items, the deficiencies pointed out by the TAB team supervisor in the design review report.

h. Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team supervisor's pre-field engineering report. Do not allow the TAB team to commence TAB field work until all of the following are completed.

(1) HVAC system installations are fully complete.

(2) HVAC prerequisite checkout work lists specified in the paragraph PRE-FIELD TAB ENGINEERING REPORT are completed, submitted, and approved. Ensure that the TAB Agency gets a copy of the approved prerequisite HVAC work checklist.

(3) DALT field checks for all systems are completed.

(4) HVAC system filters are clean for both Season 1 and Season 2 TAB field work.

i. Advance notice: Furnish to the Contracting Officer with advance written notice for the commencement of the DALT field work and for the commencement of the TAB field work.

j. Insulation work: For required DALT work, ensure that insulation is not installed on ducts to be DALT’d until DALT work on the subject ducts is complete. Later, ensure that openings in duct and machinery insulation coverings for TAB test ports are marked, closed and sealed.

1.5.9.2 TAB Agency

Provide the services of a TAB team which complies with the requirements of the paragraph INDEPENDENT TAB AGENCY PERSONNEL QUALIFICATIONS. The work to be performed by the TAB agency is limited to testing, adjusting, and balancing of HVAC air and water systems to satisfy the requirements of this specification section.

1.5.9.3 TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical DALT and TAB procedures and TAB team field work.

b. Pre-DALT/TAB meeting: Attend meeting with Contractor.
c. Design review report: Review project specifications and accompanying drawings to verify that the air systems and water systems are designed in such a way that the TAB engineer can accomplish the work in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

d. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the pre-field engineering report, the during the DALT or TAB field work.

e. Pre-field DALT preliminary notification: Monitor the completion of the duct installation of each system and provide the necessary written notification to the Contracting Officer.

f. Pre-field engineering report: Utilizing the following HVAC-related documentation; contract drawings and specifications, approved submittal data for equipment, up-to-date revisions and change orders; prepare this report.

g. Prerequisite HVAC work checklist: Ensure the Contractor gets a copy of this checklist at the same time as the pre-field engineering report is submitted.

h. Technical assistance for DALT work.

(1) Technical assistance: Provide immediate technical assistance to TAB field team.

(2) DALT field visit: Near the end of the DALT field work effort, visit the contract site to inspect the HVAC installation and the progress of the DALT field work. Conduct a site visit to the extent necessary to verify correct procedures are being implemented and to confirm the accuracy of the Pre-final DALT Report data which has been reported. Also, perform sufficient evaluation to allow the TAB supervisor to issue certification of the final report. Conduct the site visit full-time for a minimum of one 8 hour workday duration.

i. Final DALT report: Certify the DALT report. This certification includes the following work:

(1) Review: Review the Pre-final DALT report data. From these field reports, prepare the Certified Final DALT report.

(2) TAB Verification: Verify adherence, by the TAB field team, to the procedures specified in this section.

j. Technical Assistance for TAB Work: Provide immediate technical assistance to the TAB field team for the TAB work.

(1) TAB field visit: At the midpoint of the Season 1 and Season 2 TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site
visit full-time for a minimum of one 8 hour workday duration.

(2) TAB field visit: Near the end of the TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site visit full-time for a minimum of one 8 hour workday duration. Review the TAB final report data and certify the TAB final report.

(1) TAB field visit: Near the end of the TAB field work effort, visit the contract site to inspect the HVAC installation and the progress of the TAB field work. Conduct site visit full-time for a minimum of one 8 hour workday duration. Review the TAB final report data and certify the TAB final report.

k. Certified TAB report: Certify the TAB report. This certification includes the following work:

(1) Review: Review the TAB field data report. From this field report, prepare the certified TAB report.

(2) Verification: Verify adherence, by the TAB field team, to the TAB plan prescribed by the pre-field engineering report and verify adherence to the procedures specified in this section.

l. Design/Construction deficiencies: Within 3 working days after the TAB Agency has encountered any design or construction deficiencies, the TAB Supervisor must submit written notification directly to the Contracting Officer, with a separate copy to the Contractor, of all such deficiencies. Provide in this submittal a complete explanation, including supporting documentation, detailing deficiencies. Where deficiencies are encountered that are believed to adversely impact successful completion of TAB, the TAB Agency must issue notice and request direction in the notification submittal.

m. TAB Field Check: The TAB team supervisor must attend and supervise Season 1 and Season 2 TAB field check.

1.5.9.4 TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, EXECUTION.

b. Full time: Be present at the contract site when DALT field work or TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC Checklist, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.

1.5.10 Test Reports

1.5.10.1 Data from DALT Field Work

Report the data for the Pre-final DALT Report and Certified Final DALT Report in compliance the following requirements:

a. Report format: Submit report data on Air Duct Leakage Test Summary
Report Forms as shown on Page 6-2 of SMACNA 1972 CD. In addition, submit in the report, a marked duct shop drawing which identifies each section of duct tested with assigned node numbers for each section. Include node numbers in the completed report forms to identify each duct section. The TAB supervisor must review and certify the report.

b. The TAB supervisor must include a copy of all calculations prepared in determining the duct surface area of each duct test section. In addition, provide the ductwork air leak testing (DALT) reports with a copy(s) of the calibration curve for each of the DALT test orifices used for testing.

c. Instruments: List the types of instruments actually used to measure the data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date. Instruments must have been calibrated within one year of the date of use in the field. Instrument calibration must be traceable to the measuring standards of the National Institute of Standards and Technology.

d. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

1.5.10.2 Certified TAB Reports

Submit: TAB Report for Season 1 and TAB Report for Season 2 in the following manner:

a. Report format: Submit the completed pre-field data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed and certified by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data must be typewritten. Handwritten report forms or report data are not acceptable.

b. Temperatures: On each TAB report form reporting TAB work accomplished on HVAC thermal energy transfer equipment, include the indoor and outdoor dry bulb temperature range and indoor and outdoor wet bulb temperature range within which the TAB data was recorded. Include in the TAB report continuous time versus temperature recording data of wet and dry bulb temperatures for the rooms, or zones, as designated in the following list:

(1) 140, 145, 163, 164, 202, 203, 242, 244, 245, 248, 251, 252, 253, 255, 257, 258, 261. Measure and compile data on a continuous basis for the period in which TAB work affecting those rooms is being done.

(2) Measure and record data only after the HVAC systems installations are complete, the systems fully balanced and the HVAC systems controls operating in fully automatic mode.

(3) Data may be compiled using direct digital controls trend logging where available. Otherwise, temporarily install calibrated time versus temperature/humidity recorders for this purpose. The HVAC systems and controls must be fully operational a minimum of 24 hours in advance of commencing data compilation. Include the specified data in the Season I and Season 2 TAB Report.
c. **System Diagrams:** Provide updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations. Use a key numbering system on the diagram which identifies each outlet contained in the outlet airflow report sheets.

d. **Static Pressure Profiles:** Report static pressure profiles for air duct systems. Report static pressure data for all supply, return, relief, exhaust and outside air ducts for the systems listed. Include the following in the static pressure report data, in addition to AABC/NEBB/TABB required data:

1. Report supply fan, return fan, relief fan, and exhaust fan inlet and discharge static pressures.

2. Report static pressure drop across chilled water coils, DX coils, hot water coils, and heat reclaim devices installed in unit cabinetry or the system ductwork.

3. Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinetry.

4. Report static pressure drop across air filters, acoustic silencers, moisture eliminators, air flow straighteners, air flow measuring stations or other pressure drop producing specialty items installed in unit cabinetry, or in the system ductwork. Examples of these specialty items are smoke detectors, white sound generators, RF shielding, wave guides, security bars, blast valves, small pipes passing through ductwork, and duct mounted humidifiers.

Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

5. Report static pressure drop across outside air and relief/exhaust air louvers.

6. Report static pressure readings of supply air, return air, exhaust/relief air, and outside air in duct at the point where these ducts connect to each air moving unit, and also at the following locations:

 Main Duct: Take readings at four locations along the full length of the main duct, 25 percent, 50 percent, 75 percent, and 100 percent of the total duct length.

 Floor Branch Mains: Take readings at floor branch mains served by a main duct vertical riser.

 Branch Main Ducts: Take readings at branch main ducts.

 VAV Terminals: Take readings at inlet static pressure at VAV terminal box primary air branch ducts.

e. **Duct Traverses:** Report duct traverses for main and branch main supply,
return, exhaust, relief and outside air ducts. This includes all ducts, including those which lack 7 1/2 duct diameters upstream and 2 1/2 duct diameters downstream of straight duct unobstructed by duct fittings/offsets/elbows. The TAB Agency must evaluate and report findings on the duct traverses taken. Evaluate the suitability of the duct traverse measurement based on satisfying the qualifications for a pilot traverse plane as defined by AMCA 203, "Field Measurements", Section 8, paragraph 8.3, "Location of Traverse Plane."

f. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date.

Instrumentation, used for taking wet bulb temperature readings must provide accuracy of plus or minus 5 percent at the measured face velocities. Submit instrument manufacturer's literature to document instrument accuracy performance is in compliance with that specified.

g. Certification: Include the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

h. Performance Curves: The TAB Supervisor must include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.

i. Calibration Curves: The TAB Supervisor must include, in the TAB Reports, a factory calibration curve for installed flow control balancing valves, flow venturi's and flow orifices TAB'd on the job.

1.6 SEQUENCING AND SCHEDULING

1.6.1 DALT and TAB Submittal and Work Schedule

Comply with additional requirements specified in Appendix C: DALT AND TAB SUBMITTAL AND WORK SCHEDULE included at the end of this section.

Submit this schedule, and TAB Schematic Drawings, adapted for this particular contract, to the Contracting Officer (CO) for review and approval. Include with the submittal the planned calendar dates for each submittal or work item. Resubmit an updated version for CO approval every 90 calendar days. Compliance with the following schedule is the Contractor's responsibility.

Qualify TAB Personnel: Within 45 calendar days after date of contract award, submit TAB agency and personnel qualifications.

Pre-DALT/TAB Meeting: Within 30 calendar days after the date of approval of the TAB agency and personnel, meet with the COTR.

Design Review Report: Within 60 calendar days after the date of the TAB agency personnel qualifications approval, submit design review report.

Pre-Field DALT Preliminary Notification: On completion of the duct installation for each system, notify the Contracting Officer in writing within 5 days after completion.

Ductwork Selected for DALT: Within 7 calendar days of Pre-Field DALT
Preliminary Notification, the COTR will select which of the project ductwork must be DALT'd.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field work on selected.

Submit Pre-final DALT Report: Within one working day after completion of DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT reports may be submitted to allow phased testing from system to system.

DALT Work Field Check: Upon approval of the Pre-final DALT Report, schedule the COTR's DALT field check work with the Contracting Officer.

Submit Final DALT Report: Within 15 calendar days after completion of successful DALT Work Field Check, submit Season 1 TAB report.

Pre-Field TAB Engineering Report: Within 15 calendar days after approval of the TAB agency Personnel Qualifications, submit the Pre-Field TAB Engineering Report.

Prerequisite HVAC Work Check Out List For Season 1 and Advanced Notice For Season 1 TAB Field Work: At a minimum of 115 calendar days prior to CCD, submit Season 1 prerequisite HVAC work check out list certified as complete, and submit advance notice of commencement of Season 1 TAB field work.

Season 1 TAB Field Work: At a minimum of 90 calendar days prior to CCD, and when the ambient temperature is within Season 1 limits, accomplish Season 1 TAB field work.

Submit Season 1 TAB Report: Within 15 calendar days after completion of Season 1 TAB field work, submit Season 1 TAB report.

Season 1 TAB Field Check: 30 calendar days after Season 1 TAB report is approved by the Contracting Officer, conduct Season 1 field check.

Complete Season 1 TAB Work: Prior to CCD, complete all TAB work except Season 2 TAB work.

Season 1 TAB Field Work: At a minimum of 90 calendar days prior to CCD, and when the ambient temperature is within Season 1 limits, accomplish Season 1 TAB field work; submit Season 1 TAB report; and conduct Season 1 field check.

Prerequisite HVAC Work Check Out List For Season 2 and Advanced Notice For Season 2 TAB Field Work: Within 150 calendar days after date of the commencement of the Season 1 TAB field work, submit the Season 2 prerequisite HVAC work check out list certified as complete and submit advance notice of commencement of Season 2 TAB field work.

Season 2 TAB Field Work: Within 180 calendar days after date of commencement of the Season 1 TAB field work and when the ambient temperature is within Season 2 limits, accomplish Season 2 TAB field work.

Submit Season 2 TAB Report: Within 15 calendar days after completion of Season 2 TAB field work, submit Season 2 TAB report.
Season 2 TAB Field Check: 30 calendar days after the Season 2 TAB report is approved by the Contracting Officer, conduct Season 2 field check.

Complete Season 2 TAB Work: Within 15 calendar days after the completion of Season 2 TAB field data check, complete all TAB work.

Season 2 TAB Field Work: Within 180 calendar days after date of commencement of the Season 1 TAB field work and when the ambient temperature is within Season 2 limits, accomplish Season 2 TAB field work; submit Season 2 TAB report; and conduct Season 2 field check.

Complete Season 2 TAB Work: Within 15 calendar days after the completion of Season 2 field data check, complete TAB work.

1.6.1.1 TAB Design Review Report

Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

1.6.1.2 Pre-Field DALT Preliminary Notification

Notification: On completion of the installation of each duct system indicated to be DALT'd, notify the Contracting Officer in writing within 7 calendar days after completion.

1.6.1.3 TAB Pre-Field Engineering Report

Submit report containing the following information:

a. Step-by-step TAB procedure:

(1) Strategy: Describe the method of approach to the TAB field work from start to finish. Include in this description a complete methodology for accomplishing each seasonal TAB field work session.

(2) Air System Diagrams: Use the contract drawings and duct fabrication drawings if available to provide air system diagrams in the report showing the location of all terminal outlet supply, return, exhaust and transfer registers, grilles and diffusers. Use a key numbering system on the diagrams which identifies each outlet contained in the outlet airflow report sheets. Show intended locations of all traverses and static pressure readings.

(3) Procedural steps: Delineate fully the intended procedural steps to be taken by the TAB field team to accomplish the required TAB work of each air distribution system and each water distribution system. Include intended procedural steps for TAB work for subsystems and system components.

b. Pre-field data: Submit AABC or NEBB or SMACNA 1780 data report forms with the following pre-field information filled in:

(1) Design data obtained from system drawings, specifications, and
approved submittals.

(2) Notations detailing additional data to be obtained from the contract site by the TAB field team.

(3) Designate the actual data to be measured in the TAB field work.

(4) Provide a list of the types of instruments, and the measuring range of each, which are anticipated to be used for measuring in the TAB field work. By means of a keying scheme, specify on each TAB data report form submitted, which instruments will be used for measuring each item of TAB data. If the selection of which instrument to use, is to be made in the field, specify from which instruments the choice will be made. Place the instrument key number in the blank space where the measured data would be entered.

c. Prerequisite HVAC work checkout list: Provide a list of inspections and work items which are to be completed by the Contractor. This list must be acted upon and completed by the Contractor and then submitted and approved by the Contracting Officer prior to the TAB team coming to the contract site.

At a minimum, a list of the applicable inspections and work items listed in the NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" must be provided for each separate system to be TAB'd.

1.7 WARRANTY

Furnish workmanship and performance warranty for the DALT and TAB system work performed for a period not less than 1 years from the date of Government acceptance of the work; issued directly to the Government. Include provisions that if within the warranty period the system shows evidence of major performance deterioration, or is significantly out of tolerance, resulting from defective TAB or DALT workmanship, the corrective repair or replacement of the defective materials and correction of the defective workmanship is the responsibility of the TAB firm. Perform corrective action that becomes necessary because of defective materials and workmanship while system TAB and DALT is under warranty 7 days after notification, unless additional time is approved by the Contracting Officer. Failure to perform repairs within the specified period of time constitutes grounds for having the corrective action and repairs performed by others and the cost billed to the TAB firm. The Contractor must also provide a 1 year contractor installation warranty.

PART 2 PRODUCTS

Not Used

PART 3 EXECUTION

3.1 WORK DESCRIPTIONS OF PARTICIPANTS

Comply with requirements of this section as specified in Appendix A WORK DESCRIPTIONS OF PARTICIPANTS.
3.2 PRE-DALT/TAB MEETING

Meet with the Contracting Officer's technical representative (COTR) to develop a mutual understanding relative to the details of the DALT work and TAB work requirements. Ensure that the TAB supervisor is present at this meeting. Requirements to be discussed include required submittals, work schedule, and field quality control.

3.3 DALT PROCEDURES

3.3.1 Instruments, Consumables and Personnel

Provide instruments, consumables and personnel required to accomplish the DALT field work. Follow the same basic procedure specified below for TAB Field Work, including maintenance and calibration of instruments, accuracy of measurements, preliminary procedures, field work, workmanship and treatment of deficiencies. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

3.3.2 Advance Notice of Pre-Final DALT Field Work

On completion of the installation of each duct system indicated to be DALT'd, notify the Contracting Officer in writing prior to the COTR's duct selection field visit.

3.3.3 Ductwork To Be DALT'd

From each duct system indicated as subject to DALT, the COTR will randomly select sections of each completed duct system for testing by the Contractor's TAB Firm. The sections selected will not exceed 20 percent of the total measured linear footage of duct systems indicated as subject to DALT. Sections of duct systems subject to DALT will include 20 percent of main ducts, branch main ducts, branch ducts and plenums for supply, return, exhaust, and plenum ductwork.

It is acceptable for an entire duct system to be DALT'd instead of disassembling that system in order to DALT only the 20 percent portion specified above.

3.3.4 DALT Testing

Perform DALT on the HVAC duct sections of each system as selected by the COTR. Use the duct class, seal class, leakage class and the leak test pressure data indicated on the drawings, to comply with the procedures specified in SMACNA 1972 CD.

In spite of specifications of SMACNA 1972 CD to the contrary, DALT ductwork of construction class of 3-inch water gauge static pressure and below if indicated to be DALT'd. Complete DALT work on the COTR selected ductwork within 48 hours after the particular ductwork was selected for DALT. Separately conduct DALT work for large duct systems to enable the DALT work to be completed in 48 hours.

3.3.5 Completed Pre-Final DALT Report

After completion of the DALT work, prepare a Pre-final DALT Report meeting the additional requirements specified in Appendix B REPORTS - DALT and TAB. Data required by those data report forms shall be furnished by the...
TAB team. Prepare the report neatly and legibly; the Pre-final DALT report shall provide the basis for the Final DALT Report.

TAB supervisor shall review, approve and sign the Pre-Final DALT Report and submit this report within one day of completion of DALT field work. Verbally notify the COTR that the field check of the Pre-Final DALT Report data can commence. After completion of the DALT work, prepare a Pre-final DALT Report using the reporting forms specified. TAB team to furnish data required by those data report forms. Prepare the report neatly and legibly; the Pre-final DALT report is the basis for the Final DALT Report. TAB supervisor must review and certify the Pre-final DALT Report and submit this report within one day of completion of DALT field work. Verbally notify the COTR that the field check of the Pre-final DALT Report data can commence.

3.3.6 Quality Assurance - COTR DALT Field Acceptance Testing

In the presence of the COTR and TAB team field leader, verify for accuracy Pre-final DALT Report data selected by the COTR. For each duct system, this acceptance testing shall be conducted on a maximum of 50 percent of the duct sections DALT'd.

Further, if any data on the Pre-final DALT report form for a given duct section is out-of-tolerance, then field acceptance testing shall be conducted on data for one additional duct section, preferably in the same duct system, in the presence of the COTR.

3.3.7 Additional COTR Field Acceptance Testing

If any of the duct sections checked for a given system are determined to have a leakage rate measured that exceeds the leakage rate allowed by SMACNA Leak Test Manual for an indicated duct construction class and sealant class, terminate data checking for that section. The associated Pre-final DALT Report data for the given duct system will be disapproved. Make the necessary corrections and prepare a revised Pre-final DALT Report. Reschedule a field check of the revised report data with the COTR.

3.3.8 Certified Final DALT Report

On successful completion of all field checks of the Pre-final DALT Report data for all systems, the TAB Supervisor is to assemble, review, certify and submit the Final DALT Report to the Contracting Officer for approval. On successful completion of all field checks of the Pre-Final DALT Report data for all systems, the TAB Supervisor shall assemble, review, approve, sign and submit the Final DALT Report in compliance with Appendix B REPORTS - DALT and TAB to the Contracting Officer for approval.

3.3.9 Prerequisite for TAB Field Work

Do not commence TAB field work prior to the completion and approval, for all systems, of the Final DALT Report.

3.4 TAB PROCEDURES

3.4.1 TAB Field Work

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents.
That is, comply with the the requirements of AABC MN-1 or SMACNA 1780 (TABB) and SMACNA 1858 (TABB), except as supplemented and modified by this section.

Provide instruments and consumables required to accomplish the TAB work. Calibrate and maintain instruments in accordance with manufacturer's written procedures.

Test, adjust, and balance the HVAC systems until measured flow rates (air and water flow) are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. Conduct TAB work, including measurement accuracy, and sound measurement work in conformance with the AABC MN-1 and AABC MN-4, or NEBB TABES and NEBB MASV, or SMACNA 1780 (used by TABB) and SMACNA 1858 sound measurement procedures, except as supplemented and modified by this section. The only water flow and air flow reporting which can be deferred until the Season 2 is that data which would be affected in terms of accuracy due to outside ambient conditions.

3.4.2 Preliminary Procedures

Use the approved pre-field engineering report as instructions and procedures for accomplishing TAB field work. TAB engineer is to locate, in the field, test ports required for testing. It is the responsibility of the sheet metal contractor to provide and install test ports as required by the TAB engineer.

3.4.3 TAB Air Distribution Systems

3.4.3.1 Units With Coils

Report heating and cooling performance capacity tests for hot water, chilled water, DX and coils for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Do not determine entering and leaving wet and dry bulb temperatures by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).

b. For units with capacities of 7.5 tons (90,000 Btu) or less, such as fan coil units, duct mounted reheat coils associated with VAV terminal units, and unitary units, such as through-the-wall heat pumps:

Determine the apparent coil capacity by calculations using single point measurement of entering and leaving wet and dry bulb temperatures;
submit the calculations with the coil reports.

3.4.3.2 Air Handling Units

Air handling unit systems including fans (air handling unit fans, exhaust fans and winter ventilation fans), coils, ducts, plenums, mixing boxes, terminal units, variable air volume boxes, and air distribution devices for supply air, return air, outside air, mixed air relief air, and makeup air.

3.4.3.3 Return Air Fans

Return air fan system including fan ducts, plenums, registers, diffusers, grilles, and louvers for supply air, return air, outside air, and mixed air.

3.4.3.4 Exhaust Fans

Exhaust fan systems including fans, ducts, plenums, grilles, and hoods for exhaust air.

3.4.3.5 Cabinet Heaters

3.4.3.6 Unit Heaters

3.4.4 TAB Water Distribution Systems

3.4.4.1 Chilled Water

Chilled water systems including chillers, condensers, cooling towers, pumps, coils, system balance valves and flow measuring devices.

For water chillers, report data as required by AABC, NEBB and TABB standard procedures, including refrigeration operational data.

3.4.4.2 Heating Hot Water

Heating hot water systems including boilers, hot water converters (e.g., heat exchangers), pumps, coils, system balancing valves and flow measuring devices.

3.4.4.3 Dual Temperature Water

Dual temperature water systems including boilers, converters, chillers, condensers, cooling towers, pumps, coils, and system balancing valves, and flow measuring devices.

3.4.5 Sound Measurement Work

3.4.5.1 Areas To Be Sound Measured

In the following spaces, measure and record the sound power level for each octave band listed in ASHRAE HVAC APP IP HDBK Noise Criteria:

Sound Measuring Rooms:

SAP VTC Conf. 172.
VTC Conf. 145.
All ten cockpits (242, 244, 245, 246, 251, 252, 253, 255, 257, 258).
SOC 203.
a. All HVAC mechanical rooms, including machinery spaces and other spaces containing HVAC power drivers and power driven equipment.

b. All spaces sharing a common barrier with each mechanical room, including rooms overhead, rooms on the other side of side walls, and rooms beneath the mechanical room floor.

c. AHU No. 1 System: Rooms: 134

d. Sound Measuring Rooms: SAP VTC Conf. 172
 Auditorium 145
 All Ten Cockpits (242, 244, 245, 246, 251, 252, 253, 255, 257, and 258).
 VTC Conference Room 211.
 All Debrief Rooms (119, 120, 121, 122, 214, 215, 216, 217, 231, 232, 262 and 263.

3.4.5.2 Procedure

Measure sound levels in each room, when unoccupied except for the TAB team, with all HVAC systems that would cause sound readings in the room operating in their noisiest mode. Record the sound level in each octave band. Attempt to mitigate the sound level and bring the level to within the specified ASHRAE HVAC APP IP HDBK noise criteria goals, if such mitigation is within the TAB team's control. State in the report the ASHRAE HVAC APP IP HDBK noise criteria goals. If sound level cannot be brought into compliance, provide written notice of the deficiency to the Contractor for resolution or correction.

3.4.5.3 Timing

Measure sound levels at times prescribed by AABC or NEBB or TABB.

3.4.5.4 Meters

Measure sound levels with a sound meter complying with ASA S1.4, Type 1 or 2, and an octave band filter set complying with ASA S1.11 PART 1. Use measurement methods for overall sound levels and for octave band sound levels as prescribed by NEBB.

3.4.5.5 Calibration

Calibrate sound levels as prescribed by AABC or NEBB or TABB, except that calibrators emitting a sound pressure level tone of 94 dB at 1000 hertz (Hz) are also acceptable.

3.4.5.6 Background Noise Correction

Determine background noise component of room sound (noise) levels for each (of eight) octave bands as prescribed by AABC or NEBB or TABB.

3.4.6 TAB Work on Performance Tests With Seasonal Limitations

3.4.6.1 Performance Tests

Accomplish proportional balancing TAB work on the air distribution systems and water distribution systems, in other words, accomplish adjusting and balancing of the air flows and water flows, any time during the duration of this contract, subject to the limitations specified elsewhere in this
section. However, accomplish, within the following seasonal limitations, TAB work on HVAC systems which directly transfer thermal energy. Accomplish proportionate balancing TAB work on the air distribution systems and water distribution systems, in other words, accomplish adjusting and balancing of the air flows and water flows, any time during the duration of this contract, subject to the limitations specified elsewhere in this section. However, accomplish, within the following seasonal limitations, TAB work on HVAC systems which directly transfer thermal energy.

3.4.6.2 Season Of Maximum Load

Visit the contract site for at least two TAB work sessions for Season 1 and Season 2 field measures. Visit the contract site during the season of maximum heating load and visit the contract site during the season of maximum cooling load, the goal being to TAB the operational performance of the heating systems and cooling systems under their respective maximum outdoor environment-caused loading. During the seasonal limitations, TAB the operational performance of the heating systems and cooling systems. Visit the contract site for at least two TAB work sessions for TAB field measurements. Visit the contract site during the season of maximum heating load and visit the contract site during the season of maximum cooling load, the goal being to TAB the operational performance of the heating systems and cooling systems under their respective maximum outdoor environment-caused loading. During the seasonal limitations, TAB the operational performance of the heating systems and cooling systems.

3.4.6.3 Ambient Temperatures

On each tab report form used for recording data, record the outdoor and indoor ambient dry bulb temperature range and the outdoor and indoor ambient wet bulb temperature range within which the report form's data was recorded. Record these temperatures at beginning and at the end of data taking.

3.4.6.4 Sound Measurements

Comply with the paragraph SOUND MEASUREMENT WORK, specifically, the requirement that a room must be operating in its noisiest mode at the time of sound measurements in the room. The maximum noise level measurements could depend on seasonally related heat or cooling transfer equipment.

3.4.6.5 Coils

Report heating and cooling performance capacity tests for hot water, and chilled water, coils for the purpose of verifying that the coils meet the indicated design capacity. Submit the following data and calculations with the coil test reports:

a. For Central station air handlers with capacities greater than 7.5 tons (90,000 Btu) cooling, such as factory manufactured units, central built-up units and rooftop units, conduct capacity tests in accordance with AABC MN-4, procedure 3.5, "Coil Capacity Testing."

Entering and leaving wet and dry bulb temperatures are not determined by single point measurement, but by the average of multiple readings in compliance with paragraph 3.5-5, "Procedures", (in subparagraph d.) of AABC MN-4, Procedure 3.5, "Coil Capacity Testing."

Submit part-load coil performance data from the coil manufacturer.
converting test conditions to design conditions; use the data for the purpose of verifying that the coils meet the indicated design capacity in compliance with AABC MN-4, Procedure 3.5, "Coil Capacity Testing," paragraph 3.5.7, "Actual Capacity Vs. Design Capacity" (in subparagraph c.).

b. For units with capacities of 7.5 tons (90,000 Btu) or less, such as fan coil units, duct mounted reheat coils associated with VAV terminal units, and unitary units, such as through-the-wall heat pumps:

Determine the apparent coil capacity by calculations using single point measurement of entering and leaving wet and dry bulb temperatures; submit the calculations with the coil reports.

3.4.7 Workmanship

Conduct TAB work on the HVAC systems until measured flow rates are within plus or minus 5 percent of the design flow rates as specified or indicated on the contract documents. This TAB work includes adjustment of balancing valves, balancing dampers, and sheaves. Further, this TAB work includes changing out fan sheaves and pump impellers if required to obtain air and water flow rates specified or indicated. If, with these adjustments and equipment changes, the specified or indicated design flow rates cannot be attained, contact the Contracting Officer for direction.

3.4.8 Deficiencies

Strive to meet the intent of this section to maximize the performance of the equipment as designed and installed. However, if deficiencies in equipment design or installation prevent TAB work from being accomplished within the range of design values specified in the paragraph WORKMANSHIP, provide written notice as soon as possible to the Contractor and the Contracting Officer describing the deficiency and recommended correction.

Responsibility for correction of installation deficiencies is the Contractor's. If a deficiency is in equipment design, call the TAB team supervisor for technical assistance. Responsibility for reporting design deficiencies to Contractor is the TAB team supervisor's.

3.4.9 TAB Reports

Additional requirements for TAB Reports are specified in Appendix B REPORTS - DALT and TAB

After completion of the TAB field work, prepare the TAB field data for TAB supervisor's review and certification, using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms is to be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and thereby the TAB report is considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph WORKMANSHIP.

After completion of the TAB work, prepare a pre-final TAB report using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms is to be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and the TAB report is considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph WORKMANSHIP of this section.
Prepare the report neatly and legibly; the pre-final TAB report is the final TAB report minus the TAB supervisor's review and certification. Obtain, at the contract site, the TAB supervisor's review and certification of the TAB report.

Verbally notify the COTR that the field check of the TAB report data can commence; give this verbal notice 48 hours in advance of field check commencement. Do not schedule field check of the TAB report until the specified workmanship requirements have been met or written approval of the deviations from the requirements have been received from the Contracting Officer.

3.4.10 Quality Assurance - COTR TAB Field Acceptance Testing

3.4.10.1 TAB Field Acceptance Testing

During the field acceptance testing, verify, in the presence of the COTR, random selections of data (water, air quantities, air motion, sound level readings) recorded in the TAB Report. Points and areas for field acceptance testing are to be selected by the COTR. Measurement and test procedures are the same as approved for TAB work for the TAB Report.

Field acceptance testing includes verification of TAB Report data recorded for the following equipment groups:

- **Group 1**: All chillers, boilers, return fans, computer room units, and air handling units (rooftop and central stations).

- **Group 2**: 25 percent of the VAV terminal boxes and associated diffusers and registers.

- **Group 3**: 25 percent of the supply diffusers, registers, grilles associated with constant volume air handling units.

- **Group 4**: 25 percent of the return grilles, return registers, exhaust grilles and exhaust registers.

- **Group 5**: 25 percent of the supply fans, exhaust fans, and pumps.

Further, if any data on the TAB Report for Groups 2 through 5 is found not to fall within the range of plus 5 to minus 5 percent of the TAB Report data, additional group data verification is required in the presence of the COTR. Verify TAB Report data for one additional piece of equipment in that group. Continue this additional group data verification until out-of-tolerance data ceases to be found.

3.4.10.2 Additional COTR TAB Field Acceptance Testing

If any of the acceptance testing measurements for a given equipment group is found not to fall within the range of plus 5 to minus 5 percent of the TAB Report data, terminate data verification for all affected data for that group. The affected data for the given group will be disapproved. Make the necessary corrections and prepare a revised TAB Report. Reschedule acceptance testing of the revised report data with the COTR.

Further, if any data on the TAB Report for a given field acceptance test group is out-of-tolerance, then field test data for one additional field test group as specified herein. Continue this increase field test work.
until out-of-tolerance data ceases to be found. This additional field testing is up and above the original 25 percent of the reported data entries to be field tested.

If there are no more similar field test groups from which to choose, additional field testing from another, but different, type of field testing group must be tested.

3.4.10.3 Prerequisite for Approval

Compliance with the field acceptance testing requirements of this section is a prerequisite for the final Contracting Officer approval of the TAB Report submitted.

3.5 MARKING OF SETTINGS

Upon the final TAB work approval, permanently mark the settings of HVAC adjustment devices including valves, gauges, splitters, and dampers so that adjustment can be restored if disturbed at any time. Provide permanent markings clearly indicating the settings on the adjustment devices which result in the data reported on the submitted TAB report.

3.6 MARKING OF TEST PORTS

The TAB team is to permanently and legibly mark and identify the location points of the duct test ports. If the ducts have exterior insulation, make these markings on the exterior side of the duct insulation. Show the location of test ports on the as-built mechanical drawings with dimensions given where the test port is covered by exterior insulation.

3.7 APPENDICES

Appendix A WORK DESCRIPTIONS OF PARTICIPANTS
Appendix B REPORTS - DALT and TAB
Appendix C DALT AND TAB SUBMITTAL AND WORK SCHEDULE
Appendix D REQUIREMENTS FOR DUCT AIR LEAK TESTING
Appendix A

WORK DESCRIPTIONS OF PARTICIPANTS

The Contractor is responsible for ensuring compliance with all requirements of this specification section. However, the following delineation of specific work items is provided to facilitate and coordinate execution of the various work efforts by personnel from separate organizations.

1. Contractor

 a. HVAC documentation: Provide pertinent contract documentation to the TAB Firm, to include the following: the contract drawings and specifications; copies of the approved submittal data for all HVAC equipment, air distribution devices, and air/water measuring/balancing devices; the construction work schedule; and other applicable documents requested by the TAB Firm. Provide the TAB Firm copies of contract revisions and modifications as they occur.

 b. Schedules: Ensure the requirements specified under the paragraph "DALT and TAB Schedule" are met.

 c. Pre-DALT and TAB meeting: Arrange and conduct the Pre-DALT and TAB meeting. Ensure that a representative is present for the sheet metal contractor, the mechanical contractor, the electrical contractor, and the automatic temperature controls contractor.

 d. Coordinate Support: Provide and coordinate support personnel required by the TAB Firm in order to accomplish the DALT and TAB field work. Support personnel may include factory representatives, HVAC controls installers, HVAC equipment mechanics, sheet metal workers, pipe fitters, and insulators. Ensure support personnel are present at the work site at the times required.

 e. Correct Deficiencies: Ensure the notifications of Construction Deficiencies are provided as specified herein. Refer to the paragraph CONSTRUCTION DEFICIENCIES. Correct each deficiency as soon as practical with the Contracting Officer, and submit revised schedules and other required documentation.

 f. Pre-TAB Work Checklists: Complete check out and debugging of HVAC equipment, ducts, and controls prior to the TAB engineer arriving at the project site to begin the TAB work. Debugging includes searching for and eliminating malfunctioning elements in the HVAC system installations, and verifying all adjustable devices are functioning as designed. Include as pre-TAB work checklist items, the deficiencies pointed out by the TAB team supervisor in the design review report.

 Prior to the TAB field team's arrival, ensure completion of the applicable inspections and work items listed in the TAB team supervisor's DALT and TAB Work Procedures Summary. Do not allow the TAB team to commence TAB field work until all of the following are completed.

 g. Give Notice of Testing: Submit advance notice of proportional balancing, Season 1, and Season 2 TAB field work accompanied by completed prerequisite HVAC Work List.
h. Insulation work: Ensure that no insulation is shall not be installed on ducts to be DALT'd until DALT work on the subject ducts is complete. Ensure the duct and piping systems are properly insulated and vapor sealed upon the successful completion and acceptance of the DALT and TAB work.

2. TAB Team Supervisor

a. Overall management: Supervise and manage the overall TAB team work effort, including preliminary and technical DALT and TAB procedures and TAB team field work.

b. Schedule: Ensure the requirements specified under the paragraph "DALT and TAB Schedule" are met.

c. Submittals: Provide the submittals specified herein.

d. Pre-DALT/TAB meeting: Attend meeting with Contractor. Ensure TAB personnel that will be involved in the TAB work under this contract attend the meeting.

e. Design Review Report: Submit typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the duct leakage testing work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. State that no deficiencies are evident if that is the case.

f. Support required: Specify the technical support personnel required from the Contractor other than the TAB agency; such as factory representatives for temperature controls or for complex equipment. Inform the Contractor in writing of the support personnel needed and when they are needed. Furnish the notice as soon as the need is anticipated, either with the design review report, or the DALT and TAB Procedures Summary, the during the DALT or TAB field work.

Ensure the Contractor is properly notified and aware of all support personnel needed to perform the TAB work. Maintain communication with the Contractor regarding support personnel throughout the duration of the TAB field work, including the TAB field acceptance testing checking.

Ensure all inspections and verifications for the Pre-Final DALT and Pre-TAB Checklists are completely and successfully conducted before DALT and TAB field work is performed.

g. Advance Notice: Monitor the completion of the duct system installations and provide the Advance Notice for Pre-Final DALT field work as specified herein.

h. Technical Assistance: Provide technical assistance to the DALT and TAB field work.

i. Deficiencies Notification: Ensure the notifications of Construction Deficiencies are provided as specified herein. Comply with requirements of the paragraph CONSTRUCTION DEFICIENCIES. Resolve each deficiency as soon as practical and submit revised schedules and other required documentation.
j. Procedures: Develop the required TAB procedures for systems or system components not covered in the TAB Standard.

3. TAB Team Field Leader

a. Field manager: Manage, in the field, the accomplishment of the work specified in Part 3, EXECUTION.

b. Full time: Be present at the contract site when DALT field work or TAB field work is being performed by the TAB team; ensure day-to-day TAB team work accomplishments are in compliance with this section.

c. Prerequisite HVAC work: Do not bring the TAB team to the contract site until a copy of the prerequisite HVAC work list, with all work items certified by the Contractor to be working as designed, reaches the office of the TAB Agency.
Appendix B

REPORTS - DALT and TAB

All submitted documentation must be typed, neat, and organized. All reports must have a waterproof front and back cover, a title page, a certification page, sequentially numbered pages throughout, and a table of contents. Tables, lists, and diagrams must be titled. Generate and submit for approval the following documentation:

1. DALT and TAB Work Execution Schedule

Submit a detailed schedule indicating the anticipated calendar date for each submittal and each portion of work required under this section. For each work entry, indicate the support personnel (such as controls provider, HVAC mechanic, etc.) that are needed to accomplish the work. Arrange schedule entries chronologically.

2. DALT and TAB Procedures Summary

Submit a detailed narrative describing all aspects of the DALT and TAB field work to be performed. Clearly distinguish between DALT information and TAB information. Include the following:

a. A list of the intended procedural steps for the DALT and TAB field work from start to finish. Indicate how each type of data measurement will be obtained. Include what Contractor support personnel are required for each step, and the tasks they need to perform.

b. A list of the project's submittals that are needed by the TAB Firm in order to meet this Contract's requirements.

c. The schematic drawings to be used in the required reports, which may include building floor plans, mechanical room plans, duct system plans, and equipment elevations. Indicate intended TAB measurement locations, including where test ports need to be provided by the Contractor.

d. The data presentation forms to be used in the report, with the preliminary information and initial design values filled in.

e. A list of DALT and TAB instruments to be used, edited for this project, to include the instrument name and description, manufacturer, model number, scale range, published accuracy, most recent calibration date, and what the instrument will be used for on this project.

f. A thorough checklist of the work items and inspections that need to be accomplished before DALT field work can be performed. The Contractor must complete, submit, and receive approval of the Completed Pre-Final DALT Work Checklist before DALT field work can be accomplished.

g. A thorough checklist of the work items and inspections that need to be accomplished before the Season 1 TAB field work can be performed. The Contractor must complete, submit, and receive approval of the Completed Season 1 Pre-TAB Work Checklist before the Season 1 TAB field work can be accomplished.

h. A thorough checklist of the work items and inspections that need to be accomplished before the Season 2 TAB field work can be performed. The
Contractor must complete, submit, and receive approval of the Completed Season 2 Pre-TAB Work Checklist before the Season 2 TAB field work can be accomplished.

i. The checklists specified above shall be individually developed and tailored specifically for the work under this contract. Refer to NEBB PROCEDURAL STANDARDS, Section III, "Preliminary TAB Procedures" under the paragraphs titled, "Air Distribution System Inspection" and "Hydronic Distribution System Inspection" for examples of items to include in the checklists.

3. Design Review Report

Submit report containing the following information:

a. Review the contract specifications and drawings to verify that the TAB work can be successfully accomplished in compliance with the requirements of this section. Verify the presence and location of permanently installed test ports and other devices needed, including gauge cocks, thermometer wells, flow control devices, circuit setters, balancing valves, and manual volume dampers.

b. Submit a typed report describing omissions and deficiencies in the HVAC system's design that would preclude the TAB team from accomplishing the DALT work and the TAB work requirements of this section. Provide a complete explanation including supporting documentation detailing the design deficiency. If no deficiencies are evident, state so in the report.

4. Completed Pre-Final DALT Work Checklist

Report the data for the Pre-Final DALT Report meeting the following requirements:

a. Submit a copy of the approved DALT and TAB Procedures Summary: Provide notations describing how actual field procedures differed from the procedures listed.

b. Report format: Submit a comprehensive report for the DALT field work data using data presentation forms equivalent to the "Air Duct Leakage Test Summary Report Forms" located in the SMACNA 1972 CD. In addition, submit in the report, a marked duct shop drawing which identifies each section of duct tested with assigned node numbers for each section. Node numbers shall be included in the completed report forms to identify each duct section.

c. Calculations: Include a copy of all calculations prepared in determining the duct surface area of each duct test section. Include in the DALT reports copy(s) of the calibration curve for each of the DALT test orifices used for testing.

d. Instruments: List the types of instruments actually used to measure the data. Include in the listing each instrument's unique identification number, calibration date, and calibration expiration date. Instruments are to be calibrated within one year of the date of use in the field; instrument calibration is to be traceable to the measuring standards of the National Institute of Standards and Technology.
e. TAB Supervisor Approval: Include on the submitted report the typed name of the TAB supervisor and the dated signature of the TAB supervisor.

5. Final DALT Report

On successful completion of all COTR field checks of the Pre-final DALT Report data for all systems, the TABS Supervisor shall assemble, review, sign and submit the Final DALT Report to the Contracting Officer for approval.

6. TAB Reports: Submit TAB Report for Proportional Balancing, Season 1, and Season 2 in the following manner:

a. Procedure Summary: Submit a copy of the approved DALT and TAB Procedures Summary. When applicable, provide notations describing how actual field procedures differed from the procedures listed.

b. Report format: Submit the completed data forms approved in the pre-field TAB Engineering Report completed by TAB field team, reviewed, approved and signed by the TAB supervisor. Bind the report with a waterproof front and back cover. Include a table of contents identifying by page number the location of each report. Report forms and report data shall be typewritten. Handwritten report forms or report data are not acceptable.

c. Temperatures: On each TAB report form reporting TAB work accomplished on HVAC thermal energy transfer equipment, include the indoor and outdoor dry bulb temperature range and indoor and outdoor wet bulb temperature range within which the TAB data was recorded.
 (1) Data shall be measured and compiled on a continuous basis for the period in which TAB work affecting those rooms is being done.
 (2) Data shall be measured/recorded only after the HVAC systems installations are complete, the systems fully balanced and the HVAC systems controls operating in fully automatic mode. Provide a detailed explanation wherever a final measurement did not achieve the required value.
 (3) Data may be compiled using direct digital controls trend logging where available. Otherwise, the Contractor shall temporarily install calibrated time versus temperature/humidity recorders for this purpose. The HVAC systems and controls shall have been fully operational a minimum of 24 hours in advance of commencing data compilation. The specified data shall be included in the Season I and Season 2 TAB Report.

d. Air System Diagrams: Provided updated diagrams with final installed locations of all terminals and devices, any numbering changes, and actual test locations.

e. Air Static Pressure Profiles: Report static pressure profiles for air duct systems including: AHU-1, AHU-2, and ERV-1. Report static pressure data for all supply, return, relief, exhaust and outside air ducts for the systems listed. The static pressure report data shall include, in addition to AABC or NEBB or TABB required data, the following:
 (1) Report supply fan, return fan, relief fan, and exhaust fan inlet
and discharge static pressures.

(2) Report static pressure drop across chilled water coils, DX coils, hot water coils, steam coils, electric resistance heating coils and heat reclaim devices installed in unit cabinetry or the system ductwork.

(3) Report static pressure drop across outside air, return air, and supply air automatic control dampers, both proportional and two-position, installed in unit cabinetry.

(4) Report static pressure drop across air filters, acoustic silencers, moisture eliminators, air flow straighteners, air flow measuring stations or other pressure drop producing specialty items installed in unit cabinetry, or in the system ductwork. Examples of these specialty items are smoke detectors, white sound generators, RF shielding, wave guides, security bars, blast valves, small pipes passing through ductwork, and duct mounted humidifiers.

Do not report static pressure drop across duct fittings provided for the sole purpose of conveying air, such as elbows, transitions, offsets, plenums, manual dampers, and branch takes-offs.

(5) Report static pressure drop across outside air and relief/exhaust air louvers.

(6) Report static pressure readings of supply air, return air, exhaust/relief air, and outside air in duct at the point where these ducts connect to each air moving unit.

f. Duct Transverses: Report duct traverses for main and branch main supply, return, exhaust, relief and outside air ducts. This shall include all ducts, including those which lack 7 1/2 duct diameters upstream and 2 1/2 duct diameters downstream of straight duct unobstructed by duct fittings/offsets/elbows. The TAB Agency shall evaluate and report findings on the duct traverses taken. Evaluate the suitability of the duct traverse measurement based on satisfying the qualifications for a pitot traverse plane as defined by AMCA 203, "Field Measurements", Section 8, paragraph 8.3, "Location of Traverse Plane".

g. Instruments: List the types of instruments actually used to measure the tab data. Include in the listing each instrument’s unique identification number, calibration date, and calibration expiration date.

Instrumentation, used for taking wet bulb temperature readings shall provide accuracy of plus or minus 5 percent at the measured face velocities. Submit instrument manufacturer's literature to document instrument accuracy performance is in compliance with that specified.

h. Performance Curves: The TAB Supervisor shall include, in the TAB Reports, factory pump curves and fan curves for pumps and fans TAB'd on the job.

i. Calibration Curves: The TAB Supervisor shall include, in the TAB Reports, a factory calibration curve for installed flow control
balancing valves, flow venturis and flow orifices TAB'd on the job.

j. Data From TAB Field Work: After completion of the TAB field work, prepare the TAB field data for TAB supervisor's review and approval signature, using the reporting forms approved in the pre-field engineering report. Data required by those approved data report forms shall be furnished by the TAB team. Except as approved otherwise in writing by the Contracting Officer, the TAB work and thereby the TAB report shall be considered incomplete until the TAB work is accomplished to within the accuracy range specified in the paragraph WORKMANSHIP.
Appendix C

DALT AND TAB SUBMITTAL AND WORK SCHEDULE

Perform the following items of work in the order listed adhering to the dates schedule specified below.

Submit TAB Agency and TAB Personnel Qualifications: Within 42 calendar days after date of contract award.

Submit the DALT and TAB Work Execution Schedule: within 14 days after receipt of the TAB agency and TAB personnel qualifications approval. Revise and re-submit this schedule 28 days prior to commencement of DALT work and 28 days prior to the commencement of TAB Season 1 work and TAB Season 2 work.

Submit the DALT and TAB Work Procedures Summary: within 14 days after receipt of the initial approved DALT and TAB Work Execution Schedule.

Meet with the COTR at the Pre-DALT/TAB Meeting: Within 28 calendar days after receipt of the approved initial DALT/TAB Execution Schedule.

Submit Design Review Report: Within 56 calendar days after the receipt of the approved initial DALT and TAB Work Execution Schedule.

Conduct measurements and submit the Record of Existing Facility Conditions: within 28 days after receipt of approved DALT and TAB Work Procedures Summary.

Advance Notice of Pre-Final DALT Field Work: After the completed installation of the HVAC duct system to be DALT'd, submit to the Contracting Officer an Advance Notice of Pre-Final DALT Field Work accompanied by the completed Pre-Final DALT Work Checklist for the subject duct system.

Ductwork Selected for DALT: Within 14 calendar days after receiving an acceptable completed Pre-Final DALT Work Checklist, the Contracting Officer's technical representative (COTR) will select the project ductwork sections to be DALT'd.

DALT Field Work: Within 48 hours of COTR's selection, complete DALT field work on selected project ductwork.

Submit Pre-Final DALT Report: Within two working days after completion of DALT field work, submit Pre-final DALT Report. Separate Pre-final DALT reports may be submitted to allow phased testing from system to system.

Quality Assurance - COTR DALT Field Checks: Upon approval of the Pre-final DALT Report, the COTR's DALT field check work shall be scheduled with the Contracting Officer.

Submit Final DALT Report: Within 14 calendar days after completion of successful DALT Work Field Check, submit TAB report.

Advance Notice of Season 1 TAB Field Work: At a minimum of 14 calendar days prior to Season 1 TAB Field Work, submit advance notice of TAB field work accompanied by completed Season 1 Pre-TAB Work Checklist.
Season 1 TAB Field Work: At a minimum of 84 calendar days prior to CCD, and when the ambient temperature is within Season 1 limits, accomplish Season 1 TAB field work.

Submit Season 1 TAB Report: Within 14 calendar days after completion of Season 1 TAB field work, submit initial Season 1 TAB report.

Season 1 Quality Assurance - COTR TAB Field Check: 30 calendar days after initial Season 1 TAB report is approved by the Contracting Officer, conduct Season 1 field check.

Complete Season 1 TAB Work: Prior to CCD, complete all TAB work except Season 2 TAB work and submit final.

Receive the approved TAB report: Within 21 calendar days, receive the report from Contracting Officer approved TAB report.

Advance Notice of Season 2 TAB Field Work: At a minimum of 126 calendar days after CCD, submit advance notice of Season 2 TAB field work accompanied by completed Season 2 Pre-TAB Work Checklist.

Season 2 TAB Field Work: Within 14 calendar days after date of advance notice of Season 2 TAB field work and when the ambient temperature is within Season 2 limits, accomplish Season 2 TAB field work.

Submit Season 2 TAB Report: Within 14 calendar days after completion of Season 2 TAB field work, submit Season 2 TAB report.

Season 2 Quality Assurance - COTR TAB Field Checks: 28 calendar days after the Season 2 TAB report is approved by the Contracting Officer, conduct Season 2 field check.

Complete Season 2 TAB Work: Within 14 calendar days after the completion of Season 2 TAB field data check, complete all TAB work.

Receive the approved TAB report: Within calendar 21 days, receive the report from Contracting Officer.
Appendix D

REQUIREMENTS FOR DUCT AIR LEAK TESTING

<table>
<thead>
<tr>
<th>SYSTEMS</th>
<th>Rooftop w/VAV Unit No. 1</th>
<th>Rooftop w/VAV Unit No. 2</th>
<th>Rooftop w/CV Unit No. 1</th>
<th>Rooftop w/CV Unit No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duct System Static Pressure, in inches W.C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Supply</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Return</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Exhaust</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Outside Air</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>System Oval/Round Duct and Rectangular Duct SMACNA Seal Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Supply</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>for Return</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>for Exhaust</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>for Outside Air</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>System Oval/Round Duct SMACNA Leak Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Supply</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>for Return</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>for Exhaust</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>for Outside Air</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D

REQUIREMENTS FOR DUCT AIR LEAK TESTING

<table>
<thead>
<tr>
<th>SYSTEMS</th>
<th>Rooftop w/VAV Unit No. 1</th>
<th>Rooftop w/VAV Unit No. 2</th>
<th>Rooftop w/CV Unit No. 1</th>
<th>Rooftop w/CV Unit No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Rectangular Duct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMACNA Leak Class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Supply</td>
<td>6</td>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>for Return</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>for Exhaust</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>for Outside Air</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Duct Test Pressure, in inches W.C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Supply</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Return</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Exhaust</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>for Outside Air</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

--- End of Section ---
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. At the discretion of the Government, the manufacturer of any material supplied will be required to furnish test reports pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

Silicate Block and Pipe Thermal Insulation

ASTM D882 (2012) Tensile Properties of Thin Plastic Sheeting

ASTM E2231 (2015) Specimen Preparation and Mounting of Pipe and Duct Insulation Materials to Assess Surface Burning Characteristics

FM GLOBAL (FM)

FM APP GUIDE (updated on-line) Approval Guide
http://www.approvalguide.com/
1.2 SYSTEM DESCRIPTION

1.2.1 General

Provide field-applied insulation and accessories on mechanical systems as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated. Field applied insulation materials required for use on Government-furnished items as listed in the SPECIAL...
CONTRACT REQUIREMENTS shall be furnished and installed by the Contractor.

1.2.2 Recycled Materials

Provide thermal insulation containing recycled materials to the extent practicable, provided that the materials meet all other requirements of this section. The minimum recycled material content of the following insulation are:

<table>
<thead>
<tr>
<th>Material</th>
<th>Recycled Material Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock Wool</td>
<td>75 percent slag of weight</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>20-25 percent glass cullet by weight</td>
</tr>
<tr>
<td>Rigid Foam</td>
<td>9 percent recovered material</td>
</tr>
</tbody>
</table>

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Submit the three SD types, SD-02 Shop Drawings, SD-03 Product Data, and SD-08 Manufacturer's Instructions at the same time for each system.

SD-02 Shop Drawings

MICA Plates; G
Pipe Insulation Systems and Associated Accessories
Duct Insulation Systems and Associated Accessories
Equipment Insulation Systems and Associated Accessories

SD-03 Product Data

Pipe Insulation Systems; G
Duct Insulation Systems; G
Equipment Insulation Systems; G

SD-04 Samples

Thermal Insulation; G
Display Samples; G

SD-08 Manufacturer's Instructions

Pipe Insulation Systems; G
Duct Insulation Systems; G
Equipment Insulation Systems; G

SD-11 Closeout Submittals

Reduce Volatile Organic Compounds (VOC) for Caulking, Sealant and Adhesive Materials; S
Recycled Content for Pipe and Ductwork Insulation Materials; S
1.4 QUALITY ASSURANCE

1.4.1 Installer Qualification

Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years.

1.5 DELIVERY, STORAGE, AND HANDLING

Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. The Contracting Officer may reject insulation material and supplies that become dirty, dusty, wet, or contaminated by some other means. Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material, date codes, and approximate shelf life (if applicable). Insulation packages and containers shall be asbestos free.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Reduce Volatile Organic Compounds (VOC) for Caulking, Sealant and Adhesive Materials

For interior applications, provide caulking, sealant and adhesive materials meeting the reduced VOC requirements as stated within Section 01 33 29 SUSTAINABILITY REPORTING paragraph REDUCE VOLATILE ORGANIC COMPOUNDS (VOC).

2.1.2 Recycled Content for Pipe and Ductwork Insulation Materials

Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING that the following products meet the recycled content requirements as outlined in this section:

a. Pipe Insulation Systems
b. Duct Insulation Systems

2.2 STANDARD PRODUCTS

Provide materials which are the standard products of manufacturers regularly engaged in the manufacture of such products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Submit a complete list of materials, including manufacturer's descriptive technical literature, performance data, catalog cuts, and installation instructions. The product number, k-value, thickness and furnished accessories including adhesives, sealants and jackets for each mechanical system requiring insulation shall be included. The product data must be copyrighted, have an identifying or publication number, and shall have been published prior to the issuance date of this solicitation. Materials furnished under this section shall be submitted together in a booklet and in conjunction with the MICA plates booklet (SD-02). Annotate the product data to indicate which MICA plate is
2.2.1 Insulation System

Provide insulation systems in accordance with the approved MICA National Insulation Standards plates as supplemented by this specification. Provide field-applied insulation for heating, ventilating, and cooling (HVAC) air distribution systems and piping systems that are located within, on, under, and adjacent to buildings; and for plumbing systems. Provide CFC and HCFC free insulation.

2.2.2 Surface Burning Characteristics

Unless otherwise specified, insulation must have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flame spread, and smoke developed indexes, shall be determined by ASTM E84 or UL 723. Test insulation in the same density and installed thickness as the material to be used in the actual construction. Prepare and mount test specimens according to ASTM E2231.

2.3 MATERIALS

Provide insulation that meets or exceed the requirements of ASHRAE 90.1 - IP. Insulation exterior shall be cleanable, grease resistant, non-flaking and non-peeling. Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C795 requirements. Calcium silicate shall not be used on chilled or cold water systems. Materials shall be asbestos free. Provide product recognized under UL 94 (if containing plastic) and listed in FM APP GUIDE.

2.3.1 Adhesives

2.3.1.1 Acoustical Lining Insulation Adhesive

Adhesive shall be a nonflammable, fire-resistant adhesive conforming to ASTM C916, Type I.

2.3.1.2 Mineral Fiber Insulation Cement

Cement shall be in accordance with ASTM C195.

2.3.1.3 Lagging Adhesive

Lagging is the material used for thermal insulation, especially around a cylindrical object. This may include the insulation as well as the cloth/material covering the insulation. To resist mold/mildew, lagging adhesive shall meet ASTM D5590 with 0 growth rating. Lagging adhesives shall be nonflammable and fire-resistant and shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Adhesive shall be MIL-A-3316, Class 1, pigmented white and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bonding glass tape to joints of fibrous glass board; for bonding lagging cloth to thermal insulation; or Class 2 for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations for pipe and duct...
insulation.

2.3.1.4 Contact Adhesive

Adhesives may be any of, but not limited to, the neoprene based, rubber based, or elastomeric type that have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. The adhesive shall not adversely affect, initially or in service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is applied. Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 212 degrees F. The dried adhesive shall be nonflammable and fire resistant. Flexible Elastomeric Adhesive: Comply with MIL-A-24179, Type II, Class I. Provide product listed in FM APP GUIDE.

2.3.2 Caulking

ASTM C920, Type S, Grade NS, Class 25, Use A.

2.3.3 Corner Angles

Nominal 0.016 inch aluminum 1 by 1 inch with factory applied kraft backing. Aluminum shall be ASTM B209, Alloy 3003, 3105, or 5005.

2.3.4 Fittings

Fabricated Fittings are the prefabricated fittings for flexible elastomeric pipe insulation systems in accordance with ASTM C1710. Together with the flexible elastomeric tubes, they provide complete system integrity for retarding heat gain and controlling condensation drip from chilled-water and refrigeration systems. Flexible elastomeric, fabricated fittings provide thermal protection (0.25 k) and condensation resistance (0.05 Water Vapor Transmission factor). For satisfactory performance, properly installed protective vapor retarder/barriers and vapor stops shall be used on high relative humidity and below ambient temperature applications to reduce movement of moisture through or around the insulation to the colder interior surface.

2.3.5 Finishing Cement

ASTM C450: Mineral fiber hydraulic-setting thermal insulating and finishing cement. All cements that may come in contact with Austenitic stainless steel must comply with ASTM C795.

2.3.6 Fibrous Glass Cloth and Glass Tape

Fibrous glass cloth, with 20X20 maximum mesh size, and glass tape shall have maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Tape shall be 4 inch wide rolls. Class 3 tape shall be 4.5 ounces/square yard. Elastomeric Foam Tape: Black vapor-retarder foam tape with acrylic adhesive containing an anti-microbial additive.

2.3.7 Staples

Outward clinching type ASTM A167, Type 304 or 316 stainless steel.
2.3.8 Jackets

2.3.8.1 Aluminum Jackets

Aluminum jackets shall be corrugated, embossed or smooth sheet, 0.016 inch nominal thickness; ASTM B209, Temper H14, Temper H16, Alloy 3003, 5005, or 3105. Corrugated aluminum jacket shall not be used outdoors. Aluminum jacket securing bands shall be Type 304 stainless steel, 0.015 inch thick, 1/2 inch wide for pipe under 12 inch diameter and 3/4 inch wide for pipe over 12 inch and larger diameter. Aluminum jacket circumferential seam bands shall be 2 by 0.016 inch aluminum matching jacket material. Bands for insulation below ground shall be 3/4 by 0.020 inch thick stainless steel, or fiberglass reinforced tape. The jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburgh or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place.

2.3.8.2 Polyvinyl Chloride (PVC) Jackets

Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, ultraviolet (UV) resistant rating or treatment and moderate chemical resistance with minimum thickness 0.030 inch.

2.3.8.3 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive, greater than 3 plies standard grade, silver, white, black and embossed or greater than 8 ply (minimum 2.9 mils adhesive); with 0.0000 permeability when tested in accordance with ASTM E96/E96M, using the water transmission rate test method; heavy duty, white or natural; and UV resistant. Flexible Elastomeric exterior foam with factory applied, UV Jacket made with a cold weather acrylic adhesive. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and excellent Water Vapor Transmission (WVT) rate.

2.3.8.4 Vapor Barrier/Vapor Retarder

Apply the following criteria to determine which system is required.

a. On ducts, piping and equipment operating below 55 degrees F or located outside shall be equipped with a vapor barrier.

b. Ducts, pipes and equipment that are located inside and that always operate above 55 degrees F shall be installed with a vapor retarder where required as stated in paragraph VAPOR RETARDER REQUIRED.

2.3.9 Vapor Retarder Required

ASTM C921, Type I, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 35 pounds/inch width. ASTM C921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 20 pounds/inch width. Jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. Based on the application, insulation materials that require manufacturer or fabricator applied pipe insulation jackets are cellular glass, when all joints are sealed with a vapor barrier mastic, and

SECTION 23 07 00 Page 8
mineral fiber. All non-metallic jackets shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible elastomeric require (in addition to vapor barrier skin) vapor retarder jacketing for high relative humidity and below ambient temperature applications.

2.3.9.1 White Vapor Retarder All Service Jacket (ASJ)

ASJ is for use on hot/cold pipes, ducts, or equipment indoors or outdoors if covered by a suitable protective jacket. The product shall meet all physical property and performance requirements of ASTM C1136, Type I, except the burst strength shall be a minimum of 85 psi. ASTM D2863 Limited Oxygen Index (LOI) shall be a minimum of 31.

In addition, neither the outer exposed surface nor the inner-most surface contacting the insulation shall be paper or other moisture-sensitive material. The outer exposed surface shall be white and have an emittance of not less than 0.80. The outer exposed surface shall be paintable.

2.3.9.2 Vapor Retarder/Vapor Barrier Mastic Coatings

2.3.9.2.1 Vapor Barrier

The vapor barrier shall be self adhesive (minimum 2 mils adhesive, 3 mils embossed) greater than 3 plies standard grade, silver, white, black and embossed white jacket for use on hot/cold pipes. Permeability shall be less than 0.02 when tested in accordance with ASTM E96/E96M. Products shall meet UL 723 or ASTM E84 flame and smoke requirements and shall be UV resistant.

2.3.9.2.2 Vapor Retarder

The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall be 0.013 perms or less at 43 mils dry film thickness as determined according to procedure B of ASTM E96/E96M utilizing apparatus described in ASTM E96/E96M. The coating shall be nonflammable, fire resistant type. To resist mold/mildew, coating shall meet ASTM D5590 with 0 growth rating. Coating shall meet MIL-PRF-19565 Type II (if selected for indoor service) and be Qualified Products Database listed. All other application and service properties shall be in accordance with ASTM C647.

2.3.9.3 Laminated Film Vapor Retarder

ASTM C1136, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork; where Type II, maximum moisture vapor transmission 0.02 perms, a minimum puncture resistance of 25 Beach units is acceptable. Vapor retarder shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84. Flexible Elastomeric exterior foam with factory applied UV Jacket. Construction of laminate designed to provide UV resistance, high puncture, tear resistance and an excellent WVT rate.

2.3.9.4 Polyvinylidene Chloride (PVDC) Film Vapor Retarder

The PVDC film vapor retarder shall have a maximum moisture vapor transmission of 0.02 perms, minimum puncture resistance of 150 Beach units,
a minimum tensile strength in any direction of 30 lb/inch when tested in accordance with ASTM D882, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.3.9.5 Polyvinylidene Chloride Vapor Retarder Adhesive Tape

Requirements must meet the same as specified for Laminated Film Vapor Retarder above.

2.3.9.6 Vapor Barrier/Weather Barrier

The vapor barrier shall be greater than 3 ply self adhesive laminate -white vapor barrier jacket- superior performance (less than 0.0000 permeability when tested in accordance with ASTM E96/E96M). Vapor barrier shall meet UL 723 or ASTM E84 25 flame and 50 smoke requirements; and UV resistant. Minimum burst strength 185 psi in accordance with ISO 2758. Tensile strength 68 lb/inch width (PSTC-1000). Tape shall be as specified for laminated film vapor barrier above.

2.3.10 Vapor Retarder Not Required

ASTM C921, Type II, Class D, minimum puncture resistance 50 Beach units on all surfaces except ductwork, where Type IV, maximum moisture vapor transmission 0.10, a minimum puncture resistance of 25 Beach units is acceptable. Jacket shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.3.11 Wire

Soft annealed ASTM A580/A580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge.

2.3.12 Insulation Bands

Insulation bands shall be 1/2 inch wide; 26 gauge stainless steel.

2.3.13 Sealants

Sealants shall be chosen from the butyl polymer type, the styrene-butadiene rubber type, or the butyl type of sealants. Sealants shall have a maximum permeance of 0.02 perms based on Procedure B for ASTM E96/E96M, and a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E84.

2.4 PIPE INSULATION SYSTEMS

Conform insulation materials to Table 1 and minimum insulation thickness as listed in Table 2 and meet or exceed the requirements of ASHRAE 90.1 - IP. Comply with EPA requirements for material with recycled content in accordance with Section 01 33 29 SUSTAINABILITY REPORTING, paragraph RECYCLED CONTENT. Limit pipe insulation materials to those listed herein and meeting the following requirements:

2.4.1 Aboveground Cold Pipeline (-30 to 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications, shall be as follows:
2.4.1.1 Flexible Elastomeric Cellular Insulation

Closed-cell, foam- or expanded-rubber materials containing anti-microbial additive, complying with ASTM C534/C534M, Grade 1, Type I or II. Type I, Grade 1 for tubular materials. Type II, Grade 1, for sheet materials. Type I and II shall have vapor retarder/vapor barrier skin on one or both sides of the insulation, and require an additional exterior vapor retarder covering for high relative humidity and below ambient temperature applications.

2.4.1.2 Mineral Fiber Insulation with Integral Wicking Material (MFIWM)

ASTM C547. Install in accordance with manufacturer's instructions. Do not use in applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

2.4.2 Aboveground Hot Pipeline (Above 60 deg. F)

Insulation for outdoor, indoor, exposed or concealed applications shall meet the following requirements. Supply the insulation with manufacturer's recommended factory-applied jacket/vapor barrier.

2.4.2.1 Mineral Fiber

ASTM C547, Types I, II or III, supply the insulation with manufacturer's recommended factory-applied jacket.

2.4.2.2 Calcium Silicate

ASTM C533, Type I indoor only, or outdoors above 250 degrees F pipe temperature. Supply insulation with the manufacturer's recommended factory-applied jacket/vapor barrier.

2.4.2.3 Flexible Elastomeric Cellular Insulation

Closed-cell, foam- or expanded-rubber materials containing anti-microbial additive, complying with ASTM C534/C534M, Grade 1, Type I or II to 220 degrees F service. Type I for tubular materials. Type II for sheet materials.

2.4.3 Aboveground Dual Temperature Pipeline

Selection of insulation for use over a dual temperature pipeline system (Outdoor, Indoor - Exposed or Concealed) shall be in accordance with the most limiting/restrictive case. Find an allowable material from paragraph PIPE INSULATION MATERIALS and determine the required thickness from the most restrictive case. Use the thickness listed in paragraphs INSULATION THICKNESS for cold & hot pipe applications.

2.5 DUCT INSULATION SYSTEMS

2.5.1 Factory Applied Insulation

Provide factory-applied ASTM C534/C534M Grade 1, Type II, flexible elastomeric closed cell insulation according to manufacturer's recommendations for insulation with insulation manufacturer's standard reinforced fire-retardant vapor barrier, with identification of installed thermal resistance (R) value and out-of-package R value.
2.5.1.1 Rigid Insulation

Calculate the minimum thickness in accordance with ASHRAE 90.1 - IP.

2.5.1.2 Blanket Insulation

Calculate minimum thickness in accordance with ASHRAE 90.1 - IP.

2.5.2 Acoustical Duct Lining

2.5.2.1 General

For ductwork indicated or specified in Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM to be acoustically lined, provide external insulation in accordance with this specification section and in addition to the acoustical duct lining. Do not use acoustical lining in place of duct wrap or rigid board insulation (insulation on the exterior of the duct).

2.5.2.2 Duct Liner

Flexible Elastomeric Acoustical and Conformable Duct Liner Materials:
Flexible Elastomeric Thermal, Acoustical and Conformable Insulation Compliance with ASTM C534/C534M Grade 1, Type II; and NFPA 90A or NFPA 90B as applicable.

2.5.3 Duct Insulation Jackets

2.5.3.1 All-Purpose Jacket

Provide insulation with insulation manufacturer's standard reinforced fire-retardant jacket with or without integral vapor barrier as required by the service. In exposed locations, provide jacket with a white surface suitable for field painting.

2.5.3.2 Metal Jackets

2.5.3.2.1 Aluminum Jackets

ASTM B209, Temper H14, minimum thickness of 27 gauge (0.016 inch), with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide smooth surface jackets for jacket outside dimension 8 inches and larger. Provide corrugated surface jackets for jacket outside dimension 8 inches and larger. Provide stainless steel bands, minimum width of 1/2 inch.

2.5.3.2.2 Stainless Steel Jackets

ASTM A167 or ASTM A240/A240M; Type 304, minimum thickness of 33 gauge (0.010 inch), smooth surface with factory-applied polyethylene and kraft paper moisture barrier on inside surface. Provide stainless steel bands, minimum width of 1/2 inch.

2.5.3.3 Vapor Barrier/Weatherproofing Jacket

Vapor barrier/weatherproofing jacket shall be laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply (minimum 2.9 mils adhesive), heavy duty white or
Attachment 1, FA465918R0005

{Add/Repair B541 Global Hawk GSMP - Grand Forks AFB, ND}

{JFSD201801}

natural).
2.5.4

Weatherproof Duct Insulation

Provide ASTM C534/C534M Grade 1, Type II, flexible elastomeric cellular
insulation, and weatherproofing as specified in manufacturer's
instruction. Multi-ply, Polymeric Blend Laminate Jacketing: Construction
of laminate designed to provide UV resistance, high puncture, tear
resistance and an excellent WVT rate.
2.6

EQUIPMENT INSULATION SYSTEMS

Insulate equipment and accessories as specified in Tables 5 and 6. In
outside locations, provide insulation 1/2 inch thicker than specified.
Increase the specified insulation thickness for equipment where necessary
to equal the thickness of angles or other structural members to make a
smooth, exterior surface. Submit a booklet containing manufacturer's
published installation instructions for the insulation systems in
coordination with the submitted MICA Insulation Stds plates booklet.
Annotate their installation instructions to indicate which product data and
which MICA plate are applicable. The instructions must be copyrighted,
have an identifying or publication number, and shall have been published
prior to the issuance date of this solicitation. A booklet is also
required by paragraphs titled: Pipe Insulation Systems and Duct Insulation
Systems.
PART 3
3.1

EXECUTION
APPLICATION - GENERAL

Insulation shall only be applied to unheated and uncooled piping and
equipment. Flexible elastomeric cellular insulation shall not be
compressed at joists, studs, columns, ducts, hangers, etc. The insulation
shall not pull apart after a one hour period; any insulation found to pull
apart after one hour, shall be replaced.
3.1.1

Display Samples

Submit and display, after approval of materials, actual sections of
installed systems, properly insulated in accordance with the specification
requirements. Such actual sections must remain accessible to inspection
throughout the job and will be reviewed from time to time for controlling
the quality of the work throughout the construction site. Each material
used shall be identified, by indicating on an attached sheet the
specification requirement for the material and the material by each
manufacturer intended to meet the requirement. The Contracting Officer
will inspect display sample sections at the jobsite. Approved display
sample sections shall remain on display at the jobsite during the
construction period. Upon completion of construction, the display sample
sections will be closed and sealed.
3.1.1.1

Pipe Insulation Display Sections

Display sample sections shall include as a minimum an elbow or tee, a
valve, dielectric waterways and flanges, a hanger with protection shield
and insulation insert, or dowel as required, at support point, method of
fastening and sealing insulation at longitudinal lap, circumferential lap,
butt joints at fittings and on pipe runs, and terminating points for each
type of pipe insulation used on the job, and for hot pipelines and cold
SECTION 23 07 00

Page 13


pipelines, both interior and exterior, even when the same type of insulation is used for these services.

3.1.1.2 Duct Insulation Display Sections

Display sample sections for rigid and flexible duct insulation used on the job. Use a temporary covering to enclose and protect display sections for duct insulation exposed to weather.

3.1.2 Installation

Except as otherwise specified, material shall be installed in accordance with the manufacturer's written instructions. Insulation materials shall not be applied until tests and heat tracing specified in other sections of this specification are completed. Material such as rust, scale, dirt and moisture shall be removed from surfaces to receive insulation. Insulation shall be kept clean and dry. Insulation shall not be removed from its shipping containers until the day it is ready to use and shall be returned to like containers or equally protected from dirt and moisture at the end of each workday. Insulation that becomes dirty shall be thoroughly cleaned prior to use. If insulation becomes wet or if cleaning does not restore the surfaces to like new condition, the insulation will be rejected, and shall be immediately removed from the jobsite. Joints shall be staggered on multi layer insulation. Mineral fiber thermal insulating cement shall be mixed with demineralized water when used on stainless steel surfaces. Insulation, jacketing and accessories shall be installed in accordance with MICA Insulation Stds plates except where modified herein or on the drawings.

3.1.3 Firestopping

Where pipes and ducts pass through fire walls, fire partitions, above grade floors, and fire rated chase walls, the penetration shall be sealed with fire stopping materials as specified in Section 07 84 00 FIRESTOPPING. The protection of ducts at point of passage through firewalls must be in accordance with NFPA 90A and/or NFPA 90B. All other penetrations, such as piping, conduit, and wiring, through firewalls must be protected with a material or system of the same hourly rating that is listed by UL, FM, or a NRTL.

3.1.4 Painting and Finishing

Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.1.5 Installation of Flexible Elastomeric Cellular Insulation

Install flexible elastomeric cellular insulation with seams and joints sealed with rubberized contact adhesive. Flexible elastomeric cellular insulation shall not be used on surfaces greater than 220 degrees F. Stagger seams when applying multiple layers of insulation. Protect insulation exposed to weather and not shown to have vapor barrier weatherproof jacketing with two coats of UV resistant finish or PVC or metal jacketing as recommended by the manufacturer after the adhesive is dry and cured.

3.1.5.1 Adhesive Application

Apply a brush coating of adhesive to both butt ends to be joined and to both slit surfaces to be sealed. Allow the adhesive to set until dry to touch but tacky under slight pressure before joining the surfaces.
Insulation seals at seams and joints shall not be capable of being pulled apart one hour after application. Insulation that can be pulled apart one hour after installation shall be replaced.

3.1.5.2 Adhesive Safety Precautions

Use natural cross-ventilation, local (mechanical) pickup, and/or general area (mechanical) ventilation to prevent an accumulation of solvent vapors, keeping in mind the ventilation pattern must remove any heavier-than-air solvent vapors from lower levels of the workspaces. Gloves and spectacle-type safety glasses are recommended in accordance with safe installation practices.

3.1.6 Welding

No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct.

3.1.7 Pipes/Ducts/Equipment That Require Insulation

Insulation is required on all pipes, ducts, or equipment, except for omitted items as specified.

3.2 PIPE INSULATION SYSTEMS INSTALLATION

Install pipe insulation systems in accordance with the approved MICA Insulation Stds plates as supplemented by the manufacturer's published installation instructions.

3.2.1 Pipe Insulation

3.2.1.1 General

Pipe insulation shall be installed on aboveground hot and cold pipeline systems as specified below to form a continuous thermal retarder/barrier, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following:

a. Pipe used solely for fire protection.

b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed.

c. Sanitary drain lines.

d. Air chambers.

e. Adjacent insulation.

f. ASME stamps.

g. Access plates of fan housings.

h. Cleanouts or handholes.
3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors

Pipe insulation shall be continuous through the sleeve.

Provide an aluminum jacket or vapor barrier/weatherproofing self adhesive jacket (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, greater than 3 ply standard grade, silver, white, black and embossed with factory applied moisture retarder over the insulation wherever penetrations require sealing.

3.2.1.2.1 Penetrate Interior Walls

The aluminum jacket or vapor barrier/weatherproofing - self adhesive jacket (minimum 2 mils adhesive, 3 mils embossed) less than 0.0000 permeability, greater than 3 plies standard grade, silver, white, black and embossed shall extend 2 inches beyond either side of the wall and shall be secured on each end with a band.

3.2.1.2.2 Penetrating Floors

Extend the aluminum jacket from a point below the backup material to a point 10 inches above the floor with one band at the floor and one not more than 1 inch from the end of the aluminum jacket.

3.2.1.2.3 Penetrating Waterproofed Floors

Extend the aluminum jacket rom below the backup material to a point 2 inches above the flashing with a band 1 inch from the end of the aluminum jacket.

3.2.1.2.4 Penetrating Exterior Walls

Continue the aluminum jacket required for pipe exposed to weather through the sleeve to a point 2 inches beyond the interior surface of the wall.

3.2.1.2.5 Penetrating Roofs

Insulate pipe as required for interior service to a point flush with the top of the flashing and sealed with flashing sealant. Tightly butt the insulation for exterior application to the top of flashing and interior insulation. Extend the exterior aluminum jacket 2 inches down beyond the end of the insulation to form a counter flashing. Seal the flashing and counter flashing underneath with metal jacketing/flashin sealant.

3.2.1.2.6 Hot Water Pipes Supplying Lavatories or Other Similar Heated Service

Terminate the insulation on the backside of the finished wall. Protect the insulation termination with two coats of vapor barrier coating with a minimum total thickness of 1/16 inch applied with glass tape embedded between coats (if applicable). Extend the coating out onto the insulation 2 inches and seal the end of the insulation. Overlap glass tape seams 1 inch. Caulk the annular space between the pipe and wall penetration with approved fire stop material. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration at least 3/8 inches.
3.2.1.2.7 Domestic Cold Water Pipes Supplying Lavatories or Other Similar Cooling Service

Terminate the insulation on the finished side of the wall (i.e., insulation must cover the pipe throughout the wall penetration). Protect the insulation with two coats of weather barrier mastic (breather emulsion type weatherproof mastic impermeable to water and permeable to air) with a minimum total thickness of 1/16 inch. Extend the mastic out onto the insulation 2 inches and shall seal the end of the insulation. The annular space between the outer surface of the pipe insulation and caulk the wall penetration with an approved fire stop material having vapor retarder properties. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration by at least 3/8 inches.

3.2.1.3 Pipes Passing Through Hangers

Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 2 inches and smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-58. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 2 inches shall be installed, or factory insulated hangers (designed with a load bearing core) can be used.

3.2.1.3.1 Horizontal Pipes Larger Than 2 Inches at 60 Degrees F and Above

Supported on hangers in accordance with MSS SP-58, and Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.2.1.3.2 Horizontal Pipes Larger Than 2 Inches and Below 60 Degrees F

Supported on hangers with the addition of a Type 40 protection shield in accordance with MSS SP-58. An insulation insert of cellular glass, prefabricated insulation pipe hangers, or perlite above 80 degrees F shall be installed above each shield. The insert shall cover not less than the bottom 180-degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 2 inches on each end beyond the protection shield. When insulation inserts are required in accordance with the above, and the insulation thickness is less than 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the weight of the pipe from crushing the insulation, as an option to installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert.

3.2.1.3.3 Vertical Pipes

Supported with either Type 8 or Type 42 riser clamps with the addition of two Type 40 protection shields in accordance with MSS SP-58 covering the 360-degree arc of the insulation. An insulation insert of cellular glass or calcium silicate shall be installed between each shield and the pipe. The insert shall cover the 360-degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 2 inches on each end beyond the protection shield. When insulation inserts are required in accordance with the above, and the insulation thickness is less than 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the hanger from crushing the insulation, as an option instead of installing insulation inserts. The insulation jacket shall be
continuous over the wooden dowel, wooden block, or insulation insert. The vertical weight of the pipe shall be supported with hangers located in a horizontal section of the pipe. When the pipe riser is longer than 30 feet, the weight of the pipe shall be additionally supported with hangers in the vertical run of the pipe that are directly clamped to the pipe, penetrating the pipe insulation. These hangers shall be insulated and the insulation jacket sealed as indicated herein for anchors in a similar service.

3.2.1.3.4 Inserts

Covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, overlap the adjoining pipe jacket 1-1/2 inches, and seal as required for the pipe jacket. The jacket material used to cover inserts in flexible elastomeric cellular insulation shall conform to ASTM C1136, Type 1, and is allowed to be of a different material than the adjoining insulation material.

3.2.1.4 Flexible Elastomeric Cellular Pipe Insulation

Flexible elastomeric cellular pipe insulation shall be tubular form for pipe sizes 6 inches and less. Grade 1, Type II sheet insulation used on pipes larger than 6 inches shall not be stretched around the pipe. On pipes larger than 12 inches, the insulation shall be adhered directly to the pipe on the lower 1/3 of the pipe. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation. Type II requires an additional exterior vapor retarder/barrier covering for high relative humidity and below ambient temperature applications.

3.2.1.5 Pipes in high abuse areas.

In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, welded PVC, aluminum or flexible laminate cladding (comprised of elastomeric, plastic or metal foil laminate) laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket, - less than 0.0000 permeability; (greater than 3 ply, standard grade, silver, white, black and embossed) aluminum jackets shall be utilized. Pipe insulation to the 6 foot level shall be protected.

3.2.1.6 Pipe Insulation Material and Thickness

Pipe insulation materials must be as listed in Table 1 and must meet or exceed the requirements of ASHRAE 90.1 - IP.

<table>
<thead>
<tr>
<th>Service</th>
<th>Insulation Material for Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Specification</td>
</tr>
<tr>
<td>Chilled Water (Supply & Return, Dual Temperature Piping, 40 F nominal)</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>Material</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Cold Domestic Water Piping, Makeup Water & Drinking Fountain Drain Piping</td>
<td>Flexible Elastomeric Cellular</td>
</tr>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 200 F)</td>
<td>Mineral Fiber</td>
</tr>
<tr>
<td>Refrigerant Suction Piping (35 degrees F nominal)</td>
<td>Flexible Elastomeric Cellular</td>
</tr>
<tr>
<td>Service</td>
<td>Material</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td>Flexible Elastomeric Cellular</td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Flexible Elastomeric Cellular</td>
</tr>
</tbody>
</table>
TABLE 1

Insulation Material for Piping

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Specification</th>
<th>Type</th>
<th>Class</th>
<th>VR/VB Req'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brine Systems Cryogenics (0 to 34 Degrees F)</td>
<td>Flexible Elastomeric Cellular</td>
<td>ASTM C534/C534M</td>
<td>I</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Note: VR/VB = Vapor Retarder/Vapor Barrier

TABLE 2

Piping Insulation Thickness (inch)

Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>Chilled Water (Supply & Return, Dual Temperature Piping, 40 Degrees F nominal)</td>
<td>Mineral Fiber with Wicking Material</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric Cellular</td>
<td>1</td>
</tr>
<tr>
<td>Chilled Water (Supply & Return, Dual Temperature Piping, 40 Degrees F nominal)</td>
<td>Mineral Fiber with Wicking Material</td>
<td>1</td>
</tr>
<tr>
<td>Heating Hot Water Supply & Return, Heated Oil (Max 250 F)</td>
<td>Mineral Fiber</td>
<td>1.5</td>
</tr>
<tr>
<td>Service</td>
<td>Material</td>
<td>Tube And Pipe Size (inch)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>Cold Domestic Water Piping, Makeup Water & Drinking Fountain Drain Piping</td>
<td>Calcium Silicate</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cellular</td>
<td></td>
</tr>
<tr>
<td>Hot Domestic Water Supply & Recirculating Piping (Max 200 F)</td>
<td>Mineral Fiber</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Flexible Elastomeric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cellular</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

Piping Insulation Thickness (inch)
Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.
TABLE 2

<table>
<thead>
<tr>
<th>Service</th>
<th>Material</th>
<th>Tube And Pipe Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposed Lavatory Drains, Exposed Domestic Water Piping & Drains to Areas for Handicapped Personnel</td>
<td>Flexible Elastomeric Cellular</td>
<td>0.5</td>
</tr>
<tr>
<td>Condensate Drain Located Inside Building</td>
<td>Flexible Elastomeric Cellular</td>
<td>1</td>
</tr>
</tbody>
</table>
TABLE 2

Piping Insulation Thickness (inch)
Do not use integral wicking material in Chilled water applications exposed to outdoor ambient conditions in climatic zones 1 through 4.

<table>
<thead>
<tr>
<th>Service</th>
<th>Tube And Pipe Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1</td>
</tr>
<tr>
<td>Brine Systems Cryogenics (0 to 34 Degrees F)</td>
<td>Flexible Elastomeric Cellular</td>
</tr>
</tbody>
</table>

3.2.2 Aboveground Cold Pipelines

The following cold pipelines for minus 30 to plus 60 degrees F, shall be insulated in accordance with Table 2 except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted. This includes but is not limited to the following:

a. Make-up water.

c. Refrigerant suction lines.

d. Chilled water.

e. Dual temperature water, i.e. HVAC hot/chilled water. (CROC Units)

f. Air conditioner condensate drains.

h. Exposed lavatory drains and domestic water lines serving plumbing fixtures for handicap persons.

i. Domestic cold and chilled drinking water.
3.2.2.1 Insulation Material and Thickness

Insulation thickness for cold pipelines shall be determined using Table 2.

3.2.2.2 Factory or Field applied Jacket

Insulation shall be covered with a factory applied vapor retarder jacket/vapor barrier or field applied seal welded PVC jacket or greater than 3 ply laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, standard grade, silver, white, black and embossed for use with Mineral Fiber, Cellular Glass, and Phenolic Foam Insulated Pipe. Insulation inside the building, to be protected with an aluminum jacket or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, Embossed Silver, White & Black, shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, white & black, shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets or greater than 3ply vapor barrier/weatherproofing self-adhesive (minimum 2 mils adhesive, 3 mils embossed) product, less than 0.0000 permeability, standard grade, embossed silver, white & black, shall be provided for pipe insulation to the 6 ft level.

3.2.2.3 Installing Insulation for Straight Runs Hot and Cold Pipe

Apply insulation to the pipe with tight butt joints. Seal all butted joints and ends with joint sealant and seal with a vapor retarder coating, greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape or PVDC adhesive tape.

3.2.2.3.1 Longitudinal Laps of the Jacket Material

Overlap not less than 1-1/2 inches. Provide butt strips 3 inches wide for circumferential joints.

3.2.2.3.2 Laps and Butt Strips

Secure with adhesive and staple on 4 inch centers if not factory self-sealing. If staples are used, seal in accordance with paragraph STAPLES below. Note that staples are not required with cellular glass systems.

3.2.2.3.3 Factory Self-Sealing Lap Systems

May be used when the ambient temperature is between 40 and 120 degrees F during installation. Install the lap system in accordance with manufacturer's recommendations. Use a stapler only if specifically recommended by the manufacturer. Where gaps occur, replace the section or repair the gap by applying adhesive under the lap and then stapling.

3.2.2.3.4 Staples

Coat all staples, including those used to repair factory self-seal lap
systems, with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape. Coat all seams, except those on factory self-seal systems, with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

3.2.2.3.5 Breaks and Punctures in the Jacket Material

Patch by wrapping a strip of jacket material around the pipe and secure it with adhesive, staple, and coat with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape. Extend the patch not less than 1-1/2 inches past the break.

3.2.2.3.6 Penetrations Such as Thermometers

Fill the voids in the insulation and seal with vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

3.2.2.3.7 Flexible Elastomeric Cellular Pipe Insulation

Install by slitting the tubular sections and applying them onto the piping or tubing. Alternately, whenever possible slide un-slit sections over the open ends of piping or tubing. Secure all seams and butt joints and seal with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Push insulation on the pipe, never pulled. Stretching of insulation may result in open seams and joints. Clean cut all edges. Rough or jagged edges of the insulation are not be permitted. Use proper tools such as sharp knives. Do not stretch Grade 1, Type II sheet insulation around the pipe when used on pipe larger than 6 inches. On pipes larger than 12 inches, adhere sheet insulation directly to the pipe on the lower 1/3 of the pipe.

3.2.2.4 Insulation for Fittings and Accessories

a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant and sealed with a vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape.

b. Precut or preformed insulation shall be placed around all fittings and accessories and shall conform to MICA plates except as modified herein: 5 for anchors; 10, 11, and 13 for fittings; 14 for valves; and 17 for flanges and unions. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 ‘Mitered Insulation Elbow’. Submit a booklet containing completed MICA Insulation Stds plates detailing each insulating system for each pipe, duct, or equipment insulating system, after approval of materials and prior to applying insulation.

(1) The MICA plates shall detail the materials to be installed and the specific insulation application. Submit all MICA plates.
required showing the entire insulating system, including plates required to show insulation penetrations, vessel bottom and top heads, legs, and skirt insulation as applicable. The MICA plates shall present all variations of insulation systems including locations, materials, vaporproofing, jackets and insulation accessories.

(2) If the Contractor elects to submit detailed drawings instead of edited MICA Plates, the detail drawings shall be technically equivalent to the edited MICA Plate submittal.

c. Upon completion of insulation installation on flanges, unions, valves, anchors, fittings and accessories, terminations, seams, joints and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with PVDC or greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape or two coats of vapor retarder coating with a minimum total thickness of 1/16 inch, applied with glass tape embedded between coats. Tape seams shall overlap 1 inch. The coating shall extend out onto the adjoining pipe insulation 2 inches. Fabricated insulation with a factory vapor retarder jacket shall be protected with either greater than 3 ply laminate jacket - less than 0.0000 perm adhesive tape, standard grade, silver, white, black and embossed or PVDC adhesive tape or two coats of vapor retarder coating with a minimum thickness of 1/16 inch and with a 2 inch wide glass tape embedded between coats. Where fitting insulation butts to pipe insulation, the joints shall be sealed with a vapor retarder coating and a 4 inch wide ASJ tape which matches the jacket of the pipe insulation.

d. Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 6 inches from the insulation surface.

e. Insulation shall be marked showing the location of unions, strainers, and check valves.

3.2.2.5 Optional PVC Fitting Covers

At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape. Factory precut or premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same insulation as the pipe insulation including same density, thickness, and thermal conductivity. The covers shall be secured by PVC vapor retarder tape, adhesive, seal welding or with tacks made for securing PVC covers. Seams in the cover, and tacks and laps to adjoining pipe insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal.

3.2.3 Aboveground Hot Pipelines

3.2.3.1 General Requirements

All hot pipe lines above 60 degrees F, except those piping listed in subparagraph Pipe Insulation in PART 3 as to be omitted, shall be insulated in accordance with Table 2. This includes but is not limited to the following:

a. Domestic hot water supply & re-circulating system.
d. Hot water heating.

Insulation shall be covered, in accordance with manufacturer's recommendations, with a factory applied Type I jacket or field applied aluminum where required or seal welded PVC.

3.2.3.2 Insulation for Fittings and Accessories

Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be sealed with joint sealant. Insulation shall be marked showing the location of unions, strainers, check valves and other components that would otherwise be hidden from view by the insulation.

3.2.3.2.1 Precut or Preformed

Place precut or preformed insulation around all fittings and accessories. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity.

3.2.3.2.2 Rigid Preformed

Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow".

3.2.4 Piping Exposed to Weather

Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, a laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability (greater than 3 ply, standard grade, silver, white, black and embossed aluminum jacket or PVC jacket shall be applied. PVC jacketing requires no factory-applied jacket beneath it, however an all service jacket shall be applied if factory applied jacketing is not furnished. Flexible elastomeric cellular insulation exposed to weather shall be treated in accordance with paragraph INSTALLATION OF FLEXIBLE ELASTOMERIC CELLULAR INSULATION in PART 3.

3.2.4.1 Aluminum Jacket

The jacket for hot piping may be factory applied. The jacket shall overlap not less than 2 inches at longitudinal and circumferential joints and shall be secured with bands at not more than 12 inch centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o'clock positions. Joints on piping 60 degrees F and below shall be sealed with metal jacketing/flashing sealant while overlapping to prevent moisture penetration. Where jacketing on piping 60 degrees F and below abuts an un-insulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 60 degrees F shall be sealed with a moisture retarder.
3.2.4.2 Insulation for Fittings

Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of breather emulsion type weatherproof mastic (impermeable to water, permeable to air) recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 1 inch and the adjoining aluminum jacket not less than 2 inches. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be provided when PVC jackets are used for straight runs of pipe. PVC fitting covers shall have adhesive welded joints and shall be weatherproof laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed, and UV resistant.

3.2.4.3 PVC Jacket

PVC jacket shall be ultraviolet resistant and adhesive welded weather tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion.

3.3 DUCT INSULATION SYSTEMS INSTALLATION

Install duct insulation systems in accordance with the approved MICA Insulation Stds plates as supplemented by the manufacturer's published installation instructions. Duct insulation minimum thickness and insulation level must be as listed in Table 3 and must meet or exceed the requirements of ASHRAE 90.1 - IP.

Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket. Air conditioned spaces shall be defined as those spaces directly supplied with cooled conditioned air (or provided with a cooling device such as a fan-coil unit) and heated conditioned air (or provided with a heating device such as a unit heater, radiator or convector).

3.3.1 Duct Insulation Minimum Thickness

Duct insulation minimum thickness in accordance with Table 4.

<table>
<thead>
<tr>
<th>Table 4 - Minimum Duct Insulation (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Air Ducts</td>
</tr>
<tr>
<td>Relief Ducts</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
</tr>
<tr>
<td>Warm Air Ducts</td>
</tr>
<tr>
<td>Relief Ducts</td>
</tr>
<tr>
<td>Fresh Air Intake Ducts</td>
</tr>
</tbody>
</table>
3.3.2 Insulation and Vapor Retarder/Vapor Barrier for Cold Air Duct

Insulation and vapor retarder/vapor barrier shall be provided for the following cold air ducts and associated equipment.

a. Supply ducts.

b. Relief ducts.

c. Flexible run-outs (field-insulated).

d. Plenums.

e. Duct-mounted coil casings.

f. Coil headers and return bends.

g. Coil casings.

h. Fresh air intake ducts.

i. Filter boxes.

j. Mixing boxes (field-insulated).

k. Supply fans (field-insulated).

l. Site-erected air conditioner casings.

m. Ducts exposed to weather.

n. Combustion air intake ducts.

Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcf, and rigid type where exposed, minimum density 3 pcf. Insulation for both concealed or exposed round/oval ducts shall be flexible type, minimum density 3/4 pcf or a semi rigid board, minimum density 3 pcf, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered. Insulation for all exposed ducts shall be provided with either a white, paint-able, factory-applied Type I jacket or a field applied vapor retarder/vapor barrier jacket coating finish as specified, the total field applied dry film thickness shall be approximately 1/16 inch. Insulation on all concealed duct shall be provided with a factory-applied Type I or II vapor retarder/vapor barrier jacket. Duct insulation shall be continuous through sleeves and prepared openings except firewall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder/vapor barrier shall cover the collar, neck, and any un-insulated surfaces of diffusers, registers and grills. Vapor retarder/vapor barrier materials shall be applied to form a complete unbroken vapor seal over the insulation. Sheet Metal Duct shall be sealed in accordance with Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM.

3.3.2.1 Installation on Concealed Duct

a. For rectangular, oval or round ducts, flexible insulation shall be attached by applying adhesive around the entire perimeter of the duct in
6 inch wide strips on 12 inch centers.

b. For rectangular and oval ducts, 24 inches and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners.

d. Insulation shall be impaled on the mechanical fasteners (self stick pins) where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder/vapor barrier jacket joints overlap 2 inches. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers.

e. Where mechanical fasteners are used, self-locking washers shall be installed and the pin trimmed and bent over.

f. Jacket overlaps shall be secured with staples and tape as necessary to ensure a secure seal. Staples, tape and seams shall be coated with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less than 0.0000 perm adhesive tape.

g. Breaks in the jacket material shall be covered with patches of the same material as the vapor retarder jacket. The patches shall extend not less than 2 inches beyond the break or penetration in all directions and shall be secured with tape and staples. Staples and tape joints shall be sealed with a brush coat of vapor retarder coating or PVDC adhesive tape or greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less than 0.0000 perm adhesive tape.

h. At jacket penetrations such as hangers, thermometers, and damper operating rods, voids in the insulation shall be filled and the penetration sealed with a brush coat of vapor retarder coating or PVDC adhesive tape greater than 3 ply laminate (minimum 2 mils adhesive, 3 mils embossed) - less than 0.0000 perm adhesive tape.

i. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish or tape with a brush coat of vapor retarder coating. The coating shall overlap the adjoining insulation and un-insulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions.

j. Where insulation standoff brackets occur, insulation shall be extended under the bracket and the jacket terminated at the bracket.

3.3.2.2 Installation on Exposed Duct Work

a. For rectangular ducts, rigid insulation shall be secured to the duct by mechanical fasteners on all four sides of the duct, spaced not more than 12 inches apart and not more than 3 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger. One row shall be provided for each side of duct less than 12 inches.
Section 23 07 00 Page 32

fasteners shall be as corrosion resistant as G60 coated galvanized steel, and shall indefinitely sustain a 50 lb tensile dead load test perpendicular to the duct wall.

b. Form duct insulation with minimum jacket seams. Fasten each piece of rigid insulation to the duct using mechanical fasteners. When the height of projections is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over. Vapor retarder/barrier jacket shall be continuous across seams, reinforcing, and projections. When height of projections is greater than the insulation thickness, insulation and jacket shall be carried over. Apply insulation with joints tightly butted. Neatly bevel insulation around name plates and access plates and doors.

c. Impale insulation on the fasteners; self-locking washers shall be installed and the pin trimmed and bent over.

d. Seal joints in the insulation jacket with a 4 inch wide strip of tape. Seal taped seams with a brush coat of vapor retarder coating.

e. Breaks and ribs or standing seam penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with tape and stapled. Staples and joints shall be sealed with a brush coat of vapor retarder coating.

f. At jacket penetrations such as hangers, thermometers, and damper operating rods, the voids in the insulation shall be filled and the penetrations sealed with a flashing sealant.

g. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish. The coating shall overlap the adjoining insulation and un-insulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions.

h. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation with minimum density of 3/4 pcfc, attached as in accordance with MICA standards.

3.3.3 Insulation for Warm Air Duct

Insulation and vapor barrier shall be provided for the following warm air ducts and associated equipment:

a. Supply ducts.

c. Relief air ducts

d. Flexible run-outs (field insulated).

e. Plenums.

f. Duct-mounted coil casings.

g. Coil-headers and return bends.

h. Coil casings.
i. Fresh air intake ducts.

j. Filter boxes.

k. Mixing boxes.

l. Supply fans.

m. Site-erected air conditioner casings.

n. Ducts exposed to weather.

Insulation for rectangular ducts shall be flexible type where concealed, and rigid type where exposed. Insulation on exposed ducts shall be provided with a white, paintable, factory-applied Type II jacket, or finished with adhesive finish. Flexible type insulation shall be used for round ducts, with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factory-applied Type II jacket. Adhesive finish where indicated to be used shall be accomplished by applying two coats of adhesive with a layer of glass cloth embedded between the coats. The total dry film thickness shall be approximately 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections.

3.3.3.1 Installation on Concealed Duct

a. For rectangular, oval and round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers.

b. For rectangular and oval ducts 24 inches and larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corner.

c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners.

d. The insulation shall be impaled on the mechanical fasteners where used. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers.

e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over.

f. Insulation jacket shall overlap not less than 2 inches at joints and the lap shall be secured and stapled on 4 inch centers.

3.3.3.2 Installation on Exposed Duct

a. For rectangular ducts, the rigid insulation shall be secured to the duct by the use of mechanical fasteners on all four sides of the duct, spaced not more than 16 inches apart and not more than 6 inches from the edges of the insulation joints. A minimum of two rows of fasteners shall be provided for each side of duct 12 inches and larger and a
minimum of one row for each side of duct less than 12 inches.

b. Duct insulation with factory-applied jacket shall be formed with minimum jacket seams, and each piece of rigid insulation shall be fastened to the duct using mechanical fasteners. When the height of projection is less than the insulation thickness, insulation shall be brought up to standing seams, reinforcing, and other vertical projections and shall not be carried over the projection. Jacket shall be continuous across seams, reinforcing, and projections. Where the height of projections is greater than the insulation thickness, insulation and jacket shall be carried over the projection.

c. Insulation shall be impaled on the fasteners; self-locking washers shall be installed and pin trimmed and bent over.

d. Joints on jacketed insulation shall be sealed with a 4 inch wide strip of tape and brushed with vapor retarder coating.

e. Breaks and penetrations in the jacket material shall be covered with a patch of the same material as the jacket. Patches shall extend not less than 2 inches beyond the break or penetration and shall be secured with adhesive and stapled.

f. Insulation terminations and pin punctures shall be sealed with tape and brushed with vapor retarder coating.

g. Oval and round ducts, flexible type, shall be insulated with factory Type I jacket insulation, minimum density of 3/4 pcf attached by staples spaced not more than 16 inches and not more than 6 inches from the degrees of joints. Joints shall be sealed in accordance with item "d." above.

3.3.4 Ducts Handling Air for Dual Purpose

For air handling ducts for dual purpose below and above 60 degrees F, ducts shall be insulated as specified for cold air duct.

3.3.5 Duct Test Holes

After duct systems have been tested, adjusted, and balanced, breaks in the insulation and jacket shall be repaired in accordance with the applicable section of this specification for the type of duct insulation to be repaired.

3.3.6 Duct Exposed to Weather

3.3.6.1 Installation

Ducts exposed to weather shall be insulated and finished as specified for the applicable service for exposed duct inside the building. After the above is accomplished, the insulation shall then be further finished as detailed in the following subparagraphs.

3.3.6.2 Round Duct

Laminated self-adhesive (minimum 2 mils adhesive, 3 mils embossed) vapor barrier/weatherproofing jacket - Less than 0.0000 permeability, (greater than 3 ply, standard grade, silver, white, black and embossed or greater than 8 ply, heavy duty, white and natural) membrane shall be applied
overlapping material by 3 inches no bands or caulking needed - see manufacturer's recommended installation instructions. Aluminum jacket with factory applied moisture retarder shall be applied with the joints lapped not less than 3 inches and secured with bands located at circumferential laps and at not more than 12 inch intervals throughout. Horizontal joints shall lap down to shed water and located at 4 or 8 o'clock position. Joints shall be sealed with metal jacketing sealant to prevent moisture penetration. Where jacketing abuts an un-insulated surface, joints shall be sealed with metal jacketing sealant.

3.3.6.3 Fittings

Fittings and other irregular shapes shall be finished as specified for rectangular ducts.

3.3.6.4 Rectangular Ducts

Two coats of weather barrier mastic reinforced with fabric or mesh for outdoor application shall be applied to the entire surface. Each coat of weatherproof mastic shall be 1/16 inch minimum thickness. The exterior shall be a metal jacketing applied for mechanical abuse and weather protection, and secured with screws or vapor barrier/weatherproofing jacket less than 0.0000 permeability greater than 3 ply, standard grade, silver, white, black, and embossed or greater than 8 ply, heavy duty white and natural. Membrane shall be applied overlapping material by 3 inches. No bands or caulking needed-see manufacturing recommend installation instructions.

3.4 EQUIPMENT INSULATION SYSTEMS INSTALLATION

Install equipment insulation systems in accordance with the approved MICA Insulation Stds plates as supplemented by the manufacturer's published installation instructions.

3.4.1 General

Removable insulation sections shall be provided to cover parts of equipment that must be opened periodically for maintenance including vessel covers, fasteners, flanges and accessories. Equipment insulation shall be omitted on the following:

b. Boiler manholes.
c. Cleanouts.
d. ASME stamps.
e. Manufacturer's nameplates.
f. Duct Test/Balance Test Holes.

3.4.2 Insulation for Cold Equipment

Cold equipment below 60 degrees F: Insulation shall be furnished on equipment handling media below 60 degrees F including the following:

a. Pumps.
b. Refrigeration equipment parts that are not factory insulated.

c. Drip pans under chilled equipment.

d. Cold water storage tanks.

e. Duct mounted coils.

f. Cold and chilled water pumps.

j. Air handling equipment parts that are not factory insulated.

k. Expansion and air separation tanks.

3.4.2.1 Insulation Type

Insulation shall be suitable for the temperature encountered. Material and thicknesses shall be as shown in Table 5:

<table>
<thead>
<tr>
<th>Equipment handling media at indicated temperature</th>
<th>Material</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 to 60 degrees F</td>
<td>Flexible Elastomeric Cellular</td>
<td>1</td>
</tr>
<tr>
<td>1 to 34 degrees F</td>
<td>Flexible Elastomeric Cellular</td>
<td>1.5</td>
</tr>
<tr>
<td>Minus 30 to 0 degrees F</td>
<td>Flexible Elastomeric Cellular</td>
<td>1.75</td>
</tr>
</tbody>
</table>

3.4.2.2 Pump Insulation

a. Insulate pumps by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints that do not leave raw ends of insulation exposed. Joints between sides and between sides and bottom shall be joined by adhesive with lap strips for rigid mineral fiber and contact adhesive for flexible elastomeric cellular insulation. The box shall conform to the requirements of MICA Insulation Stds plate No. 49 when using flexible elastomeric cellular insulation. Joints between top cover and sides shall fit tightly forming a female shiplap joint on the side pieces and a male...
joint on the top cover, thus making the top cover removable.

b. Exposed insulation corners shall be protected with corner angles.

c. Upon completion of installation of the insulation, including removable sections, two coats of vapor retarder coating shall be applied with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. Flashing sealant shall be applied to parting line, between equipment and removable section insulation, and at all penetrations.

3.4.2.3 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not more than 12 inch centers except flexible elastomeric cellular which shall be adhered with contact adhesive. Insulation corners shall be protected under wires and bands with suitable corner angles.

d. Insulation on heads of heat exchangers shall be removable. Removable section joints shall be fabricated using a male-female shiplap type joint. The entire surface of the removable section shall be finished by applying two coats of vapor retarder coating with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch.

e. Exposed insulation corners shall be protected with corner angles.

f. Insulation on equipment with ribs shall be applied over 6 by 6 inches by 12 gauge welded wire fabric which has been cinched in place, or if approved by the Contracting Officer, spot welded to the equipment over the ribs. Insulation shall be secured to the fabric with J-hooks and 2 by 2 inches washers or shall be securely banded or wired in place on 12 inch centers.

3.4.2.4 Vapor Retarder/Vapor Barrier

Upon completion of installation of insulation, penetrations shall be caulked. Two coats of vapor retarder coating or vapor barrier jacket shall be applied over insulation, including removable sections, with a layer of open mesh synthetic fabric embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. Flashing sealant or vapor barrier tape shall be applied to parting line between equipment and removable section insulation.

3.4.3 Insulation for Hot Equipment

Insulation shall be furnished on equipment handling media above 60 degrees F including the following:

d. Water heaters.

e. Pumps handling media above 130 degrees F.
h. Air separation tanks.
i. Surge tanks.
l. Unjacketed boilers or parts of boilers.
m. Boiler flue gas connection from boiler to stack (if inside).

3.4.3.1 Insulation

Insulation shall be suitable for the temperature encountered. Shell and tube-type heat exchangers shall be insulated for the temperature of the shell medium.

Insulation thickness for hot equipment shall be determined using Table 6:

<table>
<thead>
<tr>
<th>Equipment handling steam or media at indicated pressure or temperature limit</th>
<th>Material</th>
<th>Thickness (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 psig or 250 degrees F</td>
<td>Rigid Mineral Fiber</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Flexible Mineral Fiber</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Calcium Silicate/Perlite</td>
<td>4</td>
</tr>
</tbody>
</table>
3.4.3.2 Insulation of Pumps

Insulate pumps by forming a box around the pump housing. The box shall be constructed by forming the bottom and sides using joints that do not leave raw ends of insulation exposed. Bottom and sides shall be banded to form a rigid housing that does not rest on the pump. Joints between top cover and sides shall fit tightly. The top cover shall have a joint forming a female shiplap joint on the side pieces and a male joint on the top cover, making the top cover removable. Two coats of Class I adhesive shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. A parting line shall be provided between the box and the removable sections allowing the removable sections to be removed without disturbing the insulation coating. The total dry thickness of the finish shall be 1/16 inch. Caulking shall be applied to parting line of the removable sections and penetrations.

3.4.3.3 Other Equipment

a. Insulation shall be formed or fabricated to fit the equipment. To ensure a tight fit on round equipment, edges shall be beveled and joints shall be tightly butted and staggered.

b. Insulation shall be secured in place with bands or wires at intervals as recommended by the manufacturer but not greater than 12 inch centers except flexible elastomeric cellular which shall be adhered. Insulation corners shall be protected under wires and bands with suitable corner angles.

d. Insulation on heads of heat exchangers shall be removable. The removable section joint shall be fabricated using a male-female shiplap type joint. Entire surface of the removable section shall be finished as specified.

e. Exposed insulation corners shall be protected with corner angles.

h. Upon completion of installation of insulation, penetrations shall be caulked. Two coats of adhesive shall be applied over insulation, including removable sections, with a layer of glass cloth embedded between the coats. The total dry thickness of the finish shall be 1/16 inch. Caulking shall be applied to parting line between equipment and removable section insulation.
3.4.4 Equipment Handling Dual Temperature Media

Below and above 60 degrees F: equipment handling dual temperature media shall be insulated as specified for cold equipment.

3.4.5 Equipment Exposed to Weather

3.4.5.1 Installation

Equipment exposed to weather shall be insulated and finished in accordance with the requirements for ducts exposed to weather in paragraph DUCT INSULATION INSTALLATION.

3.4.5.2 Optional Panels

At the option of the Contractor, prefabricated metal insulation panels may be used in lieu of the insulation and finish previously specified. Thermal performance shall be equal to or better than that specified for field applied insulation. Panels shall be the standard catalog product of a manufacturer of metal insulation panels. Fastenings, flashing, and support system shall conform to published recommendations of the manufacturer for weatherproof installation and shall prevent moisture from entering the insulation. Panels shall be designed to accommodate thermal expansion and to support a 250 pound walking load without permanent deformation or permanent damage to the insulation. Exterior metal cover sheet shall be aluminum and exposed fastenings shall be stainless steel or aluminum.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

Provide a complete Direct Digital Control (DDC) system, suitable for the control of the heating, ventilating and air conditioning (HVAC) and other building-level systems as indicated and shown and in accordance with Section 23 09 13 INSTRUMENTATION AND CONTROL DEVICES FOR HVAC, Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS and other referenced Sections.

1.1.1 System Requirements

Provide systems meeting the requirements this Section and other Sections referenced by this Section, and which have the following characteristics:

a. The system implements the control sequences of operation shown in the Contract Drawings using DDC hardware to control mechanical and electrical equipment

b. The system meet the requirements of this specification as a stand-alone system and does not require connection to any other system.

c. Control sequences reside in DDC hardware in the building. The building control network is not dependent upon connection to a Utility Monitoring and Control System (UMCS) Front End or to any other system for performance of control sequences. To the greatest extent practical, the hardware performs control sequences without reliance on the building network, unless otherwise pre-approved by the Contracting Officer.

d. The hardware is installed such that individual control equipment can be replaced by similar control equipment from other equipment manufacturers with no loss of system functionality.

e. All necessary documentation, configuration information, programming tools, programs, drivers, and other software are licensed to and otherwise remain with the Government such that the Government or their agents are able to perform repair, replacement, upgrades, and expansions of the system without subsequent or future dependence on the Contractor, Vendor or Manufacturer.

f. Sufficient documentation and data, including rights to documentation and data, are provided such that the Government or their agents can execute work to perform repair, replacement, upgrades, and expansions of the system without subsequent or future dependence on the Contractor, Vendor or Manufacturer.

g. Hardware is installed and configured such that the Government or their agents are able to perform repair, replacement, and upgrades of individual hardware without further interaction with the Contractor, Vendor or Manufacturer.
1.1.2 End to End Accuracy

Select products, install and configure the system such that the maximum error of a measured value as read from the DDC Hardware over the network is less than the maximum allowable error specified for the sensor or instrumentation.

1.1.3 Verification of Dimensions

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.1.4 Drawings

The Government will not indicate all offsets, fittings, and accessories that may be required on the drawings. Carefully investigate the mechanical, electrical, and finish conditions that could affect the work to be performed, arrange such work accordingly, and provide all work necessary to meet such conditions.

1.2 RELATED SECTIONS

Related work specified elsewhere:

a. {BACNET or NIAGARA BACNET} Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS{\BACNET or NIAGARA BACNET} DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS

b. Section 23 09 13 INSTRUMENTATION AND CONTROL DEVICES FOR HVAC

f. Section 01 91 00.15 TOTAL BUILDING COMMISSIONING

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASHRAE 135 (2012; Addenda AR 2013; Errata 1 2013; INT 1-9 2013; Errata 2 2013; INT 10-12 2014; Errata 3-4 2014; Addenda AI-AY 2014; INT
1.4 DEFINITIONS
The following list of definitions includes terms used in Sections referenced by this Section and are included here for completeness.

The definitions contained in this Section may disagree with how terms are defined or used in other documents, including documents referenced by this Section. The definitions included here are the authoritative definitions for this Section and all Sections referenced by this Section.

1.4.1 Alarm Generation
Alarm Generation is the monitoring of a value, comparison of the value to alarm conditions and the creation of an alarm when the conditions set for the alarm are met. Note that this does NOT include delivery of the alarm to the final destination.

{BACNET or NIAGARA BACNET}In BACnet, Alarm Generation is the creation of alarm events {NIAGARA BACNET}using the Niagara Framework Alarm Service, or {/NIAGARA BACNET}using Event Reporting as defined in ASHRAE 135 in one of
three ways:

a. Intrinsic Alarm Generation using Intrinsic Reporting

b. Local Algorithmic Alarm Generation using Algorithmic Reporting where the referenced property is in the same device as the Event Enrollment Object

c. Remote Algorithmic Alarm Generation using Algorithmic Alarming where the referenced property is in a different device than the Event Enrollment Object.

1.4.2 Application Generic Controller (AGC)

A device that is furnished with a (limited) pre-established application that also has the capability of being programmed. Further, the ProgramID and XIF file of the device are fixed. The programming capability of an AGC may be less flexible than that of a General Purpose Programmable Controller (GPPC).

1.4.3 Building Automation and Control Network (BACnet)

The term BACnet is used in two ways. First meaning the BACnet Protocol Standard - the communication requirements as defined by ASHRAE 135 including all annexes and addenda. The second to refer to the overall technology related to the ASHRAE 135 protocol.

1.4.4 BACnet Advanced Application Controller (B-AAC)

A hardware device BTL Listed as a B-AAC, which is required to support BACnet Interoperability Building Blocks (BIBBs) for scheduling and alarming, but is not required to support as many BIBBs as a B-BC.

1.4.5 BACnet Application Specific Controller (B-ASC)

A hardware device BTL Listed as a B-ASC, with fewer BIBB requirements than a B-AAC. It is intended for use in a specific application.

1.4.6 BACnet Building Controller (B-BC)

A hardware device BTL Listed as a B-BC. A general-purpose, field-programmable device capable of carrying out a variety of building automation and control tasks including control and monitoring via direct digital control (DDC) of specific systems and data storage for trend information, time schedules, and alarm data. Like the other BTL Listed controller types (B-AAC, B-ASC etc.) a B-BC device is required to support the server ("B") side of the ReadProperty and WriteProperty services, but unlike the other controller types it is also required to support the client ("A") side of these services. Communication between controllers requires that one of them support the client side and the other support the server side, so a B-BC is often used when communication between controllers is needed.
1.4.7 BACnet Broadcast Management Device (BBMD)

A communications device, typically combined with a BACnet router. A BBMD forwards BACnet broadcast messages to BACnet/IP devices and other BBMDs connected to the same BACnet/IP network. Each IP subnet that is part of a BACnet/IP network must have at least one BBMD. Note there are additional restrictions when multiple BBMDs share an IP subnet.

1.4.8 BACnet/IP

An extension of BACnet, Annex J, defines the use of a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnets that share the same BACnet network number. See also paragraph BACNET BROADCAST MANAGEMENT DEVICE.

1.4.9 BACnet Internetwork

Two or more BACnet networks, connected with BACnet routers. In a BACnet internetwork, there exists only one message path between devices.

1.4.10 BACnet Interoperability Building Blocks (BIBBs)

A BIBB is a collection of one or more ASHRAE 135 Services intended to define a higher level of interoperability. BIBBs are combined to build the BACnet functional requirements for a device in a specification. Some BIBBs define additional requirements (beyond requiring support for specific services) in order to achieve a level of interoperability. For example, the BIBB DS-V-A (Data Sharing-View-A), which would typically be used by a front-end, not only requires the client to support the ReadProperty Service, but also provides a list of data types (Object / Properties) which the client must be able to interpret and display for the user.

In the BIBB shorthand notation, -A is the client side and -B is the server side.

<table>
<thead>
<tr>
<th>BIBB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-COV-A</td>
<td>Data Sharing-Change of Value (A side)</td>
</tr>
<tr>
<td>DS-COV-B</td>
<td>Data Sharing-Change of Value (B side)</td>
</tr>
<tr>
<td>NM-RC-B</td>
<td>Network Management-Router Configuration (B side)</td>
</tr>
<tr>
<td>DS-RP-A</td>
<td>Data Sharing-Read Property (A side)</td>
</tr>
<tr>
<td>DS-RP-B</td>
<td>Data Sharing-Read Property (B side)</td>
</tr>
<tr>
<td>DS-RPM-A</td>
<td>Data Sharing-Read Property Multiple (A Side)</td>
</tr>
<tr>
<td>DS-RPM-B</td>
<td>Data Sharing-Read Property Multiple (B Side)</td>
</tr>
<tr>
<td>DS-WP-A</td>
<td>Data Sharing-Write Property (A Side)</td>
</tr>
</tbody>
</table>
The following is a list of some BIBBs used by this or referenced Sections:

<table>
<thead>
<tr>
<th>BIBB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM-TS-B</td>
<td>Device Management-Time Synchronization (B Side)</td>
</tr>
<tr>
<td>DM-UTC-B</td>
<td>Device Management-UTC Time Synchronization (B Side)</td>
</tr>
<tr>
<td>DS-WP-B</td>
<td>Data Sharing-Write Property (B side)</td>
</tr>
<tr>
<td>SCHED-E-B</td>
<td>Scheduling-External (B side)</td>
</tr>
<tr>
<td>DM-OCD-B</td>
<td>Device Management-Object Creation and Deletion (B side)</td>
</tr>
<tr>
<td>AE-N-I-B</td>
<td>Alarm and Event-Notification Internal (B Side)</td>
</tr>
<tr>
<td>AE-N-E-B</td>
<td>Alarm and Event-Notification External (B Side)</td>
</tr>
<tr>
<td>T-VMT-I-B</td>
<td>Trending-Viewing and Modifying Trends Internal (B Side)</td>
</tr>
<tr>
<td>T-VMT-E-B</td>
<td>Trending-Viewing and Modifying Trends External (B Side)</td>
</tr>
</tbody>
</table>

1.4.11 BACnet Network

In BACnet, a portion of the control internetwork consisting of one or more segments connected by repeaters. Networks are separated by routers.

1.4.12 BACnet Operator Display (B-OD)

A basic operator interface with limited capabilities relative to a B-OWS. It is not intended to perform direct digital control. A B-OD profile could be used for LCD devices, displays affixed to BACnet devices, handheld terminals or other very simple user interfaces.

1.4.13 BACnet Segment

One or more physical segments interconnected by repeaters (ASHRAE 135).

1.4.14 BACnet Smart Actuator (B-SA)

A simple actuator device with limited resources intended for specific applications.

1.4.15 BACnet Smart Sensor (B-SS)

A simple sensing device with limited resources.

1.4.16 BACnet Testing Laboratories (BTL)

Established by BACnet International to support compliance testing and interoperability testing activities and consists of BTL Manager and the BTL Working Group (BTL-WG). BTL also publishes Implementation Guidelines.
1.4.17 BACnet Testing Laboratories (BTL) Listed

A device that has been listed by BACnet Testing Laboratory. Devices may be certified to a specific device profile, in which case the listing indicates that the device supports the required capabilities for that profile, or may be listed as "other".

1.4.18 Binary

A two-state system where an "ON" condition is represented by a high signal level and an "OFF" condition is represented by a low signal level. 'Digital' is sometimes used interchangeably with 'binary'.

1.4.19 Broadcast

Unlike most messages, which are intended for a specific recipient device, a broadcast message is intended for all devices on the network.

1.4.20 Building Control Network (BCN)

The network connecting all DDC Hardware within a building (or specific group of buildings).

1.4.21 Building Point of Connection (BPOC)

A FPOC for a Building Control System. (This term is being phased out of use in preference for FPOC but is still used in some specifications and criteria. When it was used, it typically referred to a piece of control hardware. The current FPOC definition typically refers instead to IT hardware.)

1.4.22 Commandable

See Overridable.

1.4.23 Commandable Objects

Commandable Objects have a Commandable Property, Priority_Array, and Relinquish_Default Property as defined in ASHRAE 135, Clause 19.2, Command Prioritization.

1.4.24 Configurable

A property, setting, or value is configurable if it can be changed via hardware settings on the device, via the use of engineering software or over the control network from the front end, and is retained through (after) loss of power.

In a Niagara Framework BACnet system, a property, setting, or value is configurable if it can be changed via one or more of:

1) via BACnet services (including proprietary BACnet services)
2) via hardware settings on the device
3) via the Niagara Framework.

Note this is more stringent than the ASHRAE 135 definition.
1.4.25 Control Logic Diagram

A graphical representation of control logic for multiple processes that make up a system.

1.4.26 Device

A Digital Controller that contains a BACnet Device Object and uses BACnet to communicate with other devices.

1.4.27 Device Object

Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance or device ID.

1.4.28 Device Profile

A collection of BIBBs determining minimum BACnet capabilities of a device, defined in ASHRAE 135. Standard device profiles include BACnet Advanced Workstations (B-AWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS).

1.4.29 Digital Controller

An electronic controller, usually with internal programming logic and digital and analog input/output capability, which performs control functions.

1.4.30 Direct Digital Control (DDC)

Digital controllers performing control logic. Usually the controller directly senses physical values, makes control decisions with internal programs, and outputs control signals to directly operate switches, valves, dampers, and motor controllers.

1.4.31 Field Point of Connection (FPOC)

The FPOC is the point of connection between the UMCS IP Network and the field control network (either an IP network, a non-IP network, or a combination of both). The hardware at this location which provides the connection is generally an IT device such as a switch, IP router, or firewall.

In general, the term "FPOC Location" means the place where this connection occurs, and "FPOC Hardware" means the device that provides the connection. Sometimes the term "FPOC" is used to mean either and its actual meaning (i.e. location or hardware) is determined by the context in which it is used.

1.4.32 Gateway

A device that translates from one protocol application data format to
another. Devices that change only the transport mechanism of the protocol - "translating" from TP/FT-10 to Ethernet/IP or from BACnet MS/TP to BACnet over IP for example - are not gateways as the underlying data format does not change. Gateways are also called Communications Bridges or Protocol Translators.

{NIAGARA BACNET or NIAGARA LONWORKS} A Niagara Framework Supervisory Gateway is one type of Gateway. {/NIAGARA BACNET or NIAGARA LONWORKS}

1.4.33 IEEE 802.3 Ethernet

A family of local-area-network technologies providing high-speed networking features over various media, typically Cat 5, 5e or Cat 6 twisted pair copper or fiber optic cable.

1.4.34 Internet Protocol (IP, TCP/IP, UDP/IP)

A communication method, the most common use is the World Wide Web. At the lowest level, it is based on Internet Protocol (IP), a method for conveying and routing packets of information over various LAN media. Two common protocols using IP are User Datagram Protocol (UDP) and Transmission Control Protocol (TCP). UDP conveys information to well-known "sockets" without confirmation of receipt. TCP establishes connections, also known as "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

1.4.35 Input/Output (I/O)

Physical inputs and outputs to and from a device, although the term sometimes describes network or "virtual" inputs or outputs. See also "Points".

1.4.36 I/O Expansion Unit

An I/O expansion unit provides additional point capacity to a digital controller.

1.4.37 IP subnet

A group of devices which share a defined range IP addresses. Devices on a common IP subnet can share data (including broadcasts) directly without the need for the traffic to traverse an IP router.

{NIAGARA BACNET or NIAGARA LONWORKS} 1.4.38 JACE (Niagara Framework)

Java Application Control Engine. See paragraph NIAGARA FRAMEWORK SUPERVISORY GATEWAY {/NIAGARA BACNET or NIAGARA LONWORKS}

1.4.39 Local-Area Network (LAN)

A communication network that spans a limited geographic area and uses the same basic communication technology throughout.

1.4.40 Local Display Panels (LDPs)

A DDC Hardware with a display and navigation buttons, and must provide display and adjustment of points as shown on the Points Schedule and as indicated.
1.4.41 MAC Address

Media Access Control address. The physical device address that identifies a device on a Local Area Network.

{BACNET or NIAGARA BACNET} 1.4.42 Master-Slave/Token-Passing (MS/TP)

Data link protocol as defined by the BACnet standard. Multiple speeds (data rates) are permitted by the BACnet MS/TP standard. {/BACNET or NIAGARA BACNET}

1.4.43 Monitoring and Control (M&C) Software

The UMCS 'front end' software which performs supervisory functions such as alarm handling, scheduling and data logging and provides a user interface for monitoring the system and configuring these functions.

{BACNET or NIAGARA BACNET} 1.4.44 Network Number

A site-specific number assigned to each network. This network number must be unique throughout the BACnet internetwork. {/BACNET or NIAGARA BACNET}

{BACNET or NIAGARA BACNET} 1.4.45 Object

An ASHRAE 135 Object. The concept of organizing BACnet information into standard components with various associated Properties. Examples include Analog Input objects and Binary Output objects. {/BACNET or NIAGARA BACNET}

{BACNET or NIAGARA BACNET} 1.4.46 Object Identifier

A grouping of two Object properties: Object Type (e.g. Analog Value, Schedule, etc.) and Object Instance (in this case, a number). Object Identifiers must be unique within a device. {/BACNET or NIAGARA BACNET}

{BACNET or NIAGARA BACNET} 1.4.47 Object Instance

See paragraph OBJECT IDENTIFIER {/BACNET or NIAGARA BACNET}

{BACNET or NIAGARA BACNET} 1.4.48 Object Properties

Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties. {/BACNET or NIAGARA BACNET}

1.4.49 Operator Configurable

{NIAGARA LONWORKS or NIAGARA BACNET} For Niagara Framework Systems, a property, setting, or value is Operator Configurable when it is configurable from a Niagara Framework Front End. {/NIAGARA LONWORKS or NIAGARA BACNET}

{LNS} For LNS LonWorks systems, Operator Configurable is defined the same as Configurable. See paragraph CONFIGURABLE. {/LNS}

{BACNET} For BACnet systems, a property, setting, or value in a device is Operator Configurable when it is Configurable and is either:

a. a Writeable Property of a Standard BACnet Object; or

b. a Property of a Standard BACnet Object that is Writeable when
Out_Of_Service is TRUE and Out_Of_Service is Writeable. {

1.4.50 Override

Changing the value of a point outside of the normal sequence of operation where the change has priority over the sequence and where there is a mechanism for releasing the change such that the point returns to the normal value. Overrides persist until released or overridden at the same or higher priority but are not required to persist through a loss of power.

1.4.51 Performance Verification Test (PVT)

The procedure for determining if the installed BAS meets design criteria prior to final acceptance. The PVT is performed after installation, testing, and balancing of mechanical systems. Typically the PVT is performed by the Contractor in the presence of the Government.

1.4.52 Physical Segment

A single contiguous medium to which BACnet devices are attached (ASHRAE 135). {

1.4.53 Polling

A device periodically requesting data from another device.

1.4.54 Points

Physical and virtual inputs and outputs. See also paragraph INPUT/OUTPUT (I/O).

1.4.55 Proportional, Integral, and Derivative (PID) Control Loop

Three parameters used to control modulating equipment to maintain a setpoint. Derivative control is often not required for HVAC systems (leaving "PI" control).

1.4.56 Proprietary

Within the context of BACnet, any extension of or addition to object types, properties, PrivateTransfer services, or enumerations specified in ASHRAE 135. Objects with Object_Type values of 128 and above are Proprietary Objects. Properties with Property_Identifier of 512 and above are proprietary Properties.

1.4.57 Protocol Implementation Conformance Statement (PICS)

A document, created by the manufacturer of a device, which describes which portions of the BACnet standard may be implemented by a given device. ASHRAE 135 requires that all ASHRAE 135 devices have a PICS, and also defines a minimum set of information that must be in it. A device as installed for a specific project may not implement everything in its PICS.

1.4.58 Repeater

A device that connects two control network segments and retransmits all
information received on one side onto the other.

1.4.59 Router

A device that connects two LNS or NIAGARA LONWORKS networks and controls traffic between the two by retransmitting signals received from one side onto the other based on the signal destination. Routers are used to subdivide a control network and to control bandwidth usage.

1.4.60 Segment

A 'single' section of a control network that contains no repeaters or routers. There is generally a limit on the number of devices on a segment, and this limit is dependent on the topology/media and device type.

1.4.61 Standard BACnet Objects

Objects with Object_Type values below 128 and specifically enumerated in Clause 21 of ASHRAE 135. Objects which are not proprietary. See paragraph PROPRIETARY.

1.4.62 Standard BACnet Properties

Properties with Property_Identifier values below 512 and specifically enumerated in Clause 21 of ASHRAE 135. Properties which are not proprietary. See Proprietary.

1.4.63 Standard BACnet Services

ASHRAE 135 services other than ConfirmedPrivateTransfer or UnconfirmedPrivateTransfer. See paragraph PROPRIETARY.

1.4.64 UMCS

UMCS stands for Utility Monitoring and Control System. The term refers to all components by which a project site monitors, manages, and controls real-time operation of HVAC and other building systems. These components include the UMCS "front-end" and all field building control systems connected to the front-end. The front-end consists of Monitoring and Control Software (user interface software), browser-based user interfaces and network infrastructure.

The network infrastructure (the "UMCS Network"), is an IP network connecting multiple building or facility control networks to the Monitoring and Control Software.

1.4.65 UMCS NETWORK

The UMCS Network connects multiple building or facility control networks to the Monitoring and Control Software.

1.4.66 Writeable Property

A Property is Writeable when it can be changed through the use of one or
more of the WriteProperty services defined in ASHRAE 135, Clause 15 regardless of the value of any other Property. Note that in the ASHRAE 135 standard, some Properties may be writeable when the Out of Service Property is TRUE; for purposes of this Section, Properties that are only writeable when the Out of Service Property is TRUE are not considered to be Writeable.

1.5 PROJECT SEQUENCING

TABLE I: PROJECT SEQUENCING lists the sequencing of submittals as specified in paragraph SUBMITTALS (denoted by an 'S' in the 'TYPE' column) and activities as specified in PART 3 EXECUTION (denoted by an 'E' in the 'TYPE' column). TABLE I does not specify overall project milestone and completion dates.

a. Sequencing for Submittals: The sequencing specified for submittals is the deadline by which the submittal must be initially submitted to the Government. Following submission there will be a Government review period as specified in Section 01 33 00 SUBMITTAL PROCEDURES. If the submittal is not accepted by the Government, revise the submittal and resubmit it to the Government within 14 days of notification that the submittal has been rejected. Upon resubmittal there will be an additional Government review period. If the submittal is not accepted the process repeats until the submittal is accepted by the Government.

b. Sequencing for Activities: The sequencing specified for activities indicates the earliest the activity may begin.

c. Abbreviations: In TABLE I the abbreviation AAO is used for 'after approval of' and 'ACO' is used for 'after completion of'.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
<th>SEQUENCING (START OF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>S</td>
<td>DDC Contractor Design Drawings</td>
<td>AAO #1 thru #4</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>Manufacturer's Product Data</td>
<td>ACO #5</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>Pre-construction QC Checklist</td>
<td>30 days ACO #6</td>
</tr>
<tr>
<td>ITEM</td>
<td>TYPE</td>
<td>DESCRIPTION</td>
<td>SEQUENCING (START OF)</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>8</td>
<td>S</td>
<td>Programming Software Configuration Software Programming Software Configuration Software {NIAGARA LONWORKS or NIAGARA BACNET} {/NIAGARA LONWORKS or NIAGARA BACNET} {LNS or NIAGARA LONWORKS} XIF Files {/LNS or NIAGARA LONWORKS} {LNS} {/LNS}</td>
<td>30 days ACO #6</td>
</tr>
<tr>
<td>9</td>
<td>S</td>
<td>Draft As-Built Drawings</td>
<td>60 days ACO #6</td>
</tr>
<tr>
<td>10</td>
<td>S</td>
<td>Start-Up Testing Report</td>
<td>60 days ACO #6</td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>PVT Procedures</td>
<td>90 days before schedule start of #12 and AAO #10</td>
</tr>
<tr>
<td>12</td>
<td>E</td>
<td>Execute PVT</td>
<td>AAO #9 and #11</td>
</tr>
<tr>
<td>13</td>
<td>S</td>
<td>PVT Report</td>
<td>120 days ACO #12</td>
</tr>
<tr>
<td>14</td>
<td>S</td>
<td>Controller Application Programs Controller Configuration Settings {NIAGARA LONWORKS or NIAGARA BACNET} Niagara Framework Supervisory Gateway Backups {/NIAGARA LONWORKS or NIAGARA BACNET} {LNS} Final LNS Database {/LNS}</td>
<td>120 days AAO #13</td>
</tr>
<tr>
<td>15</td>
<td>S</td>
<td>Final As-Built Drawings</td>
<td>150 days AAO #13</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>O&M Instructions</td>
<td>AAO #15</td>
</tr>
<tr>
<td>17</td>
<td>S</td>
<td>Training Documentation</td>
<td>AAO #10 and 150 days before scheduled start of #18</td>
</tr>
<tr>
<td>18</td>
<td>E</td>
<td>Training</td>
<td>AAO #16 and #17</td>
</tr>
</tbody>
</table>
TABLE I. PROJECT SEQUENCING

<table>
<thead>
<tr>
<th>ITEM TYPE</th>
<th>DESCRIPTION</th>
<th>SEQUENCING (START OF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>S Closeout QC Checklist</td>
<td>ACO #18</td>
</tr>
</tbody>
</table>

1.6 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

DDC Contractor Design Drawings; G

DDC Contractor Design Drawings as a single complete package: 4 hard copies and 2 copies on CDROM. Submit hardcopy drawings on A3 17 by 11 inches sheets, and electronic drawings in PDF and in Microstation format. In addition, submit electronic drawings in editable Excel format for all drawings that are tabular, including but not limited to the Point Schedule and Equipment Schedule.

Draft As-Built Drawings; G

Draft As-Built Drawings as a single complete package: 4 hard copies and 2 copies on CDROM. Submit hardcopy drawings on ISO A1 34 by 22 inches or A3 17 by 11 inches sheets, and electronic drawings in PDF and in Microstation format. In addition, submit electronic drawings in editable Excel format for all drawings that are tabular, including but not limited to the Point Schedule and Equipment Schedule.

Final As-Built Drawings; G

Final As-Built Drawings as a single complete package: 4 hard copies and 2 copies on CDROM. Submit hardcopy drawings on ISO A1 34 by 22 inches or A3 17 by 11 inches sheets, and electronic drawings in PDF and in Microstation format. In addition, submit electronic drawings in editable Excel format for all drawings that are tabular, including but not limited to the Point Schedule and Equipment Schedule.

SD-03 Product Data

Programming Software; G

Submit Programming Software on CD-ROM as a Technical Data Package. Submit 4 hard copies of the software user manual for each piece of software.
Controller Application Programs; G

Submit Controller Application Programs on CD-ROM as a Technical Data Package. Include on the CD-ROM a list or table of contents clearly indicating which application program is associated with each device. Submit 4 copies of the Controller Application Programs CD-ROM.

Configuration Software; G

Submit Configuration Software on CD-ROM as a Technical Data Package. Submit 4 hard copies of the software user manual for each piece of software.

{BACNET or NIAGARA BACNET}
Controller Configuration Settings; G

Submit Controller Configuration Settings on CD-ROM as a Technical Data Package. Include on the CD-ROM a list or table of contents clearly indicating which files are associated with each device. Submit 4 copies of the Controller Configuration Settings CD-ROM.

{/BACNET or NIAGARA BACNET}

Manufacturer's Product Data; G

Submit Manufacturer's Product Data on CD-ROM.

{NIAGARA BACNET or NIAGARA LONWORKS}
Niagara Framework Supervisory Gateway Backups; G

Submit backups for each Niagara Framework Supervisory Gateway on CD-ROM as a Technical Data Package. Mark each backup indicating clearly the source Niagara Framework Supervisory Gateway.

{/NIAGARA BACNET or NIAGARA LONWORKS}

{NIAGARA BACNET or NIAGARA LONWORKS}
Niagara Framework Engineering Tool; G

Submit the Niagara Framework Engineering Tool on CD-ROM as a Technical Data Package. Submit 4 hard copies of the software user manual for the Niagara Framework Engineering Tool.

{/NIAGARA BACNET or NIAGARA LONWORKS}

{NIAGARA BACNET or NIAGARA LONWORKS}
Submit Niagara Framework Wizards on CD-ROM as a Technical Data Package. Include on the CD-ROM a list or table of contents clearly indicating which files are associated with each device. Submit 4 hard copies of the software user manual, if available, for each Wizard.

{/NIAGARA BACNET or NIAGARA LONWORKS}

SD-06 Test Reports

Four copies of the Existing Conditions Report.
Start-Up Testing Report; G
PVT Procedures; G
PVT Report; G
Four copies of the PVT Report. The PVT Report may be submitted as a Technical Data Package.

Pre-Construction Quality Control (QC) Checklist; G
Four copies of the Pre-Construction QC Checklist.

Post-Construction Quality Control (QC) Checklist; G
Four copies of the Post-Construction QC Checklist.

SD-10 Operation and Maintenance Data
Operation and Maintenance (O&M) Instructions; G
Submit 2 copies of the Operation and Maintenance Instructions, indexed and in booklet form. The Operation and Maintenance Instructions may be submitted as a Technical Data Package.

Training Documentation; G
Submit hardcopy training manuals and all training materials on CD-ROM. Provide one hardcopy manual for each trainee on the Course Attendee List and 2 additional copies for archive at the project site. Provide 2 copies of the Course Attendee List with the archival copies. Training Documentation may be submitted as a Technical Data Package.

SD-11 Closeout Submittals
Enclosure Keys; G
Password Summary Report; G
Provide Two hardcopies of the Password Summary Report, each copy in its own sealed envelope.

Closeout Quality Control (QC) Checklist; G
Four copies of the Closeout QC Checklist.

1.7 DATA PACKAGE AND SUBMITTAL REQUIREMENTS

Technical data packages consisting of technical data and computer software (meaning technical data which relates to computer software) which are specifically identified in this project and which may be defined/required in other specifications must be delivered strictly in accordance with the CONTRACT CLAUSES and in accordance with the Contract Data Requirements List, DD Form 1423. Data delivered must be identified by reference to the particular specification paragraph against which it is furnished. All submittals not specified as technical data packages are considered 'shop drawings' under the Federal Acquisition Regulation Supplement (FARS) and must contain no proprietary information and be delivered with unrestricted
1.8 SOFTWARE FOR DDC HARDWARE AND GATEWAYS

Provide all software related to the programming and configuration of DDC Hardware and Gateways as indicated. License all Software to the project site. The term "controller" as used in these requirements means both DDC Hardware and Gateways.

1.8.1 Configuration Software

For type of controller, provide the configuration tool software in accordance with Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS. Submit hard copies of the software user manuals for each software with the software submittal.

1.8.2 Controller Configuration Settings

For each controller, provide copies of the installed configuration settings as source code compatible with the configuration tool software for that controller in accordance with Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS.

1.8.3 Programming Software

For each type of programmable controller, provide the programming software in accordance with Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS. Submit hard copies of software user manuals for each software with the software submittal.

1.8.4 Controller Application Programs

For each programmable controller, provide copies of the application program as source code compatible with the programming software for that controller in accordance with Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS.

1.8.5 Niagara Framework Supervisory Gateway Backups

For each Niagara Framework Supervisory Gateway, provide a backup of all software within the Niagara Framework Supervisory Gateway, including configuration settings. This backup must be sufficient to allow the restoration of the Niagara Framework Supervisory Gateway or the replacement of the Niagara Framework Supervisory Gateway.

1.8.6 Niagara Framework Engineering Tool

Provide a Niagara Framework Engineering Tool in accordance with Section {NIAGARA BACNET} 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS {NIAGARA BACNET}. Submit software user manuals with the Niagara Framework Engineering Tool submittal.

1.9 QUALITY CONTROL CHECKLISTS

The {BACNET} QC Checklist for Niagara Framework Based BACnet Systems {BACNET} {NIAGARA BACNET} QC Checklist for BACnet Systems {NIAGARA BACNET} in
APPENDIX A of this Section must be completed by the Contractor's Chief Quality Control (QC) Representative and submitted as indicated. The QC Representative must verify each item indicated and initial in the space provided to indicate that the requirement has been met. The QC Representative must sign and date the Checklist prior to submission to the Government.

1.9.1 Pre-Construction Quality Control (QC) Checklist

Complete items indicated as Pre-Construction QC Checklist items in the QC Checklist.

1.9.2 Post-Construction Quality Control (QC) Checklist

Complete items indicated as Post-Construction QC Checklist items in the QC Checklist.

1.9.3 Closeout Quality Control (QC) Checklist

Complete items indicated as Closeout QC Checklist items in the QC Checklist.

PART 2 PRODUCTS

Provide products meeting the requirements of {BACNET or NIAGARA BACNET}
Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS{/BACNET or NIAGARA BACNET}, and this Section.

2.1 GENERAL PRODUCT REQUIREMENTS

Units of the same type of equipment must be products of a single manufacturer. Each major component of equipment must have the manufacturer's name and address, and the model and serial number in a conspicuous place. Materials and equipment must be standard products of a manufacturer regularly engaged in the manufacturing of these and similar products. The standard products must have been in a satisfactory commercial or industrial use for two years prior to use on this project. The two year use must include applications of equipment and materials under similar circumstances and of similar size. DDC Hardware not meeting the two-year field service requirement is acceptable provided it has been successfully used by the Contractor in a minimum of two previous projects. The equipment items must be supported by a service organization. Items of the same type and purpose must be identical, including equipment, assemblies, parts and components.

2.2 PRODUCT DATA

Provide manufacturer's product data sheets documenting compliance with product specifications for each product provided under Section 23 09 13 INSTRUMENTATION AND CONTROL DEVICES FOR HVAC, {BACNET or NIAGARA BACNET} Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS{/BACNET or NIAGARA BACNET}, or this Section. Provide product data for all products in a single indexed compendium, organized by product type. For each manufacturer, model and version (revision) of DDC Hardware {BACNET or NIAGARA BACNET}provide the Protocol Implementation Conformance Statement (PICS) in accordance with Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS{/BACNET or NIAGARA BACNET}.
2.3 OPERATION ENVIRONMENT

Unless otherwise specified, provide products rated for continuous operation under the following conditions:

a. Pressure: Pressure conditions normally encountered in the installed location.

b. Vibration: Vibration conditions normally encountered in the installed location.

c. Temperature:
 - (1) Products installed indoors: Ambient temperatures in the range of 32 to 112 degrees F and temperature conditions outside this range normally encountered at the installed location.
 - (2) Products installed outdoors or in unconditioned indoor spaces: Ambient temperatures in the range of -35 to +151 degrees F and temperature conditions outside this range normally encountered at the installed location.

d. Humidity: 10 to 95 percent relative humidity, noncondensing and humidity conditions outside this range normally encountered at the installed location.

2.4 Wireless Capability

For products incorporating any wireless capability (including but not limited to radio frequency (RF), infrared and optical), provide products for which wireless capability can be permanently disabled at the device. Optical and infrared capabilities may be disabled via a permanently affixed opaque cover plate.

2.5 ENCLOSURES

Enclosures supplied as an integral (pre-packaged) part of another product are acceptable. Provide two Enclosure Keys for each lockable enclosure on a single ring per enclosure with a tag identifying the enclosure the keys operate. Provide enclosures meeting the following minimum requirements:

2.5.1 Outdoors

For enclosures located outdoors, provide enclosures meeting NEMA 250 Type 3 requirements.

2.5.2 Mechanical and Electrical Rooms

For enclosures located in mechanical or electrical rooms, provide enclosures meeting NEMA 250 Type 2 requirements.

2.5.3 Other Locations

For enclosures in other locations including but not limited to occupied spaces, above ceilings, and in plenum returns, provide enclosures meeting NEMA 250 Type 1 requirements.
2.6 WIRE AND CABLE

Provide wire and cable meeting the requirements of NFPA 70 and NFPA 90A in addition to the requirements of this specification and referenced specifications.

2.6.1 Terminal Blocks

For terminal blocks which are not integral to other equipment, provide terminal blocks which are insulated, modular, feed-through, clamp style with recessed captive screw-type clamping mechanism, suitable for DIN rail mounting, and which have enclosed sides or end plates and partition plates for separation.

2.6.2 Control Wiring for Binary Signals

For Control Wiring for Binary Signals, provide 18 AWG copper or thicker wire rated for 300-volt service.

2.6.3 Control Wiring for Analog Signals

For Control Wiring for Analog Signals, provide 18 AWG or thicker, copper, single- or multiple-twisted wire meeting the following requirements:

a. minimum 2 inch lay of twist
b. 100 percent shielded pairs
c. at least 300-volt insulation
d. each pair has a 20 AWG tinned-copper drain wire and individual overall pair insulation
e. cables have an overall aluminum-polyester or tinned-copper cable-shield tape, overall 20 AWG tinned-copper cable drain wire, and overall cable insulation.

2.6.4 Power Wiring for Control Devices

For 24-volt circuits, provide insulated copper 18 AWG or thicker wire rated for 300 VAC service. For 120-volt circuits, provide 14 AWG or thicker stranded copper wire rated for 600-volt service.

2.6.5 Transformers

Provide UL 5085-3 approved transformers. Select transformers sized so that the connected load is no greater than 80 percent of the transformer rated capacity.

PART 3 EXECUTION

3.1 INSTALLATION

Fully install and test the control system in accordance Section 23 09 13 INSTRUMENTATION AND CONTROL DEVICES FOR HVAC, {/LNS or NIAGARA LONWORKS} {BACNET or NIAGARA BACNET} Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS{/BACNET or NIAGARA BACNET}, and this Section.
3.1.1 Dielectric Isolation

Provide dielectric isolation where dissimilar metals are used for connection and support. Install control system in a matter that provides clearance for control system maintenance by maintaining access space required to calibrate, remove, repair, or replace control system devices. Install control system such that it does not interfere with the clearance requirements for mechanical and electrical system maintenance.

3.1.2 Penetrations in Building Exterior

Make all penetrations through and mounting holes in the building exterior watertight.

3.1.3 Device Mounting Criteria

Install devices in accordance with the manufacturer's recommendations and as indicated and shown. Provide a weathershield for all devices installed outdoors. Provide clearance for control system maintenance by maintaining access space required to calibrate, remove, repair, or replace control system devices. Provide clearance for mechanical and electrical system maintenance; do not interfere with the clearance requirements for mechanical and electrical system maintenance.

3.1.4 Labels and Tags

Key all labels and tags to the unique identifiers shown on the As-Built drawings. For labels exterior to protective enclosures provide engraved plastic labels mechanically attached to the enclosure or DDC Hardware. Labels inside protective enclosures may be attached using adhesive, but must not be hand written. For tags, provide plastic or metal tags mechanically attached directly to each device or attached by a metal chain or wire.

 a. Label all Enclosures and DDC Hardware.

 b. Tag Airflow measurement arrays (AFMA) with flow rate range for signal output range, duct size, and pitot tube AFMA flow coefficient.

 c. Tag duct static pressure taps at the location of the pressure tap

3.1.5 SURGE PROTECTION

3.1.5.1 Power-Line Surge Protection

Protect equipment connected to AC circuits to withstand power-line surges in accordance with IEEE C62.41. Do not use fuses for surge protection.

3.1.5.2 Surge Protection for Transmitter and Control Wiring

Protect DDC hardware against or provided DDC hardware capable of withstanding surges induced on control and transmitter wiring installed outdoors and as shown. Protect equipment against the following two waveforms:

 a. A waveform with a 10-microsecond rise time, a 1000-microsecond decay time and a peak current of 60 amps.

 b. A waveform with an 8-microsecond rise time, a 20-microsecond decay time
and a peak current of 500 amperes.

3.1.6 Basic Cybersecurity Requirements

3.1.6.1 Passwords

For all devices with a password, change the password from the default password. Do not use the same password for more than one device. Coordinate selection of passwords with RO. Provide a Password Summary Report documenting the password for each device and describing the procedure to change the password for each device.

3.1.6.2 Wireless Capability

Unless otherwise indicated, disable wireless capability (including but not limited to radio frequency (RF), infrared and optical) for all devices with wireless capability. Optical and infrared capabilities may be disabled via a permanently affixed opaque cover plate. Password protecting a wireless connections does not meet this requirement; the wireless capability must be disabled.

3.1.6.3 IP Network Physical Security

Install all IP Network media in conduit. Install all IP devices including but not limited to IP-enabled DDC hardware and IP Network Hardware in lockable enclosures.

3.2 DRAWINGS AND CALCULATIONS

Provide drawings in the form and arrangement indicated and shown. Use the same abbreviations, symbols, nomenclature and identifiers shown. Assign a unique identifier as shown to each control system element on a drawing. When packaging drawings, group schedules by system. When space allows, it is permissible to include multiple schedules for the same system on a single sheet. Except for drawings covering all systems, do not put information for different systems on the same sheet.

a. Submit DDC Contractor Design Drawings consisting of each drawing indicated with pre-construction information depicting the intended control system design and plans.

b. Submit Draft As-Built Drawings consisting of each drawing indicated updated with as-built data for the system prior to PVT.

c. Submit Final As-Built Drawings consisting of each drawing indicated updated with all final as-built data.

Sample drawings in electronic format are available via a link in the "Graphical Table of Contents" online at: http://www.wbdg.org/ccb/NAVGRAPH/graphtoc.pdf. These drawings may prove useful in demonstrating expected drawing formatting and example content and are provided for illustrative purposes only. These drawings do not meet the content requirements of this Section.

3.2.1 Drawing Index and Legend

Provide an HVAC Control System Drawing Index showing the name and number of the building, military site, State or other similar designation, and Country. In the Drawing Index, list all Contractor Design Drawings,
including the drawing number, sheet number, drawing title, and computer filename when used. In the Design Drawing Legend, show and describe all symbols, abbreviations and acronyms used on the Design Drawings. Provide a single Index and Legend for the entire drawing package.

3.2.2 Thermostat and Occupancy Sensor Schedule

Provide a thermostat and occupancy sensor schedule containing each thermostat's unique identifier, room identifier and control features and functions as shown. Provide a single thermostat and occupancy sensor schedule for the entire project.

3.2.3 Valve Schedule

Provide a valve schedule containing each valve's unique identifier, size, flow coefficient Kv (Cv), pressure drop at specified flow rate, spring range, positive positioner range, actuator size, close-off pressure to torque data, dimensions, and access and clearance requirements data. In the valve schedule include actuator selection data supported by calculations of the force required to move and seal the valve, access and clearance requirements. Provide a single valve schedule for the entire project.

3.2.4 Damper Schedule

Provide a damper schedule containing each damper's unique identifier, type (opposed or parallel blade), nominal and actual sizes, orientation of axis and frame, direction of blade rotation, actuator size and spring ranges, operation rate, positive positioner range, location of actuators and damper end switches, arrangement of sections in multi-section dampers, and methods of connecting dampers, actuators, and linkages. Include the AMCA 511 maximum leakage rate at the operating static-pressure differential for each damper in the Damper Schedule. Provide a single damper schedule for the entire project.

3.2.5 Project Summary Equipment Schedule

Provide a project summary equipment schedule containing the manufacturer, model number, part number and descriptive name for each control device, hardware and component provided under this specification. Provide a single project equipment schedule for the entire project.

3.2.6 Equipment Schedule

Provide system equipment schedules containing the unique identifier, manufacturer, model number, part number and descriptive name for each control device, hardware and component provided under this specification. Provide a separate equipment schedule for each HVAC system.

3.2.7 Occupancy Schedule

Provide an occupancy schedule drawing containing the same fields as the occupancy schedule Contract Drawing with Contractor updated information. Provide a single occupancy schedule for the entire project.

3.2.8 DDC Hardware Schedule

Provide a single DDC Hardware Schedule for the entire project and including following information for each device.
3.2.8.1 DDC Hardware Identifier

The Unique DDC Hardware Identifier for the device.

3.2.8.2 HVAC System

The system "name" used to identify a specific system (the name used on the system schematic drawing for that system).

3.2.8.3 Device Object Identifier

The Device Object Identifier: The Object_Identifier of the Device Object

3.2.8.4 Network Number

The Network Number for the device.

3.2.8.5 MAC Address

The MAC Address for the device

3.2.8.6 BTL Listing

The BTL Listing of the device. If the device is listed under multiple BTL Profiles, indicate the profile that matches the use and configuration of the device as installed.

3.2.8.7 Proprietary Services Information

If the device uses non-standard ASHRAE 135 services as defined and permitted in Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS, indicate that the device uses non-standard services and include a description of all non-standard services used. Describe usage and content such that a device from another vendor can interoperate with the device using the non-standard service. Provide descriptions with sufficient detail to allow a device from a different manufacturer to be programmed to both read and write the non-standard service request:

a. read: interpret the data contained in the non-standard service and;

b. write: given similar data, generate the appropriate non-standard service request.

3.2.8.8 Alarming Information

Indicate whether the device is used for alarm generation, and which types of alarm generation the device implements: instrinsic, local algorithmic, remote algorithmic.

3.2.8.9 Scheduling Information

Indicate whether the device is used for scheduling.

3.2.8.10 Trending Information

Indicate whether the device is used for trending, and indicate if the
device is used to trend local values, remote values, or both.

{NIAGARA LONWORKS or NIAGARA BACNET} 3.2.8.11 Niagara Station ID

The Niagara Station ID for each Niagara Framework Supervisory Gateway

{NIAGARA LONWORKS or NIAGARA BACNET}

3.2.9 Points Schedule

Provide a Points Schedule in tabular form for each HVAC system, with the indicated columns and with each row representing a hardware point, network point or configuration point in the system.

a. When a Points Schedule was included in the Contract Drawing package, use the same fields as the Contract Drawing with updated information in addition to the indicated fields.

b. When Point Schedules are included in the contract package, items requiring contractor verification or input have been shown in angle brackets ("<" and ">"), such as <___> for a required entry or <value> for a value requiring confirmation. Complete all items in brackets as well as any blank cells. Do not modify values which are not in brackets without approval.

Points Schedule Columns must include:

3.2.9.1 Point Name

The abbreviated name for the point using the indicated naming convention.

3.2.9.2 Description

A brief functional description of the point such as "Supply Air Temperature".

3.2.9.3 DDC Hardware Identifier

The Unique DDC Hardware Identifier shown on the DDC Hardware Schedule and used across all drawings for the DDC Hardware containing the point.

3.2.9.4 Settings

The value and units of any setpoints, configured setpoints, configuration parameters, and settings related to each point.

3.2.9.5 Range

The range of values, including units, associated with the point, including but not limited to a zone temperature setpoint adjustment range, a sensor measurement range, occupancy values for an occupancy input, or the status of a safety.

3.2.9.6 Input or Output (I/O) Type

The type of input or output signal associated with the point. Use the following abbreviations for entities in this column:

a. AI: The value comes from a hardware (physical) Analog Input
b. AO: The value is output as a hardware (physical) Analog Output

c. BI: The value comes from a hardware (physical) Binary Input

d. BO: The value is output as a hardware (physical) Binary Output

e. PULSE: The value comes from a hardware (physical) Pulse Accumulator Input

f. NET-IN: The value is provided from the network (generally from another device). Use this entry only when the value is received from another device as part of scheduling or as part of a sequence of operation, not when the value is received on the network for supervisory functions such as trending, alarming, override or display at a user interface.

g. NET-OUT: The value is provided to another controller over the network. Use this entry only when the value is transmitted to another device as part of scheduling or as part of a sequence of operation, not when the value is transmitted on the network for supervisory functions such as trending, alarming, override or display at a user interface.

{BACNET or NIAGARA BACNET} 3.2.9.7 Object and Property Information

The Object Type and Instance Number for the Object associated with the point. If the value of the point is not in the Present_Value Property, then also provide the Property ID for the Property containing the value of the point. Any point that is displayed at the front end or on an LDP, is trended, is used by another device on the network, or has an alarm condition must be documented here.

{BACNET or NIAGARA BACNET} 3.2.9.8 Niagara Station ID

The Niagara Station ID of the Niagara Framework Supervisory Gateway the point is mapped into. {NIAGARA BACNET or NIAGARA LONWORKS}

{BACNET or NIAGARA BACNET} 3.2.9.9 Network Data Exchange Information (Gets Data From, Sends Data To)

Provide the DDC Hardware Identifier of other DDC Hardware the point is shared with.

{BACNET or NIAGARA BACNET} 3.2.9.10 Override Information (Object Type and Instance Number)

For each point requiring an Override{NIAGARA BACNET} and not residing in a Niagara Framework Supervisory Gateway{NIAGARA BACNET}, indicate if the Object for the point is Commandable or, if the use of a separate Object was specifically approved by the Contracting Officer, provide the Object Type and Instance Number of the Object to be used in overriding the point.

{BACNET or NIAGARA BACNET} 3.2.9.11 Trend Object Information

For each point requiring a trend, indicate if the trend is Local or Remote, the trend Object type and the trend Object instance number. For remote trends provide the DDC Hardware Identifier for the device containing the
trend Object in the Points Schedule notes.

3.2.9.12 Alarm Information

Indicate the Alarm Generation Type, Event Enrollment Object Instance Number, and Notification Class Object Instance Number for each point requiring an alarm. (Note that not all alarms will have a Notification Class Object Event Enrollment Objects).

3.2.9.13 Configuration Information

Indicate the means of configuration associated with each point. For points in a Niagara Framework Supervisory Gateway, indicate the point within the Niagara Framework Supervisory Gateway used to configure the value. For other points:

a. For Operator Configurable Points indicate BACnet Object and Property information (Name, Type, Identifiers) containing the configurable value. Indicate whether the property is writable always, or only when Out_Of_Service is TRUE.

b. For Configurable Points indicate the BACnet Object and Property information as for Operator Configurable points, or identification of the configurable settings from within the engineering software for the device or identification of the hardware settings on the device.

3.2.10 Riser Diagram

The Riser Diagram of the Building Control Network may be in tabular form, and must show all DDC Hardware and all Network Hardware, including network terminators. For each item, provide the unique identifier, common descriptive name, physical sequential order (previous and next device on the network), room identifier and location within room. A single riser diagram must be submitted for the entire system.

3.2.11 Control System Schematics

Provide control system schematics in the same form as the control system schematic Contract Drawing with Contractor updated information. Provide a control system schematic for each HVAC system.

3.2.12 Sequences of Operation

Provide HVAC control system sequence of operation in the same format as the Contract Drawings. Within these drawings, refer to devices by their unique identifiers. Submit sequences of operation for each HVAC system.

3.2.13 Controller, Motor Starter and Relay Wiring Diagram

Provide controller wiring diagrams as functional wiring diagrams which show the interconnection of conductors and cables to each controller and to the identified terminals of input and output devices, starters and package
equipment. Show necessary jumpers and ground connections and the labels of all conductors. Identify sources of power required for control systems and for packaged equipment control systems back to the panel board circuit breaker number, controller enclosures, magnetic starter, or packaged equipment control circuit. Show each power supply and transformer not integral to a controller, starter, or packaged equipment. Show the connected volt-ampere load and the power supply volt-ampere rating. Provide wiring diagrams for each HVAC system.

3.3 CONTROLLER TUNING

Tune each controller in a manner consistent with that described in the ASHRAE FUN IP and in the manufacturer's instruction manual. Tuning must consist of adjustment of the proportional, integral, and where applicable, the derivative (PID) settings to provide stable closed-loop control. Each loop must be tuned while the system or plant is operating at a high gain (worst case) condition, where high gain can generally be defined as a low-flow or low-load condition. Upon final adjustment of the PID settings, in response to a change in controller setpoint, the controlled variable must settle out at the new setpoint with no more than two (2) oscillations above and below setpoint. Upon settling out at the new setpoint the controller output must be steady. With the exception of naturally slow processes such as zone temperature control, the controller must settle out at the new setpoint within five (5) minutes. Set the controller to its correct setpoint and record and submit the final PID configuration settings with the O&M Instructions and on the associated Points Schedule.

3.4 START-UP

3.4.1 Start-Up Test

Perform the following startup tests for each control system to ensure that the described control system components are installed and functioning per this specification.

Adjust, calibrate, measure, program, configure, set the time schedules, and otherwise perform all necessary actions to ensure that the systems function as indicated and shown in the sequence of operation and other contract documents.

3.4.1.1 Systems Check

An item-by-item check must be performed for each HVAC system

3.4.1.1.1 Step 1 - System Inspection

With the system in unoccupied mode and with fan hand-off-auto switches in the OFF position, verify that power and main air are available where required and that all output devices are in their failsafe and normal positions. Inspect each local display panel to verify that all displays indicate shutdown conditions.

3.4.1.1.2 Step 2 - Calibration Accuracy Check

Perform a two-point accuracy check of the calibration of each HVAC control system sensing element and transmitter by comparing the value from the test instrument to the network value provided by the DDC Hardware. Use digital indicating test instruments, such as digital thermometers, motor-driven psychrometers, and tachometers. Use test instruments with accuracy at
least twice as accurate as the specified sensor accuracy and with calibration traceable to National Institute of Standards and Technology standards. Check one the first check point in the bottom one-third of the sensor range, and the second in the top one-third of the sensor range. Verify that the sensing element-to-DDC readout accuracies at two points are within the specified product accuracy tolerances, and if not recalibrate or replace the device and repeat the calibration check.

3.4.1.1.3 Step 3 - Actuator Range Check

With the system running, apply a signal to each actuator through the DDC Hardware controller. Verify proper operation of the actuators and positioners for all actuated devices and record the signal levels for the extreme positions of each device. Vary the signal over its full range, and verify that the actuators travel from zero stroke to full stroke within the signal range. Where applicable, verify that all sequenced actuators move from zero stroke to full stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other. For valve actuators and damper actuators, perform the actuator range check under normal system pressures.

3.4.1.2 Weather Dependent Test

Perform weather dependent test procedures in the appropriate climatic season.

3.4.2 Start-Up Testing Report

Submit 4 copies of the Start-Up Testing Report. The report may be submitted as a Technical Data Package documenting the results of the tests performed and certifying that the system is installed and functioning per this specification, and is ready for the Performance Verification Test (PVT).

3.5 PERFORMANCE VERIFICATION TEST (PVT)

3.5.1 PVT Procedures

Prepare PVT Procedures based on the temperature control sequences explaining step-by-step, the actions and expected results that will demonstrate that the control system performs in accordance with the sequences of operation, and other contract documents. Submit 4 copies of the PVT Procedures. The PVT Procedures may be submitted as a Technical Data Package.

3.5.1.1 Sensor Accuracy Checks

Include a one-point accuracy check of each sensor in the PVT procedures.

3.5.1.2 Endurance Test

Include a one-week endurance test as part of the PVT during which the system is operated continuously. [BACNET or NIAGARA BACNET or NIAGARA LONWORKS] Use the building control system [NIAGARA BACNET or NIAGARA LONWORKS] Niagara Trend Log {/NIAGARA BACNET or NIAGARA LONWORKS}{BACNET} BACnet Trend Log or Trend Log Multiple {/BACNET} Objects to trend all points shown as requiring a trend on the Point Schedule for the entire endurance test. If insufficient buffer capacity exists to trend the entire endurance test, upload trend logs during the course of the endurance test to ensure
that no trend data is lost. \{BACNET or NIAGARA BACNET or NIAGARA LONWORKS\}
\{LONWORKS\}Use the existing trending capabilities or the Temporary Trending
Hardware as indicated to trend all points shown as requiring a trend on the
Point Schedule for the entire endurance test. \{LNS\}

3.5.1.3 PVT Equipment List

Include in the PVT procedures a control system performance verification
test equipment list that lists the equipment to be used during performance
verification testing. For each piece of equipment, include manufacturer
name, model number, equipment function, the date of the latest calibration,
and the results of the latest calibration.

3.5.2 PVT Execution

Demonstrate compliance of the control system with the contract documents.
Using test plans and procedures approved by the Government, software
capable of reading and writing COV Notification Subscriptions, Notification
Class Recipient List Properties, event enrollments, demonstrate all
physical and functional requirements of the project. Show, step-by-step,
the actions and results demonstrating that the control systems perform in
accordance with the sequences of operation. Do not start the performance
verification test until after receipt of written permission by the
Government, based on Government approval of the PVT Plan and Draft
As-Builts and completion of balancing. Do not conduct tests during
scheduled seasonal off periods of base heating and cooling systems. If the
system experiences any failures during the endurance test portion of the
PVT, repair the system repeat the endurance test portion of the PVT until
the system operates continuously and without failure for the specified
endurance test period.

3.5.3 PVT Report

Prepare and submit a PVT report documenting all tests performed during the
PVT and their results. Include all tests in the PVT procedures and any
additional tests performed during PVT. Document test failures and repairs
conducted with the test results.

3.6 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS

Provide HVAC control System Operation and Maintenance Instructions which
include:

a. "Data Package 3" as indicated in Section 01000 OPERATION AND
 MAINTENANCE DATA for each piece of control equipment.

b. "Data Package 4" as described in Section 01000 OPERATION AND
 MAINTENANCE DATA for all air compressors.

c. HVAC control system sequences of operation formatted as indicated.

d. Procedures for the HVAC system start-up, operation and shut-down
 including the manufacturer's supplied procedures for each piece of
equipment, and procedures for the overall HVAC system.

e. As-built HVAC control system detail drawings formatted as indicated.

f. Routine maintenance checklist. Provide the routine maintenance
 checklist arranged in a columnar format, where the first column lists
all installed devices, the second column states the maintenance activity or that no maintenance required, the third column states the frequency of the maintenance activity, and the fourth column is used for additional comments or reference.

g. Qualified service organization list, including at a minimum company name, contact name and phone number.

3.7 MAINTENANCE AND SERVICE

Provide services, materials and equipment as necessary to maintain the entire system in an operational state as indicated for a period of one year after successful completion and acceptance of the Performance Verification Test. Minimize impacts on facility operations.

a. The integration of the system specified in this section into a Utility Monitoring and Control System must not, of itself, void the warranty or otherwise alter the requirement for the one year maintenance and service period. Integration into a UMCS includes but is not limited to establishing communication between devices in the control system and the front end or devices in another system.

b. The changing of configuration properties must not, of itself, void the warranty or otherwise alter the requirement for the one year maintenance and service period.

3.7.1 Description of Work

Provide adjustment and repair of the system including the manufacturer's required sensor and actuator (including transducer) calibration, span and range adjustment.

3.7.2 Personnel

Use only service personnel qualified to accomplish work promptly and satisfactorily. Advise the Government in writing of the name of the designated service representative, and of any changes in personnel.

3.7.3 Scheduled Inspections

Perform two inspections at six-month intervals and provide work required. Perform inspections in June and December. During each inspection perform the indicated tasks:

a. Perform visual checks and operational tests of equipment.

b. Clean control system equipment including interior and exterior surfaces.

c. Check and calibrate each field device. Check and calibrate 50 percent of the total analog inputs and outputs during the first inspection. Check and calibrate the remaining 50 percent of the analog inputs and outputs during the second major inspection. Certify analog test instrumentation accuracy to be twice the specified accuracy of the device being calibrated. Randomly check at least 25 percent of all binary inputs and outputs for proper operation during the first
Randomly check at least 25 percent of the remaining binary inputs and outputs during the second inspection. If more than 20 percent of checked inputs or outputs failed the calibration check during any inspection, check and recalibrate all inputs and outputs during that inspection.

d. Run system software diagnostics and correct diagnosed problems.

e. Resolve any previous outstanding problems.

3.7.4 Scheduled Work

This work must be performed during regular working hours, Monday through Friday, excluding Federal holidays.

3.7.5 Emergency Service

The Government will initiate service calls when the system is not functioning properly. Qualified personnel must be available to provide service to the system. A telephone number where the service supervisor can be reached at all times must be provided. Service personnel must be at the site within 24 hours after receiving a request for service. The control system must be restored to proper operating condition as required per Section 01 78 00 CLOSEOUT SUBMITTALS.

3.7.6 Operation

After performing scheduled adjustments and repairs, verify control system operation as demonstrated by the applicable tests of the performance verification test.

3.7.7 Records and Logs

Keep dated records and logs of each task, with cumulative records for each major component, and for the complete system chronologically. Maintain a continuous log for all devices, including initial analog span and zero calibration values and digital points. Keep complete logs and provide logs for inspection onsite, demonstrating that planned and systematic adjustments and repairs have been accomplished for the control system.

3.7.8 Work Requests

Record each service call request as received and include its location, date and time the call was received, nature of trouble, names of the service personnel assigned to the task, instructions describing what has to be done, the amount and nature of the materials to be used, the time and date work started, and the time and date of completion. Submit a record of the work performed within 5 days after work is accomplished.

3.7.9 System Modifications

Submit recommendations for system modification in writing. Do not make system modifications, including operating parameters and control settings, without prior approval of the Government.

3.8 TRAINING

Conduct a training course for 8 operating staff members designated by the Government in the maintenance and operation of the system, including
specified hardware and software. Conduct 16 hours of training at the project site within 30 days after successful completion of the performance verification test. The Government reserves the right to make audio and visual recordings (using Government supplied equipment) of the training sessions for later use. Provide audiovisual equipment and other training materials and supplies required to conduct training. A training day is defined as 8 hours of classroom instruction, including two 15 minute breaks and excluding lunchtime, Monday through Friday, during the daytime shift in effect at the training facility.

3.8.1 Training Documentation

Prepare training documentation consisting of:

a. Course Attendee List: Develop the list of course attendees in coordination with and signed by the HVAC shop supervisor.

b. Training Manuals: Provide training manuals which include an agenda, defined objectives for each lesson, and a detailed description of the subject matter for each lesson. When presenting portions of the course material by audiovisuals, deliver copies of those audiovisuals as a part of the printed training manuals.

3.8.2 Training Course Content

For guidance in planning the required instruction, assume that attendees will have a high school education, and are familiar with HVAC systems. During the training course, cover all of the material contained in the Operating and Maintenance Instructions, the layout and location of each controller enclosure, the layout of one of each type of equipment and the locations of each, the location of each control device external to the panels, the location of the compressed air station, preventive maintenance, troubleshooting, diagnostics, calibration, adjustment, commissioning, tuning, and repair procedures. Typical systems and similar systems may be treated as a group, with instruction on the physical layout of one such system. Present the results of the performance verification test and the Start-Up Testing Report as benchmarks of HVAC control system performance by which to measure operation and maintenance effectiveness.
APPENDIX A

BACNET

<table>
<thead>
<tr>
<th>QC CHECKLIST FOR BACNET SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>This checklist is not all-inclusive of the requirements of this specification and should not be interpreted as such.</td>
</tr>
<tr>
<td>Instructions: Initial each item in the space provided (</td>
</tr>
</tbody>
</table>

This checklist is for (circle one:)

- Pre-Construction QC Checklist Submittal
- Post-Construction QC Checklist Submittal
- Close-out QC Checklist Submittal

Items verified for Pre-Construction, Post-Construction and Closeout QC Checklist Submittals:

1. All DDC Hardware is numbered on Control System Schematic Drawings.
 - |___|

2. Signal lines on Control System Schematic are labeled with the signal type.
 - |___|

3. Local Display Panel (LDP) Locations are shown on Control System Schematic drawings.
 - |___|

Items verified for Post-Construction and Closeout QC Checklist Submittals:

4. All sequences are performed as specified using DDC Hardware.
 - |___|

5. Training schedule and course attendee list has been developed and coordinated with shops and submitted.
 - |___|

Items verified for Closeout QC Checklist Submittal:

6. Final As-built Drawings, including all Points Schedule drawings, accurately represent the final installed system.
 - |___|

7. Programming software has been submitted for all programmable controllers.
 - |___|

8. All software has been licensed to the Government.
 - |___|

SECTION 23 09 00 Page 35
QC CHECKLIST FOR BACNET SYSTEMS

<table>
<thead>
<tr>
<th></th>
<th>Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>O&M Instructions have been completed and submitted.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Training course has been completed.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>All DDC Hardware is installed on a BACnet ASHRAE 135 network using either MS/TP in accordance with Clause 9 or IP in accordance with Annex J.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>All DDC Hardware is BTL listed.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Communication between DDC Hardware is only via BACnet using standard services, except as specifically permitted by the specification. Non-standard services have been fully documented in the DDC Hardware Schedule.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Scheduling, Alarming, and Trending have been implemented using the standard BACnet Objects for these functions.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>All Properties indicated as required to be Writeable are Writeable and Overrides have been provided as indicated</td>
<td></td>
</tr>
</tbody>
</table>

___ __________________
(QC Representative Signature) (Date)

QC CHECKLIST FOR NIAGARA FRAMEWORK BASED BACNET SYSTEMS

This checklist is not all-inclusive of the requirements of this specification and should not be interpreted as such.

Instructions: Initial each item in the space provided (|____|) verifying that the requirement has been met.

This checklist is for (circle one:)
- Pre-Construction QC Checklist Submittal
- Post-Construction QC Checklist Submittal
- Close-out QC Checklist Submittal

Items verified for Pre-Construction, Post-Construction and Closeout QC Checklist Submittals:

<table>
<thead>
<tr>
<th></th>
<th>Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All DDC Hardware is numbered on Control System Schematic Drawings.</td>
<td></td>
</tr>
<tr>
<td>QC CHECKLIST FOR NIAGARA FRAMEWORK BASED BACNET SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Signal lines on Control System Schematic are labeled with the signal type.</td>
<td>[___]</td>
<td></td>
</tr>
<tr>
<td>3 Local Display Panel (LDP) Locations are shown on Control System Schematic drawings.</td>
<td>[___]</td>
<td></td>
</tr>
</tbody>
</table>

Items verified for Post-Construction and Closeout QC Checklist Submittals:

| 4 All sequences are performed as specified using DDC Hardware. | [___] |
| 5 Training schedule and course attendee list has been developed and coordinated with shops and submitted. | [___] |

Items verified for Closeout QC Checklist Submittal:

6 Final As-built Drawings, including all Points Schedule drawings, accurately represent the final installed system.	[___]
7 Programming software has been submitted for all programmable controllers.	[___]
8 All software has been licensed to the Government.	[___]
9 O&M Instructions have been completed and submitted.	[___]
10 Training course has been completed.	[___]
11 All DDC Hardware is installed on a BACnet ASHRAE 135 network using either MS/TP in accordance with Clause 9 or IP in accordance with Annex J.	[___]
12 All DDC Hardware is BTL listed.	[___]
13 Communication between DDC Hardware is only via BACnet using standard services, except as specifically permitted by the specification. Non-standard services have been fully documented in the DDC Hardware Schedule.	[___]
14 Scheduling, Alarming, and Trending have been implemented using Niagara Framework objects and services, and BACnet Intrinsic Alarming as indicated.	[___]
15 All Properties indicated as required to be Writeable are Writeable and Overrides have been provided as indicated	[___]

___ __________________
(QC Representative Signature) (Date)
SECTION 23 09 13
INSTRUMENTATION AND CONTROL DEVICES FOR HVAC
11/15

PART 1 GENERAL

1.1 SUMMARY

This section provides for the instrumentation control system components excluding direct digital controllers, network controllers, gateways etc. that are necessary for a completely functional automatic control system. When combined with a Direct Digital Control (DDC) system, the Instrumentation and Control Devices covered under this section must be a complete system suitable for the control of the heating, ventilating and air conditioning (HVAC) and other building-level systems as specified and indicated.

a. Install hardware to perform the control sequences as specified and indicated and to provide control of the equipment as specified and indicated.

b. Install hardware such that individual control equipment can be replaced by similar control equipment from other equipment manufacturers with no loss of system functionality.

c. Install and configure hardware such that the Government or their agents are able to perform repair, replacement, and upgrades of individual hardware without further interaction with the installing Contractor.

1.1.1 Verification of Dimensions

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.1.2 Drawings

The Government will not indicate all offsets, fittings, and accessories that may be required on the drawings. Carefully investigate the mechanical, electrical, and finish conditions that could affect the work to be performed, arrange such work accordingly, and provide all work necessary to meet such conditions.

1.2 RELATED SECTIONS

Related work specified elsewhere.

Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS

Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC

Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the
basic designation only.

AIR MOVEMENT AND CONTROL ASSOCIATION INTERNATIONAL (AMCA)

- AMCA 500-D (2012) Laboratory Methods of Testing Dampers for Rating
- AMCA 511 (2015) Certified Ratings Program for Air Control Devices

ASME INTERNATIONAL (ASME)

- ASME B16.15 (2013) Cast Copper Alloy Threaded Fittings Classes 125 and 250
- ASME B16.34 (2017) Valves - Flanged, Threaded and Welding End

ASTM INTERNATIONAL (ASTM)

FLUID CONTROLS INSTITUTE (FCI)

- FCI 70-2 (2013) Control Valve Seat Leakage

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

- ANSI C12.20 (2010) Electricity Meters - 0.2 and 0.5 Accuracy Classes
- NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)
- NEMA/ANSI C12.10 (2011) Physical Aspects of Watthour Meters - Safety Standards

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

- NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

UNDERWRITERS LABORATORIES (UL)

- UL 5085-3 (2006; Reprint Nov 2012) Low Voltage Transformers - Part 3: Class 2 and Class 3
1.4 SUBMITTALS

Submittal requirements are specified in Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC.

1.5 DELIVERY AND STORAGE

Store and protect products from the weather, humidity, and temperature variations, dirt and dust, and other contaminants, within the storage condition limits published by the equipment manufacturer.

1.6 INPUT MEASUREMENT ACCURACY

Select, install and configure sensors, transmitters and DDC Hardware such that the maximum error of the measured value at the input of the DDC hardware is less than the maximum allowable error specified for the sensor or instrumentation.

PART 2 PRODUCTS

2.1 EQUIPMENT

2.1.1 General Requirements

All products used to meet this specification must meet the indicated requirements, but not all products specified here will be required by every project. All products must meet the requirements both Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC and this Section.

2.1.2 Operation Environment Requirements

Unless otherwise specified, provide products rated for continuous operation under the following conditions:

2.1.2.1 Pressure

Pressure conditions normally encountered in the installed location.

2.1.2.2 Vibration

Vibration conditions normally encountered in the installed location.

2.1.2.3 Temperature

a. Products installed indoors: Ambient temperatures in the range of 32 to 112 degrees F and temperature conditions outside this range normally encountered at the installed location.

b. Products installed outdoors or in unconditioned indoor spaces: Ambient temperatures in the range of -35 to +151 degrees F and temperature
conditions outside this range normally encountered at the installed location.

2.1.2.4 Humidity

10 to 95 percent relative humidity, noncondensing and also humidity conditions outside this range normally encountered at the installed location.

2.2 WEATHERSHIELDS

Provide weathershields constructed of galvanized steel painted white, unpainted aluminum, aluminum painted white, or white PVC.

2.3 WIRE AND CABLE

Provide wire and cable meeting the requirements of NFPA 70 and NFPA 90A in addition to the requirements of this specification and referenced specifications.

2.3.1 Terminal Blocks

For terminal blocks which are not integral to other equipment, provide terminal blocks which are insulated, modular, feed-through, clamp style with recessed captive screw-type clamping mechanism, suitable for DIN rail mounting, and which have enclosed sides or end plates and partition plates for separation.

2.3.2 Control Wiring for Binary Signals

For Control Wiring for Binary Signals, provide 18 AWG copper or thicker wire rated for 300-volt service.

2.3.3 Control Wiring for Analog Signals

For Control Wiring for Analog Signals, provide 18 AWG or thicker, copper, single- or multiple-twisted wire meeting the following requirements:

a. minimum 2 inch lay of twist
b. 100 percent shielded pairs
c. at least 300-volt insulation
d. each pair has a 20 AWG tinned-copper drain wire and individual overall pair insulation
e. cables have an overall aluminum-polyester or tinned-copper cable-shield tape, overall 20 AWG tinned-copper cable drain wire, and overall cable insulation.

2.3.4 Power Wiring for Control Devices

For 24-volt circuits, provide insulated copper 18 AWG or thicker wire rated for 300 VAC service. For 120-volt circuits, provide 14 AWG or thicker stranded copper wire rated for 600-volt service.
2.3.5 Transformers

Provide UL 5085-3 approved transformers. Select transformers sized so that the connected load is no greater than 80 percent of the transformer rated capacity.

2.4 AUTOMATIC CONTROL VALVES

Provide valves with stainless-steel stems and stuffing boxes with extended necks to clear the piping insulation. Provide valves with bodies meeting ASME B16.34 or ASME B16.15 pressure and temperature class ratings based on the design operating temperature and 150 percent of the system design operating pressure. Unless otherwise specified or indicated, provide valves meeting FCI 70-2 Class III leakage rating. Provide valves rated for modulating or two-position service as indicated, which close against a differential pressure indicated as the Close-Off pressure and which are Normally-Open, Normally-Closed, or Fail-In-Last-Position as indicated.

2.4.1 Valve Type

2.4.1.1 Liquid Service 150 Degrees F or Less

Use either globe valves or ball valves except that butterfly valves may be used for sizes 4 inch and larger.

2.4.1.2 Liquid Service Above 150 Degrees F

a. Two-position valves: Use either globe valves or ball valves except that butterfly valves may be used for sizes 4 inch and larger.

b. Modulating valves: Use globe valves except that butterfly valves may be used for sizes 4 inch and larger.

2.4.2 Valve Flow Coefficient and Flow Characteristic

2.4.2.1 Two-Way Modulating Valves

Provide the valve coefficient (Cv) indicated. Provide equal-percentage flow characteristic for liquid service except for butterfly valves. Provide linear flow characteristic for steam service except for butterfly valves.

2.4.2.2 Three-Way Modulating Valves

Provide the valve coefficient (Cv) indicated. Provide linear flow characteristic with constant total flow throughout full plug travel.

2.4.3 Two-Position Valves

Use full line size full port valves with maximum available (Cv).

2.4.4 Globe Valves

2.4.4.1 Liquid Service Not Exceeding 150 Degrees F

a. Valve body and body connections:

(1) valves 1-1/2 inches and smaller: brass or bronze body, with
threaded or union ends

(2) valves from 2 inches to 3 inches inclusive: brass, bronze, or iron bodies. 2 inch valves with threaded connections; 2-1/2 to 3 inches valves with flanged connections

b. Internal valve trim: Brass or bronze.
c. Stems: Stainless steel.
d. Provide valves compatible with a solution of 50 percent ethylene or propylene glycol.

2.4.4.2 Liquid Service Not Exceeding 250 Degrees F

a. Valve body and body connections:

(1) valves 1-1/2 inches and smaller: brass or bronze body, with threaded or union ends

(2) valves from 2 inches to 3 inches inclusive: brass, bronze, or iron bodies. 2 inch valves with threaded connections; 2-1/2 to 3 inches valves with flanged connections

b. Internal trim: Type 316 stainless steel including seats, seat rings, modulation plugs, valve stems, and springs.
c. Provide valves with non-metallic parts suitable for a minimum continuous operating temperature of 250 degrees F or 50 degrees F above the system design temperature, whichever is higher.
d. Provide valves compatible with a solution of 50 percent ethylene or propylene glycol.

2.4.5 Ball Valves

2.4.5.1 Liquid Service Not Exceeding 150 Degrees F

a. Valve body and connections:

(1) valves 1-1/2 inches and smaller: bodies of brass or bronze, with threaded or union ends

(2) valves from 2 inches to 3 inches inclusive: bodies of brass, bronze, or iron. 2 inch valves with threaded connections; valves from 2-1/2 to 3 inches with flanged connections.

b. Ball: Stainless steel or nickel-plated brass or chrome-plated brass.
c. Seals: Reinforced Teflon seals and EPDM O-rings.
e. Provide valves compatible with a solution of 50 percent ethylene or propylene glycol.

2.4.6 Butterfly Valves

Provide butterfly valves which are threaded lug type suitable for dead-end
service and modulation to the fully-closed position, with carbon-steel bodies or with ductile iron bodies in accordance with ASTM A536. Provide butterfly valves with non-corrosive discs, stainless steel shafts supported by bearings, and EPDM seats suitable for temperatures from -20 to +250 degrees F. Provide valves with rated Cv of the Cv at 70 percent (60 degrees) open position. Provide valves meeting FCI 70-2 Class VI leakage rating.

2.4.7 Pressure Independent Control Valves (PICV)

Provide pressure independent control valves which include a regulator valve which maintains the differential pressure across a flow control valve. Pressure independent control valves must accurately control the flow from 0-100 percent full rated flow regardless of changes in the piping pressure and not vary the flow more than plus or minus 5 percent at any given flow control valve position when the PICV differential pressure lies between the manufacturer's stated minimum and maximum. The rated minimum differential pressure for steady flow must not exceed 5 psid across the PICV. Provide either globe or ball type valves meeting the indicated requirements for globe and ball valves. Provide valves with a flow tag listing full rated flow and minimum required pressure drop. Provide valves with factory installed Pressure/Temperature ports ("Pete's Plugs") to measure the pressure drop to determine the valve flow rate.

2.4.8 Duct-Coil and Terminal-Unit-Coil Valves

For duct or terminal-unit coils provide control valves with either screw type or solder-type ends. Provide flare nuts for each flare-type end valve.

2.5 DAMPERS

2.5.1 Damper Assembly

Provide single damper sections with blades no longer than 48 inches and which are no higher than 72 inches and damper blade width of 8 inches or less. When larger sizes are required, combine damper sections. Provide dampers made of steel, or other materials where indicated and with assembly frames constructed of 0.07 inch minimum thickness galvanized steel channels with mitered and welded corners. Steel channel frames constructed of 0.06 inch minimum thickness are acceptable provided the corners are reinforced.

a. Flat blades must be made rigid by folding the edges. Blade-operating linkages must be within the frame so that blade-connecting devices within the same damper section must not be located directly in the air stream.

b. Damper axles must be 1/2 inch minimum, plated steel rods supported in the damper frame by stainless steel or bronze bearings. Blades mounted vertically must be supported by thrust bearings.

c. Provide dampers which do not exceed a pressure drop through the damper of 0.04 inches water gauge at 1000 ft/min in the wide-open position. Provide dampers with frames not less than 2 inch in width. Provide dampers which have been tested in accordance with AMCA 500-D.

2.5.2 Operating Linkages

For operating links external to dampers, such as crank arms, connecting rods, and line shafting for transmitting motion from damper actuators to
dampers, provide links able to withstand a load equal to at least 300 percent of the maximum required damper-operating force without deforming. Rod lengths must be adjustable. Links must be brass, bronze, zinc-coated steel, or stainless steel. Working parts of joints and clevises must be brass, bronze, or stainless steel. Adjustments of crank arms must control the open and closed positions of dampers.

2.5.3 Damper Types

2.5.3.1 Flow Control Dampers

Provide parallel-blade or opposed blade type dampers for outside air, return air, relief air, exhaust, face and bypass dampers as indicated on the Damper Schedule. Blades must have interlocking edges. The channel frames of the dampers must be provided with jamb seals to minimize air leakage. Unless otherwise indicated, dampers must meet AMCA 511 Class 1 requirements. Outside air damper seals must be suitable for an operating temperature range of -40 to +167 degrees F. Dampers must be rated at not less than 2000 ft/min air velocity.

2.5.3.2 Mechanical Rooms and Other Utility Space Ventilation Dampers

Provide utility space ventilation dampers as indicated. Unless otherwise indicated provide AMCA 511 class 3 dampers. Provide dampers rated at not less than 1500 ft/min air velocity.

2.5.3.3 Smoke Dampers

Provide smoke-damper and actuator assemblies which meet the current requirements of NFPA 90A, UL 555, and UL 555S. For combination fire and smoke dampers provide dampers rated for 250 degrees F Class II leakage per UL 555S.

2.6 SENSORS AND INSTRUMENTATION

Unless otherwise specified, provide sensors and instrumentation which incorporate an integral transmitter. Sensors and instrumentation, including their transmitters, must meet the specified accuracy and drift requirements at the input of the connected DDC Hardware's analog-to-digital conversion.

2.6.1 Analog and Binary Transmitters

Provide transmitters which match the characteristics of the sensor. Transmitters providing analog values must produce a linear 4-20 mA dc, 0-10 Vdc signal corresponding to the required operating range and must have zero and span adjustment. Transmitters providing binary values must have dry contacts rated at 1A at 24 Volts AC.

2.6.2 Network Transmitters

Sensors and Instrumentation incorporating an integral network connection are considered DDC Hardware and must meet the DDC Hardware requirements of 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS when used in a BACnet network.

2.6.3 Temperature Sensors

Provide the same sensor type throughout the project. Temperature sensors...
may be provided without transmitters. Where transmitters are used, the range must be the smallest available from the manufacturer and suitable for the application such that the range encompasses the expected range of temperatures to be measured. The end to end accuracy includes the combined effect of sensitivity, hysteresis, linearity and repeatability between the measured variable and the end user interface (graphic presentation) including transmitters if used.

2.6.3.1 Sensor Accuracy and Stability of Control

2.6.3.1.1 Conditioned Space Temperature

Plus or minus 0.5 degree F over the operating range.

2.6.3.1.2 Unconditioned Space Temperature

a. Plus or minus 1 degree F over the range of 30 to 131 degrees F AND
b. Plus or minus 4 degrees F over the rest of the operating range.

2.6.3.1.3 Duct Temperature

Plus or minus 0.5 degree F

2.6.3.1.4 Outside Air Temperature

a. Plus or minus 2 degrees F over the range of -30 to +130 degrees F AND
b. Plus or minus 1 degree F over the range of 30 to 130 degrees F.

2.6.3.1.5 Dual Temperature Water

Plus or minus 2 degrees F.

2.6.3.1.6 Heating Hot Water

Plus or minus 2 degrees F.

2.6.3.1.7 Condenser Water

Plus or minus 2 degrees F.

2.6.3.2 Transmitter Drift

The maximum allowable transmitter drift: 0.25 degrees F per year.

2.6.3.3 Point Temperature Sensors

Point Sensors must be encapsulated in epoxy, series 300 stainless steel, anodized aluminum, or copper.

2.6.3.4 Temperature Sensor Details

2.6.3.4.1 Room Type

Provide the sensing element components within a decorative protective cover suitable for surrounding decor.
2.6.3.4.2 Duct Probe Type

Ensure the probe is long enough to properly sense the air stream temperature.

2.6.3.4.3 Duct Averaging Type

Continuous averaging sensors must be one foot in length for each 1 square foot of duct cross-sectional area, and a minimum length of 5 feet.

2.6.3.4.4 Pipe Immersion Type

Provide minimum 3 inch immersion. Provide each sensor with a corresponding pipe-mounted sensor well, unless indicated otherwise. Sensor wells must be stainless steel when used in steel piping, and brass when used in copper piping.

2.6.3.4.5 Outside Air Type

Provide the sensing element rated for outdoor use.

2.6.4 Relative Humidity Sensor

Relative humidity sensors must use bulk polymer resistive or thin film capacitive type non-saturating sensing elements capable of withstanding a saturated condition without permanently affecting calibration or sustaining damage. The sensors must include removable protective membrane filters. Where required for exterior installation, sensors must be capable of surviving below freezing temperatures and direct contact with moisture without affecting sensor calibration. When used indoors, the sensor must be capable of being exposed to a condensing air stream (100 percent relative humidity) with no adverse effect to the sensor's calibration or other harm to the instrument. The sensor must be of the wall-mounted or duct-mounted type, as required by the application, and must be provided with any required accessories. Sensors used in duct high-limit applications must have a bulk polymer resistive sensing element. Duct-mounted sensors must be provided with a duct probe designed to protect the sensing element from dust accumulation and mechanical damage. Relative humidity (RH) sensors must measure relative humidity over a range of 0 percent to 100 percent with an accuracy of plus or minus 3 percent. RH sensors must function over a temperature range of 40 to 135 degrees F and must not drift more than 1 percent per year.

2.6.5 Carbon Dioxide (CO2) Sensors

Provide photometric type CO2 sensors with integral transducers and linear output. Carbon dioxide (CO2) sensors must measure CO2 concentrations between 0 to 2000 parts per million (ppm) using non-dispersive infrared (NDIR) technology with an accuracy of plus or minus 50 ppm and a maximum response time of 1 minute. The sensor must be rated for operation at ambient air temperatures within the range of 32 to 122 degrees F and relative humidity within the range of 20 to 95 percent (non-condensing). The sensor must have a maximum drift of 2 percent per year. The sensor chamber must be manufactured with a non-corrosive material that does not affect carbon dioxide sample concentration. Duct mounted sensors must be provided with a duct probe designed to protect the sensing element from dust accumulation and mechanical damage. The sensor must have a calibration interval no less than 5 years.
2.6.6 Differential Pressure Instrumentation

2.6.6.1 Differential Pressure Sensors

Provide Differential Pressure Sensors with ranges as indicated or as required for the application. Pressure sensor ranges must not exceed the high end range indicated on the Points Schedule by more than 50 percent. The over pressure rating must be a minimum of 150 percent of the highest design pressure of either input to the sensor. The accuracy must be plus or minus 1 percent of full scale. The sensor must have a maximum drift of 2 percent per year.

2.6.6.2 Differential Pressure Switch

Provide differential pressure switches with a user-adjustable setpoint which are sized for the application such that the setpoint is between 25 percent and 75 percent of the full range. The over pressure rating must be a minimum of 150 percent of the highest design pressure of either input to the sensor. The switch must have two sets of contacts and each contact must have a rating greater than it's connected load. Contacts must open or close upon rise of pressure above the setpoint or drop of pressure below the setpoint as indicated.

2.6.7 Flow Sensors

2.6.7.1 Airflow Measurement Array (AFMA)

2.6.7.1.1 Airflow Straightener

Provide AFMAs which contain an airflow straightener if required by the AFMA manufacturer's published installation instructions. The straightener must be contained inside a flanged sheet metal casing, with the AFMA located as specified according to the published recommendation of the AFMA manufacturer. In the absence of published documentation, provide airflow straighteners if there is any duct obstruction within 5 duct diameters upstream of the AFMA. Air-flow straighteners, where required, must be constructed of 0.125 inch aluminum honeycomb and the depth of the straightener must not be less than 1.5 inches.

2.6.7.1.2 Resistance to Airflow

The resistance to air flow through the AFMA, including the airflow straightener must not exceed 0.085 inch water gauge at an airflow of 2,000 fpm. AFMA construction must be suitable for operation at airflows of up to 5000 fpm over a temperature range of 40 to 120 degrees F.

2.6.7.1.3 Outside Air Temperature

In outside air measurement or in low-temperature air delivery applications, provide an AFMA certified by the manufacturer to be accurate as specified over a temperature range of -20 to +120 degrees F.

2.6.7.1.4 Electronic AFMA

Each electronic AFMA must consist of an array of velocity sensing elements of the resistance temperature detector (RTD) or thermistor type. The sensing elements must be distributed across the duct cross section in the quantity and pattern specified or recommended by the published application data of the AFMA manufacturer. Electronic AFMAs must have an accuracy of...
plus or minus 5 percent over a range of 125 to 5,000 fpm and the output
must be temperature compensated over a range of 32 to 212 degrees F.

2.6.7.1.5 Fan Inlet Measurement Devices

Fan inlet measurement devices cannot be used unless indicated on the
drawings or schedules.

2.6.7.2 Orifice Plate

Orifice plate must be made of an austenitic stainless steel sheet of 0.125
inch nominal thickness with an accuracy of plus or minus 1 percent of full
flow. The orifice plate must be flat within 0.002 inches. The orifice
surface roughness must not exceed 20 micro-inches. The thickness of the
cylindrical face of the orifice must not exceed 2 percent of the pipe
inside diameter or 12.5 percent of the orifice diameter, whichever is
smaller. The upstream edge of the orifice must be square and sharp. Where
orifice plates are used, concentric orifice plates must be used in all
applications except steam flow measurement in horizontal pipelines.

2.6.7.3 Flow Nozzle

Flow nozzle must be made of austenitic stainless steel with an accuracy of
plus or minus 1 percent of full flow. The inlet nozzle form must be
elliptical and the nozzle throat must be the quadrant of an ellipse. The
thickness of the nozzle wall and flange must be such that distortion of the
nozzle throat from strains caused by the pipeline temperature and pressure,
flange bolting, or other methods of installing the nozzle in the pipeline
must not cause the accuracy to degrade beyond the specified limit. The
outside diameter of the nozzle flange or the design of the flange facing
must be such that the nozzle throat must be centered accurately in the pipe.

2.6.7.4 Venturi Tube

Venturi tube must be made of cast iron or cast steel and must have an
accuracy of plus or minus 1 percent of full flow. The throat section must
be lined with austenitic stainless steel. Thermal expansion
characteristics of the lining must be the same as that of the throat
casting material. The surface of the throat lining must be machined to a
plus or minus 50 micro inch finish, including the short curvature leading
from the converging entrance section into the throat.

2.6.7.5 Annular Pitot Tube

Annular pitot tube must be made of austenitic stainless steel with an
accuracy of plus or minus 2 percent of full flow and a repeatability of
plus or minus 0.5 percent of measured value. The unit must have at least
one static port and no less than four total head pressure ports with an
averaging manifold.

2.6.7.6 Insertion Turbine Flowmeter

Provide dual axial turbine flowmeter with all installation hardware
necessary to enable insertion and removal of the meter without system
shutdown. All parts must meet or exceed the pressure classification of the
pipe system it is installed in. Insertion Turbine Flowmeter accuracy must
be plus or minus 0.5 percent of rate at calibrated velocity., within plus
or minus of rate over a 10:1 turndown and within plus or minus 2 percent of
rate over a 50:1 turndown. Repeatability must be plus or minus 0.25
percent of reading. The meter flow sensing element must operate over a range suitable for the installed location with a pressure loss limited to 1 percent of operating pressure at maximum flow rate. The flowmeter must include either dry contact pulse outputs, 4-20mA, 0-10Vdc or 0-5Vdc outputs. The turbine rotor assembly must be constructed of Series 300 stainless steel and use Teflon seals.

2.6.7.7 Vortex Shedding Flowmeter

Vortex Shedding Flowmeter accuracy must be within plus or minus 0.8 percent of the actual reading over the range of the meter. Steam meters must contain density compensation by direct measurement of temperature. Mass flow inferred from specified steam pressure are not acceptable. The flow meter body must be made of austenitic stainless steel and include a weather tight NEMA 4X electronics enclosure. The vortex shedding flowmeter body must not require removal from the piping in order to replace the shedding sensor.

2.6.7.8 Ultrasonic Flow Meter

Provide Ultrasonic Flow Meters complete with matched transducers, self aligning installation hardware and transducer cables. Ultrasonic transducers must be optimized for the specific pipe and process conditions for the application. The flow meter accuracy must plus or minus 1 percent of rate from 0 to 40 ft/sec. The flowmeter must include either dry contact pulse outputs, 4-20mA, 0-10Vdc or 0-5Vdc output.

2.6.7.9 Insertion Magnetic Flow Meter

Provide insertion type magnetic flowmeters with all installation hardware necessary to enable insertion and removal of the meter without system shutdown. All parts must meet or exceed the pressure classification of the pipe system it is installed in. Flowmeter accuracy must be no greater than plus or minus 1 percent of rate from 2 to 20 feet/sec. Wetted material parts must be 300 series stainless steel. The flowmeter must include either dry contact pulse outputs, 4-20mA, 0-10Vdc or 0-5Vdc outputs.

2.6.7.10 Positive Displacement Flow Meter

The flow meter must be a direct reading, gerotor, nutating disc or vane type displacement device rated for liquid service as indicated. A counter must be mounted on top of the meter, and must consist of a non-resettable mechanical totalizer for local reading, and a pulse transmitter for remote reading. The totalizer must have a six digit register to indicate the volume passed through the meter in gallons, and a sweep-hand dial to indicate down to 0.25 gallons. The pulse transmitter must have a hermetically sealed reed switch which is activated by magnets fixed on gears of the counter. The meter must have a bronze body with threaded or flanged connections as required for the application. Output accuracy must be plus or minus 2 percent of the flow range. The maximum pressure drop at full flow must be 5 psig.

2.6.7.11 Flow Meters, Paddle Type

Sensor must be non-magnetic, with forward curved impeller blades designed for water containing debris. Sensor accuracy must be plus or minus 1 percent of rate of flow, minimum operating flow velocity must be 1 foot per second. Sensor repeatability and linearity must be plus or minus 1 percent. Materials which will be wetted must be made from non-corrosive
materials and must not contaminate water. The sensor must be rated for installation in pipes of 3 to 40 inch diameters. The transmitter housing must be a NEMA 250 Type 4 enclosure.

2.6.7.12 Flow Switch

Flow switch must have a repetitive accuracy of plus or minus 10 percent of actual flow setting. Switch actuation must be adjustable over the operating flow range, and must be sized for the application such that the setpoint is between 25 percent and 75 percent of the full range. The switch must have Form C snap-action contacts, rated for the application. The flow switch must have non flexible paddle with magnetically actuated contacts and be rated for service at a pressure greater than the installed conditions. Flow switch for use in sewage system must be rated for use in corrosive environments encountered.

2.6.7.13 Gas Flow Meter

Gas flow meter must be diaphragm or bellows type (gas positive displacement meters) for flows up to 2500 SCFH and axial flow turbine type for flows above 2500 SCFH, designed specifically for natural gas supply metering, and rated for the pressure, temperature, and flow rates of the installation. Meter must have a minimum turndown ratio of 10 to 1 with an accuracy of plus or minus 1 percent of actual flow rate. The meter index must include a direct reading mechanical totalizing register and electrical impulse dry contact output for remote monitoring. The electrical impulse dry contact output must not require field adjustment or calibration. The electrical impulse dry contact output must have a minimum resolution of 100 cubic feet of gas per pulse and must not exceed 15 pulses per second at the design flow.

2.6.8 Electrical Instruments

Provide Electrical Instruments with an input range as indicated or sized for the application. Unless otherwise specified, AC instrumentation must be suitable for 60 Hz operation.

2.6.8.1 Current Transducers

Current transducers must accept an AC current input and must have an accuracy of plus or minus 2 percent of full scale. The device must have a means for calibration. Current transducers for variable frequency applications must be rated for variable frequency operation.

2.6.8.2 Current Sensing Relays (CSRs)

Current sensing relays (CSRs) must provide a normally-open contact with a voltage and amperage rating greater than its connected load. Current sensing relays must be of split-core design. The CSR must be rated for operation at 200 percent of the connected load. Voltage isolation must be a minimum of 600 volts. The CSR must auto-calibrate to the connected load or be adjustable and field calibrated. Current sensors for variable frequency applications must be rated for variable frequency operation.

2.6.8.3 Voltage Transducers

Voltage transducers must accept an AC voltage input and have an accuracy of plus or minus 0.25 percent of full scale. The device must have a means for calibration. Line side fuses for transducer protection must be provided.
2.6.8.4 Energy Metering

2.6.8.4.1 Watt or Watthour Transducers

Watt transducers must measure voltage and current and must output kW or kWh or both kW and kWh as indicated. kW outputs must have an accuracy of plus or minus 0.5 percent over a power factor range of 0.1 to 1. kWh outputs must have an accuracy of plus or minus 0.5 percent over a power factor range of 0.1 to 1.

2.6.8.4.2 Watthour Revenue Meter (with and without Demand Register)

All Watthour revenue meters must measure voltage and current and must be in accordance with ANSI C12.1 with an ANSI C12.20 Accuracy class of 0.5 and must have pulse initiators for remote monitoring of Watthour consumption. Pulse initiators must consist of form C contacts with a current rating not to exceed two amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a life rating of one billion operations. Meter sockets must be in accordance with NEMA/ANSI C12.10. Watthour revenue meters with demand registers must output instantaneous demand in addition to the pulse initiators.

2.6.8.4.3 Hydronic BTU Meters

The BTU meter is to be supplied with wall mount hardware and be capable of being installed remote from the flow meter. The BTU meter must include an LCD display for local indication of energy rate and for display of parameters and settings during configuration. Each BTU meter must be factory configured for its specific application and be completely field configurable by the user via a front panel keypad (no special interface device or computer required). The unit must output Energy Rate, Energy Total, Flow Rate, Supply Temperature, and Return Temperature. An integral transmitter is to provide a linear analog or configurable pulse output signal representing the energy rate; and the signal must be compatible with building automation system DDC Hardware to which the output is connected.

2.6.9 pH Sensor

The sensor must be suitable for applications and chemicals encountered in water treatment systems of boilers, chillers and condenser water systems. Construction, wiring, fittings and accessories must be corrosion and chemical resistant with fittings for tank or suspension installation. Housing must be polyvinylidene fluoride with O-rings made of chemical resistant materials which do not corrode or deteriorate with extended exposure to chemicals. The sensor must be encapsulated. Periodic replacement must not be required for continued sensor operation. Sensors must use a ceramic junction and pH sensitive glass membrane capable of withstanding a pressure of 100 psig at 150 degrees F. The reference cell must be double junction configuration. Sensor range must be 0 to 12 pH, stability 0.05, sensitivity 0.02, and repeatability of plus or minus 0.05 pH value, response of 90 percent of full scale in one second and a linearity of 99 percent of theoretical electrode output measured at 76 degrees F.

2.6.10 Occupancy Sensors

Occupancy sensors must have occupancy-sensing sensitivity adjustment and an adjustable off-delay timer with a setpoint of 15 minutes. Adjustments
accessible from the face of the unit are preferred. Occupancy sensors must be rated for operation in ambient air temperatures ranging from 40 to 95 degrees F or temperatures normally encountered in the installed location. Sensors integral to wall mount on-off light switches must have an auto-off switch. Wall switch sensors must be decorator style and must fit behind a standard decorator type wall plate. All occupancy sensors, power packs, and slave packs must be UL listed. In addition to any outputs required for lighting control, the occupancy sensor must provide an output for the HVAC control system.

2.6.10.1 Passive Infrared (PIR) Occupancy Sensors

PIR occupancy sensors must have a multi-level, multi-segmented viewing lens and a conical field of view with a viewing angle of 180 degrees and a detection of at least 20 feet unless otherwise indicated or specified. PIR Sensors must provide field-adjustable background light-level adjustment with an adjustment range suitable to the light level in the sensed area, room or space. PIR sensors must be immune to false triggering from RFI and EMI.

2.6.10.2 Ultrasonic Occupancy Sensors

Ultrasonic sensors must operate at a minimum frequency 32 kHz and must be designed to not interfere with hearing aids.

2.6.10.3 Dual-Technology Occupancy Sensor (PIR and Ultrasonic)

Dual-Technology Occupancy Sensors must meet the requirements of both PIR and Ultrasonic Occupancy Sensors.

2.6.11 Vibration Switch

Vibration switch must be solid state, enclosed in a NEMA 250 Type 4 or Type 4X housing with sealed wire entry. Unit must have two independent sets of Form C switch contacts with one set to shutdown equipment upon excessive vibration and a second set for monitoring alarm level vibration. The vibration sensing range must be a true rms reading, suitable for the application. The unit must include either displacement response for low speed or velocity response for high speed application. The frequency range must be at least 3 Hz to 500 Hz. Contact time delay must be 3 seconds. The unit must have independent start-up and running delay on each switch contact. Alarm limits must be adjustable and setpoint accuracy must be plus or minus 10 percent of setting with repeatability of plus or minus 2 percent.

2.6.12 Conductivity Sensor

Sensor must include local indicating meter and must be suitable for measurement of conductivity of water in boilers, chilled water systems, condenser water systems, distillation systems, or potable water systems as indicated. Sensor must sense from 0 to 10 microSiemens per centimeter (μS/cm) for distillation systems, 0 to 100 μS/cm for boiler, chilled water, and potable water systems and 0 to 1000 μS/cm for condenser water systems. Contractor must field verify the ranges for particular applications and adjust the range as required. The output must be temperature compensated over a range of 32 to 212 degrees F. The accuracy must be plus or minus 2 percent of the full scale reading. Sensor must have automatic zeroing and must require no periodic maintenance or recalibration.
2.6.13 Floor Mounted Leak Detector

Leak detectors must use electrodes mounted at slab level with a minimum built-in-vertical adjustment of 0.125 inches. Detector must have a binary output. The indicator must be manual reset type.

2.6.14 Temperature Switch

2.6.14.1 Duct Mount Temperature Low Limit Safety Switch (Freezestat)

Duct mount temperature low limit switches (Freezestats) must be manual reset, low temperature safety switches at least 1 foot long per square foot of coverage which must respond to the coldest 18 inch segment with an accuracy of plus or minus 3.6 degrees F. The switch must have a field-adjustable setpoint with a range of at least 30 to 50 degrees F. The switch must have two sets of contacts, and each contact must have a rating greater than its connected load. Contacts must open or close upon drop of temperature below setpoint as indicated and must remain in this state until reset.

2.6.14.2 Pipe Mount Temperature Limit Switch (Aquastat)

Pipe mount temperature limit switches (aquastats) must have a field adjustable setpoint between 60 and 90 degrees F, an accuracy of plus or minus 3.6 degrees F and a 10 degrees F fixed deadband. The switch must have two sets of contacts, and each contact must have a rating greater than its connected load. Contacts must open or close upon change of temperature above or below setpoint as indicated.

2.6.15 Damper End Switches

Each end switch must be a hermetically sealed switch with a trip lever and over-travel mechanism. The switch enclosure must be suitable for mounting on the duct exterior and must permit setting the position of the trip lever that actuates the switch. The trip lever must be aligned with the damper blade.

End switches integral to an electric damper actuator are allowed as long as at least one is adjustable over the travel of the actuator.

2.6.16 Air Quality Sensors

Provide full spectrum air quality sensors using a hot wire element based on the Taguchi principle. The sensor must monitor a wide range of gaseous volatile organic components common in indoor air contaminants like paint fumes, solvents, cigarette smoke, and vehicle exhaust. The sensor must automatically compensate for temperature and humidity, have span and calibration potentiometers, operate on 24 VDC power with output of 0-10 VDC, and have a service rating of 32 to 140 degrees F and 5 to 95 percent relative humidity.

2.7 OUTPUT DEVICES

2.7.1 Actuators

Actuators must be electric (electronic). All actuators must be normally open (NO), normally closed (NC) or fail-in-last-position (FILP) as indicated. Normally open and normally closed actuators must be of mechanical spring return type. Electric actuators must have an electronic
cut off or other means to provide burnout protection if stalled. Actuators must have a visible position indicator. Electric actuators must provide position feedback to the controller as indicated. Actuators must smoothly and fully open or close the devices to which they are applied. Electric actuators must have a full stroke response time in both directions of 90 seconds or less at rated load. Electric actuators must be of the foot-mounted type with an oil-immersed gear train or the direct-coupled type. Where multiple electric actuators operate from a common signal, the actuators must provide an output signal identical to its input signal to the additional devices. All actuators must be rated for their operating environment. Actuators used outdoors must be designed and rated for outdoor use. Actuators under continuous exposure to water, such as those used in sumps, must be submersible.

Actuators incorporating an integral network connection are considered DDC Hardware and must meet the DDC Hardware requirements of Section 23 09 23.02 BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS.

2.7.1.1 Valve Actuators

Valve actuators must provide shutoff pressures and torques as indicated on the Valve Schedule.

2.7.1.2 Damper Actuators

Damper actuators must provide the torque necessary per damper manufacturer's instructions to modulate the dampers smoothly over its full range of operation and torque must be at least 6 inch-pounds/1 square foot of damper area for opposed blade dampers and 9 inch-pounds/1 square foot of damper area for parallel blade dampers.

2.7.1.3 Electric Actuators

Each actuator must have distinct markings indicating the full-open and full-closed position. Each actuator must deliver the torque required for continuous uniform motion and must have internal end switches to limit the travel, or be capable of withstanding continuous stalling without damage. Actuators must function properly within 85 to 110 percent of rated line voltage. Provide actuators with hardened steel running shafts and gears of steel or copper alloy. Fiber or reinforced nylon gears may be used for torques less than 16 inch-pounds.

a. Two-position actuators must be single direction, spring return, or reversing type. Two position actuator signals may either be the control power voltage or line voltage as needed for torque or appropriate interlock circuits.

b. Modulating actuators must be capable of stopping at any point in the cycle, and starting in either direction from any point. Actuators must be equipped with a switch for reversing direction, and a button to disengage the clutch to allow manual adjustments. Provide the actuator with a hand crank for manual adjustments, as applicable. Modulating actuator input signals can either be a 4 to 20 mA dc or a 0-10 V dc signal.

c. Floating or pulse width modulation actuators are acceptable for non-fail safe applications unless indicated otherwise provided that the floating point control (timed actuation) must have a scheduled re-calibration of span and position no more than once a day and no less
than once a week. The schedule for the re-calibration should not affect occupied conditions and be staggered between equipment to prevent falsely loading or unloading central plant equipment.

2.7.2 Relays

Relays must have contacts rated for the intended application, indicator light, and dust proof enclosure. The indicator light must be lit when the coil is energized and off when coil is not energized.

Control relay contacts must have utilization category and ratings selected for the application. Each set of contacts must incorporate a normally open (NO), normally closed (NC) and common contact. Relays must be rated for a minimum life of one million operations.

2.8 USER INPUT DEVICES

User Input Devices, including potentiometers, switches and momentary contact push-buttons. Potentiometers must be of the thumb wheel or sliding bar type. Momentary Contact Push-Buttons may include an adjustable timer for their output. User input devices must be labeled for their function.

2.9 MULTIFUNCTION DEVICES

Multifunction devices are products which combine the functions of multiple sensor, user input or output devices into a single product. Unless otherwise specified, the multifunction device must meet all requirements of each component device. Where the requirements for the component devices conflict, the multifunction device must meet the most stringent of the requirements.

2.9.1 Current Sensing Relay Command Switch

The Current Sensing Relay portion must meet all requirements of the Current Sensing Relay input device. The Command Switch portion must meet all requirements of the Relay output device except that it must have at least one normally-open (NO) contact.

Current Sensing Relays used for Variable Frequency Drives must be rated for Variable Frequency applications unless installed on the source side of the drive. If used in this situation, the threshold for showing status must be set to allow for the VFD's control power when the drive is not enabled and provide indication of operation when the drive is enabled at minimum speed.

2.9.2 Space Sensor Module

Space Sensor Modules must be multifunction devices incorporating a temperature sensor and one or more of the following as specified and indicated on the Space Sensor Module Schedule:

a. A temperature indicating device.

b. A User Input Device which must adjust a temperature setpoint output.

c. A User Input Momentary Contact Button and an output to the control system indicating zone occupancy.

d. A three position User Input Switch labeled to indicate heating, cooling and off positions (‘HEAT-COOL-OFF' switch) and providing corresponding
outputs to the control system.

e. A two position User Input Switch labeled with 'AUTO' and 'ON' positions and providing corresponding output to the control system.

f. A multi-position User Input Switch with 'OFF' and at least two fan speed positions and providing corresponding outputs to the control system.

Space Sensor Modules cannot contain mercury (Hg).

PART 3 EXECUTION

3.1 INSTALLATION

3.1.1 General Installation Requirements

Perform the installation under the supervision of competent technicians regularly employed in the installation of DDC systems.

3.1.1.1 Device Mounting Criteria

All devices must be installed in accordance with manufacturer's recommendations and as specified and indicated. Control devices to be installed in piping and ductwork must be provided with required gaskets, flanges, thermal compounds, insulation, piping, fittings, and manual valves for shutoff, equalization, purging, and calibration. Strap-on temperature sensing elements must not be used except as specified. Spare thermowells must be installed adjacent to each thermowell containing a sensor and as indicated. Devices located outdoors must have a weathershield.

3.1.1.2 Labels and Tags

Match labels and tags to the unique identifiers indicated on the As-Built drawings. Label all enclosures and instrumentation. Tag all sensors and actuators in mechanical rooms. Tag airflow measurement arrays to show flow rate range for signal output range, duct size, and pitot tube AFMA flow coefficient. Tag duct static pressure taps at the location of the pressure tap. Provide plastic or metal tags, mechanically attached directly to each device or attached by a metal chain or wire. Labels exterior to protective enclosures must be engraved plastic and mechanically attached to the enclosure or instrumentation. Labels inside protective enclosures may be attached using adhesive, but must not be hand written.

3.1.2 Weathershield

Provide weathershields for sensors located outdoors. Install weathershields such that they prevent the sun from directly striking the sensor and prevent rain from directly striking or dripping onto the sensor. Install weather shields with adequate ventilation so that the sensing element responds to the ambient conditions of the surroundings. When installing weathershields near outside air intake ducts, install them such that normal outside air flow does not cause rainwater to strike the sensor.

3.1.3 Room Instrument Mounting

Mount room instruments, including but not limited to wall mounted non-adjustable space sensor modules and sensors located in occupied spaces,
48 inches above the floor unless otherwise indicated. Install adjustable devices to be ADA compliant unless otherwise indicated on the Room Sensor Schedule:

a. Space Sensor Modules for Fan Coil Units may be either unit or wall mounted but not mounted on an exterior wall.

b. Wall mount all other Space Sensor Modules.

3.1.4 Indication Devices Installed in Piping and Liquid Systems

Provide snubbers for gauges in piping systems subject to pulsation. For gauges for steam service use pigtail fittings with cock. Install thermometers and temperature sensing elements in liquid systems in thermowells. Provide spare Pressure/Temperature Ports (Pete's Plug) for all temperature and pressure sensing elements installed in liquid systems for calibration/testing.

3.1.5 Occupancy Sensors

Provide a sufficient quantity of occupancy sensors to provide complete coverage of the area (room or space). Occupancy sensors are to be ceiling mounted. Install occupancy sensors in accordance with NFPA 70 requirements and the manufacturer's instructions. Do not locate occupancy sensors within 6 feet of HVAC outlets or heating ducts, or where they can "see" beyond any doorway. Installation above doorway(s) is preferred. Do not use ultrasonic sensors in spaces containing ceiling fans. Install sensors to detect motion to within 2 feet of all room entrances and to not trigger due to motion outside the room. Set the off-delay timer to 15 minutes unless otherwise indicated. Adjust sensors prior to beneficial occupancy, but after installation of furniture systems, shelving, partitions, etc. For each controlled area, provide one hundred percent coverage capable of detecting small hand-motion movements, accommodating all occupancy habits of single or multiple occupants at any location within the controlled room.

3.1.6 Switches

3.1.6.1 Temperature Limit Switch

Provide a temperature limit switch (freezestat) to sense the temperature at the location indicated. Provide a sufficient number of temperature limit switches (freezestats) to provide complete coverage of the duct section but no less than 1 foot in length per square foot of cross sectional area. Install manual reset limit switches in approved, accessible locations where they can be reset easily. Install temperature limit switch (freezestat) sensing elements in a side-to-side (not top-to-bottom) serpentine pattern with the relay section at the highest point and in accordance with the manufacturer's installation instructions.

3.1.6.2 Hand-Off Auto Switches

Wire safety controls such as smoke detectors and freeze protection thermostats to protect the equipment during both hand and auto operation.

3.1.7 Temperature Sensors

Install temperature sensors in locations that are accessible and provide a good representation of sensed media. Installations in dead spaces are not acceptable. Calibrate and install sensors according to manufacturer’s
instructions. Select sensors only for intended application as designated or recommended by manufacturer.

3.1.7.1 Room Temperature Sensors

Mount the sensors on interior walls to sense the average room temperature at the locations indicated. Avoid locations near heat sources such as copy machines or locations by supply air outlet drafts. Mount the center of all user-adjustable sensors 54 inches above the floor to meet ADA requirements. Non user-adjustable sensors can be mounted as indicated in paragraph ROOM INSTRUMENT MOUNTING.

3.1.7.2 Duct Temperature Sensors

3.1.7.2.1 Probe Type

Place tip of the sensor in the middle of the airstream or in accordance with manufacturer's recommendations or instructions. Provide a gasket between the sensor housing and the duct wall. Seal the duct penetration air tight. When installed in insulated duct, provide enclosure or stand off fitting to accommodate the thickness of duct insulation to allow for maintenance or replacement of the sensor and wiring terminations. Seal the duct insulation penetration vapor tight.

3.1.7.2.2 Averaging Type

Weave the sensing element in a serpentine fashion from side to side perpendicular to the flow, across the duct or air handler cross-section, using durable non-metal supports in accordance with manufacturer's installation instructions. Avoid tight radius bends or kinking of the sensing element. Prevent contact between the sensing element and the duct or air handler internals. Provide a duct access door at the sensor location. The access door must be hinged on the side, factory insulated, have cam type locks, and be as large as the duct will permit, maximum 18 by 18 inches. For sensors inside air handlers, the sensors must be fully accessible through the air handler's access doors without removing any of the air handler's internals.

3.1.7.3 Immersion Temperature Sensors

Provide thermowells for sensors measuring piping, tank, or pressure vessel temperatures. Locate wells to sense continuous flow conditions. Do not install wells using extension couplings. When installed on insulated piping, provide stand enclosure or stand off fitting to accommodate the thickness of the pipe insulation and allow for maintenance or replacement of the sensor or wiring terminations. Where piping diameters are smaller than the length of the wells, provide wells in piping at elbows to sense flow across entire area of well. Wells must not restrict flow area to less than 70 percent of pipe area. Increase piping size as required to avoid restriction. Provide the sensor well with a heat-sensitive transfer agent between the sensor and the well interior ensuring contact between the sensor and the well.

3.1.7.4 Outside Air Temperature Sensors

Provide outside air temperature sensors on the building's north side with a protective weather shade that does not inhibit free air flow across the sensing element, and protects the sensor from snow, ice, and rain. Location must not be near exhaust hoods and other areas such that it is not
influenced by radiation or convection sources which may affect the reading. Provide a shield to shade the sensor from direct sunlight.

3.1.8 Air Flow Measurement Arrays (APMA)
Locate Outside Air AFMAs downstream from the Outside Air filters.
Install AFMAs with the manufacturer's recommended minimum distances between upstream and downstream disturbances. Airflow straighteners may be used to reduce minimum distances as recommended by the AFMA manufacturer.

3.1.9 Duct Static Pressure Sensors
Locate the duct static pressure sensing tap at 75 percent of the distance between the first and last air terminal units as indicated on the design documents. If the transmitter output is a 0-10Vdc signal, locate the transmitter in the same enclosure as the air handling unit (AHU) controller for the AHU serving the terminal units. If a remote duct static pressure sensor is to be used, run the signal wire back to the controller for the air handling unit.

3.1.10 Relative Humidity Sensors
Install relative humidity sensors in supply air ducts at least 10 feet downstream of humidity injection elements.

3.1.11 Meters
3.1.11.1 Flowmeters
Install flowmeters to ensure minimum straight unobstructed piping for at least 10 pipe diameters upstream and at least 5 pipe diameters downstream of the flowmeter, and in accordance with the manufacturer's installation instructions.

3.1.11.2 Energy Meters
Locate energy meters as indicated. Connect each meter output to the DDC system, to measure both instantaneous demand/energy and other variables as indicated.

3.1.12 Dampers
3.1.12.1 Damper Actuators
Provide spring return actuators which fail to a position that protects the served equipment and space on all control dampers related to freeze protection or force protection. For all outside, makeup and relief dampers provide dampers which fail closed. Terminal fan coil units, terminal VAV units, convectors, and unit heaters may be non-spring return unless indicated otherwise. Do not mount actuators in the air stream. Do not connect multiple actuators to a common drive shaft. Install actuators so that their action seal the damper to the extent required to maintain leakage at or below the specified rate and so that they move the blades smoothly throughout the full range of motion.

3.1.12.2 Damper Installation
Install dampers straight and true, level in all planes, and square in all
dimensions. Dampers must move freely without undue stress due to twisting, racking (parallelogramming), bowing, or other installation error. External linkages must operate smoothly over the entire range of motion, without deformation or slipping of any connecting rods, joints or brackets that will prevent a return to it's normal position. Blades must close completely and leakage must not exceed that specified at the rated static pressure. Provide structural support for multi-section dampers. Acceptable methods of structural support include but are not limited to U-channel, angle iron, corner angles and bolts, bent galvanized steel stiffeners, sleeve attachments, braces, and building structure. Where multi-section dampers are installed in ducts or sleeves, they must not sag due to lack of support. Do not use jackshafts to link more than three damper sections. Do not use blade to blade linkages. Install outside and return air dampers such that their blades direct their respective air streams towards each other to provide for maximum mixing of air streams.

3.1.13 Valves

Install the valves in accordance with the manufacturer's instructions.

3.1.13.1 Valve Actuators

Provide spring return actuators on all control valves where freeze protection is required. Spring return actuators for terminal fan coil units, terminal VAV units, convectors, and unit heaters are not required unless indicated otherwise.

3.1.14 Thermometers and Gauges

3.1.14.1 Thermometers

Mount devices to allow reading while standing on the floor or ground, as applicable.

3.1.15 Wire and Cable

Provide complete electrical wiring for the Control System, including wiring to transformer primaries. Wire and Cable must be installed without splices between control devices and in accordance with NFPA 70 and NFPA 90A. Instrumentation grounding must be installed per the device manufacturer's instructions and as necessary to prevent ground loops, noise, and surges from adversely affecting operation of the system. Test installed ground rods as specified in IEEE 142. Cables and conductor wires must be tagged at both ends, with the identifier indicated on the shop drawings. Electrical work must be as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM and as indicated. Wiring external to enclosures must be run in raceways.

Install control circuit wiring not in raceways in a neat and safe manner. Wiring must not use the suspended ceiling system (including tiles, frames or hangers) for support. Where conduit or raceways are required, control circuit wiring must not run in the same conduit/raceway as power wiring over 50 volts. Run all circuits over 50 volts in conduit, metallic tubing, covered metal raceways, or armored cable.

-- End of Section --
SECTION 23 09 23.02

BACNET DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS

PART 1 GENERAL

1.1 SUMMARY

Provide a complete Direct Digital Control (DDC) system, suitable for the control of the heating, ventilating and air conditioning (HVAC) and other building-level systems as specified and shown and in accordance with Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC.

1.1.1 System Requirements

Provide a system meeting the requirements of both Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC and this Section and with the following characteristics:

a. Except for Gateways, the control system must be an open implementation of BACnet technology using ASHRAE 135 as the communications protocol. The system must use standard ASHRAE 135 Objects and Properties. The system must use standard ASHRAE 135 Services exclusively for communication over the network. Gateways to packaged units must communicate with other DDC hardware using ASHRAE 135 exclusively and may communicate with packaged equipment using other protocols. The control system must be installed such that any two devices on the internetwork can communicate using standard ASHRAE 135 Services.

b. Install and configure control hardware to provide ASHRAE 135 Objects and Properties as indicated and as needed to meet the requirements of this specification.

1.1.2 Verification of Specification Requirements

Review all specifications related to the control system installation and advise the Contracting Officer of any discrepancies before performing any work. If Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC or any other Section referenced in this specification is not included in the project specifications advise the Contracting Officer and either obtain the missing Section or obtain Contracting Officer approval before performing any work.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

Automation and Control Networks

BACNET INTERNATIONAL (BTL)

BTL Guide (v.42; 2014) BACnet Testing Laboratory Implementation Guidelines

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

U.S. FEDERAL COMMUNICATIONS COMMISSION (FCC)

UNDERWRITERS LABORATORIES (UL)

1.3 DEFINITIONS

For definitions related to this section, see Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC.

1.4 SUBMITTALS

Submittal requirements related to this Section are specified in Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC.

PART 2 PRODUCTS

All products used to meet this specification must meet the indicated requirements, but not all products specified here will be required by every project. All products must meet the requirements both Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC and this Section.

2.1 NETWORK HARDWARE

2.1.1 BACnet Router

All BACnet Routers must be BACnet/IP Routers and must perform layer 3 routing of ASHRAE 135 packets over an IP network in accordance with ASHRAE 135 Annex J and Clause 6. The router must provide the appropriate connection to the IP network and connections to one or more ASHRAE 135 MS/TP networks. Devices used as BACnet Routers must meet the requirements for DDC Hardware, and must support the NM-RC-B BIBB.
2.1.2 BACnet Gateways

In addition to the requirements for DDC Hardware, the BACnet Gateway must meet the following requirements:

a. It must perform bi-directional protocol translation from one non-ASHRAE 135 protocol to ASHRAE 135. BACnet Gateways must incorporate a network connection to an ASHRAE 135 network (either BACnet over IP in accordance with Annex J or MS/TP) and a separate connection appropriate for the non-ASHRAE 135 protocol and media.

b. It must retain its configuration after a power loss of an indefinite time, and must automatically return to their pre-power loss state once power is restored.

c. It must allow bi-directional mapping of data between the non-ASHRAE 135 protocol and Standard Objects as defined in ASHRAE 135. It must support the DS-RP-B BIBB for Objects requiring read access and the DS-WP-B BIBB for Objects requiring write access.

d. It must support the DS-COV-B BIBB.

Although Gateways must meet DDC Hardware requirements they are not DDC Hardware and must not be used when DDC Hardware is required.

2.1.3 Ethernet Switch

Ethernet Switches must autoconfigure between 10, 100 and 1000 megabits per second (MBPS).

2.2 CONTROL NETWORK WIRING

a. BACnet MS/TP communications wiring must be in accordance with ASHRAE 135. The wiring must use shielded, three wire (twisted-pair with reference) cable with characteristic impedance between 100 and 120 ohms. Distributed capacitance between conductors must be less than 30 pF per foot.

b. Building Control Network Backbone IP Network must use Ethernet media. Ethernet cables must be CAT-5e at a minimum and meet all requirements of IEEE 802.3.

2.3 DIRECT DIGITAL CONTROL (DDC) HARDWARE

2.3.1 General Requirements

All DDC Hardware must meet the following requirements:

a. It must be locally powered and must incorporate a light to indicate the device is receiving power.

b. It must conform to the BTL Guide

c. It must be BACnet Testing Laboratory (BTL) Listed.

d. The Manufacturer’s Product Data submittal for each piece of DDC Hardware must include the Protocol Implementation Conformance Statement (PICS) for that hardware as specified in Section 23 09 00
INSTRUMENTATION AND CONTROL FOR HVAC.

e. It must communicate and be interoperable in accordance with ASHRAE 135 and have connections for BACnet IP or MS/TP control network wiring.

f. Other than devices controlling terminal units or functioning solely as a BACnet Router, it must support DS-COV-B, DS-RPM-A and DS-RPM-B BIBBs.

g. Devices supporting the DS-RP-A BIBB must also support the DS-COV-A BIBB.

h. Application programs, configuration settings and communication information must be stored in a manner such that they persist through loss of power:

 (1) Application programs must persist regardless of the length of time power is lost.

 (2) Configured settings must persist for any loss of power less than 2,500 hours.

 (3) Communication information, including but not limited to COV subscriptions, event reporting destinations, Notification Class Object settings, and internal communication settings, must persist for any loss of power less than 2,500 hours.

i. Internal Clocks:

 (1) Clocks in DDC Hardware incorporating a Clock must continue to function for 120 hours upon loss of power to the DDC Hardware.

 (2) DDC Hardware incorporating a Clock must support the DM-TS-B or DM-UTC-B BIBB.

j. It must have all functionality indicated and required to support the application (Sequence of Operation or portion thereof) in which it is used, including but not limited to providing Objects as specified and as indicated on the Points Schedule.

k. In addition to these general requirements and the DDC Hardware Input-Output (I/O) Function requirements, all DDC Hardware must also meet any additional requirements for the application in which it is used (e.g. scheduling, alarming, trending, etc.).

l. It must meet FCC Part 15 requirements and have UL 916 or equivalent safety listing.

m. Device must support Commandable Objects to support Override requirements as detailed in PART 3 EXECUTION

n. User interfaces which allow for modification of Properties or settings must be password-protected.

o. Devices communicating BACnet MS/TP must meet the following requirements:

 (1) Must have a configurable Max_Master Property.

 (2) DDC Hardware other than hardware controlling a single terminal unit must have a configurable Max_Info_Frames Property.
(3) Must respond to any valid request within 50 msec with either the appropriate response or with a response of "Reply Postponed".

(4) Must use twisted pair with reference and shield (3-wire media) wiring.

p. Devices communicating BACnet/IP must use UDP Port 0xBAC0. Devices with configurable UDP Ports must default to 0xBAC0.

q. All Device IDs, Network Numbers, and BACnet MAC addresses of devices must be fully configurable without limitation, except MS/TP MAC addresses may be limited by ASHRAE 135 requirements.

r. DDC Hardware controlling a single terminal unit must have:
 (1) Objects (including the Device Object) with an Object Name Property of at least 8 characters in length.
 (2) A configurable Device Object Name.
 (3) A configurable Device Object Description Property at least 16 characters in length.

s. Except for Objects in DDC Hardware controlling a single terminal unit, all Objects (including Device Objects) must:
 (1) Have a configurable Object Name Property of at least 12 characters in length.
 (2) Have a configurable Object Description Property of at least 24 characters in length.

t. For programmable DDC Hardware, provide and license to the project site all programming software required to program the Hardware in accordance with Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC.

u. For programmable DDC Hardware, provide copies of the installed application programs (all software that is not common to every controller of the same manufacturer and model) as source code compatible with the supplied programming software in accordance with Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC. The submitted application program must be the complete application necessary for controller to function as installed and be sufficient to allow replacement of the installed controller with another controller of the same type.

2.3.2 Hardware Input-Output (I/O) Functions

DDC Hardware incorporating hardware input-output (I/O) functions must meet the following requirements:

2.3.2.1 Analog Inputs

DC Hardware analog inputs (AIs) must be implemented using ASHRAE 135 Analog Input Objects and perform analog to digital (A-to-D) conversion with a minimum resolution of 8 bits plus sign or better as needed to meet the accuracy requirements specified in Section 23 09 00. Signal conditioning including transient rejection must be provided for each analog input. Analog inputs must be capable of being individually calibrated for zero and
span. Calibration via software scaling performed as part of point configuration is acceptable. The AI must incorporate common mode noise rejection of at least 50 dB from 0 to 100 Hz for differential inputs, and normal mode noise rejection of at least 20 dB at 60 Hz from a source impedance of 10,000 ohms.

2.3.2.2 Analog Outputs

DDC Hardware analog outputs (AOs) must be implemented using ASHRAE 135 Analog Output Objects and perform digital to analog (D-to-A) conversion with a minimum resolution of 8 bits plus sign, and output a signal with a range of 4-20 mA dc or 0-10 V dc. Analog outputs must be capable of being individually calibrated for zero and span. Calibration via software scaling performed as part of point configuration is acceptable. DDC Hardware with Hand-Off-Auto (H-O-A) switches for analog outputs must provide for overriding the output through the range of 0 percent to 100 percent.

2.3.2.3 Binary Inputs

DDC Hardware binary inputs (BIs) must be implemented using ASHRAE 135 Binary Input Objects and accept contact closures and must ignore transients of less than 5 milli-second duration. Protection against a transient 50 VAC must be provided.

2.3.2.4 Binary Outputs

DDC Hardware binary outputs (BOs) must be implemented using ASHRAE 135 Binary Output Objects and provide relay contact closures or triac outputs for momentary and maintained operation of output devices. DDC Hardware with H-O-A switches for binary outputs must provide for overriding the output open or closed.

2.3.2.4.1 Relay Contact Closures

Closures must have a minimum duration of 0.1 second. Relays must provide at least 180 V of isolation. Electromagnetic interference suppression must be provided on all output lines to limit transients to 50 Vac. Minimum contact rating must be 0.5 amperes at 24 Vac.

2.3.2.4.2 Triac Outputs

Triac outputs must provide at least 180 V of isolation. Minimum contact rating must be 0.5 amperes at 24 Vac.

2.3.2.5 Pulse Accumulator

DDC Hardware pulse accumulators must be implemented using either an ASHRAE 135 Accumulator Object or an ASHRAE 135 Analog Value Object where the Present_Value is the totalized pulse count. Pulse accumulators must accept contact closures, ignore transients less than 5 msec duration, protect against transients of 50 VAC, and accept rates of at least 20 pulses per second.

2.3.2.6 ASHRAE 135 Objects for Hardware Inputs and Outputs

The requirements for use of ASHRAE 135 objects for hardware input and outputs includes devices where the hardware sensor or actuator is integral to the controller (e.g. a VAV box with integral damper actuator, a smart
sensor, a VFD, etc.)

2.3.2.7 Integrated H-O-A Switches

Where integrated H-O-A switches are provided on hardware outputs, controller must provide means of monitoring position or status of H-O-A switch. This feedback may be provided via any valid BACnet method, including the use of proprietary Objects, Properties, or Services.

2.3.3 Local Display Panel (LDP)

The Local Display Panels (LDPs) must be DDC Hardware with a display and navigation buttons or a touch screen display, and must provide display and adjustment of ASHRAE 135 Properties as indicated on the Points Schedule and as specified. LDPs must be either BTL Listed as a B-OD, B-OWS, B-AWS, or be an integral part of another piece of DDC Hardware listed as a B-BC. For LDPs listed as B-OWS or B-AWS, the hardware must be BTL listed and the product must come factory installed with all applications necessary for the device to function as an LDP.

The adjustment of values using display and navigation buttons must be password protected.

2.3.4 Expansion Modules and Tethered Hardware

A single piece of DDC Hardware may consist of a base unit and also:

a. An unlimited number of hardware expansion modules, where the individual hardware expansion modules are designed to directly connect, both mechanically and electrically, to the base unit hardware. The expansion modules must be commercially available as an optional add-on to the base unit.

b. A single piece of hardware connected (tethered) to a base unit by a single cable where the cable carries a proprietary protocol between the base unit and tethered hardware. The tethered hardware must not contain control logic and be commercially available as an optional add-on to the base unit as a single package.

Note that this restriction on tethered hardware does not apply to sensors or actuators using standard binary or analog signals (not a communications protocol); sensors or actuators using standard binary or analog signals are not considered part of the DDC Hardware.

Hardware capable of being installed stand-alone, or without a separate base unit, is DDC Hardware and must not be used as expansion modules or tethered hardware.

2.3.5 Supervisory Control Requirements

2.3.5.1 Alarm Generation Hardware

DDC Hardware used for alarm generation must meet the following requirements:

a. Device must support the AE-N-I-B BIBB

b. The Recipient_List Property must be Writeable for all Notification
Class Objects used for alarm generation.

For all Objects implementing Intrinsic Alarming, the following Properties must be Writeable:

1. Time_Delay
2. High_Limit
3. Low_Limit
4. Deadband
5. Event_Enable
6. If the issue date of this project specification is after 1 January 2016, Time_Delay_Normal must be writeable.

It is preferred, but not required, that devices support the DM-OCD-B BIBB on all Notification Class Objects. It is also preferred, but not required that devices supporting the DM-OCD-B BIBB accept any valid value as an initial value for properties of Notification Class Objects.

PART 3 EXECUTION

3.1 CONTROL SYSTEM INSTALLATION

3.1.1 Building Control Network (BCN)

Install the Building Control Network (BCN) as a single BACnet internetwork consisting of a single IP network as the BCN Backbone and zero or more BACnet MS/TP networks. Note that in some cases there may only be a single device on the BCN Backbone.

Except as permitted for the non-BACnet side of Gateways, use exclusively ASHRAE 135 networks.

3.1.1.1 Building Control Network IP Backbone

Install IP Network Cabling in conduit. Install Ethernet Switches in lockable enclosures. Install the Building Control Network (BCN) IP Backbone such that it is available at the Facility Point of Connection (FPOC) location as indicated. When the FPOC location is a room number, provide sufficient additional media to ensure that the Building Control Network (BCN) IP Backbone can be extended to any location in the room.

Use UDP port 0xBAC0 for all BACnet traffic on the IP network.

3.1.1.2 BACnet MS/TP Networks

When using MS/TP, provide MS/TP networks in accordance with ASHRAE 135 and in accordance with the ASHRAE 135 figure "Mixed Devices on 3-Conductor Cable with Shield" (Figure 9-1.4 in the 2012 version of ASHRAE 135).

Ground the shield at the BACnet Router and at no other point. Ground the reference wire at the BACnet Router through a 100 ohm resistor and do not ground it at any other point. In addition:

a. Provide each segment in a doubly terminated bus topology in accordance with TIA-485.

b. Provide each segment with 2 sets of network bias resistors in accordance with ASHRAE 135, with one set of resistors at each end of
the MS/TP network.

c. Use 3 wire (twisted pair and reference) with shield media for all MS/TP media installed inside. Use fiber optic isolation in accordance with ASHRAE 135 for all MS/TP media installed outside buildings, or between multiple buildings.

d. For 18 AWG cable, use segments with a maximum length of 4000 ft. When using greater distances or different wire gauges comply with the electrical specifications of TIA-485.

e. For each controller that does not use the reference wire provide transient suppression at the network connection of the controller if the controller itself does not incorporate transient suppression.

f. Install no more than 32 devices on each MS/TP segment. Do not use MS/TP to MS/TP routers.

g. Connect each MS/TP network to the BCN backbone via a BACnet Router.

h. For BACnet Routers, configure the MS/TP MAC address to 0. Assign MAC Addresses to other devices consecutively beginning at 1, with no gaps.

i. Configure the Max_Master Property of all devices to be 31.

3.1.1.3 Building Control Network (BCN) Installation

Provide a building control network meeting the following requirements:

a. Install all DDC Hardware connected to the Building Control Network.

b. Where multiple pieces of DDC Hardware are used to execute one sequence, install all DDC Hardware executing that sequence on a single MS/TP network dedicated to that sequence.

c. Traffic between BACnet networks must be exclusively via BACnet routers.

3.1.2 DDC Hardware

Install all DDC Hardware that connects to an IP network in lockable enclosure. Install other DDC Hardware that is not in suspended ceilings in enclosures. For all DDC hardware with a user interface, coordinate with site to determine proper passwords and configure passwords into device.

a. Except for zone sensors (thermostats), install all Tethered Hardware within 6 feet of its base unit.

b. Install and configure all BTL-Listed devices in a manner consistent with their BTL Listing such that the device as provided still meets all requirements necessary for its BTL Listing.

c. Install and configure all BTL-Listed devices in a manner consistent with the BTL Device Implementation Guidelines such that the device as provided meets all those Guidelines.

3.1.2.1 Device Identifiers, Network Addresses, and IP addresses

a. Do not use any Device Identifier or Network Number already used by another BACnet system at the project site.
3.1.2.2 Object Name Property and Object Description Property

Configure the Object Names and Object Descriptions properties of all Objects (including Device Objects) as indicated on the Points Schedule (Point Name and Point Description) and as specified. At a minimum:

a. Except for DDC Hardware controlling a single terminal unit, configure the Object_Name and Object_Description properties of all Objects (including Device Objects) as indicated on the Points Schedule and as specified.

b. In DDC Hardware controlling a single terminal unit, configure the Device Object_Name and Device Object_Description as indicated on the Points Schedule and as specified.

When Points Schedule entries exceed the length limitations in the device, notify site project manager and provide recommended alternatives for approval.

3.1.2.3 Hand-Off-Auto (H-O-A) Switches

Provide Hand-Off-Auto (H-O-A) switches for all DDC Hardware analog outputs and binary outputs used for control of systems other than terminal units, as specified and as indicated on the Points Schedule. Provide H-O-A switches that are integral to the controller hardware, an external device co-located with (in the same enclosure as) the controller, integral to the controlled equipment, or an external device co-located with (in the same enclosure as) the controlled equipment.

a. For H-O-A switches integral to DDC Hardware, meet the requirements specified in paragraph DIRECT DIGITAL CONTROL (DDC) HARDWARE.

b. For external H-O-A switches used for binary outputs, provide for overriding the output open or closed.

c. For eternal H-O-A switches used for analog outputs, provide for overriding to 0 percent or 100 percent.

3.1.2.4 Local Display Panels

Provide LDPs to display and override values of ASHRAE 135 Object Properties as indicated on the Points Schedule. Install LDPs displaying points for anything other than a terminal unit in the same room as the equipment. Install LDPs displaying points for only terminal units in a mechanical room central to the group of terminal units it serves. For LDPs using WriteProperty to commandable objects to implement an override, write values with priority 10.

3.1.2.5 MS/TP Slave Devices

Configure all MS/TP devices as Master devices. Do not configure any devices to act as slave devices.

3.1.2.6 Change of Value (COV) and Read Property

a. To the greatest extent possible, configure all devices to support the SubscribeCOV service (the DS-COV-B BIBB). At a minimum, all devices
supporting the DS-RP-B BIBB, other than devices controlling only a single terminal unit, must be configured to support the DS-COV-B BIBB.

b. Whenever supported by the server side, configure client devices to use the DS-COV-A BIBB.

3.1.2.7 Engineering Units

a. Temperature in degrees F
b. Air or natural gas flows in cubic feet per minute (CFM)
c. Water in gallons per minute (GPM)
d. Steam flow in pounds per hour (pph)
e. Differential Air pressures in inches of water column (IWC)
f. Water, steam, and natural gas pressures in PSI
g. Enthalpy in BTU/lb
h. Heating and cooling energy in MBTU (1MBTU = 1,000,000 BTU))
i. Cooling load in tons (1 ton = 12,000 BTU/hour)
j. Heating load in MBTU/hour (1MBTU = 1,000,000 BTU)
k. Electrical Power: kilowatts (kW)
l. Electrical Energy: kilowatt-hours (kWh)

3.1.2.8 Occupancy Modes

Use the following correspondence between value and occupancy mode whenever an occupancy state or value is required:

a. OCCUPIED mode: a value of one
b. UNOCCUPIED mode: a value of two
c. WARM-UP/COOL-DOWN (PRE-OCCUPANCY) mode: a value of three

Note that elsewhere in this Section the Schedule Object is required to also support a value of four, which is reserved for future use. Also note that the behavior of a system in each of these occupancy modes is indicated in the sequence of operation for the system.

3.1.2.9 Use of BACnet Objects

Use only standard non-proprietary ASHRAE 135 Objects and services to accomplish the project scope of work as follows:

a. Use Analog Input or Analog Output Objects for all analog hardware I/O. Do not use Analog Value Object for analog hardware I/O).
b. Use Binary Input or Binary Output Objects for all binary hardware I/O. Do not use Binary Value Objects for binary hardware I/O.
c. Use Analog Value Objects for analog setpoints.
d. Use Accumulator Objects or Analog Value Objects for pulse inputs.

e. For occupancy modes, use Multistate Value Objects and the correspondence between value and occupancy mode specified in paragraph OCCUPANCY MODES.

f. Intrinsic Alarming, and Notification Class Objects for alarm generation.

g. For all other points shown on the Points Schedule as requiring an ASHRAE 135 Object, use the Object type shown on the Points Schedule or, if no Object Type is shown, use a standard Object appropriate to the point.

3.1.2.10 Use of Standard BACnet Services

Except as noted in this paragraph, for all DDC Hardware use Standard BACnet Services as defined in this specification (which excludes some ASHRAE 135 services) exclusively for application control functionality and communication.

DDC Hardware that cannot meet this requirement may use non-standard services provided they can provide identical functionality using Standard BACnet Services when communicating with BACnet devices from a different vendor. When implementing non-standard services, document all non-standard services in the DDC Hardware Schedule as specified and as specified in Section 23 09 00 INTRUMENTATION AND CONTROL FOR HVAC.

3.1.2.11 Device Application Configuration

a. For every property, setting or value shown on the Points Schedule or otherwise indicated as Configurable, provide a value that is retained through loss of power and can be changed via one or more of:

 (1) BACnet services (including proprietary services)

 (2) Hardware settings on the device

b. For every property, setting or value shown on the Points Schedule or otherwise indicated as Operator Configurable, provide a value that is retained through loss of power and can be changed via one or more of:

 (1) A Writeable Property of a standard BACnet Object

 (2) A Property of a standard BACnet Object that is Writeable when Out_Of_Service is TRUE and Out_Of_Service is Writeable.

3.1.3 Scheduling, Alarming, Trending, and Overrides

3.1.3.1 Scheduling

Provide a separate schedule for each AHU including it's associated Terminal Units and for each stand-alone Terminal Unit (those not dependent upon AHU service).
3.1.3.2 Configuration of Alarm Generation

generation must meet the following requirements:

a. Send alarm events as Alarms (not Events).

b. Use the ConfirmedNotification Service for alarm events.

c. For alarm generation, support two priority levels for alarms: critical and non-critical. Configure the Priority of Notification Class Objects to use Priority 112 for critical and 224 for non-critical alarms.

d. Number of Notification Class Objects for Alarm Generation:

(1) If the device implements non-critical alarms, or if any Object in the device supports Intrinsic Alarms, then provide a single Notification Class Object specifically for (shared by) all non-critical alarms.

(2) If the device implements critical alarms, provide a single Notification Class Object specifically for (shared by) all critical alarms.

(3) If the device implements both critical and non-critical alarms, provide both Notification Class Objects (one for critical, one for non-critical).

(4) If the device controls equipment other than a single terminal unit, provide both Notification Class Objects (one for critical, one for non-critical) even if no alarm generation is required at time of installation.

e. For all intrinsic alarms configure the Limit_Enable Property to set both HighLimitEnable and LowLimitEnable to TRUE. If the specified alarm conditions are for a single-sided alarm (only High_Limit used or only Low_Limit used) assign a value to the unused limit such that the unused alarm condition will not occur.

f. For all objects supporting intrinsic alarming, even if no alarm generation is required during installation, configure the following Properties as follows:

(1) Notification_Class to point to the non-Critical Notification Class Object in that device.

(2) Limit_Enable to enable both the HighLimitEnable and LowLimitEnable

(3) Notify_Type to Alarm

3.1.3.3 Overrides

Provide an override for each point shown on the Points Schedule as requiring an override.

Unless otherwise approved, provide Commandable Objects to support all
Overrides. With specific approval from the contracting officer, Overrides for points which are not hardware outputs and which are in DDC hardware controlling a single terminal unit may support overrides via an additional Object provided for the override. No other means of implementing Overrides may be used.

a. Where Commandable Objects are used, ensure that WriteProperty service requests with a Priority of 10 or less take precedence over the SEQUENCE VALUE and that WriteProperty service request with a priority of 11 or more have a lower precedence than the SEQUENCE VALUE.

b. For devices implementing overrides via additional Objects, provide Objects which are NOT Written to as part of the normal Sequence of Operations and are Writeable when Out_Of_Service is TRUE and Out_Of_Service is Writeable. Use this point as an Override of the normal value when Out_Of_Service is TRUE and the normal value otherwise. Note these Objects may be modified as part of the sequence via local processes, but must not be modified by local processes when Out_Of_Service is TRUE.

3.1.4 BACnet Gateways

The requirements in this paragraph do not permit the installation of hardware not meeting the other requirements of this section. All control hardware installed under this project must meet the requirements of this specification, including control hardware provided as part of a package unit or as part of equipment specified under another section. Only use gateways to connect to pre-existing control devices.

Provide BACnet Gateways to non-BACnet control hardware as required to connect existing non-BACnet packaged units and in accordance with the following:

a. Each gateway must communicate with and perform protocol translation for non-BACnet control hardware controlling one and only one package unit.

b. Connect one network port on the gateway to the Building Control Backbone IP Network or to a BACnet MS/TP network and the other port to the single piece of controlled equipment.

c. Configure gateways to map writeable data points in the controlled equipment to Writeable Properties of Standard Objects as indicated in the Points Schedule and as specified.

d. Configure gateway to map readable data points in the controlled equipment to Readable Properties of Standard Objects as indicated in the Points Schedule and as specified.

e. Configure gateway to support the DS-COV-B BIBB for all points mapped to BACnet Objects.

f. Do not use non-BACnet control hardware for controlling built-up units or any other equipment that was not furnished with factory-installed controls.

g. Do not use non-BACnet control hardware for system scheduling functions.

h. Non-BACnet network wiring connecting the gateway to the package unit must not exceed 10 feet in length and must connect to exactly two
devices: the controlled equipment (packaged unit) and the gateway.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

This specification section applies to gas piping installed within buildings incidental underground piping under building, above ground steel piping and corrugated stainless steel tubing (CSST) both outside (up to 5 feet beyond exterior walls) and within buildings in compliance with NFPA 54/AGA Z223.1, "Fuel Gas Piping".

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN GAS ASSOCIATION (AGA)

AGA ANSI B109.1 (2000) Diaphragm Type Gas Displacement Meters (Under 500 cubic ft./hour Capacity)

AGA ANSI B109.2 (2000) Diaphragm Type Gas Displacement Meters (500 cubic ft./hour Capacity and Over)

AGA ANSI B109.4 (2016) Self-Operated Diaphragm-Type Natural Gas Service Regulators for Nominal Pipe Size 1 1/4 inches (32 mm) and Smaller with Outlet Pressures of 2 psig (13.8 kPa) and Less

AGA XR0603 (2006; 8th Ed) AGA Plastic Pipe Manual for Gas Service

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN PETROLEUM INSTITUTE (API)

API 570 (2016; Addendum 1 2017) Piping Inspection Code: In-Service Inspection, Rating, Repair, and Alteration of Piping Systems

API RP 1110 (2013) Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids or Carbon Dioxide

API Spec 5CT (2011; Errata 1 2012; Errata 2 2016) Specification for Casing and Tubing

API Spec 6D (2014; Errata 1-2 2014; Errata 3-6 2015; ADD 1 2015; ADD 2 2016; Errata 7-8 2016; Errata 9 2017) Specification for Pipeline and Piping Valves

API Std 598 (2009) Valve Inspecting and Testing

API Std 607 (2016) Testing of Valves: Fire Test for Soft-Seated Quarter-Turn Valves

ASME INTERNATIONAL (ASME)

ASME B1.1 (2003; R 2008) Unified Inch Screw Threads (UN and UNR Thread Form)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

Threaded Pipe Unions; Classes 150, 250, and 300

ASME B18.2.1 (2012; Errata 2013) Square and Hex Bolts and Screws (Inch Series)

ASME B31.8 (2014; Supplement 2014) Gas Transmission and Distribution Piping Systems

ASME B31.9 (2014; Errata 2015) Building Services Piping

ASME B36.10M (2015; Errata 2016) Welded and Seamless Wrought Steel Pipe

ASME BPVC SEC IX (2010) BPVC Section IX-Welding and Brazing Qualifications

ASME BPVC SEC VIII D1 (2015) BPVC Section VIII-Rules for Construction of Pressure Vessels Division 1

ASTM INTERNATIONAL (ASTM)

ASTM 01.01 (2017) Steel - Piping, Tubing, Fittings

ASTM A194/A194M (2017) Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both

ASTM A666 (2015) Standard Specification for Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar
1.3 SYSTEM DESCRIPTION

The gas piping system includes natural gas piping and appurtenances from point of connection with supply system, as indicated, to gas operated equipment within the facility. Submit operation and maintenance data in accordance with Section 01000 OPERATION AND MAINTENANCE DATA, in three separate packages. Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS applies to this section, with additions and modifications specified herein.

1.3.1 Gas Facility System and Equipment Operation

Include shop drawings showing piping layout, locations of system valves, gas line markers; step-by-step procedures for system start up, operation and shutdown (index system components and equipment to the system drawings); isolation procedures including valve operation to shutdown or isolate each section of the system (index valves to the system maps and
provide separate procedures for normal operation and emergency shutdown if required to be different). Submit Data package No. 4.

1.3.2 Gas Facility System Maintenance

Include maintenance procedures and frequency for system and equipment; identification of pipe materials and manufacturer by locations, pipe repair procedures, and jointing procedures at transitions to other piping material or material from a different manufacturer. Submit Data Package No. 4.

1.3.3 Gas Facility Equipment Maintenance

Include identification of valves, shut-offs, disconnects, and other equipment by materials, manufacturer, vendor identification and location; maintenance procedures and recommended tool kits for valves and equipment; recommended repair methods (i.e., field repair, factory repair, or replacement) for each valve and piece of equipment; and preventive maintenance procedures, possible failure modes and troubleshooting guide. Submit Data Package No. 4.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Gas Piping System; G

SD-03 Product Data
 Pipe and Fittings; G
 Gas Equipment Connectors; G
 Gas Piping System; G
 Pipe Coating Materials; G
 Pressure Regulators; G
 Risers; G
 Transition Fittings; G
 Valves; G
 Warning and Identification Tape; G

SD-06 Test Reports
 Testing; G
 Pressure Tests; G
1.5 QUALITY ASSURANCE

Submit manufacturer's descriptive data and installation instructions for approval for compression-type mechanical joints used in joining dissimilar materials and for insulating joints. Mark all valves, flanges and fittings in accordance with MSS SP-25.

1.5.1 Welding Qualifications

a. Weld piping in accordance with qualified procedures using performance qualified welders and welding operators in accordance with API RP 2009, ASME BPVC SEC IX, and ASME B31.9. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.9. Notify the Contracting Officer at least 24 hours in advance of tests, and perform at the work site if practicable.

b. Submit a certified copy of welders procedures and qualifications metal and PE in conformance with ASME B31.9 for each welder and welding operator. Submit the assigned number, letter, or symbol that will be used in identifying the work of each welder to the Contracting Officer.

1.5.2 Jointing Thermoplastic and Fiberglass Piping

Perform all jointing of piping using qualified joiners and qualified procedures in accordance with AGA XR0603. Furnish the Contracting Officer with a copy of qualified procedures and list of and identification symbols of qualified joiners. Submit manufacturer's installation instructions and manufacturer's visual joint appearance chart, including all PE pipe and fittings.

1.5.3 Shop Drawings

Submit drawings for complete Gas Piping System, within 30 days of contract award, showing location, size and all branches of pipeline; location of all required shutoff valves; and instructions necessary for the installation of gas equipment connectors and supports.
1.6 DELIVERY, STORAGE, AND HANDLING

1.6.1 Plastic Pipe

Handle, transport, and store plastic pipe and fittings carefully. Plug or cap pipe and fittings ends during transportation or storage to minimize dirt and moisture entry. Do not subject piping to abrasion or concentrated external loads. Discard PE pipe sections and fittings that have been damaged.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Provide materials and equipment which are the standard products of a manufacturer regularly engaged in the manufacture of the products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Asbestos or products containing asbestos are not allowed. Submit catalog data and installation instructions for pipe, valves, all related system components, pipe coating materials and application procedures. Conform to NFPA 54 and with requirements specified herein. Provide supply piping to appliances or equipment at least as large as the inlets thereof.

2.2 GAS PIPING SYSTEM AND FITTINGS

2.2.1 Steel Pipe, Joints, and Fittings

- a. Pipe: Black carbon steel in accordance with ASTM A53/A53M, Schedule 40, threaded ends for sizes 2 inches and smaller; otherwise, plain end beveled for butt welding.

- d. Butt-Welding Fittings: ASME B16.9, with backing rings of compatible material.

- f. Flanges and Plated Fittings: ASME B16.5 steel flanges or convoluted steel flanges conforming to ASME BPVC SEC VIII D1, with flange faces having integral grooves of rectangular cross sections which afford containment for self-energizing gasket material.

Provide steel pipe conforming to ASME B36.10M; and malleable-iron threaded fittings conforming to ASME B16.1 and ASME B16.3. Provide steel pipe flanges and flanged fittings, including bolts, nuts, and bolt pattern in accordance with ASME B16.5 and ASTM A105/A105M. Provide wrought steel butt welding fittings conforming to ASME B16.9. Provide socket welding and threaded forged steel fittings conforming to ASME B16.11.

2.2.2 Steel Tubing, Joints and Fittings

Provide steel tubing conforming to ASTM 01.01, and ASTM A513/A513M, with tubing joints made up with gas tubing fittings recommended by the tubing
2.2.3 Thermoplastic Pipe, Tubing, Joints, and Fittings

Provide thermoplastic pipe, tubing, casing and joints and fittings conforming to ASTM D2513 and API Spec 5CT.

2.2.4 Sealants for Steel Pipe Threaded Joints

Provide joint sealing compound as listed in UL FLAMMABLE & COMBUSTIBLE, Class 20 or less. For taping, use tetrafluoroethylene tape conforming to UL FLAMMABLE & COMBUSTIBLE.

2.2.5 Warning and Identification

Provide pipe flow markings, warning and identification tape, and metal tags as required.

2.2.6 Flange Gaskets

Provide gaskets of nonasbestos compressed material in accordance with ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type, containing aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR) suitable for a maximum 600 degree F service, to be used for hydrocarbon service.

2.2.7 Pipe Threads

Provide pipe threads conforming to ASME B1.20.1.

2.2.8 Escutcheons

Provide chromium-plated steel or chromium-plated brass escutcheons, either one piece or split pattern, held in place by internal spring tension or set screw.

2.2.9 Gas Transition Fittings

a. Provide steel to plastic (PE) designed for steel-to-plastic with tapping tee or sleeve conforming to AGA XR0603 requirements for transitions fittings. Coat or wrap exposed steel pipe with heavy plastic coating.

b. Plastic to Plastic: Manufacturer's standard slip-on PE mechanical coupling, molded, with stainless-steel ring support conforming to ASTM A666, O-ring seals, and rated for 150 psig gas service. Manufacturer's standard fused tapping (PE-to-PE) tee assembly with shut-off feature.

c. Provide manually operated shut-off valve conforming to CGA 9.2-M88

2.2.10 Insulating Pipe Joints

2.2.10.1 Insulating Joint Material

Provide insulating joint material between flanged or threaded metallic pipe systems where shown to control galvanic or electrical action.
2.2.10.2 Threaded Pipe Joints

Provide threaded pipe joints of steel body nut type dielectric unions with insulating gaskets.

2.2.10.3 Flanged Pipe Joints

Provide joints for flanged pipe consisting of full face sandwich-type flange insulating gasket of the dielectric type, insulating sleeves for flange bolts, and insulating washers for flange nuts.

2.2.11 Flexible Connectors

b. Do not install the flexible connector through the appliance cabinet face. Provide rigid metallic pipe and fittings to extend the final connection beyond the cabinet, except when appliance is provided with an external connection point.

2.3 VALVES

Provide lockable shutoff or service isolation valves conforming to the following:

2.3.1 Valves 2 Inches and Smaller

Provide valves 2 inches and smaller conforming to ASME B16.33 of materials and manufacture compatible with system materials used.

2.3.2 Valves 2-1/2 Inches and Larger

Provide valves 2-1/2 inches and larger of carbon steel conforming to API Spec 6D, Class 150.

2.3.3 Valve Support on PE Piping

Provide valve support assembly in accordance with the PE piping manufacturer's requirements at valve terminations points.

2.4 RISERS

Provide manufacturer's standard riser, transition from plastic to steel pipe with 7 to 12 mil thick epoxy coating. Use swaged gas-tight construction with O-ring seals, metal insert, and protective sleeve. Provide remote bolt-on or bracket or wall-mounted riser supports.

2.5 PIPE HANGERS AND SUPPORTS

Provide pipe hangers and supports conforming to MSS SP-58.

2.6 LINE AND APPLIANCE REGULATORS AND SHUTOFF VALVES

Provide regulators conforming to ANSI Z21.80/CSA 6.22 for line pressure regulators. Provide shutoff valves conforming to ANSI Z21.15/CSA 9.1 for...
manually controlled gas shutoff valves.

2.7 NATURAL GAS SERVICE

2.7.1 Service Regulators

a. Provide ferrous bodied pressure regulators for individual service lines, capable of reducing distribution line pressure to pressures required for users. Provide service regulators conforming to AGA ANSI B109.4 CGA-6.18-M95 with full capacity internal relief and overpressure shutoff. Set pressure relief at a lower pressure than would cause unsafe operation of any connected user.

c. Provide regulator(s) having a single port with orifice diameter no greater than that recommended by the manufacturer for the maximum gas flow rate at the regulator inlet pressure. Provide regulator valve vent of resilient materials designed to withstand flow conditions when pressed against the valve port, capable of regulating downstream pressure within limits of accuracy and limiting the buildup of pressure under no-flow conditions to 50 percent or less of the discharge pressure maintained under flow conditions. Provide a self-contained service regulator, and pipe not exceeding exceed 2 inch size.

2.7.2 Gas Meter

AGA ANSI B109.2 pedestal mounted, diaphragm style, enamel-coated steel case. Provided with a strainer immediately upstream. Provide diaphragm-type meter conforming to AGA ANSI B109.1 for required flow rates less than 500 cfh, or AGA ANSI B109.2, for flow rates 500 cfh and above as required by local gas utility supplier. Provide combined odometer-type register totalizer index, UV-resistant index cover, water escape hole in housing, and means for sealing against tampering. Provide temperature-compensated type meters sized for the required volumetric flow rate and suitable for accurately measuring and handling gas at pressures, temperatures, and flow rates indicated. Provide meters with over-pressure protection as specified in 49 CFR 192 and ASME B31.8. Provide meters that are tamper-proof with frost protection. Provide meters with a pulse switch initiator capable of operating up to speeds of 500 maximum pulses per minute with no false pulses and requiring no field adjustments. Provide not less than one pulse per 100 cubic feet of gas. Minimum service life must be 30,000,000 cycles.

2.7.2.1 Utility Monitoring and Control System (UMCS) / Energy Monitoring and Control (EMCS) or Automatic Meter Reading Interfaces

Provide gas meters capable of interfacing the output signal, equivalent to volumetric flow rate, with the existing UMCS / EMCS for data gathering in units of cubic meters cubic feet. Provide meters that do not require power to function and deliver data. Output signal must be either a voltage or amperage signal that can be converted to volumetric flow by using an appropriate scaling factor.

2.7.2.2 Measurement Configuration

For buildings that already have a gas meter with a pulse output, ensure that the pulse output is connected to a data gathering device (i.e. electric meter). For buildings where a natural gas meter already exists but does not have a pulse output, add a pulse kit to the existing meter and tie the output to a data gathering device. If the existing gas meter will
not accept a pulse kit or if no meter exists a new natural gas meter must be installed, also requiring a pulse output to a data gathering device. Ensure the pulse frequency and electronic characteristics are compatible with the existing data gathering device, if any.

2.8 BOLTING (BOLTS AND NUTS)

Stainless steel bolting; ASTM A193/A193M, Grade B8M or B8MA, Type 316, for bolts; and ASTM A194/A194M, Grade 8M, Type 316, for nuts. Dimensions of bolts, studs, and nuts must conform with ASME B18.2.1 and ASME B18.2.2 with coarse threads conforming to ASME B1.1, with Class 2A fit for bolts and studs and Class 2B fit for nuts. Bolts or bolt-studs must extend through the nuts and may have reduced shanks of a diameter not less than the diameter at root of threads. Bolts must have American Standard regular square or heavy hexagon heads; nuts must be American Standard heavy semifinished hexagonal.

2.9 GASKETS

Fluorinated elastomer, compatible with flange faces.

2.10 IDENTIFICATION FOR ABOVEGROUND PIPING

MIL-STD-101 for legends and type and size of characters. For pipes 3/4 inch od and larger, provide printed legends to identify contents of pipes and arrows to show direction of flow. Color code label backgrounds to signify levels of hazard. Make labels of plastic sheet with pressure-sensitive adhesive suitable for the intended application. For pipes smaller than 3/4 inch od, provide brass identification tags 1 1/2 inches in diameter with legends in depressed black-filled characters.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy or areas of conflict before performing the work.

3.2 EXCAVATION AND BACKFILLING

Provide required excavation, backfilling, and compaction as specified in Section 31 00 00 EARTHWORK.

3.3 GAS PIPING SYSTEM

Provide a gas piping system from the point of delivery, defined as the outlet of the meter set assembly, as specified under "Gas Service" within this specification, to the connections to each gas utilization device that is in compliance with NFPA 54.

3.3.1 Protection and Cleaning of Materials and Components

Protect equipment, pipe, and tube openings by closing with caps or plugs during installation. At the completion of all work, thoroughly clean the entire system.
3.3.2 Workmanship and Defects

Piping, tubing and fittings must be clear and free of cutting burrs and defects in structure or threading and must be thoroughly brushed and chip-and-scale-blowed. Repair of defects in piping, tubing or fittings is not allowed; replace defective items when found.

3.4 PROTECTIVE COVERING

3.4.1 Underground Metallic Pipe

Protect buried metallic piping and tubing from corrosion by either: (1) applying protective coatings as specified in Section 335115 NATURAL-GAS / LIQUID PETROLEUM GAS DISTRIBUTION; (2) encasement in a water tight plastic conduit; or (3) encasement in a protective system designed and listed by the manufacturer for this application. When dissimilar metals are joined underground, use gastight insulating fittings.

3.4.2 Aboveground Metallic Piping Systems

3.4.2.1 Ferrous Surfaces

Touch up shop primed surfaces with ferrous metal primer. Solvent clean surfaces that have not been shop primed. Mechanically clean surfaces that contain loose rust, loose mill scale and other foreign substances by power wire brushing and prime with ferrous metal primer. Finish primed surfaces with two coats of exterior oil paint.

3.4.2.2 Nonferrous Surfaces

Except for aluminum alloy pipe, do not paint nonferrous surfaces. Paint surfaces of aluminum alloy pipe and fittings to protect against external corrosion where they contact masonry, plaster, insulation, or are subject to repeated wettings by such liquids as water, detergents or sewage. Solvent-clean the surfaces and treat with vinyl type wash coat. Apply a first coat of aluminum paint and a second coat of alkyd gloss enamel or silicone alkyd copolymer enamel.

3.5 INSTALLATION

Install the gas system in conformance with the manufacturer's recommendations and applicable provisions of NFPA 54 and AGA XR0603, and as indicated. Perform all pipe cutting without damage to the pipe, with an approved type of mechanical cutter, unless otherwise authorized. Use wheel cutters where practicable. On steel pipe 6 inches and larger, an approved gas cutting and beveling machine may be used. Cut thermoplastic and fiberglass pipe in accordance with AGA XR0603.

3.5.1 Metallic Piping Installation

Bury underground piping a minimum of 18 inches below grade. Make changes in direction of piping with fittings only; mitering or notching pipe to form elbows and tees or other similar type construction is not permitted. Branch connection may be made with either tees or forged branch outlet fittings. Provide branch outlet fittings which are forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Do not use aluminum alloy pipe in exterior locations or underground.
3.5.2 Thermoplastic and Fiberglass Piping, Tubing, and Fittings

Installation of thermoplastic and fiberglass piping, tubing, and fittings is permitted only outside and underground. Bury piping a minimum of 18 inches below grade. Install the piping to avoid excessive stresses due to thermal contraction, and use only where indicated. Installations must be made using qualified procedures, by qualified installers, and in compliance with AGA XR0603 and NFPA 54, and must be inspected by a qualified inspector.

3.5.3 Connections Between Metallic and Plastic Piping

Connections between metallic and plastic piping are only allowed outside, underground, and with approved transition fittings.

3.5.4 Piping and Tubing Buried Under Buildings

Run underground piping and tubing installed beneath buildings in a steel pipe casing protected from corrosion with protective coatings as specified in Section 33 51 15 NATURAL-GAS / LIQUID PETROLEUM GAS DISTRIBUTION or installed within a water tight plastic conduit or as part of a listed encasement system. Extend casing or encasement system at least 4 inches outside the building, and provide the pipe with spacers and end bushings to seal at both ends to prevent the entrance of water and/or the escape of gas. Extend a vent line from the annular space above grade outside to a point where gas will not be a hazard, and terminate in a rain/insect-resistant fitting.

3.5.5 Concealed Piping in Buildings

Do not use combinations of fittings (unions, tubing fittings, running threads, right- and left-hand couplings, bushings, and swing joints) to conceal piping within buildings.

3.5.5.1 Piping and Tubing in Partitions

Locate concealed piping and tubing in hollow, rather than solid, partitions. Protect tubing passing through walls or partitions against physical damage both during and after construction, and provide appropriate safety markings and labels.

3.5.5.2 Piping in Floors

Lay piping in solid floors in channels suitably covered to permit access to the piping with minimum damage to the building.

3.5.6 Aboveground Piping

Run aboveground piping as straight as practicable along the alignment and elevation indicated, with a minimum of joints, and separately supported from other piping system and equipment. Install exposed horizontal piping no farther than 6 inches from nearest parallel wall and at an elevation which prevents standing, sitting, or placement of objects on the piping.

3.5.7 Final Gas Connections

Unless otherwise specified, make final connections with rigid metallic pipe and fittings. Flexible connectors may be used for final connections to gas utilization equipment. Provide accessible gas shutoff valve and coupling for each gas equipment item.
3.6 PIPE JOINTS

Design and install pipe joints to effectively sustain the longitudinal pull-out forces caused by contraction of the piping or superimposed loads.

3.6.1 Threaded Metallic Joints

Provide threaded joints in metallic pipe with tapered threads evenly cut and made with UL approved graphite joint sealing compound for gas service or tetrafluoroethylene tape applied to the male threads only. Threaded joints up to 1-1/2 inches in diameter may be made with approved tetrafluoroethylene tape. Threaded joints up to 2 inches in diameter may be made with approved joint sealing compound. After cutting and before threading, ream pipe and remove all burrs. Caulking of threaded joints to stop or prevent leaks is not permitted.

3.6.2 Welded Metallic Joints

Conform beveling, alignment, heat treatment, and inspection of welds to NFPA 54. Remove weld defects and make repairs to the weld, or remove the weld joints entirely and reweld. After filler metal has been removed from its original package, protect and store so that its characteristics or welding properties are not affected adversely. Do not use electrodes that have been wetted or have lost any of their coating.

3.6.3 Thermoplastic and Fiberglass Joints

3.6.3.1 Thermoplastic and Fiberglass

Conform jointing procedures to AGA XR0603. Do not make joints with solvent cement or heat of fusion between different kinds of plastics.

3.6.3.2 PE Fusion Welding Inspection

Visually inspect butt joints by comparing with, manufacturer's visual joint appearance chart. Inspect fusion joints for proper fused connection. Replace defective joints by cutting out defective joints or replacing fittings. Inspect, in conformance with API 570, 100 percent of all joints and re-inspect all corrections. Arrange with the pipe manufacturer's representative in the presence of the Contracting Officer to make first time inspection.

3.6.4 Joining Thermoplastic or Fiberglass to Metallic Piping or Tubing

When compression type mechanical joints are used, provide gasket material in the fittings compatible with the plastic piping and with the gas in the system. Use an internal tubular rigid stiffener in conjunction with the fitting, flush with end of the pipe or tubing, extending at least to the outside end of the compression fitting when installed. Remove all rough or sharp edges from stiffener. Do not force fit stiffener in the plastic. Split tubular stiffeners are not allowed.

3.7 PIPE SLEEVES

Provide pipes passing through concrete or masonry walls or concrete floors or roofs with pipe sleeves fitted into place at the time of construction. Do not install sleeves in structural members except where indicated or approved. Make all rectangular and square openings as detailed. Extend
each sleeve through its respective wall, floor or roof, and cut flush with
each surface, except in mechanical room floors not located on grade where
clamping flanges or riser pipe clamps are used. Extend sleeves in
mechanical room floors above grade at least 4 inches above finish floor.
Unless otherwise indicated, use sleeves large enough to provide a minimum
clearance of 1/4 inch all around the pipe. Provide steel pipe for sleeves
in bearing walls, waterproofing membrane floors, and wet areas. Provide
sleeves in nonbearing walls, floors, or ceilings of steel pipe, galvanized
sheet metal with lock-type longitudinal seam, or moisture-resistant fiber
or plastic. For penetrations of fire walls, fire partitions and floors
which are not on grade, seal the annular space between the pipe and sleeve
with fire-stopping material and sealant that meet the requirement of
Section 07 84 00 FIRESTOPPING.

3.8 PIPES PENETRATING WATERPROOFING MEMBRANES

Install pipes penetrating waterproofing membranes as specified in Section
22 00 00 PLUMBING, GENERAL PURPOSE.

3.9 FIRE SEAL

Fire seal all penetrations of fire rated partitions, walls and floors in
accordance with Section 07 84 00 FIRESTOPPING.

3.10 ESCUTCHEONS

Provide escutcheons for all finished surfaces where gas piping passes
through floors, walls, or ceilings except in boiler, utility, or equipment
rooms.

3.11 SPECIAL REQUIREMENTS

Provide drips, grading of the lines, freeze protection, and branch outlet
locations as shown and conforming to the requirements of NFPA 54.

3.12 BUILDING STRUCTURE

Do not weaken any building structure by the installation of any gas
piping. Do not cut or notch beams, joists or columns. Attach piping
supports to metal decking. Do not attach supports to the underside of
concrete filled floors or concrete roof decks unless approved by the
Contracting Officer.

3.13 PIPING SYSTEM SUPPORTS

Support gas piping systems in buildings with pipe hooks, metal pipe straps,
bands or hangers suitable for the size of piping or tubing. Do not support
any gas piping system by other piping. Conform spacing of supports in gas
piping and tubing installations to the requirements of NFPA 54. Conform
the selection and application of supports in gas piping and tubing
installations to the requirements of MSS SP-58. In the support of multiple
pipe runs on a common base member, use a clip or clamp where each pipe
crosses the base support member. Spacing of the base support members is
not to exceed the hanger and support spacing required for any of the
individual pipes in the multiple pipe run. Rigidly connect the clips or
clamps to the common base member. Provide a clearance of 1/8 inch between
the pipe and clip or clamp for all piping which may be subjected to thermal
expansion.
3.14 ELECTRICAL BONDING AND GROUNDING

Provide a gas piping system within the building that is electrically continuous and bonded to a grounding electrode as required by NFPA 54 and NFPA 70.

3.15 SHUTOFF VALVE

Install the main gas shutoff valve controlling the gas piping system to be easily accessible for operation, as indicated, protected from physical damage, and marked with a metal tag to clearly identify the piping system controlled. Install valves approximately at locations indicated. Orient stems vertically, with operators on top, or horizontally. Provide PE piping manufacturer bracket support assembly securely fastened to structure for valve connections to resist operating torque applied to PE pipes. Provide stop valve on service branch at connection to main and shut-off valve on riser outside of building.

3.16 LINE AND APPLIANCE PRESSURE REGULATORS

Install line pressure regulators and appliance regulators in accordance with the manufacturer's requirements and in accordance with NFPA 54. Install each regulator in an accessible location and install shutoff valves ahead of each line and appliance regulator to allow for maintenance. Where vent limiting devices are not included in the regulators, install a vent pipe to the exterior of the building. Terminate all service regulator vents and relief vents in the outside air in rain and insect resistant fittings. Locate the open end of the vent where gas can escape freely into the atmosphere, away from any openings into the building and above areas subject to flooding.

3.17 GAS SERVICE INSTALLATION

Installations must be in accordance with 49 CFR 192 and ASME B31.8. Contractor must submit and use only tested and approved work procedures. Contractor must use only welders and jointers who have been recently qualified by training and test for joining and installing the gas pipe material used on this job. The finished product must be inspected by a person qualified to inspect joints made by the particular procedures used to make joints.

3.17.1 Service Line

Install service line, branch connection to the main, and riser in accordance with 49 CFR 192 and ASME B31.8. Provide a minimum of 18 inches cover or encase the service line so that it is protected. Install service line so that no undue stress is applied to the pipe, connection, or riser. Install approved riser and terminate with an approved isolation valve, EFV and automatic shutoff device. After laying of pipe and testing, backfill the trench in accordance with Section 31 00 00 EARTHWORK.

Were steel pipe is used as service line, install corrosion prevention coating and cathodic protect for the steel service line. Where connected to an existing cathodically protected steel pipe, ensure electrical continuity from the riser to the branch connection to the main. Install a dielectric fitting on the riser to prevent electrical continuity to the above ground piping.
Where plastic pipe is used as the service line, make joints in accordance with procedures qualified by test. Personnel joining plastic pipe must be qualified by making a satisfactory specimen joint that passes the required inspection and test listed in 49 CFR 192.285. Inspection must be made by inspectors qualified in evaluating joints made under the specific joining procedure, as required by 49 CFR 192.287.

3.17.2 Service Regulator

Install service regulator in accordance with 49 CFR 192 and ASME B31.8 and this specification ensuring that the customer's piping is protected from over pressurization should the service regulator fail. A 3/8 inch tapped fitting equipped with a plug must be provided on both sides of the service regulator for installation of pressure gauges for adjusting the regulator. For inside installations, route the regulator vent pipe through the exterior wall to the atmosphere, and seal building penetrations for service line and vent. Terminate the regulator vent so that it is protected from precipitation and insect intrusion, so that it is not submerged during floods, and so that gas escaping will not create a hazard or enter the building through openings.

3.17.3 Gas Meter

Install shutoff valve, meter set assembly, and service regulator on the service line outside the building, 18 inches above the ground on the riser. An insulating joint (dielectric connection) must be installed on the inlet side of the meter set assembly and service regulator and must be constructed to prevent flow of electrical current.

3.18 CATHODIC PROTECTION

Provide cathodic protection for underground ferrous gas piping as specified in Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE).

3.19 TESTING

Submit test procedures and reports in booklet form tabulating test and measurements performed; dated after award of this contract, and stating the Contractor's name and address, the project name and location, and a list of the specific requirements which are being certified. Test entire gas piping system to ensure that it is gastight prior to putting into service. Prior to testing, purge the system, clean, and clear all foreign material. Test each joint with an approved gas detector, soap and water, or an equivalent nonflammable solution. Inspect and test each valve in conformance with API Std 598 and API Std 607. Complete testing before any work is covered, enclosed, or concealed, and perform with due regard for the safety of employees and the public during the test. Install bulkheads, anchorage and bracing suitably designed to resist test pressures if necessary, and as directed and or approved by the Contracting Officer. Do not use oxygen as a testing medium.

3.19.1 Pressure Tests

Submit test procedures and reports in booklet form tabulating test and measurements performed; dated after award of this contract, and stating the Contractor's name and address, the project name and location, and a list of the specific requirements which are being certified. Before appliances are connected, test by filling the piping systems with air or an inert gas to withstand a minimum pressure of 3 pounds gauge for a period of not less...
than 10 minutes as specified in NFPA 54 without showing any drop in pressure. Do not use Oxygen for test. Measure pressure with a mercury manometer, slope gauge, or an equivalent device calibrated to be read in increments of not greater than 0.1 pound. Isolate the source of pressure before the pressure tests are made.

3.19.2 Test With Gas

Before turning on gas under pressure into any piping, close all openings from which gas can escape. Immediately after turning on the gas, check the piping system for leakage by using a laboratory-certified gas meter, an appliance orifice, a manometer, or equivalent device. Conform all testing to the requirements of NFPA 54. If leakage is recorded, shut off the gas supply, repair the leak, and repeat the tests until all leaks have been stopped.

3.19.3 Purging

After testing is completed, and before connecting any appliances, fully purge all gas piping. Conform testing procedures to API RP 1110. Do not purge piping into the combustion chamber of an appliance. Do not purge the open end of piping systems into confined spaces or areas where there are ignition sources unless the safety precautions recommended in NFPA 54 are followed.

3.19.4 Labor, Materials and Equipment

Furnish all labor, materials and equipment necessary for conducting the testing and purging.

3.20 PIPE COLOR CODE MARKING

Provide color code marking of piping as specified in Section 09 90 00 PAINTS AND COATINGS, conforming to ASME A13.1.

-- End of Section --
SECTION 23 21 13.00 20

LOW TEMPERATURE WATER (LTW) HEATING SYSTEM

04/06

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ACOUSTICAL SOCIETY OF AMERICA (ASA)

ASA S1.4 (1983; Amendment 1985; R 2006)
Specification for Sound Level Meters (ASA 47)

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

AMERICAN WELDING SOCIETY (AWS)

ASME INTERNATIONAL (ASME)

ASME B1.1 (2003; R 2008) Unified Inch Screw Threads (UN and UNR Thread Form)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges

ASME B16.24 (2011) Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500

ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300

ASME B16.34 (2017) Valves - Flanged, Threaded and Welding End

ASME B16.36 (2015) Orifice Flanges

ASME B31.9 (2014; Errata 2015) Building Services Piping

ASME B40.100 (2013) Pressure Gauges and Gauge Attachments

ASME BPVC SEC VIII D1 (2015) BPVC Section VIII-Rules for Construction of Pressure Vessels Division 1

ASTM INTERNATIONAL (ASTM)

ASTM A194/A194M (2017) Standard Specification for Carbon Steel, Alloy Steel, and Stainless Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both

COPPER DEVELOPMENT ASSOCIATION (CDA)

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-110 (2010) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

MSS SP-67 (2017) Butterfly Valves

MSS SP-70 (2011) Gray Iron Gate Valves, Flanged and Threaded Ends

MSS SP-72 (2010a) Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-80 (2013) Bronze Gate, Globe, Angle and Check Valves

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

U.S. GENERAL SERVICES ADMINISTRATION (GSA)

CID A-A-1689 (Rev B) Tape, Pressure-Sensitive Adhesive, (Plastic Film)

CID A-A-59617 (Basic) Unions, Brass or Bronze, Threaded

SECTION 23 21 13.00 20 Page 3
Pipe Connections and Solder-Joint Tube Connections

FS WW-S-2739
(Basic; Notice 1; Notice 2) Strainers, Sediment: Pipeline, Water, Air, Gas, Oil, or Steam

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

29 CFR 1910.219 Mechanical Power Transmission Apparatus

1.2 RELATED REQUIREMENTS

Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS applies to this section with additions and modifications specified herein.

1.3 SYSTEM DESCRIPTION

Except as specified otherwise, equipment and piping components shall be suitable for use in low temperature water heating system. Except as modified herein, the pressure temperature limitations shall be as specified in the referenced standards and specifications. Pressures in this specification are pressures in pounds per square inch above atmospheric pressure, and temperatures are in degrees Fahrenheit (F).

1.3.1 Hot Water Heating System

Submit plan, elevations, dimensions, capacities, and ratings. Include the following:

a. Unit heaters
d. Pumps
e. Valves
f. Expansion tanks
g. Flow measuring equipment
h. Backflow preventer
i. Air separating tank
j. Boilers

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:
SD-02 Shop Drawings

Hot water heating system

SD-03 Product Data

Pumps

Include pump speed and characteristic curve for performance of impeller selected for each pump. Curves shall indicate capacity vs head, efficiency, and brake power for full range, from shut-off to free delivery.

Expansion tanks

Flow measuring equipment

Backflow preventers

External air separation tanks

Hot water heating pipe

SD-06 Test Reports

Hydrostatic test of piping system

Auxiliary equipment and accessory tests

Submit test reports in accordance with the paragraph entitled "Field Quality Control."

SD-07 Certificates

Backflow preventer certification

Report of prior installations

Welding procedures

Welder's qualifications

SD-10 Operation and Maintenance Data

Submit in accordance with Section 01000 OPERATION AND MAINTENANCE DATA. Submit a list of qualified service organizations which includes addresses and qualifications.

1.5 QUALITY ASSURANCE

1.5.1 Standard Commercial Product for Terminal Units

Terminal units provided shall comply with features called out in this specification and shall be the manufacturer's standard commercial product. Additional or better features which are not prohibited by this specification but which are a part of the manufacturer's standard commercial product, shall be included in the terminal units being furnished. A standard commercial product is a product which has been sold
or is currently being offered for sale, on the commercial market through advertisements or manufacturer's catalogs, or brochures. Provide Institute of Boiler and Radiator Manufacturer (IBR) or Steel Boiler Institute (SBI) rating for required capacity.

1.5.2 Welding

1.5.2.1 Report of Prior Installations

Submit a Certificate of Full Approval or a current Certificate of Approval for each design, size, and make of backflow preventer being provided for the project. Certificate shall be from the Foundation for Cross-Connection Control and Hydraulic Research, University of Southern California, and shall attest that this design, size, and make of backflow preventer has satisfactorily passed the complete sequence of performance testing and evaluation for the respective level of approval. A Certificate of Provisional Approval is not acceptable in lieu of the above.

1.5.2.2 Welding Procedures

Before performing welding, submit three copies of welding procedure specification for all metals to be used in the work, together with proof of welder's qualification as outlines in ASME B31.9.

1.5.2.3 Welder's Qualifications

Before welder or operator performs welding, submit three copies of Welder's Performance Qualification Record in conformance with ASME B31.9 showing that the welder was tested under the approved procedure specification submitted by the Contractor. In addition, submit each welder's assigned number, letter, or symbol used to identify the work of the welder.

1.5.2.4 Identification of Welder's Work

Ensure that each welder's assigned number, letter or symbol is affixed immediately upon completion of the weld. To welders making defective welds after passing a qualification test, give a requalification test. Upon failing to pass the test, do not permit welder to work in this contract.

1.5.2.5 Previous Qualifications

Welding procedures, welders, and welding operators previously qualified by test may be accepted for this contract without requalification subject to the approval and provided that all the conditions specified in ASME B31.9 are met before a procedure can be used.

1.5.3 Brazing and Soldering

1.5.3.1 Brazing Procedure

ASME B31.9. Brazing procedure for joints shall be as outlined in CDA A4015.

1.5.3.2 Soldering, Soldering Preparation, and Procedures for Joints

ASME B31.9 and as outlined in CDA A4015.

1.5.4 Backflow Preventer Certification

Submit a Certificate of Full Approval or a current Certificate of Approval
for backflow preventers.

1.6 SAFETY STANDARDS

1.6.1 Welding

Safety in welding and cutting of pipe shall conform to AWS Z49.1.

1.6.2 Guards

Couplings, motor shafts, gears and other moving parts shall be guarded, in accordance with OSHA 29 CFR 1910.219. Guards shall be cast iron or expanded metal. Guard parts shall be rigid and removable without disassembling the guarded unit.

PART 2 PRODUCTS

2.1 PIPE AND FITTINGS

2.1.1 Hot Water Heating Pipe (Supply and Return)

ASTM A53/A53M electric resistance welded or seamless Schedule 40 steel pipe or ASTM B88 Type L hard drawn Copper tubing.

2.1.2 Fittings

Provide fittings compatible with the pipe being provided and shall conform to the following requirements.

2.1.2.1 Steel or Malleable Iron Pipe

Sizes 1/8 to 2 inches. ASME B16.11 steel socket welding or screwed type or ASME B16.3 for screwed type malleable iron fittings.

2.1.2.2 Steel, Cast Iron, or Bronze

Sizes 2 1/2 inches and above. Steel fitting butt welding type ASME B16.9 or ASME B16.5 flanged type. Cast iron fittings flanged type ASME B16.1. Bronze fittings up to 8 inch size flanged type ASME B16.24.

2.1.2.3 Fittings for Copper Tubing

ASME B16.18 cast bronze solder joint type or ASME B16.22 wrought copper solder joint type. Fittings may be flared or compression joint type.

2.1.3 Unions

2.1.3.1 Steel Pipe

Provide ASME B16.39, malleable iron unions, threaded connections.

2.1.3.2 Copper Tubing

Provide CID A-A-59617, bronze unions, solder joint end.

2.1.3.3 Dielectric Union

Provide insulated union with galvanized steel female pipe-threaded end and a copper solder joint end conforming with ASME B16.39, Class 1,
dimensional, strength and pressure requirements. Union shall have a water-impervious insulation barrier capable of limiting galvanic current to one percent of the short-circuit current in a corresponding bimetallic joint. When dry, insulation barrier shall be able to withstand a 600-volt breakdown test.

2.1.4 Flanges

Remove raised faces when used with flanges having a flat face.

2.1.4.1 Steel Flanges

ASME B16.5 forged steel, welding type.

2.1.4.2 Cast Iron Screwed Flanges

ASME B16.1.

2.1.4.3 Bronze Screwed Flanges

2.1.5 Drains and Overflows

2.1.5.1 Steel Pipe

ASTM A53/A53M, Electric resistance welded Schedule 40, Malleable iron or forged steel fittings, screwed or welded joints.

2.1.5.2 Copper Tubing

ASTM B88, Type L, hard drawn, cast brass or wrought copper fittings, Grade Sb5 solder joints.

2.1.5.3 PVC Pipe

ASTM D1785, Schedule 40 and solvent weld joints.

2.1.6 Valves

Valves shall have rising stems and shall open when turned counterclockwise.

2.1.6.1 Gate Valves

a. Bronze Gate Valves: MSS SP-80, 2 inches and smaller, wedge disc, inside screw type not less than Class 150. Use solder joint ends with copper tubing.

b. Steel Gate Valves: ASME B16.34, provide with open stem and yoke type with solid wedge or flexible wedge disc and heat and corrosion-resistant steel trim.

c. Cast Iron Gate Valves: MSS SP-70, 2 1/2 inches and larger, open stem and yoke type with bronze trim.

2.1.6.2 Globe and Angle Valves

a. Bronze Globe and Angle Valves: MSS SP-80, 2 inches and smaller, Class 200, except use Class 150 with solder ends for copper tubing. Valves
shall have renewable seat and discs except solder end valves which shall have integral seats.

b. Steel Globe and Angle Valves: ASME B16.34, provide with heat and corrosion-resistant trim.

c. Cast Iron Globe and Angle Valves: MSS SP-85, 2 1/2 inches and larger, with bronze trim, tapped drains and brass plug.

2.1.6.3 Check Valves

a. Bronze Check Valves: MSS SP-80, 2 inches and smaller, regrinding swing check type, Class 200.

b. Steel Swing Check Valves: ASME B16.34, regrinding swing check type, Class 200.

(1) Swing check valves shall have bolted caps.

(2) Steel Lift check valves 2 inches and smaller shall have bolted caps. Lift check valves 2 1/2 inches and larger shall have pressure seal caps.

c. Cast Iron Check Valves: ASME B16.34, 2 1/2 inches and larger, bronze trim, non-slam, eccentric disc type for centrifugal pump discharge service.

2.1.6.4 Temperature Regulating Valves

Provide ASSE 1017 copper alloy body with adjustable range thermostat.

2.1.6.5 Water Pressure-Reducing Valves

ASSE 1003.

2.1.6.6 Ball Valves

Flanged or butt-welding ends ball valve shall conform to MSS SP-72, bronze. Threaded, socket-welding, solder joint, grooved and flared ends shall conform to MSS SP-110.

2.1.6.7 Flow Control Balancing Valves

Copper alloy or cast iron body, copper alloy or stainless internal working parts, and integral pointer that indicates the degree of valve opening. Valves shall be suitable for 125 psig at 190 degrees F hot water. Valve shall function as a service valve when in fully closed position. Valve body shall have factory-installed tappings for differential pressure meter connections for verification of pressure differential across valve orifice. Meter connections shall have positive check valves or shutoff valves. Each valve shall have metal tag showing the gallons per minute flow for each differential pressure reading.

2.1.6.8 Butterfly Valves

Conform with MSS SP-67, Type I - Tight shut off valve, and valve ends. Valve body material shall be cast iron and shall be bubble tight for shutoff at 150 psig. Flanged and flangeless type valves shall have Type 300 series corrosion resistant steel stems and corrosion resistant or
bronze discs with molded elastomer disc seals. Flow conditions shall be for the regulation from maximum flow to complete shutoff by way of throttling effect. Valves shall be provided in closed system. Valves smaller than 8 inches shall have throttling handles. Valves 8 inches and larger shall have totally enclosed manual gear operators with adjustable balance return stops and indicators. Valves shall have a minimum of 7 locking positions and shall be suitable for water temperatures up to 200 degrees F.

2.1.6.9 Relief Valves

Bronze body, teflon seat, stainless steel stem and springs, automatic, direct pressure actuated, capacities ASME certified and labelled.

2.1.6.10 Valve Operating Mechanisms

Provide chainwheels and extension stems where indicated and as specified.

b. Chainwheel Operator: Shall be fabricated of cast iron or steel and shall include a wheel, endless chain and a guide to keep the chain on the wheel. Provide galvanized steel endless chain extending to within 3 feet of the floor.

d. Extension Stem: Corrosion resisting steel designed for rising and non-rising stems. Provide in length required to connect the valve stem and the handwheel and of sufficient cross section to transfer the torque required to operate the valve.

2.1.6.11 Balancing Valves

Balancing valves shall be calibrated bronze body balancing valves with integral ball valve and venturi or valve orifice and valve body pressure taps for flow measurement based on differential pressure readings. Valve pressure taps and meter connections shall have seals and built-in check valves with threaded connections for a portable meter. Meter shall be provided by the same manufacturer and be capable of reading system pressures and shall meet the requirements of the paragraph entitled "Flow Measuring Equipment." Valves shall have internal seals to prevent leakage around rotating element and be suitable for full shut-off rated pressure. Valves shall have an operator with integral pointer and memory stop. Balancing valves shall be selected for the required flows as indicated on the plans.

2.1.7 End Connections

2.1.7.1 Flexible Connectors

Provide flexible pipe connectors on piping connected to equipment. Flexible section shall consist of rubber, tetrafluoroethylene resin, corrosion-resistant steel, bronze, monel, or galvanized steel. Material provided and configuration shall be suitable for pressure, temperature, and circulating medium. Flexible section shall have threaded, flanged ends and shall be suitable for service intended. Flexible section may be reinforced with metal retaining rings, with built-in braided wire reinforcement and restriction bolts or with wire braid cover suitable for service intended.
2.1.7.2 Steel Piping

Screwed or socket welded for 2 inches and smaller and flanged or butt welded for 2 1/2 inches and larger.

b. Flanged Joints: Bolting and gaskets shall be as follows:

1. Bolting: Bolt and stud material ASTM A307, Grade B, and nut material ASTM A194/A194M, Grade 2. Bolt, stud, and nut dimensions ASME B18.2.2 threads ASME B1.1coarse type with Class 2A fit for bolts and studs, and Class 2B fit for nuts. Bolts or bolt studs shall extend completely through the nuts and may have reduced shanks of a diameter not less than the diameter at root of threads. Carbon steel bolts shall have American Standard regular square or heavy hexagon heads and shall have American Standard heavy semifinished hexagonal nuts conforming to ASME B18.2.2.

2. Gaskets: ASME B16.21, Nonasbestos compressed material 1/16 inch thickness full face or self-centering flat ring type and suitable for pressure and temperature of the piping system.

c. Butt Weld Joints: ASME B31.9. Backing rings shall conform to ASME B31.9. Ferrous rings shall not exceed 0.05 percent sulfur; for alloy pipe, backing rings shall be of material compatible with the chemical composition of the parts to be welded and preferably of the same composition. Provide continuous machined or split band backing rings.

2.1.7.3 Joints for Copper Tubing

a. Solder conforming to ASTM B32 alloy grade Sb5 or Sn96. Solder and flux shall be lead free (less than 0.2 percent of lead).

b. Copper Tube Extracted Joint: An extracted mechanical tee joint may be made in copper tube. Make joint with an appropriate tool by drilling a pilot hole and drawing out the tube surface to form a collar having a minimum height of three times the thickness of the tube wall. To prevent the branch tube from being inserted beyond the depth of the extracted joint, provide dimpled depth stops. Notch the branch tube for proper penetration into fitting to assure a free flow joint. Braze extracted joints using a copper phosphorous classification brazing filler metal. Soldered joints shall not be permitted.

2.1.8 Instrumentation

2.1.8.1 Pressure and Vacuum Gauges

Provide ASME B40.100 with restrictor.

2.1.8.2 Indicating Thermometers

Thermometers shall be dial type with an adjustable angle suitable for the service. Provide thermowell sized for each thermometer in accordance with the thermowell specification. Fluid-filled thermometers (mercury is not acceptable) shall have a nominal scale diameter of 5 inches.
shall be stainless-steel case with molded glass cover, stainless-steel stem and bulb. Stem shall be straight, length as required to fit well. Bimetal thermometers shall have a scale diameter of 3 1/2 inches. Case shall be hermetic. Case and stem shall be constructed of stainless steel. Bimetal stem shall be straight and of a length as required to fit the well.

2.1.8.3 Pressure/Temperature Test Ports

Pressure/Temperature Test Ports shall have brass body and EPDM and/or Neoprene valve seals. Ports shall be rated for service between 35 and 275 degrees F and up to 500 psig. Ports shall be provided in lengths appropriate for the insulation thickness specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS and installed to allow a minimum of 12 inches of access for probe insertion. Provide with screw-on cap attached with a strap or chain to prevent loss when removed. Ports shall be 1/4 inch NPT and accept 1/8 inch diameter probes.

2.1.9 Miscellaneous Pipeline Components

2.1.9.1 Air Vent

Provide float type air vent in hydronic systems. Vent shall be constructed of brass or semi-steel body, copper float, and stainless steel valve and valve seat. Design air vent to suit system operating temperature and pressure. Provide isolating valve to permit service without draining the system. Pipe discharge of vent to a drain.

2.1.9.2 Strainers

Strainers for classes 125 and 250 piping in IPS 1/2 to 8 inches, inclusive, FS WW-S-2739 and locate as indicated.

2.1.9.3 Hangers and Supports

Design and fabrication of pipe hangers, supports, and welding attachments shall conform to MSS SP-58 and ASME B31.9. Hanger types and supports for bare and covered pipe shall conform to MSS SP-69 for the temperature range.

2.1.9.4 Pipe Sleeves

Sleeves in masonry and concrete walls, floors, and roof slabs shall be ASTM A53/A53M, Schedule 40 or Standard Weight, hot-dip galvanized steel pipe. Sleeves in partitions shall be zinc-coated sheet steel having a nominal weight of not less than 0.906 pound per square foot.

2.1.9.5 Escutcheon Plates

Provide one piece or split hinge metal plates for piping passing through floors, walls, and ceilings in exposed spaces. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished spaces and paint finish on metal plates in unfinished spaces.

2.2 CENTRAL MECHANICAL EQUIPMENT

2.2.1 Boilers

Provide as specified in Section 23 52 43.00 20 LOW PRESSURE WATER HEATING BOILERS UNDER 800,000 BTU/HR OUTPUT.
2.3 PIPING SYSTEM EQUIPMENT

2.3.1 Pumps

Provide hot water circulating pumps, CID A-A-50560, Service A. Pump casing and flange shall be made of close-grained cast iron. Shaft shall be carbon or alloy steel with lubricated bearings and impeller shall be bronze. Select pumps so that the operating point on selected impeller-curve will lie at or to the left of shutoff side of, and not more than 5 percent below, point of maximum efficiency for impeller. Provide motors of open splash proof type conforming to NEMA MG 1 and suitable for electrical characteristic as indicated. Motor starters shall conform to NEMA ICS 2 across the line type with NEMA ICS 6 general purpose enclosure.

2.3.2 Expansion Tanks

Provide welded steel, constructed and tested hydrostatically in accordance with ASME BPVC SEC VIII D1. Tank shall be equipped with all necessary fittings. The tank and fittings shall be pressure rated at least equal to the test pressure of the total system. Zinc coat the tank inside and out after fabrication by the hot dip process ASTM A123/A123M.

2.3.3 External Air Separation Tanks

Provide tank constructed of steel, designed for not less than 75 psig, and constructed and tested in accordance with the requirements of ASME BPVC SEC VIII D1. Provide tangential inlet and outlet connections, flanged for sizes 2 1/2 inches and larger. Each unit shall have an internal design suitable for creating the required vortex and subsequent air separation. Provide with automatic air release device and galvanized steel strainer. Provide a blow down connection with a gate valve and piped to nearest floor drain.

2.3.4 Backflow Preventers

Reduced pressure principle type. Furnish proof that each make, model/design, and size of backflow preventer being furnished for the project is approved by and has a current "Certificate of Approval" from the local code. Listing of a particular make, model/design, and size in the current local code will be acceptable as the required proof.

2.3.5 Flow Measuring Equipment

Orifice or venturi type. Flow metering equipment including pitot tubes, venturis, orifice plates, flanges, and indicating meters shall be the product of one and the same manufacturer. Provide flowmeters of permanent type. Flowmeters shall be suitable for service in which they are to be installed. Primary elements of flowmeters shall conform to ASME recommendations for flowmeters. Provide bronze, monel, or stainless steel materials for wetted parts of flow meters.

a. Orifices: Square-edge type, made of corrosion and erosion resistant metal and mounted between pipe flanges having factory-made pressure taps provided with shutoff valves. Orifice flanges shall conform to ASME B16.36.

b. Tubular Flowmeters: Flow measuring elements consisting of venturi tubes or pitot tubes where indicated. Locations and arrangement of piping, both upstream and downstream of flow measuring elements shall
conform to the manufacturer's published literature. Provide each flow measuring element with an integral tab, or a metal tag on a corrosion-resistant steel wire, extending outside pipe covering, and stamped or printed in a visible position with manufacturer's name and address; serial number of meter to which it is to be connected; name, number, or location of equipment served; specified rate of flow; and multiplier to be applied to meter reading. Provide taps with shutoff valves and quick connecting hose fittings for portable meters or double ferrule compression fittings for connection to tubing for permanently located meters or recorders. Tubes shall be calibrated in accordance with ASME recommendations.

(1) Venturi Tubes: Certified by the manufacturer for the actual piping configuration and any necessary piping changes required for certification without additional cost to the Government. Throat diameter for each venturi tube shall be designed so that at specified rate of flow the scale reading will fall between 50 percent and 80 percent of full scale value. Select venturi tube sizes from the manufacturer's latest published tables of flow versus differential pressure. Unrecovered head loss at maximum flow shall not exceed 10 percent. Provide bronze or cast iron tubes with bronze-lined throats, with flanged, threaded, or welded ends to suit piping system. Provide bodies of fabricated steel and fittings of the same class as piping in which installed. Two integral meter taps shall be provided in each venturi tube. Connections for attachment to portable flow meter hoses shall be readily accessible and not over 6 feet above a floor or permanent platform.

c. Meters: Designed for a full scale pressure differential of 50 inches water gage for tubular type or 100 inches water gage for orifice type. Dials shall have square root or linear scales with developed length of not less than 12 inches. Provide flush mounted panel meters that read directly in gallons per minute. Dials of portable meters shall have square root scales reading from 0 to 100 gpm for use with multiplier stamped on orifice or tubular type. Provide meters designed for not less than 200 psi and protected against pressure surges. Meter bodies shall have taps for venting and draining.

(2) Portable Meters: Provide meter with a factory-fabricated carrying case with carrying handle. Provide case fitted to hold meter securely and to accommodate the following accessories:

(a) Two 15 foot lengths of connecting hose with suitable female connectors for connecting from meter to venturi tube pressure-tap nipples. Provide hose designed for a minimum service pressure of 125 psi or 150 percent of maximum system service pressure, whichever is greater.

(b) A completely assembled three-valve manifold with two block valves and vent and drain valves, piped and mounted on a base designed for use laying flat on a stationary surface.

(c) A bound set of descriptive bulletins, installation and operating instructions, parts list, and a set of curves showing flow versus pressure differential for each orifice, venturi tube, or pitot tube with which meter is to be used.
(d) A metal instruction plate, secured inside cover, illustrating use of meter.
(e) Provide meters with overall accuracy of plus or minus 5 percent of full scale flow over a range from 20 to 100 percent of full scale flow.

2.4 ELECTRICAL EQUIPMENT

Provide complete with motors, motor starters, thermal overload protection, and controls. Equipment and wiring shall be in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.5 CONTROLS

Provide controls as specified in Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

2.6 INSULATION

Provide shop and field applied insulation as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.7 ASBESTOS PROHIBITION

Asbestos and asbestos containing products are prohibited.

PART 3 EXECUTION

3.1 PREPARATION

Provide storage for equipment and material at the project site. All parts shall be readily accessible for inspection, repair, and renewal. Protect material and equipment from the weather.

3.2 INSTALLATION

Piping fabrication, assembly, welding, soldering, and brazing shall conform to ASME B31.9. Piping shall follow the general arrangement shown. Route piping and equipment within buildings out of the way of lighting fixtures and doors, windows, and other openings. Run overhead piping in buildings in inconspicuous positions. Provide adequate clearances from walls, ceilings, and floors to permit welding of joints and application of insulation. Make provision for expansion and contraction of pipe lines. Make changes in size of water lines with reducing fittings. Do not bury, conceal, or insulate until piping has been inspected, tested, and approved. Do not run piping concealed in walls, partitions, underground, or under the floor except as otherwise indicated. Where pipe passes through building structure, locate pipe joints and expansion joints where they may be inspected. Provide flanged joints where necessary for normal maintenance and where required to match valves and equipment. Furnish gaskets, packing, and thread compounds suitable for the service. Provide long radius ells where possible to reduce pressure drops. Pipe bends in lieu of welding fittings may be used where space permits. Pipe bends shall have a uniform radius of at least five times the pipe diameter and shall be free from appreciable flattening, wrinkling, or thinning of the pipe. Do not use mitering of pipe to form elbows, notching straight runs to form full sized tees, or any similar construction. Make branch connections over.
2 inches with welding tees except factory made forged welding branch outlets or nozzles having integral reinforcements conforming to ASME B31.9 may be used, provided the nominal diameter of the branch is at least one pipe size less than the nominal diameter of the run. Branch connections 2 inches and under can be threaded or welded. Run vertical piping plumb and straight and parallel to walls. Provide sleeves for lines passing through building structure. Provide a fire seal where pipes pass through fire wall, fire partitions, fire rated pipe chase walls, or floors above grade. Install piping connected to equipment with flexibility for thermal stresses and for vibration, and support and anchor so that strain from weight and thermal movement of piping is not imposed on the equipment.

3.2.1 Hangers and Supports

Unless otherwise indicated, horizontal and vertical piping attachments shall conform to MSS SP-58. Band and secure insulation protection shields without damaging pipe insulation. Continuous inserts and expansion bolts may be used.

3.2.2 Grading of Pipe Lines

Unless otherwise indicated, install horizontal lines of hot water piping to grade down in the direction of flow with a pitch of not less than one inch in 30 feet, except in loop mains and main headers where the flow may be in either direction.

3.2.3 Pipe Sleeves

Provide sleeves where pipes and tubing pass through masonry or concrete walls, floors, roof, and partitions. Annular space between pipe, tubing, or insulation and the sleeve shall not be less than 1/4 inch. Hold sleeves securely in proper position and location before and during construction. Sleeves shall be of sufficient length to pass through entire thickness of walls, partitions, or slabs. Sleeves in floor slabs shall extend 2 inches above finished floor. Firmly pack space between pipe or tubing and sleeve with oakum and caulk on both ends of the sleeve with plastic waterproof cement which will dry to a firm but pliable mass, or provide a mechanically adjustable segmented elastomeric seal. Seal both ends of penetrations through fire walls and fire floors to maintain fire resistive integrity with UL listed fill, void, or cavity material.

3.2.4 Flashing for Buildings

Provide flashing where pipes pass through building roofs, and make outside walls tight and waterproof.

3.2.5 Unions and Flanges

Provide unions and flanges to permit easy disconnection of piping and apparatus. Each connection having a screwed-end valve shall have a union. Place unions and flanges no farther apart than 100 feet. Install unions downstream of valves and at equipment or apparatus connections. Provide unions on piping under 2 inches in diameter, and provide flanges on piping 2 inches and over in diameter. Provide dielectric unions or flanges between ferrous and non-ferrous piping, equipment, and fittings; except that bronze valves and fittings may be used without dielectric couplings for ferrous-to-ferrous or non-ferrous-to-non-ferrous connections.
3.2.6 Connections for Future Equipment

Locate capped or plugged outlets for connections to future equipment as indicated.

3.2.7 Changes in Pipe Size

Provide reducing fittings for changes in pipe size; reducing bushings are not permitted. In horizontal lines, provide eccentric reducing fittings to maintain the top of the lines in the same plane.

3.2.8 Cleaning of Pipe

Thoroughly clean each section of pipe, fittings, and valves free of foreign matter before erection. Prior to erection, hold each piece of pipe in an inclined position and tap along its full length to loosen sand, mill scale and other foreign matter. For pipe 2 inches and larger, draw wire brush, of a diameter larger than that of the inside of the pipe, several times through the entire length of pipe. Before making final connections to apparatus, wash out interior of piping thoroughly with water. Plug or cap open ends of mains during shutdown periods. Do not leave lines open where foreign matter might enter the pipe.

3.2.9 Valves

Install valves in conformance with ASME B31.9. Provide gate valves unless otherwise directed. Install valves with stems horizontal or above. Locate or equip stop valves to permit operation from floor level, or provide with safe access in the form of walkways or ladders. Install valves in positions accessible for operation and repair.

3.2.9.1 Globe Valves

Install globe valves so that the pressure is below the disk and the stem horizontal.

3.2.9.2 Relief Valves

Provide valves on pressure tanks, low pressure side of reducing valves, heat exchangers, and expansion tanks. Select system relief valve so that capacity is greater than make-up pressure reducing valve capacity. Select equipment relief valve capacity to exceed rating of connected equipment. Pipe relief valve outlet to the nearest floor drain.

3.2.10 Pressure Gage

Provide a shut-off valve or pet cock between pressure gages and the line.

3.2.11 Thermometers

Provide thermometers and thermal sensing elements of control valves with a separable socket. Install separable sockets in pipe lines in such a manner to sense the temperature of flowing the fluid and minimize obstruction to flow.

3.2.12 Strainers

Provide strainers, with meshes suitable for the services, where indicated, or where dirt might interfere with the proper operation of valve parts,
orifices, or moving parts of equipment.

3.2.13 Pumps

Select pumps for specified fluid temperatures, are non-overloading in parallel or individual operation, and operate within 25 percent of midpoint of published maximum efficiency curve. Support piping adjacent to pump such that no weight is carried on pump casings. Install close coupled and base mounted pumps on concrete base, with anchor bolts, set and level, and grout in place and provide supports under elbows on pump suction and discharge line sizes 4 inches and over. Lubricate pump before start-up.

3.2.14 Equipment Foundations

Locate equipment foundations as shown on the drawings. Size, weight, and design shall preclude shifting of equipment under operating conditions. Foundations shall meet the requirements of the equipment manufacturer. Concrete shall conform to Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE, and grout shall be approved non-shrinking.

3.2.15 Equipment Installation

Install equipment in accordance with installation instructions of the manufacturers. Grout equipment mounted on concrete foundations before installing piping. Install piping in such a manner as not to place a strain on the equipment. Do not bolt flanged joints tight unless they match. Grade, anchor, guide, and support piping without low pockets.

3.2.16 Cleaning of Systems

As installation of the various system components is completed, fill, start, and vent prior to cleaning. Place terminal control valves in open position. Add cleaner to closed system at concentration as recommended by manufacturer. Apply heat while circulating, slowly raising temperature to 160 degrees F and maintain for 12 hours minimum. Remove heat and circulate to 100 degrees F or less; drain systems as quickly as possible and refill with clean water. Circulate for 6 hours at design temperatures, then drain. Refill with clean water and repeat until system cleaner is removed. Use neutralizer agents on recommendation of system cleaner supplier and approval of Contracting Officer. Remove, clean, and replace strainer screens. Inspect, remove sludge, and flush low points with clean water after cleaning process is completed. Include disassembly of components as required. Preliminary or final tests are not permitted until cleaning is approved.

3.2.17 Painting of Piping and Equipment

Provide in accordance with Section 09 90 00 PAINTS AND COATINGS.

3.2.18 Identification of Piping

Identify piping in accordance with OSHA 29 CFR 1910.144, except that labels or tapes may be used in lieu of painting or stenciling. Spacing of identification marking on runs shall not exceed 50 feet. Materials for labels and tapes shall conform to CID A-A-1689, and shall be general purpose type and color class. Painting and stenciling shall conform to Section 09 90 00 PAINTS AND COATINGS.
3.3 FIELD QUALITY CONTROL

Perform inspections and tests as specified herein to demonstrate that piping and equipment, as installed, is in compliance with contract requirements. Start up and operate the system. During this time, periodically clean the various strainers until no further accumulation of foreign material occurs. Exercise care so that minimum loss of water occurs when strainers are cleaned. Adjust safety and automatic control instruments to place them in proper operation and sequence.

3.3.1 Hydrostatic Test of Piping System

Test piping system hydrostatically using water not exceeding 100 degrees F. Conduct tests in accordance with the requirements of ASME B31.9 and as follows. Test piping system after all lines have been cleaned and before applying insulation covering. Remove or valve off from the system, gages, and other apparatus which may be damaged by the test before the tests are made. Install calibrated test pressure gage in the system to observe any loss in pressure. Maintain test pressure for a sufficient length of time to enable an inspection of each joint and connection. Perform tests after installation and prior to acceptance. Notify the Contracting Officer in writing 2 days prior to the time scheduled for the tests.

3.3.2 Auxiliary Equipment and Accessory Tests

Observe and check pumps, accessories, and equipment during operational and capacity tests for leakage, malfunctions, defects, noncompliance with referenced standards, or overloading.

3.3.2.1 Backflow Preventers

Backflow preventers shall be tested by locally approved and certified backflow assembly testers. A copy of the test report shall be provided to the Contracting Officer prior to placing the domestic water system into operation, or no later than 5 days after the test.

3.4 TESTING, ADJUSTING, AND BALANCING

Test, adjust, and balance the hydronic system in accordance with Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC.

3.4.1 Markings of Settings

Following final acceptance of the balancing report, the settings of all valves, splitters, dampers, and other adjustment devices shall be permanently marked so that adjustment can be restored if disturbed at anytime.

3.4.2 Sound Level Tests

Upon completion of testing and balancing of hydronic systems, conduct sound level tests of conditioned spaces. Use sound level meter required by ASA S1.4, Type 2, calibrated in accordance with NBS standards and guidelines, and accompanied by a certificate of calibration. Record sound levels in dBA with heating systems off and with heating systems operating. Record the following data for each room and system:

a. Background sound level (systems off);
b. Total sound level corrected for background; and

c. Sound power rating by manufacturer of the respective outlet.

Test Locations: Take sound level reading at location 6 feet from face of each outlet on a line at 45 degrees with face of outlet. Remedial Action: If sound level at any observation point exceeds 20 dBA, take remedial action as directed.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 720 (2002) Refrigerant Access Valves and Hose Connectors
AHRI 750 I-P (2016) Performance Rating of Thermostatic Refrigerant Expansion Valves

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Braze Welding and Braze Welding

ASME INTERNATIONAL (ASME)

Fittings for Flared Copper Tubes

ASME B31.1 (2016; Errata 2016) Power Piping

ASME B40.100 (2013) Pressure Gauges and Gauge Attachments

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

ASTM B62 (2017) Standard Specification for Composition Bronze or Ounce Metal Castings

ASTM D3308 (2012; R 2017) FStandard Specification for TFE Resin Skived Tape

ASTM D520 (2000; R 2011) Zinc Dust Pigment

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Refrigerant Piping System; G

SD-03 Product Data
Refrigerant Piping System
Spare Parts
Qualifications
Refrigerant Piping Tests
Verification of Dimensions

SD-06 Test Reports
Refrigerant Piping Tests

SD-07 Certificates
Service Organization

SD-10 Operation and Maintenance Data
Maintenance; G
Operation and Maintenance Manuals; G
Demonstrations; G

1.3 QUALITY ASSURANCE

1.3.1 Qualifications

Submit 4 copies of qualified procedures, and list of names and identification symbols of qualified welders and welding operators, prior to non-factory welding operations.

1.3.2 Contract Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. Carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions.

1.4 DELIVERY, STORAGE, AND HANDLING

Protect stored items from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation is the Contractor's responsibility. Replace any materials found to be damaged at the
Contractor's expense. During installation, cap piping and similar openings to keep out dirt and other foreign matter.

1.5 MAINTENANCE

1.5.1 General

Submit Data Package 2 plus operation and maintenance data complying with the requirements of Section 01000 OPERATION AND MAINTENANCE DATA and as specified herein.

1.5.2 Extra Materials

Submit spare parts data for each different item of equipment specified, after approval of detail drawings and not later than 1 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply, a recommended spare parts list for 1 year of operation, and a list of the parts recommended by the manufacturer to be replaced on a routine basis.

PART 2 PRODUCTS

2.1 STANDARD COMMERCIAL PRODUCTS

a. Provide materials and equipment which are standard products of a manufacturer regularly engaged in the manufacturing of such products, that are of a similar material, design and workmanship and that have been in satisfactory commercial or industrial use for 2 years prior to bid opening.

b. The 2 year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2 year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown.

c. Products shall be supported by a service organization. System components shall be environmentally suitable for the indicated locations. Submit a certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

d. Exposed equipment moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Install safety devices so that proper operation of equipment is not impaired. Welding and cutting safety requirements shall be in accordance with AWS Z49.1.

e. Manufacturer's standard catalog data, at least 5 weeks prior to the purchase or installation of a particular component, highlighted to show material, size, options, performance charts and curves, etc. in
adequate detail to demonstrate compliance with contract requirements. Include in the data manufacturer's recommended installation instructions and procedures. Provide data for the following components as a minimum:

1. Piping and Fittings
2. Valves
3. Piping Accessories
4. Pipe Hangers, Inserts, and Supports

2.2 ELECTRICAL WORK

Electrical equipment and wiring shall be in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Field wiring shall be in accordance with manufacturer's instructions. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided.

2.3 REFRIGERANT PIPING SYSTEM

Refrigerant piping, valves, fittings, and accessories shall be in accordance with ASHRAE 15 & 34 and ASME B31.5, except as specified herein. Refrigerant piping, valves, fittings, and accessories shall be compatible with the fluids used and capable of withstanding the pressures and temperatures of the service. Refrigerant piping, valves, and accessories used for refrigerant service shall be cleaned, dehydrated, and sealed (capped or plugged) prior to shipment from the manufacturer's plant. Submit drawings, at least 5 weeks prior to beginning construction, provided in adequate detail to demonstrate compliance with contract requirements. Drawings shall consist of:

a. Piping layouts which identify all valves and fittings.

b. Plans and elevations which identify clearances required for maintenance and operation.

2.4 PIPE, FITTINGS AND END CONNECTIONS (JOINTS)

2.4.1 Copper Tubing

Copper tubing shall conform to ASTM B280 annealed or hard drawn as required. Copper tubing shall be soft annealed where bending is required and hard drawn where no bending is required. Soft annealed copper tubing shall not be used in sizes larger than 1-3/8 inches. Joints shall be brazed except that joints on lines 7/8 inch and smaller may be flared. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B62. Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B75/B75M. Joints and fittings for brazed joint shall be wrought-copper or forged-brass sweat fittings. Cast sweat-type joints and fittings shall not be allowed for brazed joints. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment.

2.4.2 Solder

Solder shall conform to ASTM B32, grade Sb5, tin-antimony alloy for service pressures up to 150 psig. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B813.
2.4.3 Brazing Filler Metal

Filler metal shall conform to AWS A5.8/A5.8M, Type BAg-5 with AWS Type 3 flux, except Type BCuP-5 or BCuP-6 may be used for brazing copper-to-copper joints.

2.5 VALVES

Valves shall be designed, manufactured, and tested specifically for refrigerant service. Valve bodies shall be of brass, bronze, steel, or ductile iron construction. Valves 1 inch and smaller shall have brazed. Threaded end connections shall not be used, except in pilot pressure or gauge lines where maintenance disassembly is required and welded flanges cannot be used. Internal parts shall be removable for inspection or replacement without applying heat or breaking pipe connections. Valve stems exposed to the atmosphere shall be stainless steel or corrosion resistant metal plated carbon steel. Direction of flow shall be legibly and permanently indicated on the valve body. Control valve inlets shall be fitted with integral or adapted strainer or filter where recommended or required by the manufacturer. Purge, charge and receiver valves shall be of manufacturer's standard configuration.

2.5.1 Refrigerant Stop Valves

Valve shall be the globe or full-port ball type with a back-seating stem especially packed for refrigerant service. Valve packing shall be replaceable under line pressure. Valve shall be provided with a wrench operator and a seal cap. Valve shall be the straight or angle pattern design as indicated.

2.5.2 Check Valves

Valve shall be the swing or lift type as required to provide positive shutoff at the differential pressure indicated. Valve shall be provide with resilient seat.

2.5.3 Liquid Solenoid Valves

Valves shall comply with ANSI/AHRI 760 and be suitable for continuous duty with applied voltages 15 percent under and 5 percent over nominal rated voltage at maximum and minimum encountered pressure and temperature service conditions. Valves shall be direct-acting or pilot-operating type, packless, except that packed stem, seal capped, manual lifting provisions shall be furnished. Solenoid coils shall be moisture-proof, UL approved, totally encapsulated or encapsulated and metal jacketed as required. Valves shall have safe working pressure of 400 psi and a maximum operating pressure differential of at least 200 psi at 85 percent rated voltage. Valves shall have an operating pressure differential suitable for the refrigerant used.

2.5.4 Expansion Valves

Valve shall conform to AHRI 750 I-P and ASHRAE 17. Valve shall be the diaphragm and spring-loaded type with internal or external equalizers, and bulb and capillary tubing. Valve shall be provided with an external superheat adjustment along with a seal cap. Internal equalizers may be utilized where flowing refrigerant pressure drop between outlet of the valve and inlet to the evaporator coil is negligible and pressure drop
across the evaporator is less than the pressure difference corresponding to 2 degrees F of saturated suction temperature at evaporator conditions. Bulb charge shall be determined by the manufacturer for the application and such that liquid will remain in the bulb at all operating conditions. Gas limited liquid charged valves and other valve devices for limiting evaporator pressure shall not be used without a distributor or discharge tube or effective means to prevent loss of control when bulb becomes warmer than valve body. Pilot-operated valves shall have a characterized plug to provide required modulating control. A de-energized solenoid valve may be used in the pilot line to close the main valve in lieu of a solenoid valve in the main liquid line. An isolatable pressure gauge shall be provided in the pilot line, at the main valve. Automatic pressure reducing or constant pressure regulating expansion valves may be used only where indicated or for constant evaporator loads.

2.5.5 Safety Relief Valves

Valve shall be the two-way type, unless indicated otherwise. Valve shall bear the ASME code symbol. Valve capacity shall be certified by the National Board of Boiler and Pressure Vessel Inspectors. Valve shall be of an automatically reseating design after activation.

2.5.6 Refrigerant Access Valves

Refrigerant access valves and hose connections shall be in accordance with AHRI 720.

2.6 PIPING ACCESSORIES

2.6.1 Filter Driers

Driers shall conform to AHRI 710 I-P. Sizes 5/8 inch and larger shall be the full flow, replaceable core type. Sizes 1/2 inch and smaller shall be the sealed type. Cores shall be of suitable desiccant that will not plug, cake, dust, channel, or break down, and shall remove water, acid, and foreign material from the refrigerant. Filter driers shall be constructed so that none of the desiccant will pass into the refrigerant lines. Minimum bursting pressure shall be 1,500 psi.

2.6.2 Sight Glass and Liquid Level Indicator

2.6.2.1 Assembly and Components

Assembly shall be pressure- and temperature-rated and constructed of materials suitable for the service. Glass shall be borosilicate type. Ferrous components subject to condensation shall be electro-galvanized.

2.6.2.2 Gauge Glass

Gauge glass shall include top and bottom isolation valves fitted with automatic checks, and packing followers; red-line or green-line gauge glass; elastomer or polymer packing to suit the service; and gauge glass guard.

2.6.2.3 Bull's-Eye and Inline Sight Glass Reflex Lens

Bull's-eye and inline sight glass reflex lens shall be provided for dead-end liquid service. For pipe line mounting, two plain lenses in one body suitable for backlighted viewing shall be provided.
2.6.2.4 Moisture Indicator

Indicator shall be a self-reversible action, moisture reactive, color changing media. Indicator shall be furnished with full-color-printing tag containing color, moisture and temperature criteria. Unless otherwise indicated, the moisture indicator shall be an integral part of each corresponding sight glass.

2.6.3 Vibration Dampeners

Dampeners shall be of the all-metallic bellows and woven-wire type.

2.6.4 Flexible Pipe Connectors

Connector shall be a composite of interior corrugated phosphor bronze or Type 300 Series stainless steel, as required for fluid service, with exterior reinforcement of bronze, stainless steel or monel wire braid. Assembly shall be constructed with a safety factor of not less than 4 at 300 degrees F. Unless otherwise indicated, the length of a flexible connector shall be as recommended by the manufacturer for the service intended.

2.6.5 Strainers

Strainers used in refrigerant service shall have brass or cast iron body, Y-or angle-pattern, cleanable, not less than 60-mesh noncorroding screen of an area to provide net free area not less than ten times the pipe diameter with pressure rating compatible with the refrigerant service. Screens shall be stainless steel or monel and reinforced spring-loaded where necessary for bypass-proof construction.

2.6.6 Pressure and Vacuum Gauges

Gauges shall conform to ASME B40.100 and shall be provided with throttling type needle valve or a pulsation dampener and shut-off valve. Gauge shall be a minimum of 3-1/2 inches in diameter with a range from 0 psig to approximately 1.5 times the maximum system working pressure. Each gauge range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.

2.6.7 Temperature Gauges

Temperature gauges shall be the industrial duty type and be provided for the required temperature range. Gauges shall have Fahrenheit scale in 2 degrees graduations scale (black numbers) on a white face. The pointer shall be adjustable. Rigid stem type temperature gauges shall be provided in thermal wells located within 5 feet of the finished floor. Universal adjustable angle type or remote element type temperature gauges shall be provided in thermal wells located 5 to 7 feet above the finished floor. Remote element type temperature gauges shall be provided in thermal wells located 7 feet above the finished floor.

2.6.7.1 Stem Cased-Glass

Stem cased-glass case shall be polished stainless steel or cast aluminum, 9 inches long, with clear acrylic lens, and non-mercury filled glass tube with indicating-fluid column.
2.6.7.2 Bimetallic Dial

Bimetallic dial type case shall be not less than 3-1/2 inches, stainless steel, and shall be hermetically sealed with clear acrylic lens. Bimetallic element shall be silicone dampened and unit fitted with external calibrator adjustment. Accuracy shall be one percent of dial range.

2.6.7.3 Liquid-, Solid-, and Vapor-Filled Dial

Liquid-, solid-, and vapor-filled dial type cases shall be not less than 3-1/2 inches, stainless steel or cast aluminum with clear acrylic lens. Fill shall be nonmercury, suitable for encountered cross-ambients, and connecting capillary tubing shall be double-braided bronze.

2.6.7.4 Thermal Well

Thermal well shall be identical size, 1/2 or 3/4 inch NPT connection, brass or stainless steel. Where test wells are indicated, provide captive plug-fitted type 1/2 inch NPT connection suitable for use with either engraved stem or standard separable socket thermometer or thermostat. Mercury shall not be used in thermometers. Extended neck thermal wells shall be of sufficient length to clear insulation thickness by 1 inch.

2.6.8 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, guides, and supports shall conform to MSS SP-58.

2.6.9 Escutcheons

Escutcheons shall be chromium-plated iron or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or set screws.

2.7 FABRICATION

2.7.1 Factory Coating

Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand 125 hours exposure to the salt spray test specified in ASTM B117 using a 5 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 1/8 inch on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D520, Type I.

2.7.2 Factory Applied Insulation

Refrigerant suction lines between the cooler and each compressor and cold gas inlet connections to gas cooled motors shall be insulated with not less than 3/4 inch thick unicellular plastic foam. Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread...
index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E84.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, perform a verification of dimensions in the field. Submit a letter, at least 2 weeks prior to beginning construction, including the date the site was visited, conformation of existing conditions, and any discrepancies found before performing any work.

3.2 INSTALLATION

Pipe and fitting installation shall conform to the requirements of ASME B31.1. Cut pipe accurately to measurements established at the jobsite, and work into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation are not permitted without written approval. Cut pipe or tubing square, removed by reaming, and permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers.

3.2.1 Directional Changes

Make changes in direction with fittings, except that bending of pipe 4 inches and smaller is permitted, provided a pipe bender is used and wide weep bends are formed. Mitering or notching pipe or other similar construction to form elbows or tees is not permitted. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted.

3.2.2 Functional Requirements

Piping shall be installed 1/2 inch/10 feet of pipe in the direction of flow to ensure adequate oil drainage. Open ends of refrigerant lines or equipment shall be properly capped or plugged during installation to keep moisture, dirt, or other foreign material out of the system. Piping shall remain capped until installation. Equipment piping shall be in accordance with the equipment manufacturer's recommendations and the contract drawings. Equipment and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance.

3.2.3 Fittings and End Connections

3.2.3.1 Threaded Connections

Make threaded connections with tapered threads and make tight with PTFE tape complying with ASTM D3308 or equivalent thread-joint compound applied to the male threads only. Show not more than three threads after the joint
3.2.3.2 Brazed Connections

Perform brazing in accordance with AWS BRH, except as modified herein. During brazing, fill the pipe and fittings with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, clean both the outside of the tube and the inside of the fitting with a wire fitting brush until the entire joint surface is bright and clean. Do not use brazing flux. Remove surplus brazing material at all joints. Make steel tubing joints in accordance with the manufacturer's recommendations. Paint joints in steel tubing with the same material as the baked-on coating within 8 hours after joints are made. Protect tubing against oxidation during brazing by continuous purging of the inside of the piping using nitrogen. Support piping prior to brazing and do not spring or force.

3.2.4 Valves

3.2.4.1 General

Refrigerant stop valves shall be installed on each side of each piece of equipment such as compressors, condensers, evaporators, receivers, and other similar items in multiple-unit installation, to provide partial system isolation as required for maintenance or repair. Stop valves shall be installed with stems horizontal unless otherwise indicated. Ball valves shall be installed with stems positioned to facilitate operation and maintenance. Isolating valves for pressure gauges and switches shall be external to thermal insulation. Safety switches shall not be fitted with isolation valves. Filter dryers having access ports may be considered a point of isolation. Purge valves shall be provided at all points of systems where accumulated noncondensable gases would prevent proper system operation. Valves shall be furnished to match line size, unless otherwise indicated or approved.

3.2.4.2 Expansion Valves

Expansion valves shall be installed with the thermostatic expansion valve bulb located on top of the suction line when the suction line is less than 2-1/8 inches in diameter and at the 4 o'clock or 8 o'clock position on lines larger than 2-1/8 inches. The bulb shall be securely fastened with two clamps. The bulb shall be insulated. The bulb shall be installed in a horizontal portion of the suction line, if possible, with the pigtail on the bottom. If the bulb must be installed in a vertical line, the bulb tubing shall be facing up.

3.2.4.3 Valve Identification

Each system valve, including those which are part of a factory assembly, shall be tagged. Tags shall be in alphanumeric sequence, progressing in direction of fluid flow. Tags shall be embossed, engraved, or stamped plastic or nonferrous metal of various shapes, sized approximately 1-3/8 inch diameter, or equivalent dimension, substantially attached to a component or immediately adjacent thereto. Tags shall be attached with nonferrous, heavy duty, bead or link chain, 14 gauge annealed wire, nylon cable bands or as approved. Tag numbers shall be referenced in Operation and Maintenance Manuals and system diagrams.
3.2.5 Vibration Dampers

Vibration dampers shall be provided in the suction and discharge lines on spring mounted compressors. Vibration dampers shall be installed parallel with the shaft of the compressor and shall be anchored firmly at the upstream end on the suction line and the downstream end in the discharge line.

3.2.6 Strainers

Strainers shall be provided immediately ahead of solenoid valves and expansion devices. Strainers may be an integral part of an expansion valve.

3.2.7 Filter Dryer

A liquid line filter dryer shall be provided on each refrigerant circuit located such that all liquid refrigerant passes through a filter dryer. Dryers shall be sized in accordance with the manufacturer's recommendations for the system in which it is installed. Dryers shall be installed such that it can be isolated from the system, the isolated portion of the system evacuated, and the filter dryer replaced. Dryers shall be installed in the horizontal position except replaceable core filter dryers may be installed in the vertical position with the access flange on the bottom.

3.2.8 Sight Glass

A moisture indicating sight glass shall be installed in all refrigerant circuits downstream of all filter dryers and where indicated. Sight glasses shall be full line size.

3.2.9 Discharge Line Oil Separator

Discharge line oil separator shall be provided in the discharge line from each compressor. Oil return line shall be connected to the compressor as recommended by the compressor manufacturer.

3.2.10 Accumulator

Accumulators shall be provided in the suction line to each compressor.

3.2.11 Flexible Pipe Connectors

Connectors shall be installed perpendicular to line of motion being isolated. Piping for equipment with bidirectional motion shall be fitted with two flexible connectors, in perpendicular planes. Reinforced elastomer flexible connectors shall be installed in accordance with manufacturer's instructions. Piping guides and restraints related to flexible connectors shall be provided as required.

3.2.12 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58, except as modified herein. Pipe hanger types 5, 12, and 26 shall not be used. Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Piping subjected to vertical movement, when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers.
3.2.12.1 Hangers

Do not use Type 3 on insulated piping. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

3.2.12.2 Inserts

Secure Type 18 inserts to concrete forms before concrete is placed. Continuous inserts which allow more adjustments may be used if they otherwise meet the requirements for Type 18 inserts.

3.2.12.3 C-Clamps

Torque Type 19 and 23 C-clamps in accordance with MSS SP-58 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

3.2.12.4 Angle Attachments

Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

3.2.12.5 Saddles and Shields

Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 40 shields shall be used on all piping less than 4 inches and all piping 4 inches and larger carrying medium less than 60 degrees F. A high density insulation insert of cellular glass shall be used under the Type 40 shield for piping 2 inches and larger.

3.2.12.6 Horizontal Pipe Supports

Horizontal pipe supports shall be spaced as specified in MSS SP-58 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves.

3.2.12.7 Vertical Pipe Supports

Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet not more than 8 feet from end of risers, and at vent terminations.

3.2.12.8 Pipe Guides

Type 35 guides using, steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered.

3.2.12.9 Multiple Pipe Runs

In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run.
3.2.12.10 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Masonry anchors for overhead applications shall be constructed of ferrous materials only. Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material used for support shall be as specified under Section 05 12 00 STRUCTURAL STEEL.

3.2.13 Pipe Anchors

Anchors shall be provided wherever necessary or indicated to localize expansion or to prevent undue strain on piping. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results using turnbuckles where required. Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline. Where pipe and conduit penetrations of vapor barrier sealed surfaces occur, these items shall be anchored immediately adjacent to each penetrated surface, to provide essentially zero movement within penetration seal. Detailed drawings of pipe anchors shall be submitted for approval before installation.

3.2.14 Building Surface Penetrations

Sleeves shall not be installed in structural members except where indicated or approved. Sleeves in nonload bearing surfaces shall be galvanized sheet metal, conforming to ASTM A653/A653M, Coating Class G-90, 20 gauge. Sleeves in load bearing surfaces shall be uncoated carbon steel pipe, conforming to ASTM A53/A53M, Standard weight. Sealants shall be applied to moisture and oil-free surfaces and elastomers to not less than 1/2 inch depth. Sleeves shall not be installed in structural members.

3.2.14.1 General Service Areas

Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall be of such size as to provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed in accordance with Section 07 92 00 JOINT SEALANTS.

3.2.14.2 Waterproof Penetrations

Pipes passing through roof or floor waterproofing membrane shall be installed through a 17 ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange. Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the roof or floor penetration. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the base of the flashing sleeve shall be sealed in accordance with Section 07 92 00 JOINT SEALANTS.
sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Penetrations shall be sealed by either one of the following methods.

3.2.14.2.1 Waterproofing Clamping Flange

Pipes up to and including 10 inches in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess.

3.2.14.2.2 Modular Mechanical Type Sealing Assembly

In lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe/conduit seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters.

3.2.14.3 Fire-Rated Penetrations

Penetration of fire-rated walls, partitions, and floors shall be sealed as specified in Section 07 84 00 FIRESTOPPING.

3.2.14.4 Escutcheons

Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering.

3.2.15 Access Panels

Access panels shall be provided for all concealed valves, vents, controls, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05 50 13 MISCELLANEOUS METAL FABRICATIONS.

3.2.16 Field Applied Insulation

Field installed insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as defined differently herein.
3.2.17 Field Painting

Painting required for surfaces not otherwise specified, and finish painting of items only primed at the factory are specified in Section 09 90 00 PAINTS AND COATINGS.

3.2.17.1 Color Coding

Color coding for piping identification is specified in Section 09 90 00 PAINTS AND COATINGS.

3.2.17.2 Color Coding Scheme

A color coding scheme for locating hidden piping shall be in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.2.18 Identification Tags

Provide identification tags made of brass, engraved laminated plastic or engraved anodized aluminum indicating service and item number on all valves and dampers. Tags shall be 1-3/8 inch minimum diameter and marking shall be stamped or engraved. Indentations shall be black for reading clarity. Tags shall be attached to valves with No. 12 AWG copper wire, chrome-plated beaded chain or plastic straps designed for that purpose.

3.3 CLEANING AND ADJUSTING

Clean uncontaminated system(s) by evacuation and purging procedures currently recommended by refrigerant and refrigerant equipment manufacturers, and as specified herein, to remove small amounts of air and moisture. Systems containing moderate amounts of air, moisture, contaminated refrigerant, or any foreign matter shall be considered contaminated systems. Restoring contaminated systems to clean condition including disassembly, component replacement, evacuation, flushing, purging, and re-charging, shall be performed using currently approved refrigerant and refrigeration manufacturer's procedures. Restoring contaminated systems shall be at no additional cost to the Government as determined by the Contracting Officer. Water shall not be used in any procedure or test.

3.4 TRAINING COURSE

a. Submit a schedule, at least 2 weeks prior to the date of the proposed training course, which identifies the date, time, and location for the training. Conduct a training course for members of the operating staff as designated by the Contracting Officer. The training period shall consist of a total 8 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests.

b. The field posted instructions shall cover all of the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations.

c. Submit 4 complete copies of an operation manual in bound 8 1/2 by 11 inch booklets listing step-by-step procedures required for system startup, operation, abnormal shutdown, emergency shutdown, and normal shutdown at least 4 weeks prior to the first training course. The booklets shall include the manufacturer's name, model number, and parts list. The manuals shall include the manufacturer's name, model number,
service manual, and a brief description of all equipment and their basic operating features.

d. Submit 4 complete copies of maintenance manual in bound 8 1/2 x 11 inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping layouts and simplified wiring and control diagrams of the system as installed.

3.5 REFRIGERANT PIPING TESTS

After all components of the refrigerant system have been installed and connected, subject the entire refrigeration system to pneumatic, evacuation, and startup tests as described herein. Submit a schedule, at least 2 weeks prior to the start of related testing, for each test. Identify the proposed date, time, and location for each test. Conduct tests in the presence of the Contracting Officer. Water and electricity required for the tests will be furnished by the Government. Provide all material, equipment, instruments, and personnel required for the test. Provide the services of a qualified technician, as required, to perform all tests and procedures indicated herein. Field tests shall be coordinated with Section 23 05 93 TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS. Submit 4 copies of the tests report in bound 8 1/2 by 11 inch booklets documenting all phases of the tests performed. The report shall include initial test summaries, all repairs/adjustments made, and the final test results.

3.5.1 Preliminary Procedures

Prior to pneumatic testing, equipment which has been factory tested and refrigerant charged as well as equipment which could be damaged or cause personnel injury by imposed test pressure, positive or negative, shall be isolated from the test pressure or removed from the system. Safety relief valves and rupture discs, where not part of factory sealed systems, shall be removed and openings capped or plugged.

3.5.2 Pneumatic Test

Pressure control and excess pressure protection shall be provided at the source of test pressure. Valves shall be wide open, except those leading to the atmosphere. Test gas shall be dry nitrogen, with minus 70 degree F dewpoint and less than 5 ppm oil. Test pressure shall be applied in two stages before any refrigerant pipe is insulated or covered. First stage test shall be at 10 psi with every joint being tested with a thick soap or color indicating solution. Second stage tests shall raise the system to the minimum refrigerant leakage test pressure specified in ASHRAE 15 & 34 with a maximum test pressure 25 percent greater. Pressure above 100 psig shall be raised in 10 percent increments with a pressure acclimatizing period between increments. The initial test pressure shall be recorded along with the ambient temperature to which the system is exposed. Final test pressures of the second stage shall be maintained on the system for a minimum of 24 hours. At the end of the 24 hour period, the system pressure will be recorded along with the ambient temperature to which the system is exposed. A correction factor of 0.3 psi will be allowed for each degree F change between test space initial and final ambient temperature, plus for increase and minus for a decrease. If the corrected system pressure is not exactly equal to the initial system test pressure, then the system shall be investigated for leaking joints. To repair leaks, the joint shall be taken apart, thoroughly cleaned, and reconstructed as a new joint. Joints
repaired by caulking, remelting, or back-welding/brazing shall not be acceptable. Following repair, the entire system shall be retested using the pneumatic tests described above. The entire system shall be reassembled once the pneumatic tests are satisfactorily completed.

3.5.3 Evacuation Test

Following satisfactory completion of the pneumatic tests, the pressure shall be relieved and the entire system shall be evacuated to an absolute pressure of 300 micrometers. During evacuation of the system, the ambient temperature shall be higher than 35 degrees F. No more than one system shall be evacuated at one time by one vacuum pump. Once the desired vacuum has been reached, the vacuum line shall be closed and the system shall stand for 1 hour. If the pressure rises over 500 micrometers after the 1 hour period, then the system shall be evacuated again down to 300 micrometers and let set for another 1 hour period. The system shall not be charged until a vacuum of at least 50 micrometers is maintained for a period of 1 hour without the assistance of a vacuum line. If during the testing the pressure continues to rise, check the system for leaks, repair as required, and repeat the evacuation procedure. During evacuation, pressures shall be recorded by a thermocouple-type, electronic-type, or a calibrated-micrometer type gauge.

3.5.4 System Charging and Startup Test

Following satisfactory completion of the evacuation tests, the system shall be charged with the required amount of refrigerant by raising pressure to normal operating pressure and in accordance with manufacturer's procedures. Following charging, the system shall operate with high-side and low-side pressures and corresponding refrigerant temperatures, at design or improved values. The entire system shall be tested for leaks. Fluorocarbon systems shall be tested with halide torch or electronic leak detectors.

3.5.5 Refrigerant Leakage

If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant pumped into the system receiver or other suitable container. Under no circumstances shall the refrigerant be discharged into the atmosphere.

3.5.6 Contractor's Responsibility

At all times during the installation and testing of the refrigeration system, take steps to prevent the release of refrigerants into the atmosphere. The steps shall include, but not be limited to, procedures which will minimize the release of refrigerants to the atmosphere and the use of refrigerant recovery devices to remove refrigerant from the system and store the refrigerant for reuse or reclaim. At no time shall more than 3 ounces of refrigerant be released to the atmosphere in any one occurrence. Any system leaks within the first year shall be repaired in accordance with the requirements herein at no cost to the Government including material, labor, and refrigerant if the leak is the result of defective equipment, material, or installation.

-- End of Section --

SECTION 23 23 00 Page 18
SECTION 23 52 43.00 20

LOW PRESSURE WATER HEATING BOILERS (UNDER 800,000 BTU/HR OUTPUT)

05/15

PART 1 GENERAL

1.1 REFERENCES
The publications listed below form a part of this specification to the
extent referenced. The publications are referred to within the text by the
basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

Steam and Hot Water Boilers

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING
ENGINEERS (ASHRAE)

Standard for Buildings Except Low-Rise
Residential Buildings

ASME INTERNATIONAL (ASME)

ASME BPVC SEC IV (2010) BPVC Section IV-Rules for
Construction of Heating Boilers

ASME CSD-1 (2016) Control and Safety Devices for
Automatically Fired Boilers

ASTM INTERNATIONAL (ASTM)

Steel, Black and Hot-Dipped, Zinc-Coated,
Welded and Seamless

NATIONAL BOARD OF BOILER AND PRESSURE VESSEL INSPECTORS (NBBI)

NBBI NB-23 PART 1 (2013) National Board Inspection Code -
Part 1 Installation

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2;
TIA 17-3) National Electrical Code

U.S. DEPARTMENT OF ENERGY (DOE)

Efficiency Labeling System (FEMP)
UNDERWRITERS LABORATORIES (UL)

1.2 RELATED REQUIREMENTS

Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS, applies to this section, with the additions and modifications specified herein.

1.3 DESIGN REQUIREMENTS

Boiler must be suitable for installation in the space shown with ample room for opening doors and cleaning and removal and replacement of tubes. Boiler must have an output of 690,000 BTU/hr with an efficiency not less than that recommended by ASHRAE 90.1 - IP. Boiler must be designed and tested in accordance with ASME BPVC SEC IV, ASME CSD-1, NFPA 54, NFPA 70 and ANSI Z21.13/CSA 4.9. Boiler must be installed in accordance with NBBI NB-23 PART 1. Paint boiler in accordance with manufacturer's recommendations. Boiler design working pressure must be 160 psig. Boiler operating pressure must be 30 psig. Boiler operating temperature must be 140 degrees F. Boiler return water temperature must be 120 degrees C.

1.3.1 Boiler Installation Requirements

1.3.1.1 Location

Install Boiler(s) and associated hot water pumps in a mechanical room inside the facility in accordance with NBBI NB-23 PART 1. Provide ample clearance around boilers to allow access for inspection, maintenance and repair. Passageways around all sides of boilers must have an unobstructed minimum width of 36 inches or the clearances recommended by the boiler manufacturer whichever is greater.

1.3.1.2 Combustion Air

Provide supply of air for combustion and ventilation. In accordance with NFPA 54 and manufacturer's installation manual, calculate the amount of combustion air necessary to operate the boiler. Install and locate properly sized combustion air dampers and louvers.

1.3.1.3 Sequence of Operation

Local, manual starting of boilers is required. Remote starting and stopping of the boiler by the HVAC control system is not permitted. This is to ensure that an operator witness the initial firing of the boiler at the beginning of each heating season to verify proper operation of the boiler and to promote proper maintenance.

1.3.2 Detail Drawings

1.3.2.1 Drawings

Show boiler hot water isolation valves, emergency disconnect switch, and
complete boiler gas train on the contract drawings.

1.3.2.2 Fuel Train / Wiring Diagram

Submit fuel train and wiring diagram.

1.3.3 Water Analysis

Provide test reports of water analysis. UFC 3-240-13FN Industrial Water Treatment must be followed for all boiler installations.

1.4 SAFETY STANDARDS

Hot water boilers, burners and supplementary control devices, safety interlocks, or limit controls required under this specification, must meet requirements of the following standards as applicable:

d. All Units: ASME BPVC SEC IV, NFPA 70 and ASME CSD-1.

Controls not covered by the above must have a UL label, UL listing mark, or must be listed in the Factory Mutual Approval Guide.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

Submittals for this Section must be delivered to the project Contracting Officer, who will forward two complete sets of copies to the appropriate approving official for review and approval.

SD-02 Shop Drawings

Fuel Train

Wiring Diagram

SD-03 Product Data

Boilers: power output, equipment efficiency, ASME certification, allowable working pressure, model number, documentation for Energy Star labels and qualifications or meeting ASHRAE 90.1 - IP requirements

Boiler Trim and Control Equipment

Burners and Control Equipment

Stack, Breeching, and Supports

SD-06 Test Reports
Operational Tests

Water Analysis

SD-07 Certificates

Boilers
Burners and Control Equipment
Boiler Trim and Control Equipment

Boiler manufacturer's certificate of boiler performance including evidence that the burners provided must be a make, model, and type certified and approved by the manufacturer of the boiler being provided.

SD-08 Manufacturer's Instructions

Boilers

Feedwater Treatment Feeder

SD-10 Operation and Maintenance Data

Boilers, Data Package 4

Submit in accordance with Section 01000 OPERATION AND MAINTENANCE DATA.

SD-11 Closeout Submittals

Energy Efficient Equipment for Boilers; S

Posted operating instructions for heating water boilers

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Energy Efficient Equipment for Boilers

Provide boilers meeting the efficiency requirements as stated within this section and provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph ENERGY EFFICIENT EQUIPMENT.

2.2 BOILERS

Provide hot water heating boiler complete with firing equipment, combustion chamber, insulation with steel jacket, safety and operating controls, integral electrical wiring and other appurtenances, to make the boiler a complete, self-contained, fully-automatic unit, ready for service upon completion of utility connections. Gas fired boilers greater than 300,000 Btuh input must have a thermal efficiency of at least 90 percent when fired at the maximum and minimum capacities which are provided and allowed by the controls.
2.2.1 General Requirements

Design, construction, installation, testing, and operation of boiler and appurtenances shall comply with NBBI NB-23 PART 1, ASME BPVC SEC IV, ASME CSD-1, NFPA 54, ANSI Z21.13/CSA 4.9, and the manufacturer's instructions.

2.3 BURNERS AND CONTROL EQUIPMENT

2.3.1 Gas-Fired Power Burner

Gas-fired power burner (over 400,000 BTU/hr input). Interrupted pilot type ignition system, and pilot must be the electrode-ignited natural gas type. Design burner and combustion control equipment for firing natural gas having a specific gravity of 0.6 and a heating value of approximately 1000 BTU per cubic foot and be an integral part of the boiler. Burner controls and safety equipment must conform to applicable requirements of ASME CSD-1, NFPA 54, ANSI Z21.13/CSA 4.9 and UL 795. Mount controls; including operating switches, indicating lights, gages, alarms, motor starters, fuses, and circuit elements of control systems on a single control panel or cabinet designed for separate mounting not on the burner. The combustion control system must be the metering type. Locate flame scanner such that testing and cleaning of scanner can be accomplished without disassembly of burner. Provide fuel train as indicated. Gas pressure available: 2 psig.

2.4 BOILER TRIM AND CONTROL EQUIPMENT

Provide in accordance with ASME CSD-1 and ASME BPVC SEC IV and additional requirements specified below.

2.4.1 Emergency Disconnect Switch

Provide and locate on wall outside boiler room entrance or just inside door, when boiler room door is on building exterior as required by ASME CSD-1 to allow rapid and complete shutdown of the boiler in the event of an emergency. Emergency switch must be a 20-amp. fuse-type safety switch. Switch must be red and furnished with a label indicating function of switch.

2.4.2 Relief Valves

Provide relieving capacity for the full output of boiler installed. Safety relief-valve piping must conform to ASTM A53/A53M, schedule 40 steel pipe and be piped full-size to the glycol fill tank.

2.4.3 Pressure and Altitude Gage or Combination Pressure/Altitude Gage

Provide one located on supply water piping and one on return water piping.

2.4.4 Thermometer

Provide thermometer with a scale equivalent to 1.5 times outlet water temperature. Provide one located on supply water piping and one on return water piping.

2.4.5 Drain Tapping

Provide drain valve and piping to the glycol fill tank.
2.4.6 Feedwater Treatment Feeder

Provide floor mounted, Type II - Shot-Type Feeder (manual, intermittent feed), as indicated for use with pressures up to 200 psig maximum.

2.4.7 Combustion Regulator

Provide adjustable temperature, thermostatic immersion type that must limit boiler water temperature to a maximum of 250 degrees F. Control must actuate burner through an electric relay system to maintain boiler water temperature within normal prescribed limits at loads within rated capacity of boiler.

2.4.8 Air Vent Valve

Provide with screwed connection, stainless steel disk, and stainless steel seats to vent entrapped air.

2.4.9 High Temperature Limit Switch

Provide adjustable immersible aquastat type with a temperature setting above that of the combustion regulator and below that of the lowest relief valve setting. Aquastat must function to cause a safety shutdown by closing fuel valves and shutting down burner equipment in the event that boiler water temperature rises to the high temperature limit setting. A safety shutdown due to high temperature must require manual reset before operation can resume and prevent recycling of burner equipment. Pre-set high temperature limit devices that cannot be easily tested are not allowed.

2.4.10 Low Water Level Cutoff Switch

Low water level cutoff must cause a safety shutdown by closing fuel valves, and shutting down burner equipment in the event that water level drops below the lowest safe permissible water level established by the boiler manufacturer and ASME BPVC SEC IV. A safety shutdown due to low water must require manual reset before operation can resume and prevent recycling of burner equipment.

2.4.11 Boiler Safety Control Circuits

Provide boiler safety control circuits, including control circuits for burner, must be single-phase, two-wire one-side grounded, and not over 120 volts. Provide safety control switching in ungrounded conductors. Provide overcurrent protection. In addition to circuit grounds, ground metal parts which do not carry current to a grounding conductor.

2.4.12 Indicating Lights

Each safety interlock requiring a manual reset must have an individually labeled red indicating light. Non-recycling control interlocks must have the reset located on the control itself. Red indicating lights on the control panel may be omitted if the burner combustion control system has a Keyboard Display Module installed that will identify the lockout information required in Item c. below. Indicating lights must have colors as follows:

a. Amber: Ignition on
b. Green: Main fuel safety shut-off valves open

c. Red (One for Each): Safety lockout, flame failure, low water level, and high temperature

2.4.13 Alarm Bell

Provide alarm bell, electrically operated, with a manual disconnect switch. Disconnect switch must be type and wired so that switching off alarm following a safety shutdown will not prevent alarm from sounding again upon recurrence of a subsequent safety shutdown condition.

2.4.14 Post-Combustion Purge

Provide controls and wiring necessary to ensure operation of draft fan for a period of not less than 15 seconds or of sufficient duration to provide four complete air changes in the boiler combustion chamber (whichever is greater) following shutdown of burner upon satisfaction of heat demand and in accordance with ASME CSD-1. Upon completion of post-combustion purge period, draft fan must automatically shutdown until next restart.

2.4.15 Draft

Comply with boiler manufacturer's recommendations.

2.4.16 Stack, Breeching, and Supports

Category IV Al-29-4C stainless steel, prefabricated multi-wall type, flashed to the roof, and complete with rain cap. Stack diameter and height must be in accordance with manufacturer's recommendations and conform to UL 1738 for positive pressure applications.

2.4.17 Hot Water Coils

Provide coils capable of heating 70 GPM of water with 20 degree F rise conforming to ASME BPVC SEC IV.

2.4.18 Stack Thermometer

Provide flue gas dial type thermometer with scale calibrated from 150 to 750 degrees F and mounted in flue gas outlet.

2.5 ELECTRIC MOTORS

Electric motors must meet requirements of NEMA MG 1. Motors less than 1 hp must meet NEMA High Efficiency requirements. Motors 1 hp and larger must meet NEMA Premium Efficiency requirements. Motors which are an integral part of the packaged boiler system must be the highest efficiency available by the manufacturer of the packaged boiler. Motors must be variable speed.

PART 3 EXECUTION

3.1 EQUIPMENT INSTALLATION

Install equipment in accordance with manufacturer's installation instructions and NBBI NB-23 PART 1. Grout equipment mounted on concrete foundations before installing piping. Install piping in such a manner as not to place a strain on equipment. Do not bolt flanged joints tight unless they match. Grade, anchor, guide, and support piping without low
pockets. Feedwater treatment feeders must be mounted so that the top of the feeder is no higher than 48 inches above the finished floor.

3.2 EQUIPMENT FOUNDATIONS

Locate equipment foundations as indicated, designed, and made of sufficient size and weight to preclude shifting of equipment under operating conditions or under abnormal conditions that could be imposed upon the equipment. Foundations must meet requirements of the equipment manufacturer. Concrete and grout must conform to Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.

3.3 BOILER CLEANING

Before being placed in service, boiler must be boiled out for a period of 24 hours at a pressure not exceeding 12 psig. Solution to be used in the boiler for the boiling out process must consist of two pounds of trisodium phosphate per 100 gallons of water. Upon completion of boiling out, flush out boiler with potable water, drain, and charge with chemically treated water. Protect boiler and appurtenances against internal corrosion until testing is completed and boiler is accepted. Professional services are required for cleaning/treatment process.

3.4 FIELD QUALITY CONTROL

Perform and furnish everything required for inspections and tests as specified herein to demonstrate that boiler and auxiliary equipment, as installed, are in compliance with contract requirements. Start-up and operate the system. During this time, clean strainers until no further accumulation of foreign material occurs. Exercise care to minimize loss of water when strainers are cleaned. Adjust safety and automatic control instruments as necessary to place them in proper operation and sequence. Test instrumentation must be calibrated and have full scale readings from 1.5 to 2 times test values.

3.4.1 Operational Tests

Furnish the services of an engineer or technician approved by the boiler manufacturer of installation, startup, operational and safety testing. This person must remain on the job until each boiler has been successfully operated. Furnish and perform everything required for inspections and tests of the boiler and auxiliary equipment. Test instrumentation must be calibrated and have full-scale reading from 1.5 to 2 times test values. Demonstrate proper operability of combustion control, flame safeguard control and safety interlocks. Provide a detailed description of all boiler startup and operational tests in the Commissioning Plan.

3.4.1.1 Preliminary Operational Test

Operate the boilers continuously for a period of at least 8 hours to demonstrate proper operability of the combustion control, flame safeguard control, and safety interlocks.

3.4.1.2 Acceptance Operational Test and Inspection

Prior to requesting an acceptance test, conduct a satisfactory operational test for at least 8 hours, and provide a certified statement that the equipment is installed per all requirements of this guide. Contracting Officer, upon receipt of the notice from the Contractor, will request a
boiler inspection by a Naval Facilities Engineering and Expeditionary Warfare Center (EXWC) NAVFAC boiler inspector. Fifteen days advance notice is required for scheduling inspector to conduct acceptance operational test and inspection.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE)

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C606 (2015) Grooved and Shouldered Joints

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Brazing and Braze Welding

AWS D1.1/D1.1M (2015; Errata 1 2015; Errata 2 2016) Structural Welding Code - Steel

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME B16.3</td>
<td>(2011) Malleable Iron Threaded Fittings, Classes 150 and 300</td>
</tr>
<tr>
<td>ASME B31.9</td>
<td>(2014; Errata 2015) Building Services Piping</td>
</tr>
<tr>
<td>ASME B40.100</td>
<td>(2013) Pressure Gauges and Gauge Attachments</td>
</tr>
<tr>
<td>ASME BPVC SEC IX</td>
<td>(2010) BPVC Section IX—Welding and Brazing Qualifications</td>
</tr>
<tr>
<td>ASTM A653/A653M</td>
<td>(2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process</td>
</tr>
<tr>
<td>Standard Number</td>
<td>Standard Title and Year(s)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>ASTM D1384</td>
<td>(2005; R 2012) Corrosion Test for Engine Coolants in Glassware</td>
</tr>
<tr>
<td>ASTM D520</td>
<td>(2000; R 2011) Zinc Dust Pigment</td>
</tr>
<tr>
<td>ASTM F1199</td>
<td>(1988; R 2015) Cast (All Temperatures and Pressures) and Welded Pipe Line Strainers (150 psig and 150 degrees F Maximum)</td>
</tr>
<tr>
<td>HYDRAULIC INSTITUTE (HI)</td>
<td></td>
</tr>
<tr>
<td>HI 1.1-1.2</td>
<td>(2014) Rotodynamic (Centrifugal) Pump for Nomenclature and Definitions</td>
</tr>
<tr>
<td>MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)</td>
<td></td>
</tr>
<tr>
<td>MSS SP-110</td>
<td>(2010) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends</td>
</tr>
<tr>
<td>MSS SP-67</td>
<td>(2017) Butterfly Valves</td>
</tr>
<tr>
<td>MSS SP-70</td>
<td>(2011) Gray Iron Gate Valves, Flanged and Threaded Ends</td>
</tr>
<tr>
<td>MSS SP-71</td>
<td>(2011; Errata 2013) Gray Iron Swing Check</td>
</tr>
</tbody>
</table>
Valves, Flanged and Threaded Ends

MSS SP-72 (2010a) Ball Valves with Flanged or Butt-Welding Ends for General Service

MSS SP-80 (2013) Bronze Gate, Globe, Angle and Check Valves

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SYSTEM DESCRIPTION

Provide the water systems having the minimum service (design) temperature-pressure rating indicated. Provision of the piping systems, including materials, installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing shall be in accordance with the required and advisory provisions of ASME B31.9 except as modified or supplemented by this specification section or design drawings. This specification section covers the water systems piping which is located within, on, and adjacent to building(s) within the building(s) 5 foot line.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Grooved Mechanical Connections For Steel; G
Grooved Mechanical Connections For Copper; G
Calibrated Balancing Valves; G
Automatic Flow Control Valves; G
Water Pressure Reducing Valve
Pressure Relief Valve
Combination Pressure and Temperature Relief Valves

Pumps; G

Combination Strainer and Pump Suction Diffuser

Expansion Tanks

Air Separator Tanks

Water Treatment Systems; G

Proposed water treatment plan including a layout, control scheme, a list of existing make-up water conditions including the items listed in paragraph WATER ANALYSIS", a list of chemicals, the proportion of chemicals to be added, the final treated water conditions, and a description of environmental concerns for handling the chemicals.

SD-06 Test Reports

Piping Welds NDE Report

Pressure Tests Reports; G

Report shall be provided in bound 8-1/2 by 11 inch booklets. In the reports, document all phases of the tests performed. Include initial test summaries, all repairs/adjustments made, and the final test results.

SD-07 Certificates

Employer's Record Documents (For Welding)

Welding Procedures and Qualifications

Certificates shall be submitted for the following items showing conformance with the referenced standards contained in this section.

SD-08 Manufacturer's Instructions

Lesson plan for the Instruction Course; G

SD-10 Operation and Maintenance Data

Requirements for data packages are specified Section 01000 OPERATION AND MAINTENANCE DATA, except as supplemented and modified by this specification section.

Submit spare parts data for each different item of equipment specified, with operation and maintenance data packages. Include a complete list of parts and supplies, with current unit prices and source of supply, a recommended spare parts list for 1 year of operation, and a list of the parts recommended by the manufacturer to be replaced on a routine basis.

Submit a list of qualified permanent service organizations with
operation and maintenance data packages. Include service organization addresses and service area or expertise. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

Water Treatment Systems; G

A maintenance manual in bound 8-1/2 by 11 inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide.

Calibrated Balancing Valves, Data Package 3; G
Automatic Flow Control Valves, Data Package 3; G
Water Pressure Reducing Valve, Data Package 3; G
Pressure Relief Valve, Data Package 2; G
Combination Pressure and Temperature Relief Valves, Data Package 2; G
Pumps, Data Package 3; G
Combination Strainer and Pump Suction Diffuser, Data Package 2; G
Expansion Tanks, Data Package 2; G
Air Separator Tanks, Data Package 2; G

1.4 MODIFICATIONS TO REFERENCES

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction", or words of similar meaning, to mean the Contracting Officer.

1.4.1 Definitions

For the International Code Council (ICC) Codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall." Reference to the "code official" shall be interpreted to mean the "Contracting Officer." For Navy owned property, references to the "owner" shall be interpreted to mean the "Contracting Officer." For leased facilities, references to the "owner" shall be interpreted to mean the "lessor." References to the "permit holder" shall be interpreted to mean the "Contractor."

1.4.2 Administrative Interpretations

For ICC Codes referenced in the contract documents, the provisions of
Chapter 1, "Administrator," do not apply. These administrative requirements are covered by the applicable Federal Acquisition Regulations (FAR) included in this contract and by the authority granted to the Officer in Charge of Construction to administer the construction of this project. References in the ICC Codes to sections of Chapter 1, shall be applied appropriately by the Contracting Officer as authorized by his administrative cognizance and the FAR.

1.5 SAFETY REQUIREMENTS

Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired.

1.6 DELIVERY, STORAGE, AND HANDLING

Protect stored items from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, cap piping and similar openings to keep out dirt and other foreign matter. Any porous materials found to be contaminated with mold or mildew will be replaced at the Contractor's expense. Non-porous materials found to be contaminated with mold or mildew will be disinfected and cleaned prior to installation.

1.7 PROJECT/SITE CONDITIONS

1.7.1 Verification of Dimensions

The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

1.7.2 Drawings

Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and shall arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions.

1.7.3 Accessibility

Install all work so that parts requiring periodic inspection, operation, maintenance, and repair are readily accessible. Install concealed valves, expansion joints, controls, dampers, and equipment requiring access, in locations freely accessible through access doors.

PART 2 PRODUCTS

2.1 STANDARD COMMERCIAL PRODUCTS

Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have
been in satisfactory commercial or industrial use for 2 years prior to bid opening.

The two year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures.

Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. System components shall be environmentally suitable for the indicated locations.

The equipment items shall be supported by service organizations. These service organizations shall be reasonably convenient to the equipment installation and able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

2.2 STEEL PIPING

Water piping shall be steel pipe or copper tubing. Provide steel piping with a ANSI/ASME Class 125 service rating, which for 150 degrees F, the pressure rating is 175 psig.

2.2.1 Pipe

Steel pipe, conform to ASTM A53/A53M, Schedule 40, Type E or S, Grades A or B. Do not use Type F pipe.

2.2.2 Fittings and End Connections (Joints)

Piping and fittings 1 inch and smaller shall have threaded connections. Piping and fittings larger than 1 inch and smaller than 3 inches shall have either threaded, grooved, or welded connections. Piping and fittings 3 inches and larger shall have grooved, welded, or flanged connections. The manufacturer of each fitting shall be permanently identified on the body of the fitting in accordance with MSS SP-25.

2.2.2.1 Threaded Connections

2.2.2.2 Flanged Connections

Flanges shall conform to ASME B16.1, Class 125. Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type. These gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.1.

2.2.2.3 Welded Connections

Welded valves and pipe connections (both butt-welds and socket-welds types) shall conform to ASME B31.9. Butt-welded fittings shall conform to
ASME B16.9. Socket-welded fittings shall conform to ASME B16.11. Welded fittings shall be identified with the appropriate grade and marking symbol.

2.2.2.4 Grooved Mechanical Connections For Steel

Rigid grooved mechanical connections may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 230 degrees F. Flexible grooved connections shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein.

Each grooved mechanical joint shall be a system, including coupling housing, gasket, fasteners, all furnished by the same manufacturer. Joint installation shall be in compliance with joint manufacturer's written instructions.

Use fitting and coupling houses of malleable iron conforming to ASTM A47/A47M, Grade 32510; ductile iron conforming to ASTM A536, Grade 65-45-12; or steel conforming ASTM A106/A106M, Grade B or ASTM A53/A53M. Use gaskets of molded synthetic rubber with central cavity, pressure responsive configuration and conforming to ASTM D2000 Grade No. 2CA615A15B44F17Z for circulating medium up to 230 degrees F or Grade No. M3BA610A15B44Z for circulating medium up to 200 degrees F. Grooved mechanical connections shall conform to AWWA C606. Coupling nuts and bolts shall be steel and shall conform to ASTM A183. Pipe connections and fittings shall be the product of the same manufacturer. Provide joint installation be in compliance with joint manufacturer's written instructions.

2.2.2.5 Dielectric Waterways and Flanges

Provide dielectric waterways with a water impervious insulation barrier capable of limiting galvanic current to 1 percent of short circuit current in a corresponding bimetallic joint. When dry, insulation barrier shall be able to withstand a 600-volt breakdown test. Provide dielectric waterways constructed of galvanized steel and have threaded end connections to match connecting piping. Dielectric waterways shall be suitable for the required operating pressures and temperatures. Provide dielectric flanges with the same pressure ratings as standard flanges and provide complete electrical isolation between connecting pipe and/or equipment as described herein for dielectric waterways.

2.3 COPPER TUBING

Provide copper tubing and fittings with a ANSI/ASME Class 125 service rating, which for 150 degrees F., the pressure rating is 175 psig.

2.3.1 Tube

Use copper tube conforming to ASTM B88, Type L or M for aboveground tubing, and Type K for buried tubing.

2.3.2 Fittings and End Connections (Solder and Flared Joints)

Wrought copper and bronze solder joint pressure fittings, including unions and flanges, shall conform to ASME B16.22 and ASTM B75/B75M. Provide adapters as required. Cast copper alloy solder-joint pressure fittings,
including unions and flanges, shall conform to ASME B16.18. ASTM B42 copper pipe nipples with threaded end connections shall conform to ASTM B42.

Copper tubing of sizes larger than 4 inches shall have brazed joints. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment.

Extracted brazed tee joints may be used if produced with an acceptable tool and installed in accordance with tool manufacturer's written procedures.

2.3.3 Grooved Mechanical Connections For Copper

Rigid grooved mechanical connections may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 230 degrees F. Flexible grooved connections shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein.

Each grooved mechanical joint shall be a system, including coupling housing, gasket, fasteners, all furnished by the same manufacturer. Joint installation shall be in compliance with joint manufacturer's written instructions.

Grooved fitting and mechanical coupling housing shall be ductile iron conforming to ASTM A536. Provide gaskets for use in grooved joints shall constructed of molded synthetic polymer of pressure responsive design and shall conform to ASTM D2000 for circulating medium up to 230 degrees F. Provide grooved joints in conformance with AWWA C606.

2.3.4 Solder

Provide solder in conformance with ASTM B32, grade Sb5, tin-antimony alloy. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B813.

2.3.5 Brazing Filler Metal

Filler metal shall conform to AWS A5.8/A5.8M, Type BAg-5 with AWS Type 3 flux, except Type BCuP-5 or BCuP-6 may be used for brazing copper-to-copper joints.

2.4 VALVES

Provide valves with a ANSI/ASME Class 125 service rating, which for 150 degrees F, the pressure rating is 175 psig.

Valves in sizes larger than 1 inch and used on steel pipe systems, may be provided with rigid grooved mechanical joint ends. Such grooved end valves shall be subject to the same requirements as rigid grooved mechanical joints and fittings and, shall be furnished by the same manufacturer as the grooved pipe joint and fitting system.

2.4.1 Gate Valve

Gate valves 2-1/2 inches and smaller shall conform to MSS SP-80 Class 125 and shall be bronze with wedge disc, rising stem and threaded, soldered, or flanged ends. Gate valves 3 inches and larger shall conform to MSS SP-70,
Class 125, cast iron with bronze trim, outside screw and yoke, and flanged or threaded ends.

2.4.2 Globe and Angle Valve

Globe and angle valves 2-1/2 inches and smaller shall conform to MSS SP-80, Class 125. Globe and angle valves 3 inches and larger shall conform to MSS SP-85, Class 125.

2.4.3 Check Valve

Check valves 2-1/2 inches and smaller shall conform to MSS SP-80. Check valves 3 inches and larger shall conform to MSS SP-71, Class 125.

2.4.4 Butterfly Valve

Butterfly valves shall conform to MSS SP-67, Type 1 and shall be either the wafer or lug type. Valves smaller than 8 inches shall have throttling handles with a minimum of seven locking positions. Valves 8 inches and larger shall have totally enclosed manual gear operators with adjustable balance return stops and position indicators.

2.4.5 Ball Valve

Full port design. Ball valves 1/2 inch and larger shall conform to MSS SP-72 or MSS SP-110 and shall be cast iron or bronze with threaded, soldered, or flanged ends. Valves 8 inches or larger shall be provided with manual gear operators with position indicators. Ball valves may be provided in lieu of gate valves.

2.4.6 Calibrated Balancing Valves

Copper alloy or cast iron body, copper alloy or stainless internal working parts. Provide valve calibrated so that flow can be determined when the temperature and pressure differential across valve is known. Valve shall have an integral pointer which registers the degree of valve opening. Valve shall function as a service valve when in fully closed position. Valve shall be constructed with internal seals to prevent leakage and shall be supplied with preformed insulation.

Provide valve bodies with tapped openings and pipe extensions with positive shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable differential pressure meter connections to verify the pressure differential. Provide metal tag on each valve showing the gallons per minute flow for each differential pressure reading.

2.4.7 Automatic Flow Control Valves

Valve shall automatically maintain the constant flow indicated on the design drawings. Valve shall modulate by sensing the pressure differential across the valve body. Valve shall be selected for the flow required and provided with a permanent nameplate or tag carrying a permanent record of the factory-determined flow rate and flow control pressure levels. Provide valve that controls the flow within 5 percent of the tag rating. Valve materials shall be the same as specified for the ball or plug valves.

Provide valve that are electric type as indicated. Valve shall be capable of positive shutoff against the system pump head, valve bodies shall be
provided with tapped openings and pipe extensions with shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings and differential meter, suitable for the operating pressure specified. Provide the meter complete with hoses, vent, integral metering connections, and carrying case as recommended by the valve manufacturer.

2.4.8 Water Pressure Reducing Valve

Valve, ASSE 1003 for water service, copper alloy body.

2.4.9 Pressure Relief Valve

Valve shall prevent excessive pressure in the piping system when the piping system reaches its maximum heat buildup. Valve, ANSI Z21.22/CSA 4.4 and shall have cast iron bodies with corrosion resistant internal working parts. The discharge pipe from the relief valve shall be the size of the valve outlet unless otherwise indicated.

2.4.10 Combination Pressure and Temperature Relief Valves

ANSI Z21.22/CSA 4.4, copper alloy body, automatic re-seating, test lever, and discharge capacity based on AGA temperature steam rating.

2.4.11 Drain Valves

Valves, MSS SP-80 gate valves. Valve shall be manually-operated, 3/4 inch pipe size and above with a threaded end connection. Provide valve with a water hose nipple adapter.

2.4.12 Air Venting Valves

Manually-operated general service type air venting valves, brass or bronze valves that are furnished with threaded plugs or caps. Automatic type air venting shall be the ball-float type with brass/bronze or brass bodies, 300 series corrosion-resistant steel float, linkage and removable seat. Air venting valves on water coils shall have not less than 1/8 inch threaded end connections. Air venting valves on water mains shall have not less than 3/4 inch threaded end connections. Air venting valves on all other applications shall have not less than 1/2 inch threaded end connections.

2.4.13 Vacuum Relief Valves

ANSI Z21.22/CSA 4.4

2.5 PIPING ACCESSORIES

2.5.1 Strainer

Strainer, ASTM F1199, except as modified and supplemented in this specification. Strainer shall be the cleanable, basket or "Y" type, the same size as the pipeline. Strainer bodies shall be fabricated of cast iron with bottoms drilled, and tapped. Provide blowoff outlet with pipe nipple, gate valve, and discharge pipe nipple. The bodies shall have arrows clearly cast on the sides indicating the direction of flow.

Provide strainer with removable cover and sediment screen. The screen shall be made of minimum 22 gauge brass sheet, with small perforations numbering not less than 400 per square inch to provide a net free area.
through the basket of at least 3.30 times that of the entering pipe. The flow shall be into the screen and out through the perforations.

2.5.2 Cyclonic Separator

Metal- bodied, with removal capability of removing solids 45 microns/325 mesh in size and heavier than 1.20 specific gravity, maximum pressure drop of 5 psid, with cleanout connection.

2.5.3 Combination Strainer and Pump Suction Diffuser

Angle type body with removable strainer basket and internal straightening vanes, a suction pipe support, and a blowdown outlet and plug. Strainer shall be in accordance with ASTM F1199, except as modified and supplemented by this specification. Unit body shall have arrows clearly cast on the sides indicating the direction of flow.

Strainer screen shall be made of minimum 22 gauge brass sheet, with small perforations numbering not less than 400 per square inch to provide a net free area through the basket of at least 3.30 times that of the entering pipe. Flow shall be into the screen and out through the perforations. Provide an auxiliary disposable fine mesh strainer which shall be removed 30 days after start-up. Provide warning tag for operator indicating scheduled date for removal.

Casing shall have connection sizes to match pump suction and pipe sizes, and be provided with adjustable support foot or support foot boss to relieve piping strains at pump suction. Provide unit casing with blowdown port and plug. Provide a magnetic insert to remove debris from system.

2.5.4 Flexible Pipe Connectors

Provide flexible bronze or stainless steel piping connectors with single braid. Equip flanged assemblies with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. Provide covers to protect the bellows where indicated.

2.5.5 Pressure and Vacuum Gauges

Gauges, ASME B40.100 with throttling type needle valve or a pulsation dampener and shut-off valve. Provide gauges with 4.5 inch dial, brass or aluminum case, bronze tube, and siphon. Gauge shall have a range from 0 psig to approximately 1.5 times the maximum system working pressure. Each gauge range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.

2.5.6 Temperature Gauges

Temperature gauges, shall be the industrial duty type and be provided for the required temperature range. Provide gauges with fixed thread connection, dial face gasketed within the case; and an accuracy within 2 percent of scale range. Gauges shall have Fahrenheit scale in 2 degree graduations scale (black numbers) on a white face. The pointer shall be adjustable. Rigid stem type temperature gauges shall be provided in thermal wells located within 5 feet of the finished floor. Universal adjustable angle type or remote element type temperature gauges shall be
provided in thermal wells located 5 to 7 feet above the finished floor or in locations indicated. Remote element type temperature gauges shall be provided in thermal wells located 7 feet above the finished floor or in locations indicated.

2.5.6.1 Stem Cased-Glass

Stem cased-glass case shall be polished stainless steel or cast aluminum, 9 inches long, with clear acrylic lens, and non-mercury filled glass tube with indicating-fluid column.

2.5.6.2 Bimetallic Dial

Bimetallic dial type case shall be not less than 3-1/2 inches, stainless steel, and shall be hermetically sealed with clear acrylic lens. Bimetallic element shall be silicone dampened and unit fitted with external calibrator adjustment.

2.5.6.3 Liquid-, Solid-, and Vapor-Filled Dial

Liquid-, solid-, and vapor-filled dial type cases shall be not less than 3-1/2 inches, stainless steel or cast aluminum with clear acrylic lens. Fill shall be nonmercury, suitable for encountered cross-ambients, and connecting capillary tubing shall be double-braided bronze.

2.5.6.4 Thermal Well

Thermal well shall be identical size, 1/2 or 3/4 inch NPT connection, brass or stainless steel. Where test wells are indicated, provide captive plug-fitted type 1/2 inch NPT connection suitable for use with either engraved stem or standard separable socket thermometer or thermostat. Mercury shall not be used in thermometers. Extended neck thermal wells shall be of sufficient length to clear insulation thickness by 1 inch.

2.5.7 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, guides, and supports: to MSS SP-58 and MSS SP-69.

2.5.8 Escutcheons

Provide one piece or split hinge metal plates for piping entering floors, walls, and ceilings in exposed spaces. Secure plates in place by internal spring tension or set screws. Provide polished stainless steel plates or chromium-plated finish on copper alloy plates in finished spaces. Provide paint finish on metal plates in unfinished spaces.

2.6 PUMPS

Pumps shall be the electrically driven, non-overloading, centrifugal type which conform to HI 1.1-1.2. Pumps shall be selected at or within 5 percent of peak efficiency. Pump curve shall rise continuously from maximum capacity to shutoff. Pump motor shall conform to NEMA MG 1, be splash-proof, and have sufficient horsepower for the service required. Pump motor shall have the required capacity to prevent overloading with pump operating at any point on its characteristic curve. Pump speed shall not exceed 3,600 rpm, except where the pump head is less than 60 feet of water, the pump speed shall not exceed 1,750 rpm. Pump motor shall be equipped with an across-the-line magnetic controller in a NEMA 250, Type 1 enclosure with "START-STOP" switch in the cover.
2.6.1 Construction

Each pump casing shall be designed to withstand the discharge head specified plus the static head on system plus 50 percent of the total, but not less than 125 psig. Pump casing and bearing housing shall be close grained cast iron. High points in the casing shall be provided with manual air vents; low points shall be provided with drain plugs. Provide threaded suction and discharge pressure gage tapping with square-head plugs.

Impeller shall be statically and dynamically balanced. Impeller, impeller wearing rings, glands, casing wear rings, and shaft sleeve shall be bronze. Shaft shall be carbon or alloy steel, turned and ground. Bearings shall be ball-bearings, roller-bearings, or oil-lubricated bronze-sleeve type bearings, and be efficiently sealed or isolated to prevent loss of oil or entrance of dirt or water.

Pump and motor shall be mounted on a common cast iron base having lipped edges and tapped drainage openings or structural steel base with lipped edges or drain pan and tapped drainage openings. Pump shall be provided with steel shaft coupling guard. Base-mounted pump, coupling guard, and motor shall each be bolted to a fabricated steel base which shall have bolt holes for securing base to supporting surface. Pump shall be accessible for servicing without disturbing piping connections. Shaft seals shall be mechanical-seals or stuffing-box type.

2.6.2 Mechanical Shaft Seals

Seals shall be single, inside mounted, end-face-elastomer bellows type with stainless steel spring, brass or stainless steel seal head, carbon rotating face, and tungsten carbide or ceramic sealing face. Glands shall be bronze and of the water-flush design to provide lubrication flush across the face of the seal. Bypass line from pump discharge to flush connection in gland shall be provided, with filter or cyclone particle separator in line.

2.7 EXPANSION TANKS

Tank shall be welded steel, constructed for, and tested to pressure-temperature rating of 125 psi at 150 degrees F. Provide tanks precharged to the minimum operating pressure. Tank shall have a replaceable polypropylene or butyl lined diaphragm which keeps the air charge separated from the water; shall be the captive air type.

Tanks shall accommodate expanded water of the system generated within the normal operating temperature range, limiting this pressure increase at all components in the system to the maximum allowable pressure at those components. Each tank air chamber shall be fitted with a drain, fill, an air charging valve, and system connections. Tank shall be supported by steel legs or bases for vertical installation or steel saddles for horizontal installations. The only air in the system shall be the permanent sealed-in air cushion contained within the expansion tank.

2.8 AIR SEPARATOR TANKS

External air separation tank shall have an internal design constructed of stainless steel and suitable for creating the required vortex and subsequent air separation. Tank shall be steel, constructed for, and tested to pressure-temperature rating of 125 psi at 150 degrees F. Tank shall have tangential inlets and outlets connections, threaded for 2 inches
and smaller and flanged for sizes 2-1/2 inches and larger. Air released from a tank shall be to the atmosphere. Tank shall be provided with a blow-down connection.

Design to separate air from water and to direct released air to automatic air vent. Unit shall be of one piece cast-iron construction with internal baffles and two air chambers at top of unit; one air chamber shall have outlet to expansion tank and other air chamber shall be provided with automatic air release device. Tank shall be steel, constructed for, and tested to a ANSI Class 125 pressure-temperature rating.

2.9 WATER TREATMENT SYSTEMS

When water treatment is specified, the use of chemical-treatment products containing equivalent chromium (CPR) is prohibited.

2.9.1 Chilled and Condenser Water

Water to be used in the chilled and condenser water systems shall be treated to maintain the conditions recommended by this specification as well as the recommendations from the manufacturers of the condenser and evaporator coils. Chemicals shall meet all required federal, state, and local environmental regulations for the treatment of evaporator coils and direct discharge to the sanitary sewer.

2.9.2 Glycol Solution

A 40 percent concentration by volume of industrial grade propylene glycol shall be provided in the chilled water. The glycol shall be tested in accordance with ASTM D1384 with less than 0.5 mils penetration per year for all system metals. The glycol shall contain corrosion inhibitors. Silicate based inhibitors shall not be used. The solution shall be compatible with pump seals, other elements of the system, and water treatment chemicals used within the system.

2.9.3 Water Treatment Services

The services of a company regularly engaged in the treatment of condenser and chilled water systems shall be used to determine the correct chemicals required, the concentrations required, and the water treatment equipment sizes and flow rates required. The company shall maintain the chemical treatment and provide all chemicals required for the condenser and chilled water systems for a period of 1 year from the date of occupancy. The chemical treatment and services provided over the 1 year period shall meet the requirements of this specification as well as the recommendations from the manufacturers of the condenser and evaporator coils. Acid treatment and proprietary chemicals shall not be used.

2.9.4 Chilled Water System and Dual Temperature System

A shot feeder shall be provided on the chilled water piping as indicated. Size and capacity of feeder shall be based on local requirements and water analysis. The feeder shall be furnished with an air vent, gauge glass, funnel, valves, fittings, and piping.

2.10 ELECTRICAL WORK

Provide motors, controllers, integral disconnects, contactors, and controls with their respective pieces of equipment, except controllers indicated as
part of motor control centers. Provide electrical equipment, including motors and wiring, as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Manual or automatic control and protective or signal devices required for the operation specified and control wiring required for controls and devices specified, but not shown, shall be provided. For packaged equipment, the manufacturer shall provide controllers including the required monitors and timed restart.

Provide high efficiency type, single-phase, fractional-horsepower alternating-current motors, including motors that are part of a system, in accordance with NEMA MG 11.

Provide polyphase, squirrel-cage medium induction motors, including motors that are part of a system, that meet the efficiency ratings for premium efficiency motors in accordance with NEMA MG 1. Provide motors in accordance with NEMA MG 1 and of sufficient size to drive the load at the specified capacity without exceeding the nameplate rating of the motor.

Motors shall be rated for continuous duty with the enclosure specified. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Provide motor starters complete with thermal overload protection and other necessary appurtenances. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of the enclosure.

2.11 PAINTING OF NEW EQUIPMENT

New equipment painting shall be factory applied or shop applied, and shall be as specified herein, and provided under each individual section.

2.11.1 Factory Painting Systems

Manufacturer's standard factory painting systems may be provided. The factory painting system applied will withstand 125 hours in a salt-spray fog test, except that equipment located outdoors shall withstand 500 hours in a salt-spray fog test.

Salt-spray fog test shall be in accordance with ASTM B117, and for that test, the acceptance criteria shall be as follows: immediately after completion of the test, the paint shall show no signs of blistering, wrinkling, or cracking, and no loss of 0.125 inch on either side of the scratch mark. The film thickness of the factory painting system applied on the equipment shall not be less than the film thickness used on the test specimen.

If manufacturer's standard factory painting system is being proposed for use on surfaces subject to temperatures above 120 degrees F, the factory painting system shall be designed for the temperature service.

2.11.2 Shop Painting Systems for Metal Surfaces

Clean, retreat, prime and paint metal surfaces; except aluminum surfaces need not be painted. Apply coatings to clean dry surfaces. Clean the surfaces to remove dust, dirt, rust, oil and grease by wire brushing and solvent degreasing prior to application of paint, except metal surfaces
subject to temperatures in excess of 120 degrees F shall be cleaned to bare metal.

Where hot-dip galvanized steel has been cut, resulting surfaces with no galvanizing shall be coated with a zinc-rich coating conforming to ASTM D520, Type I.

Where more than one coat of paint is specified, apply the second coat after the preceding coat is thoroughly dry. Lightly sand damaged painting and retouch before applying the succeeding coat. Color of finish coat shall be aluminum or light gray.

a. Temperatures Less Than 120 Degrees F: Immediately after cleaning, the metal surfaces subject to temperatures less than 120 degrees F shall receive one coat of pretreatment primer applied to a minimum dry film thickness of 0.3 mil, one coat of primer applied to a minimum dry film thickness of one mil; and two coats of enamel applied to a minimum dry film thickness of one mil per coat.

b. Temperatures Between 120 and 400 degrees F: Metal surfaces subject to temperatures between 120 and 400 degrees F shall receive two coats of 400 degrees F heat-resisting enamel applied to a total minimum thickness of 2 mils.

c. Temperatures Greater Than 400 degrees F: Metal surfaces subject to temperatures greater than 400 degrees F shall receive two coats of 600 degrees F heat-resisting paint applied to a total minimum dry film thickness of 2 mils.

2.12 FACTORY APPLIED INSULATION

Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 25 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E84.

Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E84.

2.13 NAMEPLATES

Major equipment including pumps, pump motors, expansion tanks, and air separator tanks shall have the manufacturer's name, type or style, model or serial number on a plate secured to the item of equipment. The nameplate of the distributing agent will not be acceptable. Plates shall be durable and legible throughout equipment life and made of anodized aluminum. Plates shall be fixed in prominent locations with nonferrous screws or bolts.
2.14 RELATED COMPONENTS/SERVICES

2.14.1 Drain and Make-Up Water Piping

Requirements for drain and make-up water piping and backflow preventer is specified in Section 22 00 00 PLUMBING, GENERAL PURPOSE.

2.14.2 Cathodic Protection

Requirements for cathodic protection systems is specified in Section 26 42 14.00 10 CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE).

2.14.3 Field Applied Insulation

Requirements for field applied insulation is specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.14.4 Field Applied Insulation

Requirements for field installed insulation is specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as supplemented and modified by this specification section.

2.14.5 Field Painting

Requirements for painting of surfaces not otherwise specified, and finish painting of items only primed at the factory, are specified in Section 09 90 00 PAINTS AND COATINGS.

2.14.5.1 Color Coding For Hidden Piping

A color coding scheme for locating hidden piping shall be in accordance with Section 22 00 00 PLUMBING, GENERAL PURPOSE.

PART 3 EXECUTION

3.1 INSTALLATION

Cut pipe accurately to measurements established at the jobsite, and work into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation is not permitted without written approval. Cut pipe or tubing square, remove burrs by reaming, and fashion to permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers.

Notify the Contracting Officer in writing at least 15 calendar days prior to the date the connections are required. Obtain approval before interrupting service. Furnish materials required to make connections into existing systems and perform excavating, backfilling, compacting, and other incidental labor as required. Furnish labor and tools for making actual connections to existing systems.

3.1.1 Welding

Provide welding work specified this section for piping systems in conformance with ASME B31.9, as modified and supplemented by this specification section and the accompanying drawings. The welding work includes: qualification of welding procedures, welders, welding operators,
brazers, brazing operators, and nondestructive examination personnel; maintenance of welding records, and examination methods for welds.

3.1.1 Employer's Record Documents (For Welding)

Submit for review and approval the following documentation. This documentation and the subject qualifications shall be in compliance with ASME B31.9.

a. List of qualified welding procedures that is proposed to be used to provide the work specified in this specification section.

b. List of qualified welders, brazers, welding operators, and brazing operators that are proposed to be used to provide the work specified in this specification section.

c. List of qualified weld examination personnel that are proposed to be used to provide the work specified in this specification section.

3.1.1.2 Welding Procedures and Qualifications

a. Specifications and Test Results: Submit copies of the welding procedures specifications and procedure qualification test results for each type of welding required. Approval of any procedure does not relieve the Contractor of the responsibility for producing acceptable welds. Submit this information on the forms printed in ASME BPVC SEC IX or their equivalent.

b. Certification: Before assigning welders or welding operators to the work, submit a list of qualified welders, together with data and certification that each individual is performance qualified as specified. Do not start welding work prior to submitting welder, and welding operator qualifications. The certification shall state the type of welding and positions for which each is qualified, the code and procedure under which each is qualified, date qualified, and the firm and individual certifying the qualification tests.

3.1.1.3 Examination of Piping Welds

Conduct non-destructive examinations (NDE) on piping welds and brazing and verify the work meets the acceptance criteria specified in ASME B31.9. NDE on piping welds covered by ASME B31.9 is visual inspection only. Submit a piping welds NDE report meeting the requirements specified in ASME B31.9.

3.1.1.4 Welding Safety

Welding and cutting safety requirements shall be in accordance with AWS Z49.1.

3.1.2 Directional Changes

Make changes in direction with fittings, except that bending of pipe 4 inches and smaller is permitted, provided a pipe bender is used and wide weep bends are formed. Mitering or notching pipe or other similar construction to form elbows or tees is not permitted. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations is not acceptable.
3.1.3 Functional Requirements

Pitch horizontal supply mains down in the direction of flow as indicated. The grade shall not be less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Cap or plug open ends of pipelines and equipment during installation to keep dirt or other foreign materials out of the system.

Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 2-1/2 inches or less in diameter, and with flanges for pipe 3 inches and above in diameter. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric waterways or flanges.

Piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded. Equipment and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance. Electric isolation fittings shall be provided between dissimilar metals.

3.1.4 Fittings and End Connections

3.1.4.1 Threaded Connections

Threaded connections shall be made with tapered threads and made tight with PTFE tape complying with ASTM D3308 or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is made.

3.1.4.2 Brazed Connections

Brazing, AWS BRH, except as modified herein. During brazing, the pipe and fittings shall be filled with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. Do not use brazing flux. Surplus brazing material shall be removed at all joints. Steel tubing joints shall be made in accordance with the manufacturer's recommendations. Piping shall be supported prior to brazing and not be sprung or forced.

3.1.4.3 Welded Connections

Branch connections shall be made with welding tees or forged welding branch outlets. Pipe shall be thoroughly cleaned of all scale and foreign matter before the piping is assembled. During welding, the pipe and fittings shall be filled with an inert gas, such as nitrogen, to prevent the formation of scale. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.9. Weld defects shall be removed and rewelded at no additional cost to the Government. Electrodes shall be stored and dried in accordance with AWS D1.1/D1.1M or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used.

3.1.4.4 Grooved Mechanical Connections

Prepare grooves in accordance with the coupling manufacturer's instructions. Pipe and groove dimensions shall comply with the tolerances...
specified by the coupling manufacturer. The diameter of grooves made in
the field shall be measured using a "go/no-go" gauge, vernier or dial
caliper, or narrow-land micrometer, or other method specifically approved
by the coupling manufacturer for the intended application. Groove width
and dimension of groove from end of pipe shall be measured and recorded for
each change in grooving tool setup to verify compliance with coupling
manufacturer's tolerances. Grooved joints shall not be used in concealed
locations, such as behind solid walls or ceilings, unless an access panel
is shown on the drawings for servicing or adjusting the joint.

3.1.4.5 Flanges and Unions

Except where copper tubing is used, union or flanged joints shall be
provided in each line immediately preceding the connection to each piece of
equipment or material requiring maintenance such as coils, pumps, control
valves, and other similar items. Flanged joints shall be assembled square
end tight with matched flanges, gaskets, and bolts. Gaskets shall be
suitable for the intended application.

3.1.5 Valves

Isolation gate or ball valves shall be installed on each side of each piece
of equipment, at the midpoint of all looped mains, and at any other points
indicated or required for draining, isolating, or sectionalizing purpose.
Isolation valves may be omitted where balancing cocks are installed to
provide both balancing and isolation functions. Each valve except check
valves shall be identified. Valves in horizontal lines shall be installed
with stems horizontal or above.

3.1.6 Air Vents

Air vents shall be provided at all high points, on all water coils, and
where indicated to ensure adequate venting of the piping system.

3.1.7 Drains

Drains shall be provided at all low points and where indicated to ensure
complete drainage of the piping. Drains shall be accessible, and shall
consist of nipples and caps or plugged tees unless otherwise indicated.

3.1.8 Flexible Pipe Connectors

Connectors shall be attached to components in strict accordance with the
latest printed instructions of the manufacturer to ensure a vapor tight
joint. Hangers, when required to suspend the connectors, shall be of the
type recommended by the flexible pipe connector manufacturer and shall be
provided at the intervals recommended.

3.1.9 Temperature Gauges

Temperature gauges shall be located on coolant supply and return piping at
each heat exchanger, on condenser water piping entering and leaving a
condenser, at each automatic temperature control device without an integral
thermometer, and where indicated or required for proper operation of
equipment. Thermal wells for insertion thermometers and thermostats shall
extend beyond thermal insulation surface not less than 1 inch.
3.1.10 Pipe Hangers, Inserts, and Supports

Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as supplemented and modified in this specification section. Pipe hanger types 5, 12, and 26 shall not be used. Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Piping subjected to vertical movement, when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers.

3.1.10.1 Hangers

Type 3 shall not be used on insulated piping. Type 24 may be used only on trapeze hanger systems or on fabricated frames.

3.1.10.2 Inserts

Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustments may be used if they otherwise meet the requirements for Type 18 inserts.

3.1.10.3 C-Clamps

Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable.

3.1.10.4 Angle Attachments

Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter.

3.1.10.5 Saddles and Shields

Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 40 shields shall be used on all piping less than 4 inches and all piping 4 inches and larger carrying medium less than 60 degrees F. A high density insulation insert of cellular glass shall be used under the Type 40 shield for piping 2 inches and larger.

3.1.10.6 Horizontal Pipe Supports

Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Pipe hanger loads suspended from steel joist with hanger loads between panel points in excess of 50 pounds shall have the excess hanger loads suspended from panel points.

3.1.10.7 Vertical Pipe Supports

Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet, not more than 8 feet from end of risers, and at vent terminations.
3.1.10.8 Multiple Pipe Runs

In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run.

3.1.10.9 Structural Attachments

Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Supports shall not be attached to the underside of concrete filled floors or concrete roof decks unless approved by the Contracting Officer. Masonry anchors for overhead applications shall be constructed of ferrous materials only. Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material used for support shall be as specified under Section 05 12 00 STRUCTURAL STEEL.

3.1.11 Building Surface Penetrations

Sleeves shall not be installed in structural members except where indicated or approved. Except as indicated otherwise piping sleeves shall comply with requirements specified. Sleeves in nonload bearing surfaces shall be galvanized sheet metal, conforming to ASTM A653/A653M, Coating Class G-90, 20 gauge. Sleeves in load bearing surfaces shall be uncoated carbon steel pipe, conforming to ASTM A53/A53M, Standard weight. Sealants shall be applied to moisture and oil-free surfaces and elastomers to not less than 1/2 inch depth. Sleeves shall not be installed in structural members.

3.1.11.1 General Service Areas

Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall be of such size as to provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed in accordance with Section 07 92 00 JOINT SEALANTS.

3.1.11.2 Waterproof Penetrations

Pipes passing through roof or floor waterproofing membrane shall be installed through a .17 ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange.

Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the roof or floor penetration. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Penetrations shall be sealed by either one of the following methods.

a. Waterproofing Clamping Flange: Pipes up to and including 10 inches in
diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess.

b. Modular Mechanical Type Sealing Assembly: In lieu of a waterproofing clamping flange, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut.

After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal rubber sealing elements to expand and provide a watertight seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters.

3.1.11.3 Fire-Rated Penetrations

Penetration of fire-rated walls, partitions, and floors shall be sealed as specified in Section 07 84 00 FIRESTOPPING.

3.1.11.4 Escutcheons

Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering.

3.1.12 Access Panels

Access panels shall be provided where indicated for all concealed valves, vents, controls, and additionally for items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05 50 13 MISCELLANEOUS METAL FABRICATIONS.

3.2 ELECTRICAL INSTALLATION

Install electrical equipment in accordance with NFPA 70 and manufacturers instructions.

3.3 CLEANING AND ADJUSTING

Pipes shall be cleaned free of scale and thoroughly flushed of all foreign matter. A temporary bypass shall be provided for all water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from all water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel...
shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed.

3.4 FIELD TESTS

Field tests shall be conducted in the presence of the QC Manager or his designated representative to verify systems compliance with specifications. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor.

3.4.1 Equipment and Component Isolation

Prior to testing, equipment and components that cannot withstand the tests shall be properly isolated.

3.4.2 Pressure Tests

Each piping system, except for polypropylene piping, shall be hydrostatically tested at a pressure not less than 188 psig for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Test pressure shall be monitored by a currently calibrated test pressure gauge. Leaks shall be repaired and piping retested until test requirements are met. No leakage or reduction in gage pressure shall be allowed.

Leaks shall be repaired by rewelding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before concealing.

Submit for approval pressure tests reports covering the above specified piping pressure tests; describe the systems tested, test results, defects found and repaired, and signature of the pressure tests' director. Obtain approval from the QC Manager before concealing piping or applying insulation to tested and accepted piping.

3.4.3 Related Field Inspections and Testing

3.4.3.1 Piping Welds

Examination of Piping Welds is specified in the paragraph EXAMINATION OF PIPING WELDS (above).

3.4.3.2 HVAC TAB

Requirements for testing, adjusting, and balancing (TAB) of HVAC water piping, and associated equipment is specified in Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC. Coordinate with the TAB team, and provide support personnel and equipment as specified in Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC to assist TAB team to meet the TAB work requirements.

3.5 INSTRUCTION TO GOVERNMENT PERSONNEL

Furnish the services of competent instructors to give full instruction to the designated Government personnel in the adjustment, operation, and maintenance, including pertinent safety requirements, of the chilled water, and chilled-hot water. Instructors shall be thoroughly familiar with all
parts of the installation and shall be instructed in operating theory as well as practical operation and maintenance work. Submit a lesson plan for the instruction course for approval. The lesson plan and instruction course shall be based on the approved operation and maintenance data and maintenance manuals.

Conduct a training course for the operating staff and maintenance staff selected by the Contracting Officer. Give the instruction during the first regular work week after the equipment or system has been accepted and turned over to the Government for regular operation. The number of man-days (8 hours per day) of instruction furnished shall be one man-day. Use approximately half of the time for classroom instruction and the other time for instruction at the location of equipment or system.

When significant changes or modifications in the equipment or system are made under the terms of the contract, provide additional instruction to acquaint the operating personnel with the changes or modifications.

-- End of Section --
SECTION 23 81 00.00 20

UNITARY AIR CONDITIONING EQUIPMENT

11/09

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI DCUP (Online) Directory of Certified Unitary Products

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

AMERICAN WELDING SOCIETY (AWS)

AWS A5.8/A5.8M (2011; Amendment 2012) Specification for Filler Metals for Brazing and Braze Welding

ASME INTERNATIONAL (ASME)

ASTM INTERNATIONAL (ASTM)

Add/Repair B541 Global Hawk GSMP - Grand Forks AFB, ND

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

U.S. DEPARTMENT OF ENERGY (DOE)

UNDERWRITERS LABORATORIES (UL)

UL 109 (1997; Reprint Aug 2013) Tube Fittings for Flammable and Combustible Fluids, Refrigeration Service, and Marine Use

UL 873 (2007; Reprint Feb 2015) Standard for Temperature-Indicating and -Regulating Equipment
UL 900 (2015) Standard for Air Filter Units

1.2 RELATED REQUIREMENTS

Section 23 03 00.00 20 BASIC MECHANICAL MATERIALS AND METHODS, applies to this section with the additions and modifications specified herein.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

 Field-Assembled Refrigerant Piping
 Control System Wiring Diagrams

SD-03 Product Data

 Air Conditioners

 Include documentation for Energy Star qualifications or meeting FEMP requirements. Indicate Energy Efficiency Rating.

 Filters; G
 Thermostats; G
 Refrigerant: Provide SDS sheets for all refrigerants; G
 Refrigerant Piping and Accessories; G

 For packaged terminal units, include indoor noise rating.

SD-06 Test Reports

 Salt-Spray Tests
 Start-Up and Initial Operational Tests

SD-08 Manufacturer's Instructions

 Air Conditioners; G
 Filters; G
 Thermostats; G
 Refrigerant Piping and Accessories; G

SD-10 Operation and Maintenance Data

 Air Conditioners; G, Data Package 3
Filters; G, Data Package 2
Thermostats; G, Data Package 2

Submit in accordance with Section 01000 OPERATION AND MAINTENANCE DATA.

SD-11 Closeout Submittals

Posted Operating Instructions
Energy Efficient Equipment for Unitary Air Conditioning Equipment; S
Ozone Depleting Substances; S
Indoor Air Quality During Construction; S

1.4 QUALITY ASSURANCE

1.4.1 Modification of References

Accomplish work in accordance with the referenced publications, except as modified by this section. Consider the advisory or recommended provisions to be mandatory, as though the word "shall" had been substituted for the words "should" or "could" or "may," wherever they appear. Interpret reference to "the Authority having jurisdiction," "the Administrative Authority," "the Owner," or "the Design Engineer" to mean the Contracting Officer.

1.4.2 Detail Drawing

For refrigerant piping, submit piping, including pipe sizes. Submit control system wiring diagrams.

1.4.3 Safety

Design, manufacture, and installation of unitary air conditioning equipment shall conform to ANSI/ASHRAE 15 & 34.

1.4.4 Posted Operating Instructions

Submit posted operating instructions for each packaged air conditioning unit.

1.4.5 Sizing

Size equipment based on Design Manual CS from the Air Conditioning Contractors of America; do not oversize.

1.5 REFRIGERANTS

Refrigerants shall have an Ozone Depletion Potential (ODP) of 0.0. The ODP shall be in accordance with the "Montreal Protocol On Substances That Deplete The Ozone Layer," September 1987, sponsored by the United Nations Environment Programme. CFCs and HCFCs and Halons shall not be permitted. Refrigerant shall be an approved alternative refrigerant per EPA's Significant New Alternative Policy (SNAP) listing.
1.6 ENVIRONMENTAL REQUIREMENTS

For proper Indoor Environmental Quality, maintain positive pressure within the building. Ventilation shall meet or exceed ASHRAE 62.1 and all published addenda. Meet or exceed filter media efficiency as tested in accordance with ASHRAE 52.2. Thermal comfort shall meet or exceed ASHRAE 55.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:

2.1.1 Energy Efficient Equipment for Unitary Air Conditioning Equipment

Provide unitary air conditioning equipment meeting the efficiency requirements as stated within this section and provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph ENERGY EFFICIENT EQUIPMENT.

2.1.2 Ozone Depleting Substances

Unitary air conditioning equipment must not use CFC-based refrigerants, and must have an Ozone Depletion Potential (ODP) no greater than 0.0, with exception to R-123, in conformance with this section. Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph OZONE DEPLETING SUBSTANCES.

2.2 AIR CONDITIONERS

2.2.1 Split-System Type

Provide separate assemblies designed to be used together. Base ratings on the use of matched assemblies. Provide performance diagrams for units with capacities not certified by AHRI to verify that components of the air conditioning system furnished will satisfy the capacity requirement specified or indicated. List units with capacities smaller than 135,000 Btu/hr in the AHRI DCUP; in lieu of listing in the AHRI Directory, a letter of certification from AHRI that units have been certified and will be listed in the next Directory will be acceptable. Provide capacity, electrical characteristics and operating conditions as indicated. Condensers shall provide not less than 10 degrees F liquid subcooling at standard ratings. Air conditioners must include the Energy Star label affixed to the equipment.

2.2.2 Single Zone Units

Provide single zone type units arranged to draw or blow through coil sections. Air may be blown or drawn through heating section.

2.2.3 Heaters

Provide as an integral part of the evaporator-blower unit. Provide electric strip tubular heaters.
2.2.4 Compressors

Capacity reduction may be accomplished by variable speed compressors. Provide compressors with devices to prevent short cycling when shut down by safety controls. Device shall delay operation of compressor motor for at least 3 minutes but not more than 6 minutes. Provide reciprocating compressors with crankcase heaters in accordance with the manufacturer's recommendations.

2.2.5 Coils

On coils with all-aluminum construction, provide tubes of aluminum alloy 1100, 1200, or 3102; provide fins of aluminum alloy 7072; and provide tube sheets of aluminum alloy 7072 or 5052. Provide a separate air cooled condenser circuit for each compressor installation. Coils to be coated shall be part of manufacturer's standard product for capacities and ratings indicated and specified. Provide plate type fins.

2.2.6 Condenser Controls

Provide start-up and head pressure controls to allow for system operation at ambient temperatures down to -10 degrees F.

2.2.7 Fans

Provide belt-driven evaporator fans with adjustable pitch pulleys; except for units less than 5 ton capacity, direct drive with at least two speed taps may be used. Select pulleys at approximately midpoint of the adjustable range.

2.2.8 Filters

Provide filters of the type specified in this section.

2.2.9 Filter Boxes

Provide when filters are not included integral with air conditioning units. Construct of not less than No. 20 US gage steel with track, hinged access doors with latches, and gaskets between frame and filters. Arrange filters to filter outside and return air. Provide removable filter assemblies, replaceable without the use of tools.

2.2.10 Thermostats

Provide adjustable type that conforms to applicable requirements of UL 873. Provide combination heating-cooling type with contacts hermetically sealed against moisture, corrosion, lint, dust, and foreign material. Design to operate on not more than 1.5 degrees F differential and of suitable range calibrated in degrees F. Provide adjustable heat anticipation and fixed cooling anticipation. Provide two independent temperature sensing elements electrically connected to control the compressor and heating equipment, respectively. Accomplish manual switching for system changeover from heating to cooling or cooling to heating and fan operation through the use of a thermostat subbase. Provide system selector switches to provide "COOL" and "OFF" and "HEAT" and fan selector switches to provide "AUTOMATIC" and "ON." Provide relays, contactors, and transformers located in a panel or panels for replacement and service.
2.2.10.1 Cooling

a. When thermostat is in "COOL" position with fan selector switch in "AUTO" position, compressor, evaporator fan, and condenser fan shall cycle together.

b. When thermostat is in "COOL" position with fan selector switch in "ON" position, compressor, and condenser fan shall cycle together and evaporator fan shall run continuously.

2.2.10.2 Heating

a. When thermostat is in "HEAT" position with fan selector switch in "AUTO" position, heater and supply air fan shall cycle together. Provide a separate thermostat to keep the fan running until the heater cools.

b. When thermostat is in "HEAT" position with fan selector switch in "ON" position, heater shall cycle and supply air fan shall run continuously.

2.2.10.3 Supply Air Fan

a. When fan selector switch is in "AUTO" position with thermostat in "OFF" position, fan shall not run.

b. When fan selector switch is in "ON" position, fan shall run continuously.

2.3 FILTERS

Provide filters to filter return air and locate inside filter box. Provide replaceable (throw-away) type. Filters shall conform to UL 900, Class 1 or Class 2. Polyurethane filters shall not be used on units with multiframe filters.

2.3.1 Replaceable Type Filters

Throw-away frames and media, standard dust holding capacity, 350 fpm maximum face velocity, and one inch thick. Filters shall have a minimum efficiency reporting value (MERV) of 6 when tested in accordance with ASHRAE 52.2.

2.4 MOTORS AND STARTERS

NEMA MG 1, NEMA ICS 1, and NEMA ICS 2. Variable speed. Motors less than 1 hp shall meet NEMA High Efficiency requirements. Motors 1 hp and larger shall meet NEMA Premium Efficiency requirements. Determine specific motor characteristics to ensure provision of correctly sized starters and overload heaters. Provide motors to operate at full capacity with a voltage variation of plus or minus 10 percent of the motor voltage rating. Motor size shall be sufficient for the duty to be performed and shall not exceed its full load nameplate current rating when driven equipment is operated at specified capacity under the most severe conditions likely to be encountered. When motor size provided differs from size indicated or specified, the Contractor shall make the necessary adjustments to the wiring, disconnect devices, and branch circuit protection to accommodate equipment actually provided. Provide general-purpose type starter enclosures in accordance with NEMA ICS 6.
2.5 REFRIGERANT PIPING AND ACCESSORIES

Provide accessories as specified in this section. Provide suction line accumulators as recommended by equipment manufacturer's installation instructions. Provide a filter-drier in the liquid line.

2.5.1 Factory Charged Tubing

Provide extra soft, deoxidized, bright annealed copper tubing conforming to ASTM B280, factory dehydrated and furnished with a balanced charge of refrigerant recommended by manufacturer of equipment being connected. Factory insulate suction line tubing with 3/8 inch minimum thickness of closed cell, foamed plastic conforming to ASTM C534/C534M with a permeance rating not to exceed 1.0. Provide quick-connectors with caps or plugs to protect couplings. Include couplings for suction and liquid line connections of the indoor and outdoor sections.

2.5.2 Field-Assembled Refrigerant Piping

Material and dimensional requirements for field-assembled refrigerant piping, valves, fittings, and accessories shall conform to ANSI/ASHRAE 15 & 34 and ASME B31.5, except as herein specified. Factory clean, dehydrate, and seal piping before delivery to the project location. Provide seamless copper tubing, hard drawn, Type K or L, conforming to ASTM B88, except that tubing with outside diameters of 1/4 inch and 3/8 inch shall have nominal wall thickness of not less than 0.030 inch and 0.032 inch, respectively. Soft annealed copper tubing conforming to ASTM B280 may be used where flare connections to equipment are required only in nominal sizes less than one inch outside diameter.

2.5.3 Fittings

2.5.4 Brazing Filler Material

AWS A5.8/A5.8M.

2.5.5 Pipe Hangers and Supports

MSS SP-69 and MSS SP-58.

2.5.6 Pipe Sleeves

Provide sleeves where piping passes through walls, floors, roofs, and partitions. Secure sleeves in proper position and location during construction. Provide sleeves of sufficient length to pass through entire thickness of walls, floors, roofs, and partitions. Provide not less than 0.25 inch space between exterior of piping or pipe insulation and interior of sleeve. Firmly pack space with insulation and caulk at both ends of the sleeve with plastic waterproof cement which will dry to a firm but pliable mass, or provide a segmented elastomeric seal.

2.5.6.1 Sleeves in Masonry and Concrete Walls, Floors, and Roofs

Provide Schedule 40 or Standard Weight zinc-coated steel pipe sleeves. Extend sleeves in floor slabs 3 inches above finished floor.
2.5.6.2 Sleeves in Partitions and Non-Masonry Structures

Provide zinc-coated steel sheet sleeves having a nominal weight of not less than 0.90 pound per square foot, in partitions and other than masonry and concrete walls, floors, and roofs.

2.6 FINISHES

Provide steel surfaces of equipment including air conditioners that do not have a zinc coating conforming to ASTM A123/A123M, or a duplex coating of zinc and paint, with a factory applied coating or paint system. Provide a coating or paint system on actual equipment identical to that on salt-spray test specimens with respect to materials, conditions of application, and dry-film thickness.

2.7 SOURCE QUALITY CONTROL

2.7.1 Salt-Spray Tests

Salt-spray test the factory-applied coating or paint system of equipment including packaged terminal units, heat pumps, and air conditioners in accordance with ASTM B117. Conduct test for 500 hours for equipment installed outdoors, or 125 hours for equipment installed indoors. Test specimens shall have a standard scribe mark as defined in ASTM D1654. Upon completion of exposure, evaluate and rate the coating or paint system in accordance with procedures A and B of ASTM D1654. Rating of failure at the scribe mark shall not be less than six, average creepage not greater than 1/8 inch. Rating of the unscribed area shall not be less than 10, no failure.

PART 3 EXECUTION

3.1 CONSTRUCTION-_RELATED SUSTAINABILITY CRITERIA

Perform and document the following:

3.1.1 Indoor Air Quality During Construction

Provide documentation showing that after construction ends, and prior to occupancy, new filters were installed in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph INDOOR AIR QUALITY DURING CONSTRUCTION.

3.2 EQUIPMENT INSTALLATION

Install equipment and components in a manner to ensure proper and sequential operation of equipment and equipment controls. Install equipment not covered in this section, or in manufacturer's instructions, as recommended by manufacturer's representative. Provide proper foundations for mounting of equipment, accessories, appurtenances, piping and controls including, but not limited to, supports, vibration isolators, stands, guides, anchors, clamps and brackets. Foundations for equipment shall conform to equipment manufacturer's recommendation, unless otherwise indicated. Set anchor bolts and sleeves using templates. Provide anchor bolts of adequate length, and provide with welded-on plates on the head end embedded in the concrete. Level equipment bases, using jacks or steel wedges, and neatly grout-in with a nonshrinking type of grouting mortar. Locate equipment to allow working space for servicing including shaft removal, disassembling compressor cylinders and pistons, replacing or adjusting drives, motors, or shaft seals, access to water heads and valves...
of shell and tube equipment, tube cleaning or replacement, access to automatic controls, refrigerant charging, lubrication, oil draining and working clearance under overhead lines. Provide electric isolation between dissimilar metals for the purpose of minimizing galvanic corrosion.

3.2.1 Unitary Air Conditioning System

Install as indicated, in accordance with requirements of ANSI/ASHRAE 15 & 34, and the manufacturer's installation and operational instructions.

3.3 PIPING

Brazing, bending, forming and assembly of refrigerant piping shall conform to ASME B31.5.

3.3.1 Pipe Hangers and Supports

Design and fabrication of pipe hangers, supports, and welding attachments shall conform to MSS SP-58. Installation of hanger types and supports for bare and covered pipes shall conform to MSS SP-69 for the system temperature range. Unless otherwise indicated, horizontal and vertical piping attachments shall conform to MSS SP-58.

3.3.2 Refrigerant Piping

Cut pipe to measurements established at the site and work into place without springing or forcing. Install piping with sufficient flexibility to provide for expansion and contraction due to temperature fluctuation. Where pipe passes through building structure pipe joints shall not be concealed, but shall be located where they may be readily inspected. Install piping to be insulated with sufficient clearance to permit application of insulation. Install piping as indicated and detailed, to avoid interference with other piping, conduit, or equipment. Except where specifically indicated otherwise, run piping plumb and straight and parallel to walls and ceilings. Trapping of lines will not be permitted except where indicated. Provide sleeves of suitable size for lines passing through building structure. Brazing refrigerant piping with silver solder complying with AWS A5.8/A5.8M. Inside of tubing and fittings shall be free of flux. Clean parts to be jointed with emery cloth and keep hot until solder has penetrated full depth of fitting and extra flux has been expelled. Cool joints in air and remove flame marks and traces of flux. During brazing operation, prevent oxide film from forming on inside of tubing by slowly flowing dry nitrogen through tubing to expel air. Make provisions to automatically return oil on halocarbon systems. Installation of piping shall comply with ASME B31.5.

3.3.3 Returning Oil From Refrigerant System

Install refrigerant lines so that gas velocity in the evaporator suction line is sufficient to move oil along with gas to the compressor. Where equipment location requires vertical risers, line shall be sized to maintain sufficient velocity to lift oil at minimum system loading and corresponding reduction of gas volume. Install a double riser when excess velocity and pressure drop would result from full system loading. Larger riser shall have a trap, of minimum volume, obtained by use of 90- and 45-degree ells. Arrange small riser with inlet close to bottom of horizontal line, and connect to top of upper horizontal line. Do not install valves in risers.
3.3.4 Refrigerant Driers, Sight Glass Indicators, and Strainers

Provide refrigerant driers, sight glass liquid indicators, and strainers in refrigerant piping in accordance with this section when not furnished by the manufacturer as part of the equipment. Install driers in liquid line with service valves and valved bypass line the same size as liquid line in which dryer is installed. Size of driers shall be determined by piping and installation of the unit on location. Install dryers of 50 cubic inches and larger vertically with the cover for removing cartridge at the bottom. Install moisture indicators in the liquid line downstream of the drier. Indicator connections shall be the same size as the liquid line in which it is installed.

3.3.5 Strainer Locations and Installation

Locate strainers close to equipment they are to protect. Provide a strainer in common refrigerant liquid supply to two or more thermal valves in parallel when each thermal valve has a built-in strainer. Install strainers with screen down and in direction of flow as indicated on strainer's body.

3.4 AUXILIARY DRAIN PANS, DRAIN CONNECTIONS, AND DRAIN LINES

Provide auxiliary drain pans under units located above finished ceilings or over mechanical or electrical equipment where condensate overflow will cause damage to ceilings, piping, and equipment below. Provide separate drain lines for the unit drain and auxiliary drain pans. Trap drain pans from the bottom to ensure complete pan drainage. Provide drain lines full size of drain opening. Traps and piping to drainage disposal points shall conform to Section 22 00 00 PLUMBING, GENERAL PURPOSE.

3.5 ACCESS PANELS

Provide access panels for concealed valves, controls, dampers, and other fittings requiring inspection and maintenance.

3.6 AIR FILTERS

Allow access space for servicing filters. Install filters with suitable sealing to prevent bypassing of air.

3.7 FLASHING AND PITCH POCKETS

Provide flashing and pitch pockets for equipment supports and roof penetrations and flashing where piping or ductwork passes through exterior walls in accordance with Section 07 60 00 FLASHING AND SHEET METAL.

3.8 IDENTIFICATION TAGS AND PLATES

Provide equipment, gages, thermometers, valves, and controllers with tags numbered and stamped for their use. Provide plates and tags of brass or suitable nonferrous material, securely mounted or attached. Provide minimum letter and numeral size of 1/8 inch high.

3.9 FIELD QUALITY CONTROL

3.9.1 Leak Testing

Upon completion of installation of air conditioning equipment, test
factory- and field-installed refrigerant piping with an electronic-type leak detector. Use same type of refrigerant to be provided in the system for leak testing. When nitrogen is used to boost system pressure for testing, ensure that it is eliminated from the system before charging. Minimum refrigerant leak field test pressure shall be as specified in ANSI/ASHRAE 15 & 34, except that test pressure shall not exceed 150 psig on hermetic compressors unless otherwise specified as a low side test pressure on the equipment nameplate. If leaks are detected at time of installation or during warranty period, remove the entire refrigerant charge from the system, correct leaks, and retest system.

3.9.2 Evacuation, Dehydration, and Charging

After field charged refrigerant system is found to be without leaks or after leaks have been repaired on field-charged and factory-charged systems, evacuate the system using a reliable gage and a vacuum pump capable of pulling a vacuum of at least one mm Hg absolute. Evacuate system in accordance with the triple-evacuation and blotter method or in accordance with equipment manufacturer's printed instructions and recharge system.

3.9.3 Start-Up and Initial Operational Tests

Test the air conditioning systems and systems components for proper operation. Adjust safety and automatic control instruments as necessary to ensure proper operation and sequence. Conduct operational tests for not less than 8 hours.

3.9.4 Performance Tests

Upon completion of evacuation, charging, startup, final leak testing, and proper adjustment of controls, test the systems to demonstrate compliance with performance and capacity requirements. Test systems for not less than 8 hours, record readings hourly. At the end of the test period, average the readings, and the average shall be considered to be the system performance.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AIR-CONDITIONING, HEATING AND REFRIGERATION INSTITUTE (AHRI)

AHRI 410 (2001; Addendum 1 2002; Addendum 2 2005; Addendum 3 2011) Forced-Circulation Air-Cooling and Air-Heating Coils

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASME INTERNATIONAL (ASME)

ASME B31.1 (2016; Errata 2016) Power Piping

ASTM INTERNATIONAL (ASTM)

1.2 SYSTEM DESCRIPTION

Provide new computer room air conditioning units (CRACU) complete and ready for operation. Size equipment based on Design Manual CS from the Air Conditioning Contractors of America; do not oversize.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Computer room air conditioning units; G
Space temperature control system drawings; G

Filters

Refrigerants: Provide SDS sheets for all refrigerants

SD-06 Test Reports

CRACU Production Schedule and Factory Test Schedule; G
Manufacturer's Factory Test Plans; G
Factory Test Reports; G
Field Test Schedule; G
Manufacturer's Field Test Plans; G
Field Test Reports; G
Aquatic Toxicity

SD-07 Certificates
Credentials of the Manufacturer's Field Test Representative; G

SD-08 Manufacturer's Instructions
Installation Manual for Each Type of CRACU

SD-10 Operation and Maintenance Data
Submit in accordance with Section 01000 OPERATION AND MAINTENANCE DATA.

Computer Room Air Conditioning Units, Data Package 4; G

SD-11 Closeout Submittals
Energy Efficient Equipment for Computer Room Air Conditioning Units; S
Ozone Depleting Substances; S
Indoor Air Quality During Construction; S

1.4 OZONE DEPLETION POTENTIAL

Equipment using refrigerants R-11, R-12, R-113, R-114, R-115, R-500, or refrigerants with ozone depletion factor (ODF) greater than 0.0, or refrigerants containing CFCs or HCFCs or Halons shall not be permitted. Refrigerant shall be an approved alternative refrigerant per EPA's Significant New Alternative Policy (SNAP) listing.

1.5 ENVIRONMENTAL REQUIREMENTS

For proper Indoor Environmental Quality, maintain positive pressure within the building. Ventilation shall meet or exceed ASHRAE 62.1 and all published addenda. Meet or exceed filter media efficiency as tested in accordance with ASHRAE 52.2. Thermal comfort shall meet or exceed ASHRAE 55.

PART 2 PRODUCTS

2.1 PRODUCT SUSTAINABILITY CRITERIA

For products in this section, where applicable and to extent allowed by performance criteria, provide and document the following:
2.1.1 Energy Efficient Equipment for Computer Room Air Conditioning Units

Provide computer room air conditioning units meeting the efficiency requirements as stated within this section and provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph ENERGY EFFICIENT EQUIPMENT.

2.1.2 Ozone Depleting Substances

Computer room air conditioning units must not use CFC-based refrigerants, and must have an Ozone Depletion Potential (ODP) no greater than 0.0, with exception to R-123, in conformance with this section. Provide documentation in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph OZONE DEPLETING SUBSTANCES.

2.2 COMPUTER ROOM AIR CONDITIONING UNITS (CRACU)

ANSI/ASHRAE 15 & 34. Provide self-contained units, designed, and factory assembled. Unit shall be listed in UL Elec Equip Dir or ETL DLP for computer room application. Unit shall include room cabinet and frame, floor stand, fan section, filter section, cooling coil, reheat coil, humidifier, compressors, dry coolers, pumps, controls, and, interconnecting piping internal to the CRACU.

2.2.1 Cabinet and Frame

2.2.1.1 Unit Cabinet

Unit frame shall be minimum 14 gage welded steel tubes or steel angles and shall be mill-galvanized or coated with an epoxy finish, or an approved manufacturer's standard finish, if equivalent.

Exterior panels shall be furniture grade steel sheet, minimum of 20 gage, mill-galvanized or coated with a corrosion-inhibiting epoxy finish, or an approved equivalent finish. Mill galvanized sheet metal shall be coated with not less than 1.25 ounces of zinc per square foot of two-sided surface. Mill rolled structural steel shall be hot-dip galvanized or primed and painted. Cut edges, burns and scratches in hot-dip galvanized surfaces shall be coated with galvanizing repair coating.

Provide removable panel for access to controls without interrupting airflow. Panels shall be gasketed to prevent air leakage under system operating pressure and shall be removable for service access without the use of special tools. Condensate pans shall be minimum 22 gage Type 304 stainless steel, non-corroding, double-sloped, and shall be piped to drain.

Exterior surfaces of cabinets constructed of mill-galvanized steel shall be finished by the manufacturer's standard enamel finish in the specified color.

CRACU manufacturer's standard cabinet materials and finishes will be acceptable if considered equivalent to the above requirements by the Contracting Officer.

2.2.1.2 Cabinet Interiors Sound Attenuation

Provide a factory-installed sound attenuation system in the interior of the CRACU cabinet.
CRACU cabinet panels interior shall be provided with one inch of 1 1/2 pound per cubic foot neoprene-coated fiber glass insulation on interior of cabinet panels. Insulation shall be applied to the cabinet panels with 100 percent adhesive coverage and both the insulation and the adhesive shall conform to NFPA 90A.

Compressors located in CRACU interior cabinets shall be either wrapped in a sound absorbing insulating blanket or enclosed in its' own sound absorbing insulated mini-cabinet inside of the larger CRACU interior cabinet.

Fans and compressors located in the CRACU interior cabinet shall be provided with vibration isolators between their respective support frames and the cabinet framing.

CRACU manufacturer's standard interior cabinet sound attenuation materials and finishes will be acceptable if considered equivalent to the above requirements by the Contracting Officer.

2.2.2 Fan Section

Fans which force air through coils into computer rooms shall have belt drives and adjustable sheaves, or be direct drive variable speed, sized to ensure achievement of design air flow by field adjustments. Fan system design shall be such that design air flow shall be achieved at the midpoint of sheave adjustment.

The supply air fan shall be AMCA certified, double-inlet/double-width, and equipped with forward curved blades wheel. The supply air fan shall be statically and dynamically balanced and equipped with V-belt drive. The fan shall have self-aligning, permanently lubricated ball bearings with a minimum life span of 100,000 hours. Assess potential effects of lubricant on aquatic organisms in accordance with ASTM D6081 and submit aquatic toxicity reports. Assess biodegradation in accordance with ASTM D5864. In accordance with EM 1110-2-1424 Chapter 8, aquatic toxicity shall exceed 1,000 ppm at LL50 and biodegradation shall exceed 60 percent conversion of carbon to carbon dioxide in 28 days.

Provide dual V-belt drive sized for 200 percent of the motor nameplate rating. Fan speed shall be adjustable with cast iron variable pitch pulleys. Sheaves shall be within the middle one third of the sheave adjustment range.

The fan motor shall be drip-proof with NEMA rated frame, inherent overload protection, and sliding adjustable motor base. The maximum vibrations shall not exceed 2 mils in any plane.

2.2.3 Cooling Coil

Provide AHRI 410 coils and slope for drainage. Coil shall be constructed of seamless copper tubes with plate aluminum fins. Indoor and outdoor coils shall be matched and from same manufacturer. Use a low sensible heat ratio for more moisture removal. Each coil, in the production process, shall be individually tested at 320 psi with compressed air under water and verified to be air tight. Provide DX coil complete with a distributor and thermostatic expansion valve with external equalizer. Provide hydronic coils complete with drain and vent connections. Provide condensate drain pan of stainless steel construction with nonferrous connections and internal trap.
2.2.4 Filters

Provide UL listed 2 inches thick deep pleated fiberglass throwaway type filters. Provide filtration media with a Minimum Efficiency Reporting Value (MERV) of 8 as determined by ASHRAE 52.2. Provide one complete spare filter bank set for installation prior to final acceptance testing covered in Part 3 of this section.

2.2.5 Reheat Coil

Provide electric reheat coils with low watts density. The electric reheat coils shall be enclosed in 304 stainless steel tubes and 304 stainless steel fins. Provide modulating control of the electric reheat coils by Silicon Controlled Rectifier (SCR). Provide UL or ETL listed safety switches to protect system from overheating.

2.2.6 Humidifier

Humidifier section shall include liquid-level control, emergency overflow and automatic water supply system factory pre-piped for final connection. Provide stainless steel evaporator pan with water high level and low level alarms. Arrange system to be cleanable and serviceable.

Provide infrared type humidifier, including high intensity quartz lamps mounted above and out of water supply.

Provide low-watts density electric heater immersion type humidifier. Provide entire assembly and removable pan of stainless steel construction. Protect elements with high temperature limit cutout.

2.2.7 Refrigeration System

Provide compressors complete with vibration isolation, suction and discharge service valves, high and low pressure safety switches, and built-in overload protection. Provide refrigeration circuits including hot gas mufflers, liquid-line filter-drier, refrigerant sight glass and moisture indicator, externally equalized expansion valve, and liquid-line solenoid valve factory connected with refrigeration copper tubing. Crankcase heaters are required.

2.2.7.1 Compressors

Provide single or dual, scroll compressors. If dual compressors are provided, the refrigeration system shall be equipped with two independent refrigeration circuits. Dual semi-hermetic compressors shall be provided complete with unloading system.

2.2.7.2 Refrigerant Tubing

Field-installed refrigerant tubing for split systems shall be ASTM B280, cleaned, dehydrated, and sealed. Further, provide ASME B16.22 solder joint refrigerant fittings and adapters with silver brazing alloy solder and silver brazing alloy flux. During brazing operations bleed a small amount of dry oil-free nitrogen continuously through the refrigerant tubing. If required for connections to equipment, provide ASME B16.26 flared fittings.

2.2.8 Condenser

Provide condenser circuit pre-piped with start-up and head pressure
controls to maintain system operation at ambient temperatures down to -20 degrees F.

2.2.8.1 Dry Coolers

The dry cooler shall be factory fabricated and shall comprise of casing, coil, and fan sections. The casing shall be constructed of aluminum sheets with aluminum legs, casing and legs provided with manufacturer's standard corrosion resistant finish.

The cooling fluid (water or water/glycol solution) shall flow through a coil made up of copper tubes and aluminum fins. The coils shall be leak tested at factory at 300 psi.

The fan section of the dry cooler shall comprise of factory balanced, direct driven metal propeller fan(s) complete with slow speed motor(s) and fan guard(s). The fan(s) shall be arranged for vertical discharge. The electrical connections and control connections shall be provided in a weatherproof enclosure mounted integral with the dry cooler.

As indicated on the drawings, the dry cooler shall be equipped with a centrifugal pump double pump package complete with an open expansion tank. The pump package shall be mounted in a weatherproof enclosure.

Provide special corrosion protection in accordance with the requirements specified in this section in the paragraph, CORROSION PROTECTION FOR COASTAL INSTALLATIONS.

2.2.9 Space Temperature Control System

Provide microprocessor control system integral with unit including electronic control center, control valves, sensors, wiring, and other appurtenances for workable system. Provide access panel or door in front of unit.

Isolate electronic control center from conditioned airstream to allow service while system is in operation. Provide control sensors in unit for cooling, dehumidifying, and humidifying. High-voltage circuits in system shall have individual leg overload protection. Starters, contactors, and relays shall be controlled by 24 volt control circuit.

High-voltage circuit components shall be protected by safety lock, dead-front panel. Mount nonautomatic, molded-case circuit breaker in high-voltage section of electrical panel. Operating mechanism shall prevent access to high-voltage electrical components until switched to "OFF" position.

Include the following control capabilities:

a. Capable of changing the set points and sensitivity of the space and humidity along with their low and high alarm points.

b. Logging capability of the last 10 alarms and run time.

c. Diagnostics

d. Refrigerant compressor sequencing

Provide controls under Section 23 09 00 INSTRUMENTATION AND CONTROL FOR
HVAC. Provide a controls interface on CRACU to enable the DDC system to monitor the following operating parameters and alarm conditions: high and low computer room temperature, relative humidity, CRACU status.

2.2.10 Alarm Panel System

Provide unit with cabinet-mounted alarm panel which shall monitor high and low space temperature, high and low space humidity, dirty filters, loss of airflow, loss of water or glycol flow, compressor high head pressure, and humidifier problems. Provide underfloor water detector. Provide field accessible local audible alarm with silence pushbutton. Provide push-to-test lamps or all-lamp test pushbutton. CRACUs shall have local devices which provide signals for remote audible and visual alarming capability for the above specified alarm conditions.

2.2.11 Air Return and Delivery Orientation

Computer room air conditioning units shall be downflow discharge, top return, draw-thru cooling coil, and shall discharge air into a raised floor plenum with through an acoustically-lined sweep or acoustically-lined multiple turning vane elbows provided to direct the flow of air away from the back of the unit. Provide acoustical lining on the interior of the discharge air devices and the return air plenum in compliance with with requirements specified hereinafter in paragraph CABINET INTERIORS SOUND ATTENUATION.

2.2.12 Floorstand

Unit shall be provided with elevating 18 inches high floorstand or jacks for freestanding installation on the main building floor. Floorstand or jacks shall elevate the unit to the height of the raised computer floor and shall allow for leveling and locking at the desired height. Floorstand or jacks shall be retractable, or removable, for installing the unit directly on the raised floor. Unit shall be fully gasketed (rubber or neoprene) to prevent air leakage at the raised floor penetration.

2.3 ELECTRICAL

2.3.1 Electrical Motors, Controllers, Contactors, and Disconnects

Furnish with respective pieces of equipment. Motors, controllers, contactors, and disconnects shall conform to Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM, as modified and supplemented by this section. Provide electrical connections under Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide controllers and contactors with maximum of 120-volt control circuits, and auxiliary contacts for use with controls furnished. Motors shall be variable-speed. When motors and equipment furnished are larger than sizes indicated, the cost of providing additional electrical service and related work shall be included under this section.

2.3.2 Electrical Control Wiring

Provide control wiring under Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC. Provide control wiring under this section in accordance with NFPA 70 and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide Space temperature control system drawings which include point-to-point electrical wiring diagrams.
2.4 HVAC WATER PIPING AND METAL DUCTWORK

Requirements for HVAC water piping and metal ductwork is specified in Section 23 64 26 CHILLED, CHILLED-HOT AND CONDENSER WATER PIPING AND ACCESSORIES and Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS.

2.5 FIRE PROTECTION DEVICES

The requirements for duct smoke detectors are specified in Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

2.6 SOURCE QUALITY CONTROL

Provide factory test plans, factory test schedules, factory tests and factory test reports on each of the CRACU.

2.6.1 Manufacturer's Factory Test Plans

For each CRACU, submit a factory test plan which when followed during factory testing shall verify that the performance scheduled on the drawings is met by the produced CRACU models.

The manufacturer shall perform factory tests on the actual CRACUs produced for this project. The test reports shall document the performance tests conducted on the factory assembled computer room air conditioning units. Performance testing on the individual computer room air conditioning unit components, not factory assembled, is not acceptable.

Submit the required test plans for review and approval to the Contracting Officer at least 90 calendar days before scheduled factory test date.

2.6.1.1 Test Procedure

Indicate in each test plan the factory acceptance test procedures. Procedures shall be structured to test all modes of operation to confirm that the controls through all modes of control to confirm that the controls are performing in accordance with the intended sequence of control.

Controllers shall be verified to be properly calibrated and have the proper set point to provide stable control of their respective equipment.

Include in each test plan a detailed step-by-step procedure for testing automatic controls provided by the manufacturer.

2.6.1.2 Performance Variables

Each test plan shall list performance variables that are required to be measured or tested as part of the field test. Include in the listed performance indicated on the equipment schedules on the contract design drawings.

Manufacturer shall furnish with each test procedure a description of acceptable performance results that shall be verified. Manufacturer shall identify the acceptable limits or tolerances within which each tested performance variable shall acceptably operate.
2.6.1.3 Test Configuration

Plans shall indicate that tests are to be performed for a minimum of four continuous hours in a wet coil condition. If test period is interrupted, the four hour test period shall be started over. Each test plan shall be job specific and shall address the particular CRACUs and particular conditions which exist with this contract. Generic or general preprinted test procedures are not acceptable.

2.6.1.4 Tested Variables

Plans shall provide for air side testing which includes verification of the airflow, total static pressure; fan drive motor KW, amperage and RPM; and fan RPM. Provide entering air temperatures equal to those indicated on the CRACU schedules.

2.6.1.5 Thermal Testing

Plans shall provide thermal testing utilizing 40 percent propylene glycol and 60 percent water solution with temperatures equal to those indicated on the CRACU schedules. Thermal testing shall verify CRACU heating, sensible cooling, total cooling, and humidifying performance scheduled on the contract drawings.

2.6.1.6 Specialized Components

Include procedures for field testing and field adjusting specialized components, such as hot gas bypass control valves, or pressure valves.

2.6.1.7 Factory Tests Reporting Forms

Each test plan shall include the required test reporting forms to be completed by the Contractor's testing representatives. Submit factory test reports, referencing each tested CRACU serial number, and receive approval before delivery of CRACU to the project site.

2.6.2 CRACU Production Schedule and Factory Test Schedule

The Government reserves the right to witness factory tests for CRACU-1, and CRACU-2 through CRACU-6.

Provide the CRACU production schedule and factory test schedule for tests to be performed at the manufacturer's test facility. Submit planned production schedule, and factory test schedule and test location, to the Contracting Officer as soon as it is scheduled but not less than 60 calendar days prior to the scheduled factory test date. Track this schedule through the production phases and if a scheduled factory test date changes, give advanced notice to Contracting Officer as soon as possible but at least 15 calendar days in advance of the scheduled test dates.

2.6.3 Factory Tests

Conduct the factory testing in compliance with the Contracting Officer approved manufacturer's field test plan, and in accordance with additional field testing requirements specified herein. Record the required data using the test reporting forms approved of the approved field test plan. Conduct the test for each CRACU for the continuous test period in the approved test plan. A CRACU shutdown before the continuous test period is completed shall result in the test period being started again and run for
the required duration.

2.6.4 Deficiency Resolution

The test requirements shall be acceptably met; deficiencies identified during the tests shall be corrected in compliance with the manufacturer's recommendations and corrections tested as specified in the paragraph FACTORY TEST PLANS.

2.6.5 Factory Test Reports

Use the test reporting forms approved in the factory test plan. Final test report forms shall be typed including data entries and remarks. Completed test report forms for each CRACU shall be reviewed, approved, and signed by the Manufacturer's test director.

PART 3 EXECUTION

3.1 CONSTRUCTION-RELATED SUSTAINABILITY CRITERIA

Perform and document the following:

3.1.1 Indoor Air Quality During Construction

Provide documentation showing that after construction ends, and prior to occupancy, new filters were installed in conformance with Section 01 33 29 SUSTAINABILITY REPORTING paragraph INDOOR AIR QUALITY DURING CONSTRUCTION.

3.2 INSTALLATION

3.2.1 CRACU System

Installation of each CRACU system including equipment, materials, installation, workmanship, fabrication, assembly, erection, examination, inspection, and testing, shall be in accordance with ASME B31.1, ASME B31.5, NFPA 70, as modified and supplemented by the requirements of this section and the CRACU manufacturer's recommendations.

3.2.2 Installation Instructions

Provide a manufacturer's installation manual for each type of CRACU.

3.3 FIELD QUALITY CONTROL

Upon completion and before final acceptance of work, test each CRACU subsystem in service to demonstrate compliance with the contract requirements, including field testing specified below. Adjust controls and balance systems prior to final acceptance of completed systems. Test controls through every cycle of operation. Test safety controls to demonstrate performance of required function. Correct defects in work provided by Contractor and repeat tests. Furnish steam, fuel, water, electricity, instruments, connecting devices, and personnel for tests. Flush and clean piping before placing in operation. Clean equipment, piping, strainers, and ducts. Prior to commencement of field testing, remove all filters and provide new filters.

3.4 FIELD TESTING

Provide field test plans, field test schedules, field tests and field test
reports on each of the CRACUs. Field test each CRACU for Contracting Officer acceptance in accordance with the CRACU manufacturer's approved field test plan.

3.4.1 Manufacturer's Field Test Plans

Submit field test plans developed by the manufacturer for each CRACU; submit the field test plans along with the factory test plans specified herein before. Field test plans developed by the installing Contractor, or the equipment sales agency furnishing the CRACU, will not be acceptable.

The Contracting Officer will review and approve the field test plan for each of the listed CRACU's prior to commencement of field testing of the equipment. The approved field test plans shall be followed for the field tests of the CRACU and test reporting.

3.4.1.1 Coordinated Testing

Indicate in each field test plan when work required by this section requires coordination with test work required by other specification sections. Furnish test procedures for the simultaneous or integrated testing of: CRACU controls which interlock and interface with controls factory prewired; and external controls for the CRACU provided under Section 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC.

3.4.1.2 Prerequisite Testing

Each CRACU for which performance testing is dependent upon the completion of the work covered by Section 23 05 93 TESTING, ADJUSTING AND BALANCING FOR HVAC must have that work completed as a prerequisite to testing work under this section. Indicate in each field test plan when such prerequisite work is required.

3.4.1.3 Test Procedure

Indicate in each field test plan the CRACU manufacturer's published start-up, and field acceptance test procedures. Include in each test plan a detailed step-by-step procedure for testing automatic controls provided by the manufacturer.

Procedures shall be structured to test the controls through all modes of control to confirm that the controls are performing with the intended sequence of control.

Controllers shall be verified to be properly calibrated and have the proper set point to provide stable control of their respective equipment.

3.4.1.4 Performance Variables

Each test plan shall list performance variables that are required to be measured or tested as part of the field test.

Include, in the listed performance variables, requirements indicated on the CRACU schedules on the design drawings. Manufacturer shall furnish, with each test procedure, a description of acceptable results that have been verified.

Manufacturer shall identify the acceptable limits or tolerances within which each tested performance variable shall acceptably operate.
3.4.1.5 Test Configuration

Plans shall indicate that tests are to be performed for a minimum of four continuous hours in a wet coil condition. If test period is interrupted, the four hour test period shall be started over. Each test plan shall be job specific and shall address the particular CRACUs and particular conditions which exist with this contract. Generic or general preprinted test procedures are not acceptable. Tests shall include a pressurized raised floor discharge configuration at the specified or indicated height above the floor, with or without the air discharge elbows.

3.4.1.6 Tested Variables

Plans shall provide for air side testing which includes verification of the airflow, total static pressure; fan drive motor KW, amperage and RPM; and fan RPM. Provide entering air temperatures equal to those indicated on the CRACU schedules.

3.4.1.7 Thermal Testing

Plans shall provide thermal testing utilizing 40 percent propylene glycol and 60 percent water solution with temperatures equal to those indicated on the CRACU schedules. Thermal testing shall verify CRACU heating, sensible cooling, total cooling, and humidifying performance scheduled on the contract drawings.

3.4.1.8 Specialized Components

Include procedures for field testing and field adjusting specialized components, such as hot gas bypass control valves, or pressure valves.

3.4.1.9 Field Test Reporting Forms

Each test plan shall include the required test reporting forms to be completed by the Contractor's testing representatives.

3.4.2 Field Test Schedule

Notify the Contracting Officer in writing at least 30 calendar days prior to the testing. Within 30 calendar days after acceptable completion of testing, submit each test report for the review and approval of the Contracting Officer.

3.4.3 Manufacturer's Test Representative

Furnish a factory trained field test representative authorized by the CRACU manufacturer to oversee the complete execution of the field testing. This test representative shall also review, approve, and sign the completed field test report. Signatures shall be accompanied by the person's name typed.

Submit credentials of the manufacturer's field test representative proposed, including current telephone number, to the Contracting Officer for review and approval. Submit these credentials with the written advance notice of the field tests.
3.4.4 Field Tests

Conduct the field testing in compliance with the Contracting Officer approved manufacturer's field test plan, and in accordance with additional field testing requirements specified herein. Record the required data using the test reporting forms approved of the approved field test plan. Conduct the test for each CRACU for a continuous 24-hour test period. A CRACU shutdown before the continuous 24-hour test period is completed shall result in the 24-hour test period being started again and run for the required duration.

3.4.5 Deficiency Resolution

The test requirements shall be acceptably met; deficiencies identified during the tests shall be corrected in compliance with the manufacturer's recommendations. Corrections shall be tested again in compliance with the requirements specified in the paragraph FIELD TEST PLANS.

3.4.6 Field Test Reports

Use the test reporting forms approved in the field test plan. Final test report forms shall be typed, including data entries and remarks. Completed test report forms for each CRACU shall be reviewed, approved, and signed by the Contractor's test director and the QC manager.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN CONCRETE INSTITUTE INTERNATIONAL (ACI)

ACI 318 (2014; Errata 1-2 2014; Errata 3-5 2015; Errata 6 2016) Building Code Requirements for Structural Concrete and Commentary

ASTM INTERNATIONAL (ASTM)

ASTM D1535 (2014) Specifying Color by the Munsell System

ASTM D92 (2012a) Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester

ASTM D97 (2017a) Standard Test Method for Pour Point of Petroleum Products

FM GLOBAL (FM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE 386 (2016) Separable Insulated Connector Systems for Power Distribution Systems Rated 2.5 kV through 35 kV

IEEE C37.47 (2011) Standard for High Voltage Distribution Class Current-Limiting Type
Fuses and Fuse Disconnecting Switches

IEEE C57.12.00 (2015) General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers

IEEE C57.12.34 (2009) Standard for Requirements for Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers, 5 MVA and Smaller; High Voltage, 34.5 kV Nominal System Voltage and Below; Low Voltage, 15 kV Nominal System Voltage and Below

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code
ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT (OECD)

OECD Test 203 (1992) Fish Acute Toxicity Test

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

10 CFR 431 Energy Efficiency Program for Certain Commercial and Industrial Equipment

UNDERWRITERS LABORATORIES (UL)

UL 467 (2013; Reprint Jun 2017) UL Standard for Safety Grounding and Bonding Equipment

1.2 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, are as defined in IEEE Stds Dictionary.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
Pad-mounted Transformer Drawings; G

SD-03 Product Data
Pad-mounted Transformers; G

SD-06 Test Reports
Acceptance Checks and Tests; G

SD-07 Certificates
Transformer Efficiencies; G

SD-09 Manufacturer's Field Reports
Transformer Test Schedule; G
1.3.1 Reduced Submittal Requirements

Transformers designed and manufactured by ABB in Jefferson City, MO; by Easton's Cooper Power Series Transformers in Waukesha, WI; by ERMCO in Dyersburg, TN; or by Howard Industries in Laurel, MS need not submit the entire submittal package requirements of this contract. Instead, the following items shall be submitted:

a. A certification, signed by the manufacturer, stating that the manufacturer will meet the technical requirements of this specification.

b. An outline drawing of the transformer with devices identified (paragraph PAD-MOUNTED TRANSFORMER DRAWINGS, item a).

c. ANSI nameplate data of the transformer (paragraph PAD-MOUNTED TRANSFORMER DRAWINGS, item b).

d. Manufacturer's published time-current curves in PDF format and in electronic format suitable for import or updating into the EasyPower or SKM PowerTools for Windows computer program of the transformer high side fuses (paragraph PAD-MOUNTED TRANSFORMER DRAWINGS, item e).

e. Routine and other tests (in PART 2, see paragraph SOURCE QUALITY CONTROL, subparagraph ROUTINE AND OTHER TESTS), conducted by the manufacturer. These tests may be witnessed by the government. Provide transformer test schedule required by submittal item "SD-11 Closeout Submittals". Provide certified copies of the tests.

f. Provide acceptance test reports required by submittal item "SD-06 Test Reports".

g. Provide operation and maintenance manuals required by submittal item "SD-10 Operation and Maintenance Data".

1.4 QUALITY ASSURANCE

1.4.1 Pad-Mounted Transformer Drawings

Include the following as a minimum:

a. An outline drawing, including front, top, and side views.

b. IEEE nameplate data.

c. Elementary diagrams and wiring diagrams with terminals identified of watthour meter and current transformers.

d. One-line diagram, including switch(es), current transformers, meters, and fuses.
e. Manufacturer's published time-current curves in PDF format and in electronic format suitable for import or updating into the EasyPower or SKM PowerTools for Windows computer program of the transformer high side fuses.

1.4.2 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" or "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Provide equipment, materials, installation, and workmanship in accordance with NFPA 70 unless more stringent requirements are specified or indicated.

1.4.3 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship, and:

a. Have been in satisfactory commercial or industrial use for 2 years prior to bid opening including applications of equipment and materials under similar circumstances and of similar size.

b. Have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period.

c. Where two or more items of the same class of equipment are required, provide products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.4.3.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.4.3.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site are not acceptable.

1.5 MAINTENANCE

1.5.1 Additions to Operation and Maintenance Data

Submit operation and maintenance data in accordance with Section 01000 OPERATION AND MAINTENANCE DATA and as specified herein. In addition to requirements of Data Package 5, include the following on the actual transformer(s) provided:

a. An instruction manual with pertinent items and information highlighted

b. An outline drawing, front, top, and side views

c. Prices for spare parts and supply list
d. Routine and field acceptance test reports

e. Fuse curves for primary fuses

f. Information on watthour demand meter, CT's, and fuse block

g. Actual nameplate diagram

h. Date of purchase

PART 2 PRODUCTS

2.1 PRODUCT COORDINATION

Products and materials not considered to be pad-mounted transformers and related accessories are specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM, and Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION.

2.2 THREE-PHASE PAD-MOUNTED TRANSFORMERS

IEEE C57.12.34, IEEE C57.12.28 and as specified herein. Submit manufacturer's information for each component, device, insulating fluid, and accessory provided with the transformer.

2.2.1 Compartments

Provide high- and low-voltage compartments separated by steel isolating barriers extending the full height and depth of the compartments. Compartment doors: hinged lift-off type with stop in open position and three-point latching.

2.2.1.1 High Voltage, Dead-Front

High-voltage compartment contains: the incoming line, insulated high-voltage load-break connectors, bushing well inserts, feed-thru inserts, six high-voltage bushing wells configured for loop feed application, load-break switch handle(s), access to oil-immersed bayonet fuses, tap changer handle, connector parking stands, protective caps, and ground pad.

Minimum high-voltage compartment dimensions: IEEE C57.12.34, Figures 16 and 17.

a. Insulated high-voltage load-break connectors: IEEE 386, rated 15 kV, 95 kV BIL. Current rating: 200 amperes rms continuous. Short time rating: 10,000 amperes rms symmetrical for a time duration of 0.17 seconds. Connector shall have a steel reinforced hook-stick eye, grounding eye, test point, and arc-quenching contact material.

c. Bushing well inserts and feed-thru inserts: IEEE 386, 200 amperes, 15 kV Class. Provide a bushing well insert for each bushing well unless indicated otherwise.

e. Load-break switch

Radial-feed oil-immersed type rated at 15 kV, 95 kV BIL, with a continuous current rating and load-break rating of 200 amperes, and a make-and-latch rating of 12,000 rms amperes symmetrical. Locate the switch handle in the high-voltage compartment.
ARRANGEMENT NO.

<table>
<thead>
<tr>
<th>DESCRIPTION OF SWITCH ARRANGEMENT</th>
<th>SWITCH POSITION</th>
<th>LINE A SW.</th>
<th>LINE B SW</th>
<th>XFMER. SW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPEN CLOSE</td>
<td>OPEN CLOSE</td>
<td>OPEN CLOSE</td>
<td>OPEN CLOSE</td>
</tr>
<tr>
<td>1 Line A connected to Line B and both lines connected to transformer</td>
<td>X X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2 Transformer connected to Line A only</td>
<td>X X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3 Transformer connected to Line B only</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4 Transformer open and loop closed</td>
<td>X X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5Transformer open and loop open</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

f. Provide bayonet oil-immersed, expulsion fuses in series with oil-immersed, partial-range, current-limiting fuses. The bayonet fuse links sense both high currents and high oil temperature in order to provide thermal protection to the transformer. Coordinate transformer protection with expulsion fuse clearing low-current faults and current-limiting fuse clearing high-current faults beyond the interrupting rating of the expulsion fuse. Include an oil retention valve inside the bayonet assembly housing, which closes when the fuse holder is removed, and an external drip shield to minimize oil spills. Display a warning label adjacent to the bayonet fuse(s) cautioning against removing or inserting fuses unless the transformer has been de-energized and the tank pressure has been released.

Bayonet fuse assembly: 150 kV BIL.

Oil-immersed current-limiting fuses: IEEE C37.47; 50,000 rms amperes symmetrical interrupting rating at the system voltage specified.

h. Parking stands: Provide a parking stand near each bushing.

i. Protective caps: IEEE 386, 200 amperes, 15 kV Class. Provide insulated protective caps (not shipping caps) for insulating and sealing out moisture from unused bushings.

2.2.1.2 Low Voltage

Low-voltage compartment contains: low-voltage bushings with NEMA spade terminals, accessories, metering, stainless steel or laser-etched anodized
aluminum diagrammatic transformer nameplate, and ground pad.

a. Include the following accessories: drain valve with sampler device, fill plug, pressure relief device, liquid level gage, pressure-vacuum gage, and dial type thermometer with maximum temperature indicator.

2.2.2 Transformer

a. Less-flammable liquid-insulated, two winding, 60 hertz, 65 degrees C rise above a 30 degrees C average ambient, self-cooled type.

b. Transformer rated 1,500 kVA.

c. Transformer voltage ratings: 12,470 V Delta480 - 277 V GrdY.

d. Tap changer: externally operated, manual type for changing tap setting when the transformer is de-energized. Provide four 2.5 percent full capacity taps, two above and two below rated primary voltage. Indicate which tap setting is in use, clearly visible when the compartment is opened.

e. Minimum tested percent impedance at 85 degrees C:

 2.50 for units rated 75kVA and below
 2.87 for units rated 112.5kVA to 300kVA
 4.03 for 500kVA rated units
 5.32 for units rated 750kVA and above

f. Comply with the following audible sound level limits:

<table>
<thead>
<tr>
<th>kVA</th>
<th>DECIBELS (MAX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>51</td>
</tr>
<tr>
<td>112.5</td>
<td>55</td>
</tr>
<tr>
<td>150</td>
<td>55</td>
</tr>
<tr>
<td>225</td>
<td>55</td>
</tr>
<tr>
<td>300</td>
<td>55</td>
</tr>
<tr>
<td>500</td>
<td>56</td>
</tr>
<tr>
<td>750</td>
<td>57</td>
</tr>
<tr>
<td>1000</td>
<td>58</td>
</tr>
<tr>
<td>1500</td>
<td>60</td>
</tr>
<tr>
<td>2000</td>
<td>61</td>
</tr>
<tr>
<td>2500</td>
<td>62</td>
</tr>
</tbody>
</table>

g. Include:

 (1) Lifting lugs and provisions for jacking under base, with base
construction suitable for using rollers or skidding in any direction.

(2) An insulated low-voltage neutral bushing with NEMA spade terminal, and with removable ground strap.

(3) Provide transformer top with an access handhole.

(4) kVA rating conspicuously displayed using 3 inch high yellow letters on its enclosure.

2.2.2.1 Specified Transformer Efficiencies

Provide transformer efficiency calculations utilizing the actual no-load and load loss values obtained during the routine tests performed on the actual transformer(s) prepared for this project. Reference no-load losses (NLL) at 20 degrees C. Reference load losses (LL) at 55 degrees C and at 50 percent of the nameplate load. The transformer is not acceptable if the calculated transformer efficiency is less than the efficiency indicated in the "KVA / Efficiency" table below. The table is based on requirements contained within 10 CFR 431, Subpart K. Submit certification, including supporting calculations, from the manufacturer indicating conformance.

<table>
<thead>
<tr>
<th>kVA</th>
<th>EFFICIENCY (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>98.65</td>
</tr>
<tr>
<td>30</td>
<td>98.83</td>
</tr>
<tr>
<td>45</td>
<td>98.92</td>
</tr>
<tr>
<td>75</td>
<td>99.03</td>
</tr>
<tr>
<td>112.5</td>
<td>99.11</td>
</tr>
<tr>
<td>150</td>
<td>99.16</td>
</tr>
<tr>
<td>225</td>
<td>99.23</td>
</tr>
<tr>
<td>300</td>
<td>99.27</td>
</tr>
<tr>
<td>500</td>
<td>99.35</td>
</tr>
<tr>
<td>750</td>
<td>99.40</td>
</tr>
<tr>
<td>1000</td>
<td>99.43</td>
</tr>
<tr>
<td>1500</td>
<td>99.48</td>
</tr>
<tr>
<td>2000</td>
<td>99.51</td>
</tr>
<tr>
<td>2500</td>
<td>99.53</td>
</tr>
<tr>
<td>above 2500</td>
<td>99.54</td>
</tr>
</tbody>
</table>
2.2.3 Insulating Liquid

a. Less-flammable transformer liquids: NFPA 70 and FM APP GUIDE for less-flammable liquids having a fire point not less than 300 degrees C tested per ASTM D92 and a dielectric strength not less than 33 kV tested per ASTM D877/D877M. Provide identification of transformer as "non-PCB" and "manufacturer's name and type of fluid" on the nameplate.

Provide a fluid that is a biodegradable, electrical insulating, and cooling liquid classified by UL and approved by FM as "less flammable" with the following properties:

1. Pour point: ASTM D97, less than -15 degree C
2. Aquatic biodegradation: EPA 712-C-98-075, 100 percent
3. Trout toxicity: OECD Test 203, zero mortality of EPA 821-R-02-012, pass

2.2.3.1 Liquid-Filled Transformer Nameplates

Provide nameplate information in accordance with IEEE C57.12.00 and as modified or supplemented by this section.

2.2.4 Corrosion Protection

Provide corrosion resistant bases and cabinets of transformers, fabricated of stainless steel conforming to ASTM A240/A240M, Type 304 or 304L. Base includes any part of pad-mounted transformer that is within 3 inches of concrete pad.

Paint entire transformer assembly Munsell 5BG7.0/0.4 sky gray (ANSI 70), with paint coating system complying with IEEE C57.12.28 and IEEE C57.12.29 regardless of base, cabinet, and tank material. The Munsell color notation is specified in ASTM D1535.

2.3 WARNING SIGNS AND LABELS

Provide warning signs for the enclosures of pad-mounted transformers having a nominal rating exceeding 600 volts in accordance with NEMA Z535.4 and NEMA 260.

a. When the enclosure integrity of such equipment is specified to be in accordance with IEEE C57.12.28, such as for pad-mounted transformers, provide self-adhesive warning labels (decals, Panduit No. PPSO710D72 or approved equal) on the outside of the high voltage compartment door(s) with nominal dimensions of 7 by 10 inches with the legend "WARNING HIGH VOLTAGE" printed in two lines of nominal 2 inch high letters. Include the work "WARNING" in white letters on an orange background and the words "HIGH VOLTAGE" in black letters on a white background.

b. When such equipment is guarded by a fence, mount signs on the fence. Provide metal signs having nominal dimensions of 14 by 10 inches with the legend "WARNING HIGH VOLTAGE KEEP OUT" printed in three lines of nominal 3 inch high white letters on an orange and black field.
2.4 ARC FLASH WARNING LABEL

Provide arc flash warning label for the enclosure of pad-mounted transformers. Locate this self-adhesive warning label on the outside of the high voltage compartment door warning of potential electrical arc flash hazards and appropriate PPE required. Provide label format as indicated.

2.5 GROUNDING AND BONDING

UL 467. Provide grounding and bonding as specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION.

2.6 PADLOCKS

Provide padlocks for pad-mounted equipment, keyed as directed by the Contracting Officer. Comply with Section 08 71 00 DOOR HARDWARE.

2.7 CAST-IN-PLACE CONCRETE

Provide concrete associated with electrical work as follows:

a. Composed of fine aggregate, coarse aggregate, portland cement, and water so proportioned and mixed as to produce a plastic, workable mixture.

b. Fine aggregate: hard, dense, durable, clean, and uncoated sand.

c. Coarse aggregate: reasonably well graded from 3/16 inch to 1 inch.

d. Fine and coarse aggregates: free from injurious amounts of dirt, vegetable matter, soft fragments or other deleterious substances.

e. Water: fresh, clean, and free from salts, alkali, organic matter, and other impurities.

f. Concrete associated with electrical work for other than encasement of underground ducts: 4000 psi minimum 28-day compressive strength unless specified otherwise.

g. Slump: Less than 4 inches. Retempering of concrete will not be permitted.

h. Exposed, unformed concrete surfaces: smooth, wood float finish.

i. Concrete must be cured for a period of not less than 7 days, and concrete made with high early strength portland cement must be repaired by patching honeycombed or otherwise defective areas with cement mortar as directed by the Contracting Officer.

j. Air entrain concrete exposed to weather using an air-entraining admixture conforming to ASTM C260/C260M.

k. Air content: between 4 and 6 percent.

2.8 SOURCE QUALITY CONTROL

2.8.1 Transformer Test Schedule

The Government reserves the right to witness tests. Provide transformer test schedule for tests to be performed at the manufacturer's test
facility. Submit required test schedule and location, and notify the Contracting Officer 30 calendar days before scheduled test date. Notify Contracting Officer 15 calendar days in advance of changes to scheduled date.

a. Test Instrument Calibration

(1) Provide a calibration program which assures that all applicable test instruments are maintained within rated accuracy.

(2) Accuracy: Traceable to the National Institute of Standards and Technology.

(3) Instrument calibration frequency schedule: less than or equal to 12 months for both test floor instruments and leased specialty equipment.

(4) Dated calibration labels: visible on all test equipment.

(5) Calibrating standard: higher accuracy than that of the instrument tested.

(6) Keep up-to-date records that indicate dates and test results of instruments calibrated or tested. For instruments calibrated by the manufacturer on a routine basis, in lieu of third party calibration, include the following:

 (a) Maintain up-to-date instrument calibration instructions and procedures for each test instrument.

 (b) Identify the third party/laboratory calibrated instrument to verify that calibrating standard is met.

2.8.2 Design Tests

IEEE C57.12.00, and IEEE C57.12.90. Section 5.1.2 in IEEE C57.12.80 states that "design tests are made only on representative apparatus of basically the same design." Submit design test reports (complete with test data, explanations, formulas, and results), in the same submittal package as the catalog data and drawings for the specified transformer(s), with design tests performed prior to the award of this contract.

a. Tests: certified and signed by a registered professional engineer.

b. Temperature rise: "Basically the same design" for the temperature rise test means a pad-mounted transformer with the same coil construction (such as wire wound primary and sheet wound secondary), the same kVA, the same cooling type (ONAN), the same temperature rise rating, and the same insulating liquid as the transformer specified.

c. Lightning impulse: "Basically the same design" for the lightning impulse dielectric test means a pad-mounted transformer with the same BIL, the same coil construction (such as wire wound primary and sheet wound secondary), and a tap changer, if specified. Design lightning impulse tests includes the primary windings only of that transformer.

(1) IEEE C57.12.90, paragraph 10.3 entitled "Lightning Impulse Test Procedures," and IEEE C57.98.
(2) State test voltage levels.

(3) Provide photographs of oscilloscope display waveforms or plots of digitized waveforms with test report.

d. Lifting and moving devices: "Basically the same design" requirement for the lifting and moving devices test means a test report confirming that the lifting device being used is capable of handling the weight of the specified transformer in accordance with IEEE C57.12.34.

e. Pressure: "Basically the same design" for the pressure test means a pad-mounted transformer with a tank volume within 30 percent of the tank volume of the transformer specified.

f. Short circuit: "Basically the same design" for the short circuit test means a pad-mounted transformer with the same kVA as the transformer specified.

2.8.3 Routine and Other Tests

IEEE C57.12.00. Routine and other tests: performed in accordance with IEEE C57.12.90 by the manufacturer on the actual transformer(s) prepared for this project to ensure that the design performance is maintained in production. Submit test reports, by serial number and receive approval before delivery of equipment to the project site. Required tests and testing sequence as follows:

a. Phase relation

b. Ratio

c. No-load losses (NLL) and excitation current

d. Load losses (LL) and impedance voltage

e. Dielectric
 (1) Impulse
 (2) Applied voltage
 (3) Induced voltage

f. Leak

PART 3 EXECUTION

3.1 INSTALLATION

Conform to IEEE C2, NFPA 70, and to the requirements specified herein. Provide new equipment and materials unless indicated or specified otherwise.

3.2 GROUNDING

NFPA 70 and IEEE C2, except provide grounding systems with a resistance to solid earth ground not exceeding 925 ohms.
3.2.1 Grounding Electrodes

Provide driven ground rods as specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION. Connect ground conductors to the upper end of ground rods by exothermic weld or compression connector. Provide compression connectors at equipment end of ground conductors.

3.2.2 Pad-Mounted Transformer Grounding

Provide a ground ring around the transformer with 4/0 AWG bare copper. Provide two ground rods in the ground ring at opposite corners. Install the ground rods at least 10 feet apart from each other. Provide separate copper grounding conductors and connect them to the ground loop as indicated. When work in addition to that indicated or specified is required to obtain the specified ground resistance, the provision of the contract covering "Changes" applies.

3.2.3 Connections

Make joints in grounding conductors and loops by exothermic weld or compression connector. Install exothermic welds and compression connectors as specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION.

3.2.4 Grounding and Bonding Equipment

UL 467, except as indicated or specified otherwise.

3.3 INSTALLATION OF EQUIPMENT AND ASSEMBLIES

Install and connect pad-mounted transformers furnished under this section as indicated on project drawings, the approved shop drawings, and as specified herein.

3.4 FIELD APPLIED PAINTING

Where field painting of enclosures is required to correct damage to the manufacturer's factory applied coatings, provide manufacturer's recommended coatings and apply in accordance with manufacturer's instructions.

3.5 WARNING SIGN MOUNTING

Provide the number of signs required to be readable from each accessible side, but space the signs a maximum of 30 feet apart.

3.6 FOUNDATION FOR EQUIPMENT AND ASSEMBLIES

Mount transformer on concrete slab as follows:

a. Unless otherwise indicated, provide the slab with dimensions at least 8 inches thick, reinforced with a 6 by 6 inches - W2.9 by W2.9 mesh placed uniformly 4 inches from the top of the slab.

b. Place slab on a 6 inch thick, well-compacted gravel base.

c. Install slab such that top of concrete slab is approximately 4 inches above the finished grade with gradual slope for drainage.

d. Provide edges above grade with 1/2 inch chamfer.
e. Provide slab of adequate size to project at least 8 inches beyond the equipment.

Stub up conduits, with bushings, 2 inches into cable wells in the concrete pad. Coordinate dimensions of cable wells with transformer cable training areas.

3.6.1 Cast-In-Place Concrete

Provide cast-in-place concrete work in accordance with the requirements of ACI 318.

3.6.2 Sealing

When the installation is complete, seal all entries into the equipment enclosure with an approved sealing method. Provide seals of sufficient strength and durability to protect all energized live parts of the equipment from rodents, insects, or other foreign matter.

3.7 FIELD QUALITY CONTROL

3.7.1 Performance of Acceptance Checks and Tests

Perform in accordance with the manufacturer's recommendations and include the following visual and mechanical inspections and electrical tests, performed in accordance with NETA ATS. Submit reports, including acceptance criteria and limits for each test in accordance with NETA ATS "Test Values".

3.7.1.1 Pad-Mounted Transformers

a. Visual and mechanical inspection

(1) Compare equipment nameplate data with specifications and approved shop drawings.

(2) Inspect physical and mechanical condition. Check for damaged or cracked insulators and leaks.

(3) Inspect anchorage, alignment, and grounding.

(4) Verify the presence of PCB content labeling.

(5) Verify the bushings and transformer interiors are clean.

(6) Inspect all bolted electrical connections for high resistance using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.

(7) Verify correct liquid level in tanks and bushings.

(8) Verify that positive pressure is maintained on gas-blanketed transformers.

(9) Perform specific inspections and mechanical tests as recommended by manufacturer.

(10) Verify de-energized tap changer position is left as specified.
(11) Verify the presence of transformer surge arresters.

b. Electrical tests

(1) Perform resistance measurements through all bolted connections with low-resistance ohmmeter.

(2) Verify proper secondary voltage phase-to-phase and phase-to-neutral after energization and prior to loading.

(3) Perform insulation-resistance tests, winding-to-winding and each winding-to-ground. Calculate polarization index.

(4) Perform turns-ratio tests at all tap positions.

(5) Perform insulation power-factor or dissipation-factor tests on all windings in accordance with test equipment manufacturer’s published data.

(6) Perform power-factor or dissipation-factor tests on each bushing equipped with a power-factor/capacitance tap. In the absence of a power-factor/capacitance tap, perform hot-collar tests.

(7) Measure the resistance of each high-voltage winding in each de-energized tap-changer position. Measure the resistance of each low-voltage winding in each de-energized tap-changer position, if applicable.

(8) Remove and test a sample of insulating liquid for the following: Dielectric breakdown voltage, Acid neutralization number, Specific gravity, Interfacial tension, Color, Visual Condition, Water in insulating liquids (Required on 25 kV or higher voltages and on all silicone-filled units.), and Power factor or dissipation factor.

(9) Perform dissolved-gas analysis (DGA) on a sample of insulating liquid.

3.7.1.2 Grounding System

a. Visual and mechanical inspection

(1) Inspect ground system for compliance with contract plans and specifications.

b. Electrical tests

(1) Perform ground-impedance measurements utilizing the fall-of-potential method. On systems consisting of interconnected ground rods, perform tests after interconnections are complete. On systems consisting of a single ground rod perform tests before any wire is connected. Take measurements in normally dry weather, not less than 48 hours after rainfall. Use a portable ground resistance tester in accordance with manufacturer's instructions to test each ground or group of grounds. Use an instrument equipped with a meter reading directly in ohms or fractions thereof to indicate the ground value of the ground rod or grounding systems under test.
(2) Submit the measured ground resistance of each ground rod and grounding system, indicating the location of the rod and grounding system. Include the test method and test setup (i.e., pin location) used to determine ground resistance and soil conditions at the time the measurements were made.

3.7.1.3 Surge Arresters, Medium- and High-Voltage

a. Visual and mechanical inspection

(1) Compare equipment nameplate data with specifications and approved shop drawings.

(2) Inspect physical and mechanical condition.

(3) Inspect anchorage, alignment, grounding, and clearances.

(4) Verify the arresters are clean.

(5) Inspect all bolted electrical connections for high resistance using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.

(6) Verify that the ground lead on each device is individually attached to a ground bus or ground electrode.

b. Electrical tests

(1) Perform resistance measurements through all bolted connections with low-resistance ohmmeter, if applicable.

(2) Perform an insulation-resistance test on each arrester, phase terminal-to-ground.

(3) Test grounding connection.

3.7.2 Follow-Up Verification

Upon completion of acceptance checks and tests, show by demonstration in service that circuits and devices are in good operating condition and properly performing the intended function. As an exception to requirements stated elsewhere in the contract, notify the Contracting Officer 5 working days in advance of the dates and times of checking and testing.

-- End of Section --
SECTION 26 20 00
INTERIOR DISTRIBUTION SYSTEM
02/14

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D709 (2017) Laminated Thermosetting Materials

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

ANSI C12.7 (2014) Requirements for Watthour Meter Sockets

ANSI C80.3 (2005) American National Standard for Electrical Metallic Tubing (EMT)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)
<table>
<thead>
<tr>
<th>NEMA Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FU 1</td>
<td>(2012) Low Voltage Cartridge Fuses</td>
</tr>
<tr>
<td>ICS 2</td>
<td>(2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V</td>
</tr>
<tr>
<td>ICS 4</td>
<td>(2015) Terminal Blocks</td>
</tr>
<tr>
<td>ICS 6</td>
<td>(1993; R 2016) Industrial Control and Systems: Enclosures</td>
</tr>
<tr>
<td>KS 1</td>
<td>(2013) Enclosed and Miscellaneous Distribution Equipment Switches (600 V Maximum)</td>
</tr>
<tr>
<td>MG 1</td>
<td>(2016; SUPP 2016) Motors and Generators</td>
</tr>
<tr>
<td>RN 1</td>
<td>(2005; R 2013) Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit</td>
</tr>
<tr>
<td>ST 20</td>
<td>(1992; R 1997) Standard for Dry-Type Transformers for General Applications</td>
</tr>
<tr>
<td>TC 14</td>
<td>(2002) Standard for Reinforced Thermosetting Resin Conduit (RTRC) and Fittings</td>
</tr>
<tr>
<td>VE 1</td>
<td>(2009) Standard for Metal Cable Tray Systems</td>
</tr>
<tr>
<td>WD 1</td>
<td>(1999; R 2005; R 2010) Standard for General Color Requirements for Wiring Devices</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)</td>
<td></td>
</tr>
<tr>
<td>NFPA 70</td>
<td>(2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code</td>
</tr>
<tr>
<td>NFPA 780</td>
<td>(2014) Standard for the Installation of Lightning Protection Systems</td>
</tr>
<tr>
<td>TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)</td>
<td></td>
</tr>
<tr>
<td>TIA-568-C.1</td>
<td>(2009; Add 2 2011; Add 1 2012) Commercial Building Telecommunications Cabling Standard</td>
</tr>
<tr>
<td>TIA-569</td>
<td>(2015d) Commercial Building Standard for Telecommunications Pathways and Spaces</td>
</tr>
<tr>
<td>TIA-607</td>
<td>(2011b) Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises</td>
</tr>
<tr>
<td>U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)</td>
<td></td>
</tr>
<tr>
<td>29 CFR 1910.147</td>
<td>Control of Hazardous Energy (Lock Out/Tag Out)</td>
</tr>
<tr>
<td>UNDERWRITERS LABORATORIES (UL)</td>
<td></td>
</tr>
<tr>
<td>UL 1</td>
<td>(2005; Reprint Jul 2012) Standard for Flexible Metal Conduit</td>
</tr>
<tr>
<td>UL 1063</td>
<td>(2006; Reprint Jul 2012) Machine-Tool Wires and Cables</td>
</tr>
<tr>
<td>UL 1242</td>
<td>(2006; Reprint Mar 2014) Standard for Electrical Intermediate Metal Conduit -- Steel</td>
</tr>
<tr>
<td>UL 1283</td>
<td>(2015; Reprint Jan 2016) Electromagnetic Interference Filters</td>
</tr>
<tr>
<td>UL 1449</td>
<td>(2014; Reprint Mar 2015) Surge Protective Devices</td>
</tr>
<tr>
<td>UL 1561</td>
<td>(2011; Reprint Jun 2015) Dry-Type General Purpose and Power Transformers</td>
</tr>
<tr>
<td>UL 1660</td>
<td>(2014) Liquid-Tight Flexible Nonmetallic Conduit</td>
</tr>
<tr>
<td>UL 198M</td>
<td>(2003; Reprint Feb 2013) Standard for Mine-Duty Fuses</td>
</tr>
</tbody>
</table>
UL 20 (2010; Reprint Feb 2012) General-Use Snap Switches

UL 360 (2013; Reprint Jan 2015) Liquid-Tight Flexible Steel Conduit

UL 44 (2014; Reprint Feb 2015) Thermoset-Insulated Wires and Cables

UL 467 (2013; Reprint Jun 2017) UL Standard for Safety Grounding and Bonding Equipment

UL 486A-486B (2013; Reprint Jan 2016) Wire Connectors

UL 486C (2013; Reprint Jan 2016) Splicing Wire Connectors

UL 498 (2012; Reprint Jan 2016) Attachment Plugs and Receptacles

UL 50 (2007; Reprint Apr 2012) Enclosures for Electrical Equipment, Non-environmental Considerations

UL 506 (2008; Reprint Oct 2013) Specialty Transformers

UL 508 (1999; Reprint Oct 2013) Industrial Control Equipment

UL 510 (2005; Reprint Jul 2013) Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape

UL 514A (2013) Metallic Outlet Boxes

UL 514B (2012; Reprint Nov 2014) Conduit, Tubing and Cable Fittings

UL 514C (2014; Reprint Dec 2014) Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers
1.2 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, are as defined in IEEE 100.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00.

SD-02 Shop Drawings
Panelboards; G
Transformers; G
Cable trays; G

Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must
be shown to ensure a coordinated installation. Identify circuit terminals on wiring diagrams and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Indicate on the drawings adequate clearance for operation, maintenance, and replacement of operating equipment devices.

Wireways; G

Marking strips drawings; G

SD-03 Product Data

- **Receptacles; G**
- **Circuit breakers; G**
- **Switches; G**
- **Transformers; G**
- **Enclosed circuit breakers; G**
- **Motor controllers; G**
- **Manual motor starters; G**
- **Metering; G**
- **Telecommunications Grounding Busbar; G**
- **Surge protective devices; G**

Include performance and characteristic curves.

SD-06 Test Reports

- **600-volt wiring test; G**
- **Grounding system test; G**
- **Transformer tests; G**
- **Ground-fault receptacle test; G**

SD-07 Certificates

- **Fuses; G**

SD-09 Manufacturer's Field Reports

- **Transformer factory tests**

SD-10 Operation and Maintenance Data

- **Electrical Systems, Data Package 5; G**

Submit operation and maintenance data in accordance with Section 01000, OPERATION AND MAINTENANCE DATA and as specified herein.
1.4 QUALITY ASSURANCE

1.4.1 Fuses

Submit coordination data as specified in paragraph, FUSES of this section.

1.4.2 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" or "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Provide equipment, materials, installation, and workmanship in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.4.3 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship and:

a. Have been in satisfactory commercial or industrial use for 2 years prior to bid opening including applications of equipment and materials under similar circumstances and of similar size.

b. Have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period.

c. Where two or more items of the same class of equipment are required, provide products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.4.3.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.4.3.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site are not acceptable.

1.5 MAINTENANCE

1.5.1 Electrical Systems

Submit operation and maintenance manuals for electrical systems that provide basic data relating to the design, operation, and maintenance of the electrical distribution system for the building. Include the following:

a. Single line diagram of the "as-built" building electrical system.

b. Schematic diagram of electrical control system (other than HVAC,
covered elsewhere).

c. Manufacturers' operating and maintenance manuals on active electrical equipment.

1.6 WARRANTY

Provide equipment items supported by service organizations that are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

As a minimum, meet requirements of UL, where UL standards are established for those items, and requirements of NFPA 70 for all materials, equipment, and devices.

2.2 CONDUIT AND FITTINGS

Conform to the following:

2.2.1 Rigid Metallic Conduit

2.2.1.1 Rigid, Threaded Zinc-Coated Steel Conduit

 ANSI C80.1, UL 6.

2.2.2 Rigid Nonmetallic Conduit

 PVC Type EPC-40 in accordance with NEMA TC 2, UL 651, or fiberglass conduit, in accordance with NEMA TC 14.

2.2.3 Intermediate Metal Conduit (IMC)

 UL 1242, zinc-coated steel only.

2.2.4 Electrical, Zinc-Coated Steel Metallic Tubing (EMT)

 UL 797, ANSI C80.3.

2.2.5 Plastic-Coated Rigid Steel and IMC Conduit

 NEMA RN 1, Type 40 (40 mils thick).

2.2.6 Flexible Metal Conduit

 UL 1.

2.2.6.1 Liquid-Tight Flexible Metal Conduit, Steel

 UL 360.

2.2.7 Fittings for Metal Conduit, EMT, and Flexible Metal Conduit

 UL 514B. Ferrous fittings: cadmium- or zinc-coated in accordance with UL 514B.
2.2.7.1 Fittings for Rigid Metal Conduit and IMC
Threaded-type. Split couplings unacceptable.

2.2.7.2 Fittings for EMT
Steel compression type.

2.2.8 Fittings for Rigid Nonmetallic Conduit
NEMA TC 3 for PVC and NEMA TC 14 for fiberglass, and UL 514B.

2.2.9 Liquid-Tight Flexible Nonmetallic Conduit
UL 1660.

2.3 CABLE TRAYS
NEMA VE 1. Provide the following:

a. Cable trays: form a wireway system, with a nominal 4 inch depth.

b. Cable trays: constructed of steel that has been zinc-coated after fabrication.

c. Cable trays: include splice and end plates, dropouts, and miscellaneous hardware.

d. Edges, fittings, and hardware: finished free from burrs and sharp edges.

e. Fittings: ensure not less than load-carrying ability of straight tray sections and have manufacturer's minimum standard radius.

f. Radius of bends 12 inches.

2.3.1 Basket-Type Cable Trays
Provide size as indicated and 4 inch depth with maximum wire mesh spacing of 2 by 4 inch.

2.4 OPEN TELECOMMUNICATIONS CABLE SUPPORT

2.4.1 Open Top Cable Supports
Provide open top cable supports in accordance with UL 2043. Provide galvanized steel open top cable supports.

2.4.2 Closed Ring Cable Supports
Provide closed ring cable supports in accordance with UL 2043. Provide galvanized steel closed ring cable supports.

2.5 OUTLET BOXES AND COVERS
UL 514A, cadmium- or zinc-coated, if ferrous metal. UL 514C, if nonmetallic.
2.5.1 Floor Outlet Boxes

Provide the following:

a. Boxes: adjustable and concrete tight.

b. Each outlet: consisting of nonmetallic or cast-metal body with threaded openings, or sheet-steel body with knockouts for conduits, adjustable ring, and cover plate with 1 inch threaded plug.

c. Telecommunications outlets: consisting of flush, aluminum or stainless steel housing with a receptacle as specified and 1 inch bushed side opening.

d. Receptacle outlets: consisting of flush aluminum or stainless steel housing with duplex-type receptacle as specified herein.

e. Provide gaskets where necessary to ensure watertight installation.

2.5.2 Outlet Boxes for Telecommunications System

Provide the following:

a. Standard type 4 inches square by 2 1/8 inches deep.

b. Outlet boxes for wall-mounted telecommunications outlets: 4 by 2 1/8 by 2 1/8 inches deep.

c. Depth of boxes: large enough to allow manufacturers' recommended conductor bend radii.

d. Outlet boxes for fiber optic telecommunication outlets: include a minimum 3/8 inch deep single or two gang plaster ring as shown and installed using a minimum 1 inch conduit system.

e. Outlet boxes for handicapped telecommunications station: 4 by 2 1/8 by 2 1/8 inches deep.

2.5.3 Clock Outlet for Use in Other Than Wired Clock System

Provide the following:

a. Outlet box with stainless steel cover, where required, and single receptacle with clock outlet plate.

b. Receptacle: recessed sufficiently within box to allow complete insertion of standard cap, flush with plate.

c. Suitable clip or support for hanging clock: secured to top plate.

d. Material and finish of plate: as specified in paragraph DEVICE PLATES of this section.

2.6 CABINETS, JUNCTION BOXES, AND PULL BOXES

Volume greater than 100 cubic inches, UL 50, hot-dip, zinc-coated, if sheet steel.
2.7 WIRES AND CABLES

Provide wires and cables in accordance applicable requirements of NFPA 70 and UL for type of insulation, jacket, and conductor specified or indicated. Do not use wires and cables manufactured more than 12 months prior to date of delivery to site.

2.7.1 Conductors

Provide the following:

a. Conductor sizes and capacities shown are based on copper, unless indicated otherwise.

b. Conductors No. 8 AWG and larger diameter: stranded.

c. Conductors No. 10 AWG and smaller diameter: solid.

d. Conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3: stranded unless specifically indicated otherwise.

e. All conductors: copper.

2.7.1.1 Equipment Manufacturer Requirements

When manufacturer's equipment requires copper conductors at the terminations or requires copper conductors to be provided between components of equipment, provide copper conductors or splices, splice boxes, and other work required to satisfy manufacturer's requirements.

2.7.1.2 Minimum Conductor Sizes

Provide minimum conductor size in accordance with the following:

a. Branch circuits: No. 12 AWG.

b. Class 1 remote-control and signal circuits: No. 14 AWG.

c. Class 2 low-energy, remote-control and signal circuits: No. 16 AWG.

d. Class 3 low-energy, remote-control, alarm and signal circuits: No. 22 AWG.

2.7.2 Color Coding

Provide color coding for service, feeder, branch, control, and signaling circuit conductors.

2.7.2.1 Ground and Neutral Conductors

Provide color coding of ground and neutral conductors as follows:

a. Grounding conductors: Green.

c. Exception, where neutrals of more than one system are installed in same raceway or box, other neutrals color coding: white with a different colored (not green) stripe for each.
2.7.2.2 Ungrounded Conductors

Provide color coding of ungrounded conductors in different voltage systems as follows:

a. 208/120 volt, three-phase

(1) Phase A - black

(2) Phase B - red

(3) Phase C - blue

b. 480/277 volt, three-phase

(1) Phase A - brown

(2) Phase B - orange

(3) Phase C - yellow

c. 120/240 volt, single phase: Black and red

2.7.3 Insulation

Unless specified or indicated otherwise or required by NFPA 70, provide power and lighting wires rated for 600-volts, Type THWN/THHN conforming to UL 83 or type XHHW conforming to UL 44, except that grounding wire may be type TW conforming to UL 83; remote-control and signal circuits: Type TW or TF, conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or better.

2.7.4 Bonding Conductors

ASTM B1, solid bare copper wire for sizes No. 8 AWG and smaller diameter; ASTM B8, Class B, stranded bare copper wire for sizes No. 6 AWG and larger diameter.

2.7.4.1 Telecommunications Bonding Backbone (TBB)

Provide a copper conductor TBB in accordance with TIA-607 with No. 6 AWG minimum size, and sized at 2 kcmil per linear foot of conductor length up to a maximum size of 3/0 AWG. Provide insulated TBB with insulation as specified in the paragraph INSULATION and meeting the fire ratings of its pathway.

2.7.4.2 Bonding Conductor for Telecommunications

Provide a copper conductor Bonding Conductor for Telecommunications between the telecommunications main grounding busbar (TMGB) and the electrical service ground in accordance with TIA-607. Size the bonding conductor for telecommunications the same as the TBB.

2.7.5 Service Entrance Cables

Service Entrance (SE) and Underground Service Entrance (USE) Cables, UL 854.
2.8 SPLICES AND TERMINATION COMPONENTS

UL 486A-486B for wire connectors and UL 510 for insulating tapes. Connectors for No. 10 AWG and smaller diameter wires: insulated, pressure-type in accordance with UL 486A-486B or UL 486C (twist-on splicing connector). Provide solderless terminal lugs on stranded conductors.

2.9 DEVICE PLATES

Provide the following:

a. UL listed, one-piece device plates for outlets to suit the devices installed.

b. For metal outlet boxes, plates on unfinished walls: zinc-coated sheet steel or cast metal having round or beveled edges.

c. For nonmetallic boxes and fittings, other suitable plates may be provided.

e. Plates on finished walls: satin finish stainless steel or brushed-finish aluminum, minimum 0.03 inch thick.

2.10 SWITCHES

2.10.1 Toggle Switches

NEMA WD 1, UL 20, single pole, three-way and four-way, totally enclosed with bodies of thermoplastic or thermoset plastic and mounting strap with grounding screw. Include the following:

a. Handles: gray thermoplastic.

b. Wiring terminals: screw-type, side-wired.

c. Contacts: silver-cadmium and contact arm - one-piece copper alloy.

d. Switches: rated quiet-type ac only, 120/277 volts, with current rating and number of poles indicated.

2.10.2 Switch with Red Pilot Handle

NEMA WD 1. Provide the following:

a. Pilot lights that are integrally constructed as a part of the switch's handle.

b. Pilot light color: red, or as indicated, and illuminate whenever the switch is closed or "on".

c. Pilot lighted switch: rated 20 amps and 120 volts or 277 volts as
d. The circuit's neutral conductor to each switch with a pilot light.

2.10.3 Breakers Used as Switches

For 120- and 277-Volt fluorescent fixtures, mark breakers "SWD" in accordance with UL 489.

2.10.4 Disconnect Switches

NEMA KS 1. Provide heavy duty-type switches where indicated, where switches are rated higher than 240 volts, and for double-throw switches. Utilize Class R fuseholders and fuses for fused switches, unless indicated otherwise. Provide horsepower rated for switches serving as the motor-disconnect means. Provide switches in NEMA 1 or 3R, enclosure as indicated per NEMA ICS 6.

2.11 FUSES

NEMA FU 1. Provide complete set of fuses for each fusible switch panel. Coordinate time-current characteristics curves of fuses serving motors or connected in series with circuit breakers or other circuit protective devices for proper operation. Submit coordination data for approval. Provide fuses with a voltage rating not less than circuit voltage.

2.11.1 Fuseholders

Provide in accordance with UL 4248-1.

2.11.2 Cartridge Fuses, Current Limiting Type (Class R)

UL 198M, Class RK-1 time-delay type. Provide only Class R associated fuseholders in accordance with UL 4248-12.

2.11.3 Cartridge Fuses, High-Interrupting Capacity, Current Limiting Type (Classes J, L, and CC)

UL 198M, Class J for zero to 600 amperes, Class L for 601 to 6,000 amperes, and Class CC for zero to 30 amperes.

2.11.4 Cartridge Fuses, Current Limiting Type (Class T)

UL 198M, Class T for zero to 1,200 amperes, 300 volts; and zero to 800 amperes, 600 volts.

2.12 RECEPTACLES

Provide the following:

a. UL 498, hard use (also designated heavy-duty), grounding-type.

b. Ratings and configurations: as indicated.

c. Bodies: gray as per NEMA WD 1.

d. Face and body: thermoplastic supported on a metal mounting strap.

e. Dimensional requirements: per NEMA WD 6.
f. Screw-type, side-wired wiring terminals or of the solderless pressure type having suitable conductor-release arrangement.

g. Grounding pole connected to mounting strap.

h. The receptacle: containing triple-wipe power contacts and double or triple-wipe ground contacts.

2.12.1 Switched Duplex Receptacles

Provide separate terminals for each ungrounded pole. Top receptacle: switched when installed.

2.12.2 Weatherproof Receptacles

Provide receptacles, UL listed for use in "wet locations". Include cast metal box with gasketed, hinged, lockable and weatherproof while-in-use, die-cast metal/aluminum cover plate.

2.12.3 Ground-Fault Circuit Interrupter Receptacles

UL 943, duplex type for mounting in standard outlet box. Provide device capable of detecting current leak of 6 milliamperes or greater and tripping per requirements of UL 943 for Class A ground-fault circuit interrupter devices. Provide screw-type, side-wired wiring terminals or pre-wired (pigtail) leads.

2.12.4 Tamper-Resistant Receptacles

Provide duplex receptacle with mechanical sliding shutters that prevent the insertion of small objects into its contact slots.

2.13 PANELBOARDS

Provide panelboards in accordance with the following:

a. UL 67 and UL 50 having a short-circuit current rating as indicated.

b. Panelboards for use as service disconnecting means: additionally conform to UL 869A.

d. Designed such that individual breakers can be removed without disturbing adjacent units or without loosening or removing supplemental insulation supplied as means of obtaining clearances as required by UL.

e. "Specific breaker placement" is required in panelboards to match the breaker placement indicated in the panelboard schedule on the drawings.

f. Use of "Subfeed Breakers" is not acceptable unless specifically indicated otherwise.

g. Main breaker: "separately" mounted "above" branch breakers.

h. Where "space only" is indicated, make provisions for future installation of breakers.
i. Directories: indicate load served by each circuit in panelboard.

j. Directories: indicate source of service to panelboard (e.g., Panel PA served from Panel MDP).

l. Type directories and mount in holder behind transparent protective covering.

m. Panelboards: listed and labeled for their intended use.

n. Panelboard nameplates: provided in accordance with paragraph FIELD FABRICATED NAMEPLATES.

 a. UL 67 and UL 50.

 b. Panelboards for use as service disconnecting: additionally conform to UL 869A.

 d. Designed such that individual breakers can be removed without disturbing adjacent units or without loosening or removing supplemental insulation supplied as means of obtaining clearances as required by UL.

 e. Where "space only" is indicated, make provisions for future installation of breaker sized as indicated.

f. Directories: indicate load served by each circuit of panelboard.

g. Directories: indicate source of service (upstream panel, switchboard, motor control center, etc.) to panelboard.

h. Type directories and mount in holder behind transparent protective covering.

i. Panelboard nameplates: provided in accordance with paragraph FIELD FABRICATED NAMEPLATES.

2.13.1 Enclosure

Provide panelboard enclosure in accordance with the following:

 a. UL 50.

 b. Cabinets mounted outdoors or flush-mounted: hot-dipped galvanized after fabrication.

 c. Cabinets: painted in accordance with paragraph PAINTING.

 d. Outdoor cabinets: NEMA 3R raintight with conduit hubs welded to the cabinet.

 e. Front edges of cabinets: form-flanged or fitted with structural shapes welded or riveted to the sheet steel, for supporting the panelboard front.

 f. All cabinets: fabricated such that no part of any surface on the finished cabinet deviates from a true plane by more than 1/8 inch.
g. Holes: provided in the back of indoor surface-mounted cabinets, with outside spacers and inside stiffeners, for mounting the cabinets with a 1/2 inch clear space between the back of the cabinet and the wall surface.

h. Flush doors: mounted on hinges that expose only the hinge roll to view when the door is closed.

i. Each door: fitted with a combined catch and lock, except that doors over 24 inches long provided with a three-point latch having a knob with a T-handle, and a cylinder lock.

j. Keys: two provided with each lock, with all locks keyed alike.

k. Finished-head cap screws: provided for mounting the panelboard fronts on the cabinets.

2.13.2 Panelboard Buses

Support bus bars on bases independent of circuit breakers. Design main buses and back pans so that breakers may be changed without machining, drilling, or tapping. Provide isolated neutral bus in each panel for connection of circuit neutral conductors. Provide separate ground bus identified as equipment grounding bus per UL 67 for connecting grounding conductors; bond to steel cabinet.

2.13.2.1 Panelboard Neutrals for Non-Linear Loads

Provide in accordance with the following:

a. UL listed, with panelboard type specifically UL heat rise tested for use on non-linear loads.

b. Panelboard: heat rise tested in accordance with UL 67, except with the neutral assembly installed and carrying 200 percent of the phase bus current during testing.

c. Verification of the testing procedure: provided upon request.

d. Two neutral assemblies paralleled together with cable is not acceptable.

e. Nameplates for panelboard rated for use on non-linear loads: marked "SUITABLE FOR NON-LINEAR LOADS" and in accordance with paragraph FIELD FABRICATED NAMEPLATES.

f. Provide a neutral label with instructions for wiring the neutral of panelboards rated for use on non-linear loads.

2.13.3 Circuit Breakers

UL 489, thermal magnetic-type having a minimum short-circuit current rating equal to the short-circuit current rating of the panelboard in which the circuit breaker will be mounted. Breaker terminals: UL listed as suitable for type of conductor provided. Series rated circuit breakers and plug-in circuit breakers are unacceptable.

2.13.3.1 Multipole Breakers

Provide common trip-type with single operating handle. Design breaker such
that overload in one pole automatically causes all poles to open. Maintain phase sequence throughout each panel so that any three adjacent breaker poles are connected to Phases A, B, and C, respectively.

2.13.3.2 Circuit Breaker With Ground-Fault Circuit Interrupter

UL 943 and NFPA 70. Provide with "push-to-test" button, visible indication of tripped condition, and ability to detect and trip on current imbalance of 6 milliamperes or greater per requirements of UL 943 for Class A ground-fault circuit interrupter.

2.13.3.3 Circuit Breakers for HVAC Equipment

Provide circuit breakers for HVAC equipment having motors (group or individual) marked for use with HACR type and UL listed as HACR type.

2.13.4 Fusible Switches for Panelboards

NEMA KS 1, hinged door-type. Provide switches serving as motor disconnect means rated for horsepower.

2.14 ENCLOSED CIRCUIT BREAKERS

UL 489. Individual molded case circuit breakers with voltage and continuous current ratings, number of poles, overload trip setting, and short circuit current interrupting rating as indicated. Enclosure type as indicated. Provide solid neutral.

2.15 MOTOR SHORT-CIRCUIT PROTECTOR (MSCP)

Motor short-circuit protectors, also called motor circuit protectors (MCPs): UL 508 and UL 489, and provided as shown. Provide MSCPs that consist of an adjustable instantaneous trip circuit breaker used only in conjunction with a combination motor controller which provides coordinated motor branch-circuit overload and short-circuit protection. Rate MSCPs in accordance with the requirements of NFPA 70.

2.16 TRANSFORMERS

Provide transformers in accordance with the following:

a. NEMA ST 20, general purpose, dry-type, self-cooled, ventilated.

b. Provide transformers in NEMA 1 enclosure.

c. Transformer insulation system:

(1) 220 degrees C insulation system for transformers 15 kVA and greater, with temperature rise not exceeding 115 degrees C under full-rated load in maximum ambient of 40 degrees C.

(2) 180 degrees C insulation for transformers rated 10 kVA and less, with temperature rise not exceeding 115 degrees C under full-rated load in maximum ambient of 40 degrees C.

d. Transformer of 150 degrees C temperature rise: capable of carrying continuously 100 percent of nameplate kVA without exceeding insulation rating.
2.16.1 Specified Transformer Efficiency

Transformers, indicated and specified with: 480V primary, 80 degrees C or 115 degrees C temperature rise, kVA ratings of 37.5 to 100 for single phase or 30 to 500 for three phase, energy efficient type. Minimum efficiency, based on factory test results: not be less than NEMA Class 1 efficiency as defined by NEMA TP 1.

2.16.2 Transformers With Non-Linear Loads

Provide transformers for non-linear loads in accordance with the following:

a. Transformer insulation: UL recognized 220 degrees C system. Neither the primary nor the secondary temperature is allowed to exceed 220 degrees C at any point in the coils while carrying their full rating of non-sinusoidal load.

b. Transformers are to be UL listed and labeled for K-Factor rating as indicated in accordance with UL 1561.

c. Transformers evaluated by the UL K-Factor evaluation: listed for 115 degrees C average temperature rise only.

d. Transformers with K-Factor ratings with temperature rise of 150 degrees C rise are not acceptable.

e. K-Factor rated transformers impedance: allowed range of 3 percent to 5 percent, with a minimum reactance of 2 percent to prevent excessive neutral current when supplying loads with large amounts of third harmonic.

2.17 MOTORS

Provide motors in accordance with the following:

a. NEMA MG 1 except provide fire pump motors as specified.

b. Hermetic-type sealed motor compressors: Also comply with UL 984.

c. Provide the size in terms of HP, or kVA, or full-load current, or a combination of these characteristics, and other characteristics, of each motor as indicated or specified.

d. Determine specific motor characteristics to ensure provision of correctly sized starters and overload heaters.

e. Rate motors for operation on 208-volt, 3-phase circuits with a terminal voltage rating of 200 volts, and those for operation on 480-volt, 3-phase circuits with a terminal voltage rating of 460 volts.

f. Use motors designed to operate at full capacity with voltage variation of plus or minus 10 percent of motor voltage rating.

g. Unless otherwise indicated, use continuous duty type motors if rated 1 HP and above.
h. Where fuse protection is specifically recommended by the equipment manufacturer, provide fused switches in lieu of non-fused switches indicated.

2.17.1 High Efficiency Single-Phase Motors

Single-phase fractional-horsepower alternating-current motors: high efficiency types corresponding to the applications listed in NEMA MG 11. In exception, for motor-driven equipment with a minimum seasonal or overall efficiency rating, such as a SEER rating, provide equipment with motor to meet the overall system rating indicated.

2.17.2 Premium Efficiency Polyphase Motors

Select polyphase motors based on high efficiency characteristics relative to typical characteristics and applications as listed in NEMA MG 10. In addition, continuous rated, polyphase squirrel-cage medium induction motors must meet the requirements for premium efficiency electric motors in accordance with NEMA MG 1, including the NEMA full load efficiency ratings. In exception, for motor-driven equipment with a minimum seasonal or overall efficiency rating, such as a SEER rating, provide equipment with motor to meet the overall system rating indicated.

2.17.3 Motor Sizes

Provide size for duty to be performed, not exceeding the full-load nameplate current rating when driven equipment is operated at specified capacity under most severe conditions likely to be encountered. When motor size provided differs from size indicated or specified, make adjustments to wiring, disconnect devices, and branch circuit protection to accommodate equipment actually provided. Provide controllers for motors rated 1-hp and above with electronic phase-voltage monitors designed to protect motors from phase-loss, undervoltage, and overvoltage. Provide protection for motors from immediate restart by a time adjustable restart relay.

2.17.4 Wiring and Conduit

Provide internal wiring for components of packaged equipment as an integral part of the equipment. Provide power wiring and conduit for field-installed equipment as specified herein. Power wiring and conduit: conform to the requirements specified herein. Control wiring: provided under, and conform to, the requirements of the section specifying the associated equipment.

2.18 MOTOR CONTROLLERS

Provide motor controllers in accordance with the following:

a. UL 508, NEMA ICS 1, and NEMA ICS 2.

b. Provide controllers with thermal overload protection in each phase, and one spare normally open auxiliary contact, and one spare normally closed auxiliary contact.

c. Provide controllers for motors rated 1-hp and above with electronic phase-voltage monitors designed to protect motors from phase-loss, undervoltage, and overvoltage.
d. Provide protection for motors from immediate restart by a time adjustable restart relay.

e. When used with pressure, float, or similar automatic-type or maintained-contact switch, provide a hand/off/automatic selector switch with the controller.

f. Connections to selector switch: wired such that only normal automatic regulatory control devices are bypassed when switch is in "hand" position.

g. Safety control devices, such as low and high pressure cutouts, high temperature cutouts, and motor overload protective devices: connected in motor control circuit in "hand" and "automatic" positions.

h. Control circuit connections to hand/off/automatic selector switch or to more than one automatic regulatory control device: made in accordance with indicated or manufacturer's approved wiring diagram.

i. Provide selector switch with the means for locking in any position.

j. Provide a disconnecting means, capable of being locked in the open position, for the motor that is located in sight from the motor location and the driven machinery location. As an alternative, provide a motor controller disconnect, capable of being locked in the open position, to serve as the disconnecting means for the motor if it is in sight from the motor location and the driven machinery location.

l. Overload protective devices: provide adequate protection to motor windings; be thermal inverse-time-limit type; and include manual reset-type pushbutton on outside of motor controller case.

m. Cover of combination motor controller and manual switch or circuit breaker: interlocked with operating handle of switch or circuit breaker so that cover cannot be opened unless handle of switch or circuit breaker is in "off" position.

n. Minimum short circuit withstand rating of combination motor controller: as indicated.

2.18.1 Control Wiring

Provide control wiring in accordance with the following:

a. All control wire: stranded tinned copper switchboard wire with 600-volt flame-retardant insulation Type SIS meeting UL 44, or Type MTW meeting UL 1063, and passing the VW-1 flame tests included in those standards.

b. Hinge wire: Class K stranding.

c. Current transformer secondary leads: not smaller than No. 10 AWG.

d. Control wire minimum size: No. 14 AWG.

e. Power wiring for 480-volt circuits and below: the same type as control wiring with No. 12 AWG minimum size.

f. Provide wiring and terminal arrangement on the terminal blocks to
permit the individual conductors of each external cable to be terminated on adjacent terminal points.

2.18.2 Control Circuit Terminal Blocks

Provide control circuit terminal blocks in accordance with the following:

a. NEMA ICS 4.

b. Control circuit terminal blocks for control wiring: molded or fabricated type with barriers, rated not less than 600 volts.

c. Provide terminals with removable binding, fillister or washer head screw type, or of the stud type with contact and locking nuts.

d. Terminals: not less than No. 10 in size with sufficient length and space for connecting at least two indented terminals for 10 AWG conductors to each terminal.

e. Terminal arrangement: subject to the approval of the Contracting Officer with not less than four (4) spare terminals or 10 percent, whichever is greater, provided on each block or group of blocks.

f. Modular, pull apart, terminal blocks are acceptable provided they are of the channel or rail-mounted type.

g. Submit data showing that any proposed alternate will accommodate the specified number of wires, are of adequate current-carrying capacity, and are constructed to assure positive contact between current-carrying parts.

2.18.2.1 Types of Terminal Blocks

a. Short-Circuiting Type: Short-circuiting type terminal blocks: furnished for all current transformer secondary leads with provision for shorting together all leads from each current transformer without first opening any circuit. Terminal blocks: comply with the requirements of paragraph CONTROL CIRCUIT TERMINAL BLOCKS above.

b. Load Type: Load terminal blocks rated not less than 600 volts and of adequate capacity: provided for the conductors for NEMA Size 3 and smaller motor controllers and for other power circuits, except those for feeder tap units. Provide terminals of either the stud type with contact nuts and locking nuts or of the removable screw type, having length and space for at least two indented terminals of the size required on the conductors to be terminated. For conductors rated more than 50 amperes, provide screws with hexagonal heads. Conducting parts between connected terminals must have adequate contact surface and cross-section to operate without overheating. Provide each connected terminal with the circuit designation or wire number placed on or near the terminal in permanent contrasting color.

2.18.3 Control Circuits

Control circuits: maximum voltage of 120 volts derived from control transformer in same enclosure. Transformers: conform to UL 506, as applicable. Transformers, other than transformers in bridge circuits: provide primaries wound for voltage available and secondaries wound for correct control circuit voltage. Size transformers so that 80 percent of
rated capacity equals connected load. Provide disconnect switch on primary side. Provide fuses in each ungrounded primary feeder. Provide one fused secondary lead with the other lead grounded. Provide for automatic switchover and alarm upon failure of primary control circuit.

2.18.4 Enclosures for Motor Controllers

NEMA ICS 6.

2.18.5 Multiple-Speed Motor Controllers and Reversible Motor Controllers

Across-the-line-type, electrically and mechanically interlocked.
Multiple-speed controllers: include compelling relays and multiple-button, station-type with pilot lights for each speed.

2.18.6 Pushbutton Stations

Provide with "start/stop" momentary contacts having one normally open and one normally closed set of contacts, and red lights to indicate when motor is running. Stations: heavy duty, oil-tight design.

2.18.7 Pilot and Indicating Lights

Provide LED cluster lamps.

2.19 MANUAL MOTOR STARTERS (MOTOR RATED SWITCHES)

Single pole designed for surface mounting with overload protection and pilot lights.

2.19.1 Pilot Lights

Provide yoke-mounted, seven element LED cluster light module. Color: in accordance with NEMA ICS 2.

2.20 LOCKOUT REQUIREMENTS

Provide disconnecting means capable of being locked out for machines and other equipment to prevent unexpected startup or release of stored energy in accordance with 29 CFR 1910.147. Comply with requirements of Division 23, "Mechanical" for mechanical isolation of machines and other equipment.

2.21 TELECOMMUNICATIONS SYSTEM

Provide system of telecommunications wire-supporting structures (pathway), including: outlet boxes, conduits with pull wires, cable trays and other accessories for telecommunications outlets and pathway in accordance with TIA-569 and as specified herein. Additional telecommunications requirements are specified in Section 27 10 00, BUILDING TELECOMMUNICATIONS CABLELING SYSTEM.

2.22 GROUNDING AND BONDING EQUIPMENT

2.22.1 Ground Rods

UL 467. Ground rods: copper-clad steel with minimum diameter of 3/4 inch and minimum length 10 feet. Sectional ground rods are permitted.
2.22.2 Ground Bus

Copper ground bus: provided in the electrical equipment rooms as indicated.

2.22.3 Telecommunications and CATV Grounding Busbar

Provide corrosion-resistant grounding busbar suitable for indoor installation in accordance with TIA-607. Busbars: plated for reduced contact resistance. If not plated, clean the busbar prior to fastening the conductors to the busbar and apply an anti-oxidant to the contact area to control corrosion and reduce contact resistance. Provide a telecommunications main grounding busbar (TMGB) in the telecommunications entrance facility and a (TGB) in all other telecommunications rooms and equipment rooms. The telecommunications main grounding busbar (TMGB) and the telecommunications grounding busbar (TGB): sized in accordance with the immediate application requirements and with consideration of future growth. Provide telecommunications grounding busbars with the following:

a. Predrilled copper busbar provided with holes for use with standard sized lugs,

b. Minimum dimensions of 0.25 in thick by 4 in wide for the TMGB and 2 in wide for TGBs with length as indicated;

c. Listed by a nationally recognized testing laboratory.

2.23 MANUFACTURER'S NAMEPLATE

Provide on each item of equipment a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.24 FIELD FABRICATED NAMEPLATES

Provide field fabricated nameplates in accordance with the following:

a. ASTM D709.

b. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings.

c. Each nameplate inscription: identify the function and, when applicable, the position.

d. Nameplates: melamine plastic, 0.125 inch thick, white with black center core.

e. Provide red laminated plastic label with white center core where indicated.

g. Minimum size of nameplates: one by 2.5 inches.

h. Lettering size and style: a minimum of 0.25 inch high normal block style.
2.25 WARNING SIGNS

Provide warning signs for flash protection in accordance with NFPA 70E and NEMA Z535.4 for switchboards, panelboards, industrial control panels, and motor control centers that are in other than dwelling occupancies and are likely to require examination, adjustment, servicing, or maintenance while energized. Provide field installed signs to warn qualified persons of potential electric arc flash hazards when warning signs are not provided by the manufacturer. Provide marking that is clearly visible to qualified persons before examination, adjustment, servicing, or maintenance of the equipment.

2.26 FIRESTOPPING MATERIALS

Provide firestopping around electrical penetrations in accordance with Section 07 84 00, FIRESTOPPING.

2.27 WIREWAYS

UL 870. Material: steel epoxy painted 16 gauge for heights and depths up to 6 by 6 inches, and 14 gauge for heights and depths up to 12 by 12 inches. Provide in length required for the application with hinged-cover NEMA enclosure per NEMA ICS 6.

2.28 METERING

ANSI C12.1. Provide a self-contained, socket-mounted, electronic programmable outdoor watthour meter. Meter: either programmed at the factory or programmed in the field. Turn field programming device over to the Contracting Officer at completion of project. Coordinate meter to system requirements.

b. Class: 200; Form: 2S, accuracy: plus or minus 1.0 percent; Finish: Class II.

c. Cover: Polycarbonate and lockable to prevent tampering and unauthorized removal.

d. Kilowatt-hour Register: five digit electronic programmable type.

e. Demand Register:

(1) Provide solid state.

(2) Meter reading multiplier: Indicate multiplier on the meter face.

(3) Demand interval length: programmed for 15 minutes with rolling demand up to six subintervals per interval.

f. Socket: ANSI C12.7. Provide NEMA Type 3R, box-mounted socket, ringless, having jaws compatible with requirements of the meter. Provide manufacturers standard enclosure color unless otherwise indicated.

2.29 SURGE PROTECTIVE DEVICES

Provide parallel type surge protective devices (SPD) which comply with UL 1449 at the service entrance and panelboards. Provide surge protectors in a NEMA 1 enclosure per NEMA ICS 6. Use Type 1 or Type 2 SPD and connect
on the load side of a dedicated circuit breaker.

Provide the following modes of protection:

FOR SINGLE PHASE AND THREE PHASE WYE CONNECTED SYSTEMS—

- Phase to phase (L-L)
- Each phase to neutral (L-N)
- Neutral to ground (N-G)
- Phase to ground (L-G)

SPDs at the service entrance: provide with a minimum surge current rating of 80,000 amperes for L-L mode minimum and 40,000 amperes for other modes (L-N, L-G, and N-G) and downstream SPDs rated 40,000 amperes for L-L mode minimum and 20,000 amperes for other modes (L-N, L-G, and N-G).

Provide SPDs per NFPA 780 for the lightning protection system.

Maximum L-N, L-G, and N-G Voltage Protection Rating:

- 600V for 208Y/120V, three phase system
- 1,200V for 480Y/277V, three phase system

Maximum L-L Voltage Protection Rating:

- 1,200V for 208Y/120V, three phase system
- 1,200V for 480Y/277V, three phase system

The minimum MCOV (Maximum Continuous Operating Voltage) rating for L-N and L-G modes of operation: 120% of nominal voltage for 240 volts and below; 115% of nominal voltage above 240 volts to 480 volts.

Provide EMI/RFI filtering per UL 1283 for each mode with the capability to attenuate high frequency noise. Minimum attenuation: 20db.

2.30 FACTORY APPLIED FINISH

Provide factory-applied finish on electrical equipment in accordance with the following:

a. NEMA 250 corrosion-resistance test and the additional requirements as specified herein.

b. Interior and exterior steel surfaces of equipment enclosures: thoroughly cleaned followed by a rust-inhibitive phosphatizing or equivalent treatment prior to painting.

c. Exterior surfaces: free from holes, seams, dents, weld marks, loose scale or other imperfections.

d. Interior surfaces: receive not less than one coat of corrosion-resisting paint in accordance with the manufacturer's standard practice.

e. Exterior surfaces: primed, filled where necessary, and given not less than two coats baked enamel with semigloss finish.

g. Provide manufacturer's coatings for touch-up work and as specified in paragraph FIELD APPLIED PAINTING.

2.31 SOURCE QUALITY CONTROL

2.31.1 Transformer Factory Tests

Submittal: include routine NEMA ST 20 transformer test results on each transformer and also provide the results of NEMA "design" and "prototype" tests that were made on transformers electrically and mechanically equal to those specified.

2.32 COORDINATED POWER SYSTEM PROTECTION

Prepare analyses as specified in Section 26 28 01.00 10 COORDINATED POWER SYSTEM PROTECTION.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations, including weatherproof and hazardous locations and ducts, plenums and other air-handling spaces: conform to requirements of NFPA 70 and IEEE C2 and to requirements specified herein.

3.1.1 Underground Service

Underground service conductors and associated conduit: continuous from service entrance equipment to outdoor power system connection.

3.1.2 Service Entrance Identification

Service entrance disconnect devices, switches, and enclosures: labeled and identified as such.

3.1.2.1 Labels

Wherever work results in service entrance disconnect devices in more than one enclosure, as permitted by NFPA 70, label each enclosure, new and existing, as one of several enclosures containing service entrance disconnect devices. Label, at minimum: indicate number of service disconnect devices housed by enclosure and indicate total number of enclosures that contain service disconnect devices. Provide laminated plastic labels conforming to paragraph FIELD FABRICATED NAMEPLATES. Use lettering of at least 0.25 inch in height, and engrave on black-on-white matte finish. Service entrance disconnect devices in more than one enclosure: provided only as permitted by NFPA 70.

3.1.3 Wiring Methods

Provide insulated conductors installed in rigid steel conduit, IMC, rigid nonmetallic conduit, or EMT, except where specifically indicated or specified otherwise or required by NFPA 70 to be installed otherwise. Grounding conductor: separate from electrical system neutral conductor. Provide insulated green equipment grounding conductor for circuit(s)
installed in conduit and raceways. Minimum conduit size: 1/2 inch in
diameter for low voltage lighting and power circuits. Vertical
distribution in multiple story buildings: made with metal conduit in
fire-rated shafts, with metal conduit extending through shafts for minimum
distance of 6 inches. Firestop conduit which penetrates fire-rated walls,
fire-rated partitions, or fire-rated floors in accordance with Section
07 84 00, FIRESTOPPING.

3.1.3.1 Pull Wire

Install pull wires in empty conduits. Pull wire: plastic having minimum
200-pound force tensile strength. Leave minimum 36 inches of slack at each
end of pull wire.

3.1.4 Conduit Installation

Unless indicated otherwise, conceal conduit under floor slabs and within
finished walls, ceilings, and floors. Keep conduit minimum 6 inches away
from parallel runs of flues and steam or hot water pipes. Install conduit
parallel with or at right angles to ceilings, walls, and structural members
where located above accessible ceilings and where conduit will be visible
after completion of project. Run conduits under floor slab as if exposed.

3.1.4.1 Restrictions Applicable to EMT

a. Do not install underground.
b. Do not encase in concrete, mortar, grout, or other cementitious
 materials.
c. Do not use in areas subject to severe physical damage including but not
 limited to equipment rooms where moving or replacing equipment could
 physically damage the EMT.
d. Do not use in hazardous areas.
e. Do not use outdoors.
f. Do not use in fire pump rooms.
g. Do not use when the enclosed conductors must be shielded from the
 effects of High-altitude Electromagnetic Pulse (HEMP).

3.1.4.2 Restrictions Applicable to Nonmetallic Conduit

a. PVC Schedule 40 and PVC Schedule 80

 (1) Do not use in areas where subject to severe physical damage,
 including but not limited to, mechanical equipment rooms,
 electrical equipment rooms, hospitals, power plants, missile
 magazines, and other such areas.

 (2) Do not use in hazardous (classified) areas.

 (3) Do not use in fire pump rooms.

 (4) Do not use in penetrating fire-rated walls or partitions, or
 fire-rated floors.
(5) Do not use above grade, except where allowed in this section for rising through floor slab or indicated otherwise.

(6) Do not use when the enclosed conductors must be shielded from the effects of High-altitude Electromagnetic Pulse (HEMP).

3.1.4.3 Restrictions Applicable to Flexible Conduit

Use only as specified in paragraph FLEXIBLE CONNECTIONS. Do not use when the enclosed conductors must be shielded from the effects of High-altitude Electromagnetic Pulse (HEMP).

3.1.4.4 Underground Conduit

Plastic-coated rigid steel; plastic-coated steel IMC; PVC, Type EPC-40; or fiberglass. Convert nonmetallic conduit, other than PVC Schedule 40 or 80, to plastic-coated rigid, or IMC, steel conduit before rising through floor slab. Plastic coating: extend minimum 6 inches above floor.

3.1.4.5 Conduit for Circuits Rated Greater Than 600 Volts

Rigid metal conduit or IMC only.

3.1.4.6 Conduit Installed Under Floor Slabs

Conduit run under floor slab: located a minimum of 12 inches below the vapor barrier. Seal around conduits at penetrations thru vapor barrier.

3.1.4.7 Conduit Through Floor Slabs

Where conduits rise through floor slabs, do not allow curved portion of bends to be visible above finished slab.

3.1.4.8 Conduit Installed in Concrete Floor Slabs

PVC, Type EPC-40, unless indicated otherwise. Locate so as not to adversely affect structural strength of slabs. Install conduit within middle one-third of concrete slab. Do not stack conduits. Space conduits horizontally not closer than three diameters, except at cabinet locations. Curved portions of bends must not be visible above finish slab. Increase slab thickness as necessary to provide minimum one inch cover over conduit. Where embedded conduits cross building and/or expansion joints, provide suitable watertight expansion/deflection fittings and bonding jumpers. Expansion/deflection fittings must allow horizontal and vertical movement of raceway. Conduit larger than one inch trade size: installed parallel with or at right angles to main reinforcement; when at right angles to reinforcement, install conduit close to one of supports of slab. Where nonmetallic conduit is used, convert raceway to plastic coated rigid steel or plastic coated steel IMC before rising above floor, unless specifically indicated.

3.1.4.9 Stub-Ups

Provide conduits stubbed up through concrete floor for connection to free-standing equipment with adjustable top or coupling threaded inside for plugs, set flush with finished floor. Extend conductors to equipment in rigid steel conduit, except that flexible metal conduit may be used 6 inches
above floor. Where no equipment connections are made, install screwdriver-operated threaded flush plugs in conduit end.

3.1.4.10 Conduit Support

Support conduit by pipe straps, wall brackets, threaded rod conduit hangers, or ceiling trapeze. Fasten by wood screws to wood; by toggle bolts on hollow masonry units; by concrete inserts or expansion bolts on concrete or brick; and by machine screws, welded threaded studs, or spring-tension clamps on steel work. Threaded C-clamps may be used on rigid steel conduit only. Do not weld conduits or pipe straps to steel structures. Do not exceed one-fourth proof test load for load applied to fasteners. Provide vibration resistant and shock-resistant fasteners attached to concrete ceiling. Do not cut main reinforcing bars for any holes cut to depth of more than 1 1/2 inches in reinforced concrete beams or to depth of more than 3/4 inch in concrete joints. Fill unused holes. In partitions of light steel construction, use sheet metal screws. In suspended-ceiling construction, run conduit above ceiling. Do not support conduit by ceiling support system. Conduit and box systems: supported independently of both (a) tie wires supporting ceiling grid system, and (b) ceiling grid system into which ceiling panels are placed. Do not share supporting means between electrical raceways and mechanical piping or ducts. Coordinate installation with above-ceiling mechanical systems to assure maximum accessibility to all systems. Spring-steel fasteners may be used for lighting branch circuit conduit supports in suspended ceilings in dry locations. Where conduit crosses building expansion joints, provide suitable expansion fitting that maintains conduit electrical continuity by bonding jumpers or other means. For conduits greater than 2 1/2 inches inside diameter, provide supports to resist forces of 0.5 times the equipment weight in any direction and 1.5 times the equipment weight in the downward direction.

3.1.4.11 Directional Changes in Conduit Runs

Make changes in direction of runs with symmetrical bends or cast-metal fittings. Make field-made bends and offsets with hickey or conduit-bending machine. Do not install crushed or deformed conduits. Avoid trapped conduits. Prevent plaster, dirt, or trash from lodging in conduits, boxes, fittings, and equipment during construction. Free clogged conduits of obstructions.

3.1.4.12 Locknuts and Bushings

Fasten conduits to sheet metal boxes and cabinets with two locknuts where required by NFPA 70, where insulated bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, use at least minimum single locknut and bushing. Provide locknuts with sharp edges for digging into wall of metal enclosures. Install bushings on ends of conduits, and provide insulating type where required by NFPA 70.

3.1.4.13 Flexible Connections

Provide flexible steel conduit between 3 and 6 feet in length for recessed and semirecessed lighting fixtures; for equipment subject to vibration, noise transmission, or movement; and for motors. Install flexible conduit to allow 20 percent slack. Minimum flexible steel conduit size: 1/2 inch diameter. Provide liquidtight flexible conduit in wet and damp locations for equipment subject to vibration, noise transmission, movement or
motors. Provide separate ground conductor across flexible connections.

3.1.4.14 Telecommunications and Signal System Pathway

Install telecommunications pathway in accordance with **TIA-569**.

a. Horizontal Pathway: Telecommunications pathways from the work area to the telecommunications room: installed and cabling length requirements in accordance with **TIA-568-C.1**. Size conduits and cable trays in accordance with **TIA-569** and as indicated.

b. Backbone Pathway: Telecommunication pathways from the telecommunications entrance facility to telecommunications rooms, and, telecommunications equipment rooms (backbone cabling): installed in accordance with **TIA-569**. Size conduits and cable trays for telecommunications risers in accordance with **TIA-569** and as indicated.

3.1.5 Cable Tray Installation

Install and ground in accordance with **NFPA 70**. In addition, install and ground telecommunications cable tray in accordance with **TIA-569**, and **TIA-607**. Install cable trays parallel with or at right angles to ceilings, walls, and structural members. Support in accordance with manufacturer recommendations but at not more than 6 foot intervals. Adjacent cable tray sections: bonded together by connector plates of an identical type as the cable tray sections. For grounding of cable tray system provide No. 2 AWG bare copper wire throughout cable tray system, and bond to each section, except use No. 1/0 aluminum wire if cable tray is aluminum. Terminate cable trays 10 inches from both sides of smoke and fire partitions. Install conductors run through smoke and fire partitions in 4 inch rigid steel conduits with grounding bushings, extending 12 inches beyond each side of partitions. Seal conduit on both ends to maintain smoke and fire ratings of partitions. Firestop penetrations in accordance with Section 07 84 00, FIRESTOPPING. Provide supports to resist forces of 0.5 times the equipment weight in any direction and 1.5 times the equipment weight in the downward direction.

3.1.7 Boxes, Outlets, and Supports

Provide boxes in wiring and raceway systems wherever required for pulling of wires, making connections, and mounting of devices or fixtures. Boxes for metallic raceways: cast-metal, hub-type when located in wet locations, when surface mounted on outside of exterior surfaces, when surface mounted on interior walls exposed up to 7 feet above floors and walkways, and when specifically indicated. Boxes in other locations: sheet steel, except that aluminum boxes may be used with aluminum conduit, and nonmetallic boxes may be used with nonmetallic conduit system. Provide each box with...
volume required by NFPA 70 for number of conductors enclosed in box. Boxes for mounting lighting fixtures: minimum 4 inches square, or octagonal, except that smaller boxes may be installed as required by fixture configurations, as approved. Boxes for use in masonry-block or tile walls: square-cornered, tile-type, or standard boxes having square-cornered, tile-type covers. Provide gaskets for cast-metal boxes installed in wet locations and boxes installed flush with outside of exterior surfaces. Provide separate boxes for flush or recessed fixtures when required by fixture terminal operating temperature; provide readily removable fixtures for access to boxes unless ceiling access panels are provided. Support boxes and pendants for surface-mounted fixtures on suspended ceilings independently of ceiling supports. Fasten boxes and supports with wood screws on wood, with bolts and expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screws or welded studs on steel. In open overhead spaces, cast boxes threaded to raceways need not be separately supported except where used for fixture support; support sheet metal boxes directly from building structure or by bar hangers. Where bar hangers are used, attach bar to raceways on opposite sides of box, and support raceway with approved-type fastener maximum 24 inches from box. When penetrating reinforced concrete members, avoid cutting reinforcing steel.

3.1.7.1 Boxes

Boxes for use with raceway systems: minimum 1 1/2 inches deep, except where shallower boxes required by structural conditions are approved. Boxes for other than lighting fixture outlets: minimum 4 inches square, except that 4 by 2 inch boxes may be used where only one raceway enters outlet. Telecommunications outlets: a minimum of 4 inches square by 2 1/8 inches deep, except for wall mounted telephones and outlet boxes for handicap telephone stations. Mount outlet boxes flush in finished walls.

3.1.7.2 Pull Boxes

Construct of at least minimum size required by NFPA 70 except where cast-metal boxes are required in locations specified herein. Provide boxes with screw-fastened covers. Where several feeders pass through common pull box, tag feeders to indicate clearly electrical characteristics, circuit number, and panel designation.

3.1.7.3 Extension Rings

Extension rings are not permitted for new construction. Use only on existing boxes in concealed conduit systems where wall is furred out for new finish.

3.1.8 Mounting Heights

Mount panelboards, enclosed circuit breakers, motor controller and disconnecting switches so height of operating handle at its highest position is maximum 78 inches above floor. Mount lighting switches and handicapped telecommunications stations 48 inches above finished floor. Mount receptacles and telecommunications outlets 18 inches above finished floor, unless otherwise indicated. Wall-mounted telecommunications outlets: mounted at height 60 inches above finished floor. Mount other devices as indicated. Measure mounting heights of wiring devices and outlets in non-hazardous areas to center of device or outlet.
3.1.9 Nonmetallic Sheathed Cable Installation

Where possible, install cables concealed behind ceiling or wall finish. Thread cables through holes bored on approximate centerline of wood members; notching of end surfaces is not permitted. Provide sleeves through concrete or masonry for threading cables. Install exposed cables parallel to or at right angles to walls or structural members. Protect exposed nonmetallic sheathed cables less than 4 feet above floors from mechanical injury by installation in conduit or tubing. When cable is used in metal stud construction, insert plastic stud grommets in studs at each point through which cable passes, prior to installation of cable.

3.1.10 Mineral Insulated, Metal Sheathed (Type MI) Cable Installation

Mineral-insulated, metal-sheathed cable system, Type MI, may be used in lieu of exposed conduit and wiring. Conductor sizes: not less than those indicated for the conduit installation. Fasten cables within 12 inches of each turn or offset and at 33 inches maximum intervals. Make cable terminations in accordance with NFPA 70 and cable manufacturer's recommendations. Terminate single-conductor cables of a circuit, having capacities of more than 50 amperes, in a single box or cabinet opening. Color code individual conductors in all outlets and cabinets.

3.1.11 Conductor Identification

Provide conductor identification within each enclosure where tap, splice, or termination is made. For conductors No. 6 AWG and smaller diameter, provide color coding by factory-applied, color-impregnated insulation. For conductors No. 4 AWG and larger diameter, provide color coding by plastic-coated, self-sticking markers; colored nylon cable ties and plates; or heat shrink-type sleeves. Identify control circuit terminations in accordance with manufacturer's recommendations. Provide telecommunications system conductor identification as specified in Section 27 10 00 BUILDING TELECOMMUNICATIONS CABLING SYSTEMS.

3.1.11.1 Marking Strips

Provide marking strips in accordance with the following:

a. Provide white or other light-colored plastic marking strips, fastened by screws to each terminal block, for wire designations.

b. Use permanent ink for the wire numbers

c. Provide reversible marking strips to permit marking both sides, or provide two marking strips with each block.

d. Size marking strips to accommodate the two sets of wire numbers.

e. Assign a device designation in accordance with NEMA ICS 1 to each device to which a connection is made. Mark each device terminal to which a connection is made with a distinct terminal marking corresponding to the wire designation used on the Contractor's schematic and connection diagrams.

f. The wire (terminal point) designations used on the Contractor's wiring diagrams and printed on terminal block marking strips may be according
to the Contractor's standard practice; however, provide additional wire and cable designations for identification of remote (external) circuits for the Government's wire designations.

g. Prints of the marking strips drawings submitted for approval will be so marked and returned to the Contractor for addition of the designations to the terminal strips and tracings, along with any rearrangement of points required.

3.1.12 Splices

Make splices in accessible locations. Make splices in conductors No. 10 AWG and smaller diameter with insulated, pressure-type connector. Make splices in conductors No. 8 AWG and larger diameter with solderless connector, and cover with insulation material equivalent to conductor insulation.

3.1.13 Covers and Device Plates

Install with edges in continuous contact with finished wall surfaces without use of mats or similar devices. Plaster fillings are not permitted. Install plates with alignment tolerance of 1/16 inch. Use of sectional-type device plates are not permitted. Provide gasket for plates installed in wet locations.

3.1.14 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated walls, partitions, floors, or ceilings in accordance with Section 07 84 00 FIRESTOPPING.

3.1.15 Grounding and Bonding

Provide in accordance with NFPA 70 and NFPA 780. Ground exposed, non-current-carrying metallic parts of electrical equipment, access flooring support system, metallic raceway systems, grounding conductor in metallic and nonmetallic raceways, telecommunications system grounds, and neutral conductor of wiring systems. Make ground connection at main service equipment, and extend grounding conductor to point of entrance of metallic water service. Make connection to water pipe by suitable ground clamp or lug connection to plugged tee. If flanged pipes are encountered, make connection with lug bolted to street side of flanged connection. Supplement metallic water service grounding system with additional made electrode in compliance with NFPA 70. Make ground connection to driven ground rods on exterior of building. Interconnect all grounding media in or on the structure to provide a common ground potential. This includes lightning protection, electrical service, telecommunications system grounds, as well as underground metallic piping systems. Make interconnection to the gas line on the customer's side of the meter. Use main size lightning conductors for interconnecting these grounding systems to the lightning protection system. In addition to the requirements specified herein, provide telecommunications grounding in accordance with TIA-607. Where ground fault protection is employed, ensure that connection of ground and neutral does not interfere with correct operation of fault protection.
3.1.15.1 Ground Rods

Provide cone pointed ground rods. Measure the resistance to ground using the fall-of-potential method described in IEEE 81. Do not exceed 25 ohms under normally dry conditions for the maximum resistance of a driven ground. If this resistance cannot be obtained with a single rod, additional rods, spaced on center, not less than twice the distance of the length of the rod. In high-ground-resistance, UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 25 ohms measured not less than 48 hours after rainfall, notify the Contracting Officer who will decide on the number of ground rods to add.

3.1.15.2 Grounding Connections

Make grounding connections which are buried or otherwise normally inaccessible, excepting specifically those connections for which access for periodic testing is required, by exothermic weld or compression connector.

a. Make exothermic welds strictly in accordance with the weld manufacturer's written recommendations. Welds which are "puffed up" or which show convex surfaces indicating improper cleaning are not acceptable. Mechanical connectors are not required at exothermic welds.

b. Make compression connections using a hydraulic compression tool to provide the correct circumferential pressure. Provide tools and dies as recommended by the manufacturer. Use an embossing die code or other standard method to provide visible indication that a connector has been adequately compressed on the ground wire.

3.1.15.3 Ground Bus

Provide a copper ground bus in the electrical equipment rooms as indicated. Noncurrent-carrying metal parts of transformer neutrals and other electrical equipment: effectively grounded by bonding to the ground bus. Bond the ground bus to both the entrance ground, and to a ground rod or rods as specified above having the upper ends terminating approximately 4 inches above the floor. Make connections and splices of the brazed, welded, bolted, or pressure-connector type, except use pressure connectors or bolted connections for connections to removable equipment. For raised floor equipment rooms in computer and data processing centers, provide a minimum of 4, one at each corner, ground buses connected to the building grounding system. Use bolted connections in lieu of thermoweld, so they can be changed as required by additions and/or alterations.

3.1.15.4 Resistance

Maximum resistance-to-ground of grounding system: do not exceed 5 ohms under dry conditions. Where resistance obtained exceeds 5 ohms, contact Contracting Officer for further instructions.

3.1.15.5 Telecommunications System

Provide telecommunications grounding in accordance with the following:

a. Telecommunications Grounding Busbars: Provide a telecommunications
main grounding busbar (TMGB) in the telecommunications entrance facility. Install the TMGB as close to the electrical service entrance grounding connection as practicable. Provide a telecommunications grounding busbar (TGB) in all other telecommunications rooms and telecommunications equipment rooms. Install the TGB as close to the telecommunications room panelboard as practicable, when equipped. Where a panelboard for telecommunications equipment is not installed in the telecommunications room, locate the TGB near the backbone cabling and associated terminations. In addition, locate the TGB to provide for the shortest and straightest routing of the grounding conductors. Where a panelboard for telecommunications equipment is located within the same room or space as a TGB, bond that panelboard’s alternating current equipment ground (ACEG) bus (when equipped) or the panelboard enclosure to the TGB. Install telecommunications grounding busbars to maintain clearances as required by NFPA 70 and insulated from its support. A minimum of 2 inches separation from the wall is recommended to allow access to the rear of the busbar and adjust the mounting height to accommodate overhead or underfloor cable routing.

b. Telecommunications Bonding Conductors: Provide main telecommunications service equipment ground consisting of separate bonding conductor for telecommunications, between the TMGB and readily accessible grounding connection of the electrical service. Grounding and bonding conductors should not be placed in ferrous metallic conduit. If it is necessary to place grounding and bonding conductors in ferrous metallic conduit that exceeds 3 feet in length, bond the conductors to each end of the conduit using a grounding bushing or a No. 6 AWG conductor, minimum. Provide a telecommunications bonding backbone (TBB) that originates at the TMGB extends throughout the building using the telecommunications backbone pathways, and connects to the TGBs in all telecommunications rooms and equipment rooms. Install the TBB conductors such that they are protected from physical and mechanical damage. The TBB conductors should be installed without splices and routed in the shortest possible straight-line path. Make the bonding conductor between a TBB and a TGB continuous. Where splices are necessary, the number of splices should be a minimum. Make the splices accessible and located in telecommunications spaces. Connect joined segments of a TBB using exothermic welding, irreversible compression-type connectors, or equivalent. Install all joints to be adequately supported and protected from damage. Whenever two or more TBBs are used within a multistory building, bond the TBBs together with a grounding equalizer (GE) at the top floor and at a minimum of every third floor in between. Do not connect the TBB and GE to the pathway ground, except at the TMGB or the TGB.

c. Telecommunications Grounding Connections: Telecommunications grounding connections to the TMGB or TGB: utilize listed compression two-hole lugs, exothermic welding, suitable and equivalent one hole non-twisting lugs, or other irreversible compression type connections. Bond all metallic pathways, cabinets, and racks for telecommunications cabling and interconnecting hardware located within the same room or space as the TMGB or TGB to the TMGB or TGB respectively. In a metal frame (structural steel) building, where the steel framework is readily accessible within the room; bond each TMGB and TGB to the vertical steel metal frame using a minimum No. 6 AWG conductor. Where the metal frame is external to the room and readily accessible, bond the metal frame to the TGB or TMGB with a minimum No. 6 AWG conductor. When practicable because of shorter distances and, where horizontal steel members are permanently electrically bonded to vertical column members,
the TGB may be bonded to these horizontal members in lieu of the vertical column members. All connectors used for bonding to the metal frame of a building must be listed for the intended purpose.

3.1.16 Equipment Connections

Provide power wiring for the connection of motors and control equipment under this section of the specification. Except as otherwise specifically noted or specified, automatic control wiring, control devices, and protective devices within the control circuitry are not included in this section of the specifications and are provided under the section specifying the associated equipment.

3.1.17 Elevator

Provide circuit to line terminals of elevator controller, and disconnect switch on line side of controller, outlet for control power, outlet receptacle and work light at midheight of elevator shaft, and work light and outlet receptacle in elevator pit.

3.1.18 Government-Furnished Equipment

Contractor rough-in for Government-furnished equipment and make connections to Government-furnished equipment to make equipment operate as intended, including providing miscellaneous items such as plugs, receptacles, wire, cable, conduit, flexible conduit, and outlet boxes or fittings.

3.1.19 Repair of Existing Work

Perform repair of existing work, demolition, and modification of existing electrical distribution systems as follows:

3.1.19.1 Workmanship

Lay out work in advance. Exercise care where cutting, channeling, chasing, or drilling of floors, walls, partitions, ceilings, or other surfaces is necessary for proper installation, support, or anchorage of conduit, raceways, or other electrical work. Repair damage to buildings, piping, and equipment using skilled craftsmen of trades involved.

3.1.19.2 Existing Concealed Wiring to be Removed

Disconnect existing concealed wiring to be removed from its source. Remove conductors; cut conduit flush with floor, underside of floor, and through walls; and seal openings.

3.1.19.3 Removal of Existing Electrical Distribution System

Removal of existing electrical distribution system equipment includes equipment's associated wiring, including conductors, cables, exposed conduit, surface metal raceways, boxes, and fittings, back to equipment's power source as indicated.

3.1.19.4 Continuation of Service

Maintain continuity of existing circuits of equipment to remain. Maintain existing circuits of equipment energized. Restore circuits wiring and power which are to remain but were disturbed during demolition back to original condition.
3.1.20 Watthour Meters

ANSI C12.1.

3.1.21 Surge Protective Devices

Connect the surge protective devices in parallel to the power source, keeping the conductors as short and straight as practically possible. Maximum allowed lead length is 3 feet.

3.2 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.3 WARNING SIGN MOUNTING

Provide the number of signs required to be readable from each accessible side. Space the signs in accordance with NFPA 70E.

3.4 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Where field painting of enclosures for panelboards, load centers or the like is specified to match adjacent surfaces, to correct damage to the manufacturer's factory applied coatings, or to meet the indicated or specified safety criteria, provide manufacturer's recommended coatings and apply in accordance to manufacturer's instructions.

3.5 FIELD QUALITY CONTROL

Furnish test equipment and personnel and submit written copies of test results. Give Contracting Officer 5 working days notice prior to each tests.

3.5.1 Devices Subject to Manual Operation

Operate each device subject to manual operation at least five times, demonstrating satisfactory operation each time.

3.5.2 600-Volt Wiring Test

Test wiring rated 600 volt and less to verify that no short circuits or accidental grounds exist. Perform insulation resistance tests on wiring No. 6 AWG and larger diameter using instrument which applies voltage of approximately 500 volts to provide direct reading of resistance. Minimum resistance: 250,000 ohms.

3.5.3 Transformer Tests

Perform the standard, not optional, tests in accordance with the Inspection and Test Procedures for transformers, dry type, air-cooled, 600 volt and below; as specified in NETA ATS. Measure primary and secondary voltages for proper tap settings. Tests need not be performed by a recognized independent testing firm or independent electrical consulting firm.
3.5.4 **Ground-Fault Receptacle Test**

Test ground-fault receptacles with a "load" (such as a plug in light) to verify that the "line" and "load" leads are not reversed.

3.5.5 **Grounding System Test**

Test grounding system to ensure continuity, and that resistance to ground is not excessive. Test each ground rod for resistance to ground before making connections to rod; tie grounding system together and test for resistance to ground. Make resistance measurements in dry weather, not earlier than 48 hours after rainfall. Submit written results of each test to Contracting Officer, and indicate location of rods as well as resistance and soil conditions at time measurements were made.

3.5.6 **Watthour Meter**

a. Visual and mechanical inspection

 (1) Examine for broken parts, shipping damage, and tightness of connections.

 (2) Verify that meter type, scales, and connections are in accordance with approved shop drawings.

b. Electrical tests

 (1) Determine accuracy of meter.

 (2) Calibrate watthour meters to one-half percent.

 (3) Verify that correct multiplier has been placed on face of meter, where applicable.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A653/A653M</td>
<td>(2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process</td>
</tr>
<tr>
<td>ASTM D149</td>
<td>(2009; R 2013) Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies</td>
</tr>
<tr>
<td>ASTM D1535</td>
<td>(2014) Specifying Color by the Munsell System</td>
</tr>
<tr>
<td>ASTM D709</td>
<td>(2017) Laminated Thermosetting Materials</td>
</tr>
</tbody>
</table>

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
</table>
1.2 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, are as defined in IEEE 100.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation;
Submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29, SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Switchboard Drawings; G

SD-03 Product Data
 Switchboard; G

SD-06 Test Reports
 Switchboard Design Tests; G
 Switchboard Production Tests; G
 Acceptance Checks and Tests; G

SD-07 Certificates
 Cybersecurity Equipment Certification; G
 Submit certification indicating conformance with the paragraph CYBERSECURITY EQUIPMENT CERTIFICATION.
 Cybersecurity Installation Certification; G
 Submit certification indicating conformance with the paragraph CYBERSECURITY INSTALLATION CERTIFICATION.

SD-10 Operation and Maintenance Data
 Switchboard Operation and Maintenance, Data Package 5; G

SD-11 Closeout Submittals
 Assembled Operation and Maintenance Manuals; G
 Equipment Test Schedule; G
 Required Settings; G
 Service Entrance Available Fault Current Label; G

1.4 QUALITY ASSURANCE

1.4.1 Product Data

Include manufacturer's information on each submittal for each component, device and accessory provided with the switchboard including:

a. Circuit breaker type, interrupting rating, and trip devices, including available settings.
b. Manufacturer's instruction manuals and published time-current curves (in electronic format) of the main secondary breaker and largest secondary feeder device.

1.4.2 Switchboard Drawings

Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Identify circuit terminals on wiring diagrams and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Indicate on the drawings adequate clearance for operation, maintenance, and replacement of operating equipment devices. Include the nameplate data, size, and capacity on submittal. Also include applicable federal, military, industry, and technical society publication references on submittals. Include the following:

a. One-line diagram including breakers, current transformers, and meters.

b. Outline drawings including front elevation, section views, footprint, and overall dimensions.

c. Bus configuration including dimensions and ampere ratings of bus bars.

d. Markings and NEMA nameplate data.

e. Circuit breaker type, interrupting rating, and trip devices, including available settings.

f. Wiring diagrams and elementary diagrams with terminals identified, and indicating prewired interconnections between items of equipment and the interconnection between the items.

g. Manufacturer's instruction manuals and published time-current curves (in electronic format) of the main secondary breaker and largest secondary feeder device. Use this information (designer of record) to provide breaker settings that ensures protection and coordination are achieved. Provide electronic format curves using Easy Power device library format depending on installation modeling software requirements.

1.4.3 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" or "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Provide equipment, materials, installation, and workmanship in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.4.4 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship, and:

a. Have been in satisfactory commercial or industrial use for 2 years
prior to bid opening including applications of equipment and materials under similar circumstances and of similar size.

b. Have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period.

c. Where two or more items of the same class of equipment are required, provide products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.4.4.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.4.4.2 Material and Equipment Manufacturing Date

Products manufactured more than 1 year prior to date of delivery to site are not acceptable.

1.5 MAINTENANCE

1.5.1 Switchboard Operation and Maintenance Data

Submit Operation and Maintenance Manuals in accordance with Section 01000 OPERATION AND MAINTENANCE DATA.

1.5.2 Assembled Operation and Maintenance Manuals

Assemble and securely bind manuals in durable, hard covered, water resistant binders. Assemble and index the manuals in the following order with a table of contents:

a. Manufacturer's O&M information required by the paragraph SD-10, OPERATION AND MAINTENANCE DATA.

b. Catalog data required by the paragraph SD-03, PRODUCT DATA.

c. Drawings required by the paragraph SD-02, SHOP DRAWINGS.

d. Prices for spare parts and supply list.

e. Information on metering.

f. Design test reports.

g. Production test reports.

1.6 WARRANTY

Provide equipment items that are supported by service organizations reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.
PART 2 PRODUCTS

2.1 PRODUCT COORDINATION

Products and materials not considered to be switchboards and related accessories are specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION, and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.2 SWITCHBOARD

NEMA PB 2 and UL 891.

2.2.1 Ratings

Provide equipment with the following ratings:

a. Voltage rating: 480Y/277 volts AC, three-phase, 4-wire.

b. Continuous current rating of the main bus: as indicated.

c. Short-circuit current rating: as indicated.

d. UL listed and labeled as service entrance equipment.

2.2.2 Construction

Provide the following:

a. Switchboard: consisting of one or more vertical sections bolted together to form a rigid assembly and rear aligned.

b. All circuit breakers: front accessible.

c. Rear aligned switchboards: front accessible load connections.

e. Where indicated, "space for future" or "space" means to include a vertical bus provided behind a blank front cover. Where indicated, "provision for future" means full hardware provided to mount a breaker suitable for the location.

f. Completely factory engineered and assembled, including protective devices and equipment indicated with necessary interconnections, instrumentation, and control wiring.

2.2.2.1 Enclosure

Provide the following:

a. Enclosure: NEMA ICS 6 Type 1 fabricated entirely of 12 gauge ASTM A240/A240M type 304 or 304L stainless steel.

b. Enclosure: bolted together with removable bolt-on side and rear covers.

c. Front doors: provided with padlockable vault handles with a three point catch.

d. Bases, frames and channels of enclosure: corrosion resistant and fabricated of galvanized steel.
e. Base: includes any part of enclosure that is within 3 inches of concrete pad.

g. Paint color: ASTM D1535 light gray No. 61 or No. 49 over rust inhibitor.

2.2.2.2 Bus Bars

Provide the following:

a. Bus bars: copper with silver-plated contact surfaces.
 (1) Phase bus bars: insulated with a tape wrap or insulating sleeve providing a minimum breakdown voltage of 16,000 volts per ASTM D149.
 (2) Neutral bus: rated 100 percent of the main bus continuous current rating.

b. Make bus connections and joints with hardened steel bolts.

c. Main-bus (through bus): rated at the full ampacity of the main throughout the switchboard.

d. Minimum one-quarter by 2 inch copper ground bus secured to each vertical section along the entire length of the switchboard.

2.2.2.3 Main Section

Provide the main section consisting of a combination section with molded-case circuit breakers for the main and branch devices as indicated.

2.2.2.4 Distribution Sections

Provide the distribution sections consisting of individually mounted, molded-case circuit breakers as indicated.

2.2.2.5 Auxiliary Sections

Provide auxiliary sections consisting of indicated metering equipment and current transformer compartments as indicated.

2.2.2.6 Handles

Provide handles for individually mounted devices of the same design and method of external operation. Label handles prominently to indicate device ampere rating, color coded for device type. Identify ON-OFF indication by handle position and by prominent marking.

2.2.3 Protective Device

Provide main and branch protective devices as indicated.
2.2.3.1 Molded-Case Circuit Breaker

Provide the following:

a. UL 489. UL listed and labeled, 100 percent rated main breaker standard rated branch breakers, electrically operated, low voltage molded-case circuit breaker, with a short-circuit current rating as indicated at 480 volts.

b. Breaker frame size: as indicated.

c. Series rated circuit breakers are unacceptable.

2.2.4 Drawout Breakers

Provide drawout breakers as indicated. Equip drawout breakers with disconnecting contacts, wheels, and interlocks for drawout application. Provide main, auxiliary, and control disconnecting contacts with silver-plated, multifinger, positive pressure, self-aligning type. Provide each drawout breaker with four-position operation with each position clearly identified by an indicator on the circuit breaker front panel as follows.

a. Connected Position: Primary and secondary contacts are fully engaged. Breaker must be tripped before racking into or out of position.

b. Test Position: Primary contacts are disconnected but secondary contacts remain fully engaged. This position allows complete test and operation of the breaker without energizing the primary circuit.

c. Disconnected Position: Primary and secondary contacts are disconnected.

2.2.5 Electronic Trip Units

Equip main and distribution breakers as indicated with a solid-state tripping system consisting of three current sensors and a microprocessor-based trip unit that provides true rms sensing adjustable time-current circuit protection. Include the following:

a. Current sensors ampere rating: the same as the breaker frame rating.

b. Trip unit ampere rating: as indicated.

c. Ground fault protection: as indicated.

d. Electronic trip units: provide additional features as indicated:

 (1) Indicated Breakers: include long delay pick-up and time settings, and LED indication of cause of circuit breaker trip.

 (2) Main breakers: include short delay pick-up and time settings and, instantaneous settings and ground fault settings as indicated.

 (3) Distribution breakers: include short delay pick-up and time settings, instantaneous settings, and ground fault settings as
indicated.

(4) Main Breakers: include a digital display for phase and ground current.

(5) Main Breakers: include a digital display for watts, vars, VA, kWh, kvarh, and kVAh.

(6) Main Breakers: include a digital display for phase voltage, and percent THD voltage and current.

(7) Main Breakers: include provisions for communication via a network twisted pair cable for remote monitoring and control. Provide the following communications protocol: BACNet.

(8) For electronic trip units that are rated for or can be adjusted to 1,200 amperes or higher, provide arc energy reduction capability with an energy-reducing maintenance switch with local status indicator.

2.2.6 Metering

2.2.6.1 Digital Meters

IEEE C37.90.1 for surge withstand. Provide true rms, plus/minus one percent accuracy, programmable, microprocessor-based meter enclosed in a sealed case with the following features.

a. Display capability:

(1) Multi-Function Meter: Display a selected phase to neutral voltage, phase to phase voltage, percent phase to neutral voltage THD, percent phase to phase voltage THD; a selected phase current, neutral current, percent phase current THD, percent neutral current; selected total PF, kW, kVA, kVAR, FREQ, kVAh, kWh. Detected alarm conditions include over/under current, over/under voltage, over/under KVA, over/under frequency, over/under selected PF/kVAR, voltage phase reversal, voltage imbalance, reverse power, over percent THD. Include a Form C KYZ pulse output relay on the meter.

b. Design meters to accept input from standard 5A secondary instrument transformers and direct voltage monitoring range to 600 volts, phase to phase.

c. Provide programming via a front panel display and a communication interface accessible by a computer.

d. Provide password secured programming stored in non-volatile EEPROM memory.

e. Provide digital communications in a Modbus RTU protocol via a RS485 serial port and an independently addressable RS485 serial port.

f. Provide meter that calculates and stores average max/min demand values with time and date for all readings based on a user selectable sliding window averaging period.

g. Provide meter with programmable hi/low set limits with two Form C dry
contact relays when exceeding alarm conditions.

h. Provide meter with a display of Total Harmonic Distortion (THD) measurement to a minimum of the thirty-first order.

i. Include historical trend logging capability with the ability to store up to 100,000 data points with intervals of 1 second to 180 minutes. Provide a unit that can store and time stamp up to 1000 programmable triggered conditions.

j. Provide event waveform recording triggered by the rms of 2 cycles of voltage or current exceeding programmable set points. Store waveforms for all 6 channels of voltage and current for a minimum of 10 cycles prior to the event and 50 cycles past the event.

2.2.7 Terminal Boards

Provide with engraved plastic terminal strips and screw type terminals for external wiring between components and for internal wiring between removable assemblies. Provide short-circuiting type terminal boards associated with current transformer. Terminate conductors for current transformers with ring-tongue lugs. Provide terminal board identification that is identical in similar units. Provide color coded external wiring that is color coded consistently for similar terminal boards.

2.2.8 Wire Marking

Mark control and metering conductors at each end. Provide factory installed, white, plastic tubing, heat stamped with black block type letters on factory-installed wiring. On field-installed wiring, provide white, preprinted, polyvinyl chloride (PVC) sleeves, heat stamped with black block type letters. Provide a single letter or number on each sleeve, elliptically shaped to securely grip the wire, and keyed in such a manner to ensure alignment with adjacent sleeves. Provide specific wire markings using the appropriate combination of individual sleeves. Indicate on each wire marker the device or equipment, including specific terminal number to which the remote end of the wire is attached.

2.3 MANUFACTURER'S NAMEPLATE

Provide a nameplate on each item of equipment bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent is not acceptable. This nameplate and method of attachment may be the manufacturer's standard if it contains the required information.

2.4 FIELD FABRICATED NAMEPLATES

ASTM D709. Provide laminated plastic nameplates for each switchboard, equipment enclosure, relay, switch, and device; as specified in this section or as indicated on the drawings. Identify on each nameplate inscription the function and, when applicable, the position. Provide nameplates of melamine plastic, 0.125 inch thick, white with black center core. Provide red laminated plastic label with white center core where indicated. Provide matte finish surface. Provide square corners. Accurately align lettering and engrave into the core. Provide nameplates with minimum size of one by 2.5 inches. Provide lettering that is a minimum of 0.25 inch high normal block style.
2.5 SOURCE QUALITY CONTROL

2.5.1 Equipment Test Schedule

The Government reserves the right to witness tests. Provide equipment test schedules for tests to be performed at the manufacturer's test facility. Submit required test schedule and location, and notify the Contracting Officer 30 calendar days before scheduled test date. Notify Contracting Officer 15 calendar days in advance of changes to scheduled date.

Provide the following as part of test equipment calibration:

a. Provide a calibration program which assures that all applicable test instruments are maintained within rated accuracy.

b. Accuracy: Traceable to the National Institute of Standards and Technology.

c. Instrument calibration frequency schedule: less than or equal to 12 months for both test floor instruments and leased specialty equipment.

d. Dated calibration labels: visible on all test equipment.

e. Calibrating standard: higher accuracy than that of the instrument tested.

f. Keep up-to-date records that indicate dates and test results of instruments calibrated or tested. For instruments calibrated by the manufacturer on a routine basis, in lieu of third party calibration, include the following:

(1) Maintain up-to-date instrument calibration instructions and procedures for each test instrument.

(2) Identify the third party/laboratory calibrated instrument to verify that calibrating standard is met.

2.5.2 Switchboard Design Tests

NEMA PB 2 and UL 891.

2.5.2.1 Design Tests

Furnish documentation showing the results of design tests on a product of the same series and rating as that provided by this specification.

a. Short-circuit current test.

b. Enclosure tests.

c. Dielectric test.

2.5.2.2 Additional Design Tests

In addition to normal design tests, perform the following tests on the actual equipment. Furnish reports which include results of design tests performed on the actual equipment.

a. Temperature rise tests.
b. Continuous current.

2.5.3 Switchboard Production Tests

NEMA PB 2 and UL 891. Furnish reports which include results of production tests performed on the actual equipment for this project. These tests include:

a. 60-hertz dielectric tests.
b. Mechanical operation tests.
c. Electrical operation and control wiring tests.
d. Ground fault sensing equipment test.

2.5.4 Cybersecurity Equipment Certification

Furnish a certification that control systems are designed and tested in accordance with DoD Instruction 8500.01, DoD Instruction 8510.01, and as required by individual Service Implementation Policy.

2.6 COORDINATED POWER SYSTEM PROTECTION

Provide a power system study as specified in Section 26 28 01.00 10 COORDINATED POWER SYSTEM PROTECTION.

2.7 ARC FLASH WARNING LABEL

Provide warning label for switchboards. Locate this self-adhesive warning label on the outside of the enclosure warning of potential electrical arc flash hazards and appropriate PPE required. Provide label format as indicated.

2.8 SERVICE ENTRANCE AVAILABLE FAULT CURRENT LABEL

Provide label on exterior of switchboards used as service equipment listing the maximum available fault current at that location. Include on the label the date that the fault calculation was performed and the contact information for the organization that completed the calculation. Locate this self-adhesive warning label on the outside of the switchboard. Provide label format as indicated.

PART 3 EXECUTION

3.1 INSTALLATION

Conform to IEEE C2, NFPA 70, and to the requirements specified herein. Provide new equipment and materials unless indicated or specified otherwise.

3.2 GROUNDING

NFPA 70 and IEEE C2, except that grounds and grounding systems with a resistance to solid earth ground not exceeding 5 ohms.

3.2.1 Grounding Electrodes

Provide driven ground rods as specified in Section 33 71 02 UNDERGROUND
ELECTRICAL DISTRIBUTION. Connect ground conductors to the upper end of the ground rods by exothermic weld or compression connector. Provide compression connectors at equipment end of ground conductors.

3.2.2 Equipment Grounding

Provide bare copper cable not smaller than No. 4/0 AWG not less than 24 inches below grade connecting to the indicated ground rods. When work in addition to that indicated or specified is directed to obtain the specified ground resistance, the provision of the contract covering "Changes" applies.

3.2.3 Connections

Make joints in grounding conductors and loops by exothermic weld or compression connector. Install exothermic welds and compression connectors as specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION.

3.2.4 Grounding and Bonding Equipment

UL 467, except as indicated or specified otherwise.

3.3 INSTALLATION OF EQUIPMENT AND ASSEMBLIES

Install and connect equipment furnished under this section as indicated on project drawings, the approved shop drawings, and as specified herein.

3.3.1 Switchboard

ANSI/NEMA PB 2.1.

3.3.2 Meters and Instrument Transformers

ANSI C12.1.

3.3.3 Field Applied Painting

Where field painting of enclosures is required to correct damage to the manufacturer's factory applied coatings, provide manufacturer's recommended coatings and apply in accordance with manufacturer's instructions.

3.3.4 Galvanizing Repair

Repair damage to galvanized coatings using ASTM A780/A780M, zinc rich paint, for galvanizing damaged by handling, transporting, cutting, welding, or bolting. Do not heat surfaces that repair paint has been applied to.

3.3.5 Field Fabricated Nameplate Mounting

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.

3.4 FOUNDATION FOR EQUIPMENT AND ASSEMBLIES

3.4.1 Interior Location

Mount switchboard on concrete slab as follows:

a. Unless otherwise indicated, provide the slab with dimensions at least 4
inches thick.

b. Install slab such that the top of the concrete slab is approximately 4 inches above the finished grade.

c. Provide edges above grade 1/2 inch chamfer.

d. Provide slab of adequate size to project at least 8 inches beyond the equipment.

e. Provide conduit turnups and cable entrance space required by the equipment to be mounted.

f. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant.

g. Cut off and bush conduits 3 inches above slab surface.

h. Provide concrete work as specified in Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.

3.5 FIELD QUALITY CONTROL

Submit Required Settings of breakers to the Contracting Officer after approval of switchboard and at least 30 days in advance of their requirement.

3.5.1 Performance of Acceptance Checks and Tests

Perform in accordance with the manufacturer's recommendations and include the following visual and mechanical inspections and electrical tests, performed in accordance with NETA ATS.

3.5.1.1 Switchboard Assemblies

a. Visual and Mechanical Inspection

 (1) Compare equipment nameplate data with specifications and approved shop drawings.

 (2) Inspect physical, electrical, and mechanical condition.

 (3) Verify appropriate anchorage, required area clearances, and correct alignment.

 (4) Clean switchboard and verify shipping bracing, loose parts, and documentation shipped inside cubicles have been removed.

 (5) Inspect all doors, panels, and sections for paint, dents, scratches, fit, and missing hardware.

 (6) Verify that circuit breaker sizes and types correspond to approved shop drawings as well as to the circuit breaker’s address for microprocessor-communication packages.

 (7) Verify that current transformer ratios correspond to approved shop drawings.

 (8) Inspect all bolted electrical connections for high resistance
using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.

(9) Confirm correct operation and sequencing of electrical and mechanical interlock systems.

(10) Confirm correct application of manufacturer's recommended lubricants.

(11) Inspect insulators for evidence of physical damage or contaminated surfaces.

(12) Verify correct barrier installation and operation.

(13) Exercise all active components.

(14) Inspect all mechanical indicating devices for correct operation.

(15) Verify that filters are in place and vents are clear.

(16) Test operation, alignment, and penetration of instrument transformer withdrawal disconnects.

(17) Inspect control power transformers.

b. Electrical Tests

(1) Perform insulation-resistance tests on each bus section.

(2) Perform dielectric withstand voltage tests.

(3) Perform insulation-resistance test on control wiring; Do not perform this test on wiring connected to solid-state components.

(4) Perform control wiring performance test.

(5) Perform primary current injection tests on the entire current circuit in each section of assembly.

3.5.1.2 Circuit Breakers - Low Voltage - Power

a. Visual and Mechanical Inspection

(1) Compare nameplate data with specifications and approved shop drawings.

(2) Inspect physical and mechanical condition.

(3) Inspect anchorage, alignment, and grounding.

(4) Verify that all maintenance devices are available for servicing and operating the breaker.

(5) Inspect arc chutes.

(6) Inspect moving and stationary contacts for condition, wear, and alignment.
(7) Verify that primary and secondary contact wipe and other dimensions vital to satisfactory operation of the breaker are correct.

(8) Perform all mechanical operator and contact alignment tests on both the breaker and its operating mechanism.

(9) Inspect all bolted electrical connections for high resistance using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.

(10) Verify cell fit and element alignment.

(11) Verify racking mechanism.

(12) Confirm correct application of manufacturer's recommended lubricants.

b. Electrical Tests

(1) Perform contact-resistance tests on each breaker.

(2) Perform insulation-resistance tests.

(3) Adjust Breaker(s) for final settings in accordance with Government provided settings.

(4) Determine long-time minimum pickup current by primary current injection.

(5) Determine long-time delay by primary current injection.

(6) Determine short-time pickup and delay by primary current injection.

(7) Determine ground-fault pickup and delay by primary current injection.

(8) Determine instantaneous pickup value by primary current injection.

(9) Activate auxiliary protective devices, such as ground-fault or undervoltage relays, to ensure operation of shunt trip devices; Check the operation of electrically-operated breakers in their cubicle.

3.5.1.3 Circuit Breakers

Low Voltage Molded Case with Solid State Trips

a. Visual and Mechanical Inspection

(1) Compare nameplate data with specifications and approved shop drawings.

(2) Inspect circuit breaker for correct mounting.

(3) Operate circuit breaker to ensure smooth operation.

(4) Inspect case for cracks or other defects.
(5) Inspect all bolted electrical connections for high resistance using low resistance ohmmeter, verifying tightness of accessible bolted connections and/or cable connections by calibrated torque-wrench method, or performing thermographic survey.

(6) Inspect mechanism contacts and arc chutes in unsealed units.

b. Electrical Tests

(1) Perform contact-resistance tests.

(2) Perform insulation-resistance tests.

(3) Perform Breaker adjustments for final settings in accordance with Government provided settings.

(4) Perform long-time delay time-current characteristic tests.

(5) Determine short-time pickup and delay by primary current injection.

(6) Determine ground-fault pickup and time delay by primary current injection.

(7) Determine instantaneous pickup current by primary injection.

(8) Verify correct operation of any auxiliary features such as trip and pickup indicators, zone interlocking, electrical close and trip operation, trip-free, and anti-pump function.

3.5.1.4 Current Transformers

a. Visual and Mechanical Inspection

(1) Compare equipment nameplate data with specifications and approved shop drawings.

(2) Inspect physical and mechanical condition.

(3) Verify correct connection.

(4) Verify that adequate clearances exist between primary and secondary circuit.

(5) Inspect all bolted electrical connections for high resistance using low-resistance ohmmeter, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey.

(6) Verify that all required grounding and shorting connections provide good contact.

b. Electrical Tests

(1) Perform resistance measurements through all bolted connections with low-resistance ohmmeter, if applicable.

(2) Perform insulation-resistance tests.
(3) Perform polarity tests.
(4) Perform ratio-verification tests.

3.5.1.5 Metering and Instrumentation

a. Visual and Mechanical Inspection
 (1) Compare equipment nameplate data with specifications and approved shop drawings.
 (2) Inspect physical and mechanical condition.
 (3) Verify tightness of electrical connections.

b. Electrical Tests

 (1) Determine accuracy of meters at 25, 50, 75, and 100 percent of full scale.

 (2) Calibrate watthour meters according to manufacturer's published data.

 (3) Verify all instrument multipliers.

 (4) Electrically confirm that current transformer and voltage transformer secondary circuits are intact.

3.5.1.6 Grounding System

a. Visual and Mechanical Inspection

 (1) Inspect ground system for compliance with contract plans and specifications.

b. Electrical Tests

 (1) IEEE 81. Perform ground-impedance measurements utilizing the fall-of-potential method. On systems consisting of interconnected ground rods, perform tests after interconnections are complete. On systems consisting of a single ground rod perform tests before any wire is connected. Take measurements in normally dry weather, not less than 48 hours after rainfall. Use a portable ground resistance tester in accordance with manufacturer's instructions to test each ground or group of grounds. Use an instrument equipped with a meter reading directly in ohms or fractions thereof to indicate the ground value of the ground rod or grounding systems under test.

 (2) Submit the measured ground resistance of each ground rod and grounding system, indicating the location of the rod and grounding system. Include the test method and test setup (i.e., pin location) used to determine ground resistance and soil conditions at the time the measurements were made.

3.5.1.7 Cybersecurity Installation Certification

Furnish a certification that control systems are installed in accordance with DoD Instruction 8500.01, DoD Instruction 8510.01, and as required by
3.5.2 Follow-Up Verification

Upon completion of acceptance checks, settings, and tests, show by demonstration in service that circuits and devices are in good operating condition and properly performing the intended function. Trip circuit breakers by operation of each protective device. Test each item to perform its function not less than three times. As an exception to requirements stated elsewhere in the contract, provide the Contracting Officer 5 working days advance notice of the dates and times for checks, settings, and tests.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE 242
(2001; Errata 2003) Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems - Buff Book

IEEE 399

IEEE C2
(2017; Errata 1 2017) National Electrical Safety Code

IEEE C37.46

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA FU 1
(2012) Low Voltage Cartridge Fuses

NEMA ICS 1

NEMA ICS 2
(2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 3
(2005; R 2010) Medium-Voltage Controllers Rated 2001 to 7200 V AC

NEMA ICS 6
(1993; R 2016) Industrial Control and Systems: Enclosures

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70
(2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

UNDERWRITERS LABORATORIES (UL)

UL 1203
(2013; Reprint Apr 2015) UL Standard for Safety Explosion-Proof and Dust-Ignition-Proof Electrical Equipment
1.2 SYSTEM DESCRIPTION

The power system covered by this specification consists of: See electrical one-line drawing.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data
Fault Current Analysis; G.
Protective Device Coordination Study; G.
Equipment; G.
System Coordinator; G.
Installation; G.

SD-06 Test Reports
Field Testing; G.

SD-07 Certificates
Devices and Equipment; G.

1.4 QUALITY ASSURANCE

1.4.1 System Coordinator

System coordination, recommended ratings and settings of protective devices, and design analysis shall be accomplished by a registered professional electrical power engineer with a minimum of 3 years of current experience in the coordination of electrical power systems. Submit verification of experience and license number, of a registered Professional
Engineer as specified above. Experience data shall include at least five references for work of a magnitude comparable to this contract, including points of contact, addresses and telephone numbers.

1.4.2 System Installer

Calibration, testing, adjustment, and placing into service of the protective devices shall be accomplished by a manufacturer's product field service engineer or independent testing company with a minimum of two years of current product experience in protective devices.

1.5 DELIVERY, STORAGE, AND HANDLING

Devices and equipment shall be visually inspected when received and prior to acceptance from conveyance. Protect stored items from the environment in accordance with the manufacturer's published instructions. Damaged items shall be replaced.

1.6 PROJECT/SITE CONDITIONS

Submit certificates attesting that all devices or equipment meet the requirements of the contract documents. Devices and equipment furnished under this section shall be suitable for the following site conditions.

<table>
<thead>
<tr>
<th>Altitude</th>
<th>1000 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>110 degrees F</td>
</tr>
<tr>
<td>Frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Fungus Control</td>
<td></td>
</tr>
<tr>
<td>Hazardous Classification</td>
<td></td>
</tr>
<tr>
<td>Humidity Control</td>
<td></td>
</tr>
<tr>
<td>Ventilation</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

PART 2 PRODUCTS

2.1 STANDARD PRODUCT

Provide protective devices and equipment which are the standard product of a manufacturer regularly engaged in the manufacture of the product and that essentially duplicate items that have been in satisfactory utility type use for at least two years prior to bid opening. Submit data consisting of manufacturer's time-current characteristic curves for individual protective devices, recommended settings of adjustable protective devices, and recommended ratings of non-adjustable protective devices.
2.2 NAMEPLATES

Provide nameplates to identify all protective devices and equipment. Nameplate information shall be in accordance with UL 489.

2.3 CORROSION PROTECTION

Metallic materials shall be protected against corrosion. Ferrous metal hardware shall be zinc or chrome-plated.

2.4 MOTOR CONTROLS AND MOTOR CONTROL CENTERS

Motor controls and motor control centers shall be in accordance with NEMA ICS 1, NEMA ICS 2, NEMA ICS 3 and NEMA ICS 6, and UL 508and UL 845.

2.4.1 Motor Starters

Provide combination starters with circuit breakers and fusible switches and switches equipped with high-interrupting-capacity current-limiting fuses as indicated.

2.4.2 Reduced-Voltage Starters

Provide reduced-voltage starters for polyphase motors 20 hp or larger, of the single-step autotransformer, reactor, or resistor type having an adjustable time interval between application of reduced and full voltages to the motors. Wye-delta reduced voltage starter or part winding increment starters having an adjustable time delay between application of voltage to first and second winding of motor, may be used in lieu of the reduced voltage starters specified above for starting of motor-generator sets, centrifugally operated equipment or reciprocating compressors provided with automatic unloaders.

2.4.3 Thermal-Overload Protection

Each motor of 1/8 hp or larger shall be provided with thermal-overload protection. Polyphase motors shall have overload protection in each ungrounded conductor. The overload-protection device shall be provided either integral with the motor or controller, or shall be mounted in a separate enclosure. Unless otherwise specified, the protective device shall be of the manually reset type. Single or double pole tumbler switches specifically designed for alternating-current operation only may be used as manual controllers for single-phase motors having a current rating not in excess of 80 percent of the switch rating.

2.4.4 Low-Voltage Motor Overload Relays

2.4.4.1 General

Thermal and magnetic current overload relays shall conform to NEMA ICS 2 and UL 508. Overload protection shall be provided either integral with the motor or controller, and shall be rated in accordance with the requirements of NFPA 70. Standard units shall be used for motor starting times up to 7 second. Slow units shall be used for motor starting times from 8 to 12 seconds. Quick trip units shall be used on hermetically sealed, submersible pumps, and similar motors.
2.4.4.2 Construction

Manual reset type thermal relays shall be bimetallic construction. Automatic reset type relays shall be bimetallic construction. Magnetic current relays shall consist of a contact mechanism and a dash pot mounted on a common frame.

2.4.4.3 Ratings

Voltage ratings shall be not less than the applicable circuit voltage. Trip current ratings shall be established by selection of the replaceable overload device and shall not be adjustable. Where the controller is remotely-located or difficult to reach, an automatic reset, non-compensated overload relay shall be provided. Manual reset overload relays shall be provided otherwise, and at all locations where automatic starting is provided. Where the motor is located in a constant ambient temperature, and the thermal device is located in an ambient temperature that regularly varies by more than 14 degrees F, an ambient temperature-compensated overload relay shall be provided.

2.4.5 Automatic Control Devices

2.4.5.1 Direct Control

Automatic control devices (such as thermostats, float or pressure switches) which control the starting and stopping of motors directly shall be designed for that purpose and have an adequate horsepower rating.

2.4.5.2 Pilot-Relay Control

Where the automatic-control device does not have such a rating, a magnetic starter shall be used, with the automatic-control device actuating the pilot-control circuit.

2.4.5.3 Manual/Automatic Selection

a. Where combination manual and automatic control is specified and the automatic-control device actuates the pilot control circuit of a magnetic starter, the magnetic starter shall be provided with a three-position selector switch marked MANUAL-OFF-AUTOMATIC.

b. Connections to the selector switch shall only allow the normal automatic regulatory control devices to be bypassed when the switch is in the Manual position; all safety control devices, such as low-or high-pressure cutouts, high-temperature cutouts, and motor-overload protective devices, shall be connected in the motor-control circuit in both the Manual and the Automatic positions of the selector switch. Control circuit connections to any MANUAL-OFF-AUTOMATIC switch or to more than one automatic regulatory control device shall be made in accordance with wiring diagram approved by the contracting Officer unless such diagram is included on the drawings. All controls shall be 120 volts or less unless otherwise indicated.

2.5 LOW-VOLTAGE FUSES

2.5.1 General

Low-voltage fuses shall conform to NEMA FU 1. Time delay and nontime delay options shall be as specified. Equipment provided under this contract.
shall be provided with a complete set of properly rated fuses when the equipment manufacturer utilizes fuses in the manufacture of the equipment, or if current-limiting fuses are required to be installed to limit the ampere-interrupting capacity of circuit breakers or equipment to less than the maximum available fault current at the location of the equipment to be installed. Fuses shall have a voltage rating of not less than the phase-to-phase circuit voltage, and shall have the time-current characteristics requires for effective power system coordination.

2.5.2 Cartridge Fuses; Noncurrent-Limiting Type

Cartridge fuses of the noncurrent-limiting type shall be Class H, nonrenewable, dual element, time lag type and shall have interrupting capacity of 10,000 amperes. Class H Fuses shall conform to UL 198M. At 500 percent current, cartridge fuses shall not blow in less than 10 seconds. Cartridge fuses shall be used for circuits rated in excess of 30 amperes, 125 volts, except where current-limiting fuses are indicated.

2.5.3 Cartridge Fuses; Current-Limiting Type

Cartridge fuses, current-limiting type, Class J K L RK1 T CC shall have tested interrupting capacity not less than 100,000 amperes. Fuse holders shall be the type that will reject Class H fuses.

a. Class J L CC fuses shall conform to UL 198M.

b. Class K fuses shall conform to UL 198M.

c. Class R fuses shall conform to UL 198M.

d. Class T fuses shall conform to UL 198M.

2.5.3.1 Continuous Current Ratings (600 amperes and smaller)

Service entrance and feeder circuit fuses (600 amperes and smaller) shall be Class RK1 J, current-limiting, time-delay with 200,000 amperes interrupting capacity.

2.5.3.2 Continuous Current Ratings (greater than 600 amperes)

Service entrance and feeder circuit fuses (greater than 600 amperes) shall be Class L, current-limiting, time-delay with 200,000 amperes interrupting capacity.

2.5.3.3 Motor and Transformer Circuit Fuses

Motor, motor controller, transformer, and inductive circuit fuses shall be Class RK1 or RK5, current-limiting, time-delay with 200,000 amperes interrupting capacity.

2.6 MEDIUM-VOLTAGE AND HIGH-VOLTAGE FUSES

2.6.1 General

Medium-voltage and high-voltage fuses shall be distribution fuse cutouts or power fuses, E-rated, C-rated, or R-rated current-limiting fuses as shown.
2.6.2 Construction

Units shall be suitable for outdoor use. Fuses shall have integral blown-fuse indicators. All ratings shall be clearly visible.

2.6.3 Ratings

Voltage ratings shall be not less than the applicable circuit voltage. Continuous-current ratings shall be as shown.

2.6.3.1 Power Fuses

Current-limiting power fuses shall have ratings in accordance with IEEE C37.46 and as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal voltage</td>
<td>12,470 v</td>
</tr>
<tr>
<td>Rated maximum voltage</td>
<td>15 kv</td>
</tr>
<tr>
<td>Maximum symmetrical interrupting capacity</td>
<td>65 KAIC</td>
</tr>
<tr>
<td>Rated continuous current</td>
<td>100 A</td>
</tr>
<tr>
<td>BIL</td>
<td>95 kv</td>
</tr>
</tbody>
</table>

2.6.3.2 E-Rated, Current-Limiting Power Fuses

E-rated, current-limiting, power fuses shall conform to IEEE C37.46.

2.7 MOTOR SHORT-CIRCUIT PROTECTOR (MSCP)

2.7.1 General

Motor short-circuit protectors shall conform to UL 508 and shall be provided as shown. Protectors shall be used only as part of a combination motor controller which provides coordinated motor branch-circuit overload and short-circuit protection, and shall be rated in accordance with the requirements of NFPA 70.

2.7.2 Construction

Motor short-circuit protector bodies shall be constructed of high temperature, dimensionally stable, long life, nonhygroscopic materials. Protectors shall fit special MSCP mounting clips and shall not be interchangeable with any commercially available fuses. Protectors shall have 100 percent one-way interchangeability within the A-Y letter designations. All ratings shall be clearly visible.

2.7.3 Ratings

Voltage ratings shall be not less than the applicable circuit voltage. Letter designations shall be A through Y for motor controller Sizes 0, 1, 2, 3, 4, and 5, with 100,000 amperes interrupting capacity rating. Letter designations shall correspond to controller sizes as follows:
2.8 MOLDED-CASE CIRCUIT BREAKERS

2.8.1 General

Molded-case circuit breakers shall conform to UL 489 and UL 489. Circuit breakers may be installed in panelboards, switchboards, enclosures, motor control centers, or combination motor controllers. Circuit breakers and circuit breaker enclosures located in hazardous (classified) areas shall conform to UL 1203.

2.8.2 Construction

Molded-case circuit breakers shall be assembled as an integral unit in a supporting and enclosing housing of glass reinforced insulating material providing high dielectric strength. Circuit breakers shall be suitable for mounting and operating in any position. Lugs shall be listed for copper conductors only in accordance with UL 486E. Single-pole circuit breakers shall be full module size with not more than one pole per module. Multi-pole circuit breakers shall be of the common-trip type having a single operating handle such that an overload or short circuit on any one pole will result in all poles opening simultaneously. Sizes of 100 amperes or less may consist of single-pole breakers permanently factory assembled into a multi-pole unit having an internal, mechanical, nontamperable common-trip mechanism and external handle ties. All circuit breakers shall have a quick-make, quick-break overcenter toggle-type mechanism, and the handle mechanism shall be trip-free to prevent holding the contacts closed against a short-circuit or sustained overload. All circuit breaker handles shall assume a position between "ON" and "OFF" when tripped automatically. All ratings shall be clearly visible.

2.8.3 Ratings

Voltage ratings shall be not less than the applicable circuit voltage. The interrupting rating of the circuit breakers shall be at least equal to the available short-circuit current at the line terminals of the circuit breaker and correspond to the UL listed integrated short-circuit current rating specified for the panelboards and switchboards. Molded-case circuit breakers shall have nominal voltage ratings, maximum continuous-current ratings, and maximum short-circuit interrupting ratings in accordance with UL 489. Ratings shall be coordinated with system X/R ratio.
2.8.4 Cascade System Ratings

Circuit breakers used in series combinations shall be in accordance with UL 489. Equipment, such as switchboards and panelboards, which house series-connected circuit breakers shall be clearly marked accordingly. Series combinations shall be listed in the UL Recognized Component Directory under "Circuit Breakers-Series Connected."

2.8.5 Thermal-Magnetic Trip Elements

Thermal magnetic circuit breakers shall be provided as shown. Automatic operation shall be obtained by means of thermal-magnetic tripping devices located in each pole providing inverse time delay and instantaneous circuit protection. The instantaneous magnetic trip shall be adjustable and accessible from the front of all circuit breakers on frame sizes above 150 amperes.

2.8.6 Solid-State Trip Elements

Solid-state circuit breakers shall be provided as shown. All electronics shall be self-contained and require no external relaying, power supply, or accessories. Printed circuit cards shall be treated to resist moisture absorption, fungus growth, and signal leakage. All electronics shall be housed in an enclosure which provides protection against arcs, magnetic interference, dust, and other contaminants. Solid-state sensing shall measure true RMS current with error less than one percent on systems with distortions through the 13th harmonic. Peak or average actuating devices are not acceptable. Current sensors shall be toroidal construction, encased in a plastic housing filled with epoxy to protect against damage and moisture and shall be integrally mounted on the breaker. Where indicated on the drawings, circuit breaker frames shall be rated for 100 percent continuous duty. Circuit breakers shall have tripping features as shown on the drawings and as described below:

a. Long-time current pick-up, adjustable from 50 percent to 100 percent of continuous current rating.

b. Adjustable long-time delay.

c. Short-time current pick-up, adjustable from 1.5 to 9 times long-time current setting.

d. Adjustable short-time delay.

e. Short-time I square times t switch.

f. Instantaneous current pick-up, adjustable from 1.5 to 9 times long-time current setting.

g. Ground-fault pick-up, adjustable from 20 percent to 60 percent of sensor rating, but in no case greater than 1200 amperes. Sensing of ground-fault current at the main bonding jumper or ground strap shall not be permitted. Zone-selective interlocking shall be provided.

h. Adjustable ground-fault delay.

i. Ground-fault I square times t switch.

j. Overload and Short-circuit and Ground-fault trip indicators shall be
2.8.7 Current-Limiting Circuit Breakers

Current-limiting circuit breakers shall be provided as shown. Current-limiting circuit breakers shall limit the let-through I^2t to a value less than the I^2t of one-half cycle of the symmetrical short-circuit current waveform. On fault currents below the threshold of limitation, breakers shall provide conventional overload and short-circuit protection. Integrally-fused circuit breakers shall not be used.

2.8.8 SWD Circuit Breakers

Circuit breakers rated 15 amperes or 20 amperes and intended to switch 277 volts or less LED lighting loads shall be marked "SWD."

2.8.9 HACR Circuit Breakers

Circuit breakers 60 amperes or below, 240 volts, 1-pole or 2-pole, or 3-pole, intended to protect multi-motor and combination-load installations involved in heating, air conditioning, and refrigerating equipment shall be marked "Listed HACR Type."

2.8.10 Motor Circuit Protectors (MCP)

Motor circuit protectors shall conform to UL 489 and UL 489 and shall be provided as shown. MCPs shall consist of an adjustable instantaneous trip circuit breaker in conjunction with a combination motor controller which provides coordinated motor circuit overload and short-circuit protection. Motor Circuit Protectors shall be rated in accordance with NFPA 70.

2.9 COORDINATED POWER SYSTEM PROTECTION

Analyses shall be prepared to demonstrate that the equipment selected and system constructed meet the contract requirements for ratings, coordination, and protection. They shall include a load flow analysis, a fault current analysis, and a protective device coordination study. Submit the study along with protective device equipment submittals. No time extensions or similar contact modifications will be granted for work arising out of the requirements for this study. Approval of protective devices proposed will be based on recommendations of this study. The Government shall not be held responsible for any changes to equipment, device ratings, settings, or additional labor for installation of equipment or devices ordered and/or procured prior to approval of the study. The studies shall be performed by a registered professional engineer with demonstrated experience in power system coordination in the last 3 years. Provide a list of references complete with points of contact, addresses and telephone numbers. The selection of the engineer is subject to the approval of the Contracting Officer.

2.9.1 Scope of Analyses

The fault current analysis, and protective device coordination study shall begin at: the source bus and extend down to system buses where fault availability is 10,000 amperes (symmetrical) for building/facility 600 volt level distribution buses.
2.9.2 Determination of Facts

The time-current characteristics, features, and nameplate data for each existing protective device shall be determined and documented. Coordinate with the commercial power company for fault current availability at the site.

2.9.3 Single Line Diagram

A single line diagram shall be prepared to show the electrical system buses, devices, transformation points, and all sources of fault current (including generator and motor contributions). A fault-impedance diagram or a computer analysis diagram may be provided. Each bus, device or transformation point shall have a unique identifier. If a fault-impedance diagram is provided, impedance data shall be shown. Location of switches, breakers, and circuit interrupting devices shall be shown on the diagram together with available fault data, and the device interrupting rating.

2.9.4 Fault Current Analysis

2.9.4.1 Method

The fault current analysis shall be performed in accordance with methods described in IEEE 242, and IEEE 399.

2.9.4.2 Data

Actual data shall be utilized in fault calculations. Bus characteristics and transformer impedance shall be those proposed. Data shall be documented in the report.

2.9.4.3 Fault Current Availability

Balanced three-phase fault, bolted line-to-line fault, and line-to-ground fault current values shall be provided at each voltage transformation point and at each power distribution bus. The maximum and minimum values of fault available at each location shall be shown in tabular form on the diagram or in the report.

2.9.5 Coordination Study

The study shall demonstrate that the maximum possible degree of selectivity has been obtained between devices specified, consistent with protection of equipment and conductors from damage from overloads and fault conditions. The study shall include a description of the coordination of the protective devices in this project. A written narrative shall be provided describing: which devices may operate in the event of a fault at each bus; the logic used to arrive at device ratings and settings; situations where system coordination is not achievable due to device limitations (an analysis of any device curves which overlap); coordination between upstream and downstream devices; and relay settings. Recommendations to improve or enhance system reliability, and detail where such changes would involve additions or modifications to the contract and cost damages (addition or reduction) shall be provided. Composite coordination plots shall be provided on log-log graph paper.

2.9.6 Study report

a. The report shall include a narrative describing: the analyses
performed; the bases and methods used; and the desired method of coordinated protection of the power system.

b. The study shall include descriptive and technical data for existing devices and new protective devices proposed. The data shall include manufacturers published data, nameplate data, and definition of the fixed or adjustable features of the existing or new protective devices.

c. The report shall document utility company data including system voltages, fault MVA, system X/R ratio, time-current characteristic curves, current transformer ratios, and relay device numbers and settings.

d. The report shall contain fully coordinated composite time-current characteristics curves for each bus in the system, as required to ensure coordinated power system protection between protective devices or equipment. The report shall include recommended ratings and settings of all protective devices in tabulated form.

e. The report shall provide the calculation performed for the analyses, including computer analysis programs utilized. The name of the software package, developer, and version number shall be provided.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work.

3.2 INSTALLATION

Submit procedures including diagrams, instructions, and precautions required to properly install, adjust, calibrate, and test the devices and equipment. Install protective devices in accordance with the manufacturer's published instructions and in accordance with the requirements of NFPA 70 and IEEE C2.

3.3 FIELD TESTING

Prior to field tests, submit the proposed test plan consisting of complete field test procedure, tests to be performed, test equipment required, and tolerance limits, and complete testing and verification of the ground fault protection equipment, where used. Submit performance test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall indicate the final position of controls.

3.3.1 General

Perform field testing in the presence of the Contracting Officer. Notify the Contracting Officer 14 days prior to conducting tests. Furnish all materials, labor, and equipment necessary to conduct field tests. Perform all tests and inspections recommended by the manufacturer unless specifically waived by the Contracting Officer. Maintain a written record of all tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results.
3.3.2 Safety

Provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. Replace any devices or equipment which are damaged due to improper test procedures or handling.

3.3.3 Molded-Case Circuit Breakers

Circuit breakers shall be visually inspected, operated manually, and connections checked for tightness. Current ratings shall be verified and adjustable settings incorporated in accordance with the coordination study.

-- End of Section --
SECTION 26 29 23

VARIABLE FREQUENCY DRIVE SYSTEMS UNDER 600 VOLTS

04/06

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE 519 (2014) Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NEMA ICS 7 (2014) Adjustable-Speed Drives

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

U.S. DEPARTMENT OF DEFENSE (DOD)

MIL-STD-461 (2015; Rev G) Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment
U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

47 CFR 15 Radio Frequency Devices

UNDERWRITERS LABORATORIES (UL)

UL 508C (2002; Reprint Nov 2010) Power Conversion Equipment

1.2 RELATED REQUIREMENTS

Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM apply to this section with additions and modifications specified herein.

1.3 SYSTEM DESCRIPTION

1.3.1 Performance Requirements

1.3.1.1 Electromagnetic Interference Suppression

Computing devices, as defined by 47 CFR 15, MIL-STD-461 rules and regulations, shall be certified to comply with the requirements for class A computing devices and labeled as set forth in part 15.

1.3.1.2 Electromechanical and Electrical Components

Electrical and electromechanical components of the Variable Frequency Drive (VFD) shall not cause electromagnetic interference to adjacent electrical or electromechanical equipment while in operation.

1.3.2 Electrical Requirements

1.3.2.1 Power Line Surge Protection

IEEE C62.41.1 and IEEE C62.41.2, IEEE 519 Control panel shall have surge protection, included within the panel to protect the unit from damaging transient voltage surges. Surge arrester shall be mounted near the incoming power source and properly wired to all three phases and ground. Fuses shall not be used for surge protection.

1.3.2.2 Sensor and Control Wiring Surge Protection

I/O functions as specified shall be protected against surges induced on control and sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested in both normal mode and common mode using the following two waveforms:

a. A 10 microsecond by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 microsecond by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Schematic diagrams; G
Interconnecting diagrams; G
Installation drawings; G

Submit drawings for government approval prior to equipment construction or integration. Modifications to original drawings made during installation shall be immediately recorded for inclusion into the as-built drawings.

SD-03 Product Data

Variable frequency drives; G
Wires and cables
Equipment schedule

Include data indicating compatibility with motors being driven.

SD-06 Test Reports

VFD Test
Performance Verification Tests
Endurance Test

SD-08 Manufacturer's Instructions

Installation instructions

SD-09 Manufacturer's Field Reports

VFD Factory Test Plan; G
Factory test results

SD-10 Operation and Maintenance Data

Variable frequency drives, Data Package 4

Submit in accordance with Section 01000 OPERATION AND MAINTENANCE DATA. Provide service and maintenance information including preventive maintenance, assembly, and disassembly procedures.
Include electrical drawings from electrical general sections. Submit additional information necessary to provide complete operation, repair, and maintenance information, detailed to the smallest replaceable unit. Include copies of as-built submittals. Provide routine preventative maintenance instructions, and equipment required. Provide instructions on how to modify program settings, and modify the control program. Provide instructions on drive adjustment, trouble-shooting, and configuration. Provide instructions on process tuning and system calibration.

1.5 QUALITY ASSURANCE

1.5.1 Schematic Diagrams

Show circuits and device elements for each replaceable module. Schematic diagrams of printed circuit boards are permitted to group functional assemblies as devices, provided that sufficient information is provided for government maintenance personnel to verify proper operation of the functional assemblies.

1.5.2 Interconnecting Diagrams

Show interconnections between equipment assemblies, and external interfaces, including power and signal conductors. Include for enclosures and external devices.

1.5.3 Installation Drawings

Show floor plan of each site, with V.F.D.'s and motors indicated. Indicate ventilation requirements, adequate clearances, and cable routes.

1.5.4 Equipment Schedule

Provide schedule of equipment supplied. Schedule shall provide a cross reference between manufacturer data and identifiers indicated in shop drawings. Schedule shall include the total quantity of each item of equipment supplied. For complete assemblies, such as VFD's, provide the serial numbers of each assembly, and a sub-schedule of components within the assembly. Provide recommended spare parts listing for each assembly or component.

1.5.5 Installation instructions

Provide installation instructions issued by the manufacturer of the equipment, including notes and recommendations, prior to shipment to the site. Provide operation instructions prior to acceptance testing.

1.5.6 Factory Test Results

Document test results and submit to government within 7 working days after completion of test.

1.6 DELIVERY AND STORAGE

Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants.
1.7 WARRANTY

The complete system shall be warranted by the manufacturer for a period of one year, or the contracted period of any extended warrantee agreed upon by the contractor and the Government, after successful completion of the acceptance test. Any component failing to perform its function as specified and documented shall be repaired or replaced by the contractor at no additional cost to the Government. Items repaired or replaced shall be warranted for an additional period of at least one year from the date that it becomes functional again, as specified in the FAR CLAUSE 52.246-21.

1.8 MAINTENANCE

1.8.1 Spare Parts

Manufacturers provide spare parts in accordance with recommended spare parts list.

1.8.2 Maintenance Support

During the warranty period, the Contractor shall provide on-site, on-call maintenance services by Contractor's personnel on the following basis: The service shall be on a per-call basis with 36 hour response. Contractor shall support the maintenance of all hardware and software of the system. Various personnel of different expertise shall be sent on-site depending on the nature of the maintenance service required. Costs shall include travel, local transportation, living expenses, and labor rates of the service personnel while responding to the service request. The provisions of this Section are not in lieu of, nor relieve the Contractor of, warranty responsibilities covered in this specification. Should the result of the service request be the uncovering of a system defect covered under the warranty provisions, all costs for the call, including the labor necessary to identify the defect, shall be borne by the Contractor.

PART 2 PRODUCTS

2.1 VARIABLE FREQUENCY DRIVES (VFD)

Provide frequency drive to control the speed of induction motor(s). The VFD shall include the following minimum functions, features and ratings.

a. Input circuit breaker per UL 489 with a minimum of 10,000 amps symmetrical interrupting capacity and door interlocked external operator.

b. A converter stage per UL 508C shall change fixed voltage, fixed frequency, ac line power to a fixed dc voltage. The converter shall utilize a full wave bridge design incorporating diode rectifiers. Silicon Controlled Rectifiers (SCR) are not acceptable. The converter shall be insensitive to three phase rotation of the ac line and shall not cause displacement power factor of less than .95 lagging under any speed and load condition.

c. An inverter stage shall change fixed dc voltage to variable frequency, variable voltage, ac for application to a standard NEMA design B squirrel cage motor. The inverter shall be switched in a manner to produce a sine coded pulse width modulated (PWM) output waveform.
d. The VFD shall be capable of supplying 120 percent of rated full load current for one minute at maximum ambient temperature.

e. The VFD shall be designed to operate from a 480 volt, plus or minus 10 percent, three phase, 60 Hz supply, and control motors with a corresponding voltage rating.

f. Acceleration and deceleration time shall be independently adjustable from one second to 60 seconds.

g. Adjustable full-time current limiting shall limit the current to a preset value which shall not exceed 120 percent of the controller rated current. The current limiting action shall maintain the V/Hz ratio constant so that variable torque can be maintained. Short time starting override shall allow starting current to reach 175 percent of controller rated current to maximum starting torque.

h. The controllers shall be capable of producing an output frequency over the range of 3 Hz to 60 Hz (20 to one speed range), without low speed cogging. Over frequency protection shall be included such that a failure in the controller electronic circuitry shall not cause frequency to exceed 110 percent of the maximum controller output frequency selected.

i. Minimum and maximum output frequency shall be adjustable over the following ranges: 1) Minimum frequency 3 Hz to 50 percent of maximum selected frequency; 2) Maximum frequency 40 Hz to 60 Hz.

j. The controller efficiency at any speed shall not be less than 96 percent.

k. The controllers shall be capable of being restarted into a motor coasting in the forward direction without tripping.

l. Protection of power semiconductor components shall be accomplished without the use of fast acting semiconductor output fuses. Subjecting the controllers to any of the following conditions shall not result in component failure or the need for fuse replacement:

1. Short circuit at controller output
2. Ground fault at controller output
3. Open circuit at controller output
4. Input undervoltage
5. Input overvoltage
6. Loss of input phase
7. AC line switching transients
8. Instantaneous overload
9. Sustained overload exceeding 115 percent of controller rated current
10. Over temperature
11. Phase reversal

m. Solid state motor overload protection shall be included such that current exceeding an adjustable threshold shall activate a 60 second timing circuit. Should current remain above the threshold continuously for the timing period, the controller will automatically shut down.

n. A slip compensation circuit shall be included which will sense changing motor load conditions and adjust output frequency to provide speed regulation of NEMA B motors to within plus or minus 0.5 percent of maximum speed without the necessity of a tachometer generator.

o. The VFD shall be factory set for manual restart after the first protective circuit trip for malfunction (overcurrent, undervoltage, overvoltage or overtemperature) or an interruption of power. The VFD shall be capable of being set for automatic restart after a selected time delay. If the drive faults again within a specified time period (adjustable 0-60 seconds), a manual restart will be required.

p. The VFD shall include external fault reset capability. All the necessary logic to accept an external fault reset contact shall be included.

q. Provide critical speed lockout circuitry to prevent operating at frequencies with critical harmonics that cause resonant vibrations. The VFD shall have a minimum of three user selectable bandwidths.

r. Provide the following operator control and monitoring devices mounted on the front panel of the VFD:

4. Drive run power light.
5. Local display.

s. Provide properly sized NEMA rated by-pass and isolation contactors to enable operation of motor in the event of VFD failure. Mechanical and electrical interlocks shall be installed between the by-pass and isolation contactors. Provide a selector switch and transfer delay timer.

2.2 ENCLOSURES

Provide equipment enclosures conforming to NEMA 250, NEMA ICS 7, NEMA ICS 6.

2.3 WIRES AND CABLES

All wires and cables shall conform to NEMA 250, NEMA ICS 7, NFPA 70.

2.4 NAMEPLATES

Nameplates internal to enclosures shall be manufacturer's standard, with
the exception that they must be permanent.

2.5 SOURCE QUALITY CONTROL

2.5.1 VFD Factory Test Plan

To ensure quality, each VFD shall be subject to a series of in-plant quality control inspections before approval for shipment from the manufacturer's facilities. Provide test plans and test reports.

PART 3 EXECUTION

3.1 INSTALLATION

Per NEMA ICS 3.1, install equipment in accordance with the approved manufacturer's printed installation drawings, instructions, wiring diagrams, and as indicated on project drawings and the approved shop drawings. A field representative of the drive manufacturer shall supervise the installation of all equipment, and wiring.

3.2 FIELD QUALITY CONTROL

Specified products shall be tested as a system for conformance to specification requirements prior to scheduling the acceptance tests. Contractor shall conduct performance verification tests in the presence of Government representative, observing and documenting complete compliance of the system to the specifications. Contractor shall submit a signed copy of the test results, certifying proper system operation before scheduling tests.

3.2.1 VFD Test

A proposed test plan shall be submitted to the contracting officer at least 28 calendar days prior to proposed testing for approval. The tests shall conform to NEMA ICS 1, NEMA ICS 7, and all manufacturer's safety regulations. The Government reserves the right to witness all tests and review any documentation. The contractor shall inform the Government at least 14 working days prior to the dates of testing. Contractor shall provide video tapes, if available, of all training provided to the Government for subsequent use in training new personnel. All training aids, texts, and expendable support material for a self-sufficient presentation shall be provided, the amount of which to be determined by the contracting officer.

3.2.2 Performance Verification Tests

"Performance Verification Test" plan shall provide the step by step procedure required to establish formal verification of the performance of the VFD. Compliance with the specification requirements shall be verified by inspections, review of critical data, demonstrations, and tests. The Government reserves the right to witness all tests, review data, and request other such additional inspections and repeat tests as necessary to ensure that the system and provided services conform to the stated requirements. The contractor shall inform the Government 14 calendar days prior to the date the test is to be conducted.

3.2.3 Endurance Test

Immediately upon completion of the performance verification test, the
endurance test shall commence. The system shall be operated at varying rates for not less than 192 consecutive hours, at an average effectiveness level of .9998, to demonstrate proper functioning of the complete PCS. Continue the test on a day-to-day basis until performance standard is met. During the endurance test, the contractor shall not be allowed in the building. The system shall respond as designed.

3.3 DEMONSTRATION

3.3.1 Training

Coordinate training requirements with the Contracting Officer.

3.3.1.1 Instructions to Government Personnel

Provide the services of competent instructors who will give full instruction to designated personnel in operation, maintenance, calibration, configuration, and programming of the complete control system. Orient the training specifically to the system installed. Instructors shall be thoroughly familiar with the subject matter they are to teach. The Government personnel designated to attend the training will have a high school education or equivalent. The number of training days of instruction furnished shall be as specified. A training day is defined as eight hours of instruction, including two 15-minute breaks and excluding lunch time; Monday through Friday. Provide a training manual for each student at each training phase which describes in detail the material included in each training program. Provide one additional copy for archiving. Provide equipment and materials required for classroom training. Provide a list of additional related courses, and offers, noting any courses recommended. List each training course individually by name, including duration, approximate cost per person, and location of course. Unused copies of training manuals shall be turned over to the Government at the end of last training session.

3.3.1.2 Operating Personnel Training Program

Provide one 2 hour training session at the site at a time and place mutually agreeable between the Contractor and the Government. Provide session to train 4 operation personnel in the functional operations of the system and the procedures that personnel will follow in system operation. This training shall include:

a. System overview
b. General theory of operation
c. System operation
d. Alarm formats
e. Failure recovery procedures
f. Troubleshooting

3.3.1.3 Engineering/Maintenance Personnel Training

Accomplish the training program as specified. Training shall be conducted on site at a location designated by the Government. Provide a one day training session to train 4 engineering personnel in the functional
operations of the system. This training shall include:

a. System overview

b. General theory of operation

c. System operation

d. System configuration

e. Alarm formats

f. Failure recovery procedures

g. Troubleshooting and repair

h. Maintenance and calibration

i. System programming and configuration

-- End of Section --
SECTION 26 32 15.00 10

DIESEL-GENERATOR SET STATIONARY 100-2500 KW, WITH AUXILIARIES
10/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASME INTERNATIONAL (ASME)

ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded
ASME B16.3 (2011) Malleable Iron Threaded Fittings, Classes 150 and 300
ASME BPVC SEC VIII D1 (2015) BPVC Section VIII-Rules for Construction of Pressure Vessels Division 1

ASTM INTERNATIONAL (ASTM)

ELECTRICAL GENERATING SYSTEMS ASSOCIATION (EGSA)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

IEEE 1 (2000; R 2011) General Principles for Temperature Limits in the Rating of

IEEE 519 (2014) Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems

IEEE C57.13 (2016) Requirements for Instrument Transformers

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-80 (2013) Bronze Gate, Globe, Angle and Check Valves

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NEMA MG 1 (2016; SUPP 2016) Motors and Generators

NEMA PB 1 (2011) Panelboards

NEMA PB 2 (2011) Deadfront Distribution Switchboards

NEMA/ANSI C12.11 (2007) Instrument Transformers for Revenue Metering, 10 kV BIL through 350 kV BIL (0.6 kV NSV through 69 kV NSV)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 110 (2016) Standard for Emergency and Standby
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detailed Drawings; G
Acceptance; G

SD-03 Product Data

Harmonic Requirements
Engine-Generator Parameter Schedule
Heat Exchanger
Generator
Manufacturer's Catalog
Spare Parts
Onsite Training
Vibration-Isolation
Posted Data and Instructions; G
Experience
Field Engineer
General Installation

SD-05 Design Data

Performance Criteria
Sound Limitations; G
Sub-base Fuel Storage Tank

Power Factor
Time-Delay on Alarms
Battery Charger

SD-06 Test Reports

Factory Inspection and Tests
Factory Tests
Onsite Inspection and Tests; G

SD-07 Certificates

Cooling System
Vibration Isolation
Reliability and Durability
Emissions
Sound Limitations
Site Visit
Current Balance
Materials and Equipment
Inspections
Cooling System

SD-10 Operation and Maintenance Data

Operation and Maintenance Manuals; G
Maintenance Procedures; G
Special Tools
Filters

1.3 QUALITY ASSURANCE

1.3.1 Conformance to Codes and Standards

Where equipment is specified to conform to requirements of any code or standard such as UL, NEMA, etc., the design, fabrication and installation shall also conform to the code.

1.3.2 Vibration Limitation

The maximum engine-generator set vibration in the horizontal, vertical, and axial directions shall be limited to 6 mils (peak-peak RMS), with an overall velocity limit of 0.95 inches/second RMS, for all speeds through 110 percent of rated speed.

1.3.3 Experience

Each component manufacturer shall have experience in the manufacture, assembly and sale of components used with stationary diesel engine-generator sets for commercial and industrial use. The engine-generator set manufacturer/assembler shall have a minimum of 10 years experience in the manufacture, assembly and sale of stationary diesel engine-generator sets. Submit a statement showing that each component manufacturer has a minimum of 10 years experience in the manufacture, assembly and sale of components used with stationary diesel engine-generator sets. The engine-generator set manufacturer/assembler has a minimum of 10 years experience in the manufacture, assembly and sale of stationary diesel engine-generator sets for commercial and industrial use.

The engine generator manufacturer shall also have a local service shop.
located in Grand Forks, ND. The facility shall be constructed and in place for at least 10 years.

1.3.4 **Field Engineer**

The engine-generator set manufacturer or assembler shall furnish a qualified field engineer to supervise the complete installation of the engine-generator set, assist in the performance of the onsite tests, and instruct personnel as to the operational and maintenance features of the equipment. Submit a letter listing the qualifications, schools, formal training, and experience of the field engineer. The field engineer shall have attended the engine generator manufacturer's training courses on installation and operation and maintenance of engine generator sets.

1.3.5 **Detailed Drawings**

Submit detailed drawings showing the following:

a. Base-mounted equipment, complete with base and attachments, including anchor bolt template and recommended clearances for maintenance and operation.

b. Complete starting system.

c. Complete fuel system.

d. Complete cooling system.

e. Complete exhaust system.

f. Layout of relays, breakers, programmable controllers, switchgear, and switches including applicable single line and wiring diagrams with written description of sequence of operation and the instrumentation provided.

g. The complete lubrication system, including piping, pumps, strainers, filters, heat exchangers for lube oil and turbocharger cooling, electric heater, controls and wiring.

h. Location, type, and description of vibration isolation devices for all applications.

i. The safety system, together with a detailed description of how it is to work. Wiring schematics, safety devices with a listing of their normal ranges, alarm and shutdown values (to include operation parameters such as pressures, temperatures voltages, currents, and speeds) shall be included.

j. One-line schematic and wiring diagrams of the generator, exciter, regulator, governor, and instrumentation.

k. Layout of each panel.

l. Mounting and support for each panel and major piece of electrical equipment.

m. Engine-generator set lifting points and rigging instructions.
1.4 DELIVERY, STORAGE, AND HANDLING

Properly protect material and equipment, in accordance with the manufacturers recommended storage procedures, before, during, and after installation. Protect stored items from the weather and contamination. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter.

1.5 EXTRA MATERIALS

Submit a complete list of spare parts for each piece of equipment and a complete list of all material and supplies needed for continued operation. Lists shall include supply source and current prices. Separate each list into two parts, those elements recommended by the manufacturer to be replaced after 3 years of service, and the remaining elements.

Provide the following Spare Parts for the customer use: 1 set of oil filters, 1 set of fuel filters and 1 set of Air Filters.

1.6 MAINTENANCE SERVICE

Upon Substantial Completion, begin the 12 month, maintenance by skilled employees of the manufacturer's designated service organization. Include Quarterly Exercising to check for proper starting, load transfer, and running under load. Include routine preventative maintenance and an oil change as recommended by manufacturer and adjusting as required for proper operation.

1.7 WARRANTY

Generator shall come with a 10 Year Factory Warranty to include rental generator coverage up to $40,000, Craning up to $12,500 and $500 in emergency Freight.

PART 2 PRODUCTS

2.1 SYSTEM REQUIREMENTS

a. Provide and install each engine-generator set complete and totally functional, with all necessary ancillary equipment to include: air filtration; starting system; generator controls, protection, and isolation; instrumentation; lubrication; fuel system; cooling system; and engine exhaust system. Each engine-generator set shall satisfy the requirements specified in the Engine-Generator Parameter Schedule.

b. Each set shall consist of one engine, one generator, and one exciter mounted, assembled, and aligned on one base; and other necessary ancillary equipment which may be mounted separately. Sets over 750 kW capacity may be shipped in sections. Each set component shall be environmentally suitable for the location shown and shall be the manufacturer's standard product offered in catalogs for commercial or industrial use. Any nonstandard products or components and the reason for their use shall be specifically identified.
2.1.1 **Engine-Generator Parameter Schedule**

Submit description of the generator features which mitigate the effects of the non-linear loads listed.

<table>
<thead>
<tr>
<th>ENGINE-GENERATOR PARAMETER SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Rating</td>
</tr>
<tr>
<td>Overload Capacity (Prime applications only)</td>
</tr>
<tr>
<td>Generator Set Rating</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Motor Starting kVA (Max.)</td>
</tr>
<tr>
<td>Power Factor</td>
</tr>
<tr>
<td>Engine-Generator Applications</td>
</tr>
<tr>
<td>Maximum Speed</td>
</tr>
<tr>
<td>Heat Exchanger Type</td>
</tr>
<tr>
<td>Voltage Regulation (No Load to Full Load) (Stand alone applications)</td>
</tr>
<tr>
<td>Voltage Bandwidth (steady state)</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>Phases</td>
</tr>
<tr>
<td>Max Step Load Increase</td>
</tr>
<tr>
<td>Transient Recovery Time with Step Load Increase (Voltage)</td>
</tr>
<tr>
<td>Transient Recovery Time with Step Load Increase (Frequency)</td>
</tr>
<tr>
<td>Maximum Voltage Deviation with Step Load Increase</td>
</tr>
<tr>
<td>Maximum Frequency Deviation with Step Load Increase</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Max Step Load Decrease (without shutdown)</td>
</tr>
<tr>
<td>Max Time to Start and be Ready to Assume Load</td>
</tr>
<tr>
<td>Max Summer Outdoor Temp (Ambient)</td>
</tr>
<tr>
<td>Min Winter Outdoor Temp (Ambient)</td>
</tr>
<tr>
<td>Installation Elevation</td>
</tr>
</tbody>
</table>

2.1.2 Rated Output Capacity

Each engine-generator-set shall provide power equal to the sum of Service Load plus the machine's efficiency loss and associated ancillary equipment loads. Rated output capacity shall also consider engine and/or generator oversizing required to meet requirements in paragraph Engine-Generator Parameter Schedule.

2.1.3 Power Ratings

Power ratings shall be in accordance with EGSA 101P.

2.1.4 Transient Response

The engine-generator set governor and voltage regulator shall cause the engine-generator set to respond to the maximum step load changes such that output voltage and frequency recover to and stabilize within the operational bandwidth within the transient recovery time. The engine-generator set shall respond to maximum step load changes such that the maximum voltage and frequency deviations from bandwidth are not exceeded.
2.1.5 **Reliability and Durability**

Each standby engine-generator set shall have both an engine and a generator capable of delivering the specified power on a standby basis with an anticipated mean time between overhauls of no less than 5,000 hours operating with a load factor of 70 percent. Two like engines and two like generators shall be cited that have performed satisfactorily in a stationary power plant, independent and separate from the physical location of the manufacturer's and assembler's facilities, for standby without any failure to start, including all periodic exercise. Each like engine and generator shall have had no failures resulting in downtime for repairs in excess of 72 hours during two consecutive years of service. Like engines shall be of the same model, speed, bore, stroke, number and configuration of cylinders, and rated output capacity. Like generators shall be of the same model, speed, pitch, cooling, exciter, voltage regulator and rated output capacity.

Submit a reliability and durability certification letter from the manufacturer and assembler to prove that existing facilities are and have been successfully utilizing the same components proposed to meet this specification, in similar service. Certification may be based on components, i.e. engines used with different models of generators and generators used with different engines, and does not exclude annual technological improvements made by a manufacturer in the basic standard-model component on which experience was obtained, provided parts interchangeability has not been substantially affected and the current standard model meets the performance requirements specified. Provide a list with the name of the installations, completion dates, and name and telephone number of a point of contact.

2.1.6 **Engine-Generator Set Enclosure**

As per plans (see Sheet E-402).

2.1.7 **Vibration Isolation**

The engine-generator set shall be provided with a vibration-isolation system in accordance with the manufacturer's standard recommendation. Submit vibration isolation system performance data for the range of frequencies generated by the engine-generator set during operation from no load to full load and the maximum vibration transmitted to the floor plus description of seismic qualification of the engine-generator mounting, base, and vibration isolation. Where the vibration-isolation system does not secure the base to the structure floor or unit foundation, seismic restraints shall be provided in accordance with the seismic parameters specified.

2.1.8 **Fuel Consumption**

Engine fuel consumption shall not exceed the following maximum limits based on the conditions listed below.

<table>
<thead>
<tr>
<th>Size Range</th>
<th>Net kW</th>
<th>Percent of Rated Output Capacity</th>
<th>Fuel Usage lbs/kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 - 299</td>
<td></td>
<td>75 and 100</td>
<td>0.600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>0.643</td>
</tr>
<tr>
<td>Size Range Net kW</td>
<td>Percent of Rated Output Capacity</td>
<td>Fuel Usage lbs/kWH</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>300 - 999</td>
<td>75 and 100</td>
<td>0.575</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.600</td>
<td></td>
</tr>
<tr>
<td>1000 - 2500</td>
<td>75 and 100</td>
<td>100% = 0.4882</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75% = 0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50% = 0.2707</td>
<td></td>
</tr>
</tbody>
</table>

Conditions:

a. Net kW of the Set corrected for engine auxiliaries that are electrically driven, where kW is electrical kilowatt hours.

b. 10,390 Btu/pound high-heat value for fuel used.

c. Sea level operation.

d. Intake-air temperature not over 85 degrees F.

2.1.9 Fuel-Consumption Rebates

Fuel consumption rebates shall be assessed for failure of engine generator set to meet guaranteed rates. If the guaranteed fuel-consumption rate for 100 percent rated output capacity is verified in the tests but the rates for 75 or 50 percent rated output capacity are not verified, the appropriate 75 or 50 percent rate differences shall be used in assessing the rebates. If more than one fuel consumption guarantee is not met, rebates shall be computed for 100, 75, and 50 percent rated output capacity, and the highest computed figure shall be used in assessing the rebates.

\[
\text{Rebate} = H \times C \times D \times N
\]

where:

<table>
<thead>
<tr>
<th>C</th>
<th>Local fuel costs in dollars per pound</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>A - G</td>
</tr>
<tr>
<td>A</td>
<td>Measured fuel consumption in pounds per hour</td>
</tr>
<tr>
<td>G</td>
<td>kW x R = Guaranteed fuel consumption in pounds per hour</td>
</tr>
<tr>
<td>N</td>
<td>Number of generator sets provided</td>
</tr>
<tr>
<td>H</td>
<td>Operating hours over a projected period of 15 years</td>
</tr>
</tbody>
</table>

Adjust fuel costs to the heat value BTU/lb for the fuel used in the test (requires fuel laboratory test) rationed to the 19,350 Btu/pound heat value used as the basis of the guarantee.

2.1.10 Harmonic Requirements

Non-linear loads to be served by each engine-generator set are as indicated. The maximum linear load demand (kVA @ PF) when non-linear loads
2.1.11 Starting Time Requirements

Upon receipt of a signal to start, each engine generator set will start, reach rated frequency and voltage and be ready to assume load within the time specified. For standby sets used in emergency power applications, each engine generator set will start, reach rated frequency and voltage, and power will be supplied to the load terminals of the automatic transfer switch within the starting time specified.

2.2 NAMEPLATES

Each major component of this specification shall have the manufacturer's name, type or style, model or serial number and rating on a plate secured to the equipment. As a minimum, nameplates shall be provided for:

- Engines
- Generators
- Regulators
- Sub-Base Tanks
- Governors
- Generator Breaker
- Load Bank

Where the following equipment is not provided as a standard component by the diesel engine generator set manufacturer, the nameplate information may be provided in the maintenance manual in lieu of nameplates.

- Battery charger
- Heaters
- Switchboards
- Exhaust mufflers
- Switchgear
- Silencers
- Battery
- Exciters

2.3 SAFETY DEVICES

Exposed moving parts, parts that produce high operating temperatures, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. The safety devices shall be installed so that proper operation of the equipment is not impaired.

2.4 MATERIALS AND EQUIPMENT

Submit certification stating that where materials or equipment are specified to comply with requirements of UL, written proof of such compliance has been obtained. The label or listing of the specified agency, or a written certificate from an approved, nationally recognized
testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency are acceptable as proof.

2.4.1 Filter Elements

Fuel-oil, lubricating-oil, and combustion-air filter elements shall be manufacturer's standard.

2.4.2 Instrument Transformers

NEMA/ANSI C12.11.

2.4.3 Revenue Metering

IEEE C57.13.

2.4.4 Pipe (Fuel/Lube-Oil, Compressed Air, Coolant, and Exhaust)

ASTM A53/A53M, or ASTM A106/A106M steel pipe. Pipe smaller than 2 inches shall be Schedule 80. Pipe 2 inches and larger shall be Schedule 40.

2.4.4.1 Flanges and Flanged Fittings

ASTM A181/A181M, Class 60, or ASME B16.5, Grade 1, Class 150.

2.4.4.2 Pipe Welding Fittings

ASTM A234/A234M, Grade WPB or WPC, Class 150 or ASME B16.11, 3000 lb.

2.4.4.3 Threaded Fittings

ASME B16.3, Class 150.

2.4.4.4 Valves

MSS SP-80, Class 150.

2.4.4.5 Gaskets

Manufacturer's standard.

2.4.5 Pipe Hangers

MSS SP-58.

2.4.6 Electrical Enclosures

NEMA ICS 6.

2.4.6.1 Power Switchgear Assemblies

NEMA SG 6.

2.4.6.2 Switchboards

NEMA PB 2.
2.4.6.3 Panelboards

NEMA PB 1.

2.4.7 Motor Controllers

Motor controllers and starters shall conform to the requirements of NFPA 70 and NEMA ICS 2.

2.5 ENGINE

Each engine shall operate on No. 2-D diesel fuel conforming to ASTM D975, shall be designed for stationary applications and shall be complete with ancillaries. The engine shall be a standard production model shown in the manufacturer's catalog describing and depicting each engine-generator set and all ancillary equipment in sufficient detail to demonstrate complete specification compliance. The engine shall be naturally aspirated, supercharged, or turbocharged. The engine shall be 4-stroke-cycle and compression-ignition type. The engine shall be V-type, with a solid cast block or individually cast cylinders. The engine shall have a maximum of twelve cylinders. Each engine shall be equipped with an overspeed sensor.

2.6 FUEL SYSTEM

The entire fuel system for each engine-generator set shall conform to the requirements of NFPA 30 and NFPA 37 and contain the following elements.

2.6.1 Pumps

2.6.1.1 Main Pump

Each engine shall be provided with an engine driven pump. The pump shall supply fuel at a minimum rate sufficient to provide the amount of fuel required to meet the performance indicated within the parameter schedule. The fuel flow rate shall be based on meeting the load requirements and all necessary recirculation.

2.6.2 Fuel Filter

Provide a minimum of one full-flow fuel filter for each engine. The filter shall be readily accessible and capable of being changed without disconnecting the piping or disturbing other components. The filter shall have inlet and outlet connections plainly marked.

2.6.3 Relief/Bypass Valve

Provide a relief/bypass valve to regulate pressure in the fuel supply line, return excess fuel to a return line and prevent the build-up of excessive pressure in the fuel system.

2.6.4 Sub-base Fuel Storage Tank

Provide each engine with a sub-base fuel tank. Each tank shall be factory installed and provided as an integral part of the diesel generator manufacturer's product. Each tank shall be provided with connections for fuel supply line, fuel return line, local fuel fill port, gauge, vent line, and float switch assembly. A fuel return line cooler shall be provided as recommended by the manufacturer and assembler. The temperature of the fuel returning to the tank shall be below the flash point of the fuel. Each
engine-generator set provided with weatherproof enclosures shall have its tank mounted under the enclosure. The fuel fill line shall be accessible without opening the enclosure.

2.6.4.1 Capacity

Each tank shall have capacity to supply fuel to the engine for an uninterrupted 72-hour period at 100 percent rated load without being refilled.

2.6.4.2 Local Fuel Fill

Each local fuel fill port on the day tank shall be provided with a 5 gallon fuel spill containment box.

2.6.4.3 Fuel Level Controls

Each tank shall have a float-switch assembly to perform the following functions:

a. Activate the "Low Fuel Level" alarm at 70 percent of the rated tank capacity.

b. Activate the "Overfill Fuel Level" alarm at 95 percent of the rated tank capacity.

2.6.4.4 Arrangement

Sub-base fuel tank shall be mounted beneath the generator with platforms and stairs provided for each door. The platforms and stairs shall be welded steel construction, powder coated black with removable handrails, stairs, anti-slip treads and decking and built to OSHA standards. The fuel tank shall be UL142 listed. If the local AHJ requires a ballistic fuel tank that is concrete encased, the tank will need to be UL2085 listed. The fuel tank shall also have anti-slip tread located on all walking surfaces within the enclosure.

2.7 LUBRICATION

Each engine shall have a separate lube-oil system conforming to NFPA 30 and NFPA 37. Each system shall be pressurized by engine-driven pumps. System pressure shall be regulated as recommended by the engine manufacturer. A pressure relief valve shall be provided on the crankcase for closed systems. The crankcase shall be vented in accordance with the manufacturer's recommendation except that it shall not be vented to the engine exhaust system. Crankcase breathers, if provided on engines installed in buildings or enclosures, shall be piped to vent to the outside. The system shall be readily accessible for service such as draining, refilling, etc. Each system shall permit addition of oil and have oil-level indication with the set operating. The system shall utilize an oil cooler as recommended by the engine manufacturer.

2.7.1 Lube-Oil Filter

Provide one full-flow filter for each pump. The filter shall be readily accessible and capable of being changed without disconnecting the piping or disturbing other components. The filter shall have inlet and outlet connections plainly marked.
2.7.2 Lube-Oil Sensors

Equip each engine with lube-oil pressure sensors located downstream of the filters and provide signals for required indication and alarms. Submit two complete sets of filters, required for maintenance, supplied in a suitable storage box. These filters shall be in addition to filters replaced after testing.

2.8 COOLING SYSTEM

Provide each engine with its own cooling system to operate automatically while its engine is running. The cooling system coolant shall use a combination of water and ethylene-glycol sufficient for freeze protection at the minimum winter outdoor temperature specified. The maximum temperature rise of the coolant across each engine shall not exceed that recommended below. Submit a letter which certifies that the engine-generator set and cooling system function properly in the ambient temperature specified, stating the following values:

a. The maximum allowable inlet temperature of the coolant fluid.

b. The minimum allowable inlet temperature of the coolant fluid.

c. The maximum allowable temperature rise in the coolant fluid through the engine.

2.8.1 Coolant Pumps

Coolant pumps shall be the centrifugal type. Each engine shall have an engine-driven primary pump. Secondary pumps shall be electric motor driven and have automatic controllers.

2.8.2 Heat Exchanger

Each heat exchanger shall be of a size and capacity to limit the maximum allowable temperature rise in the coolant across the engine to that recommended and submitted for the maximum summer outdoor design temperature and site elevation. Submit manufacturer's data to quantify heat rejected to the space with the engine generator set at rated capacity. Each heat exchanger shall be corrosion resistant, suitable for service in ambient conditions of application.

2.8.2.1 Fin-Tube-Type Heat Exchanger (Radiator)

Heat exchanger may be factory coated with corrosive resistant film, provided that correction measures are taken to restore the heat rejection capability of the radiator to the initial design requirement via over sizing, or other compensating methods. Internal surfaces shall be compatible with liquid fluid coolant used. Materials and coolant are subject to approval by the Contracting Officer. Heat exchangers shall be pressure type incorporating a pressure valve, vacuum valve and a cap. Caps shall be designed for pressure relief prior to removal. Each heat exchanger and the entire cooling system shall be capable of withstanding a minimum pressure of 7 psi and shall be protected with a strong grille or screen guard. Each heat exchanger shall have at least two tapped holes; one tapped hole shall be equipped with a drain cock, the rest shall be plugged.
2.8.3 Expansion Tank

The cooling system shall include an air expansion tank which will accommodate the expanded water of the system generated within the normal operating temperature range, limiting the pressure increase at all components in the system to the maximum allowable pressure at those components. The tank shall be suitable for operating temperature of 250 degrees F and a working pressure of 125 psi. The tank shall be constructed of welded steel, tested and stamped in accordance with ASME BPVC SEC VIII D1 for the stated working pressure. A bladder type tank shall not be used. The tank shall be supported by steel legs or bases for vertical or steel saddles for horizontal installation.

2.8.4 Thermostatic Control Valve

A modulating type, thermostatic control valve shall be provided in the coolant system to maintain the coolant temperature range submitted in paragraph SUBMITTALS.

2.8.5 Temperature Sensors

Each engine shall be equipped with coolant temperature sensors. Temperature sensors shall provide signals for pre-high and high indication and alarms.

2.9 SOUND LIMITATIONS

Submit sound power level data for the packaged unit operating at 100 percent load in a free field environment. The data should demonstrate compliance with the sound limitation requirements of this specification. Submit certification from the manufacturer stating that the sound emissions meet the specification. The noise generated by the diesel generator set operating at 100 percent load shall not exceed the following sound pressure levels when measured in a free field at a radial distance of 23 feet 7 meters at 45 degrees apart in all directions; 75dba.

2.10 AIR INTAKE EQUIPMENT

Filters shall be provided in locations that are convenient for servicing. The silencer shall be of the high-frequency filter type, located in the air intake system as recommended by the engine manufacturer.

2.11 EXHAUST SYSTEM

The system shall be separate and complete for each engine. Piping shall be supported to minimize vibration. Where a V-type engine is provided, a V-type connector, with necessary flexible sections and hardware, shall connect the engine exhaust outlets.

2.11.1 Flexible Sections and Expansion Joints

A flexible section shall be provided at each engine and an expansion joint at each muffler. Flexible sections and expansion joints shall have flanged connections. Flexible sections shall be made of convoluted seamless tube without joints or packing. Expansion joints shall be the bellows type. Expansion and flexible elements shall be stainless steel suitable for diesel-engine exhaust gas at the maximum exhaust temperature that is specified by the engine manufacturer. Expansion and flexible elements shall be capable of absorbing vibration from the engine and compensation.
for thermal expansion and contraction.

2.11.2 Exhaust Muffler

A chamber type exhaust muffler shall be provided. The muffler shall be constructed of carbon steel and designed for inside horizontal mounting within enclosure. Eyebolts, lugs, flanges, or other items shall be provided as necessary for support in the location and position indicated. Pressure drop through the muffler shall not exceed the recommendations of the engine manufacturer. The muffler and exhaust piping together shall reduce the noise level to less than the maximum acceptable level listed for sound limitations in paragraph SOUND LIMITATIONS. The muffler shall have a drain valve, nipple, and cap at the low-point of the muffler.

2.11.3 Exhaust Piping

Horizontal sections of exhaust piping shall be sloped downward away from the engine to a drip leg for collection of condensate with drain valve and cap. Changes in direction shall be long radius. Vertical exhaust piping shall be provided with a hinged, gravity-operated, self-closing, Stainless Steel rain cover located on top of the enclosure.

2.12 PYROMETER

A pyrometer, multi-point selector switch, and individual thermocouples with calibrated leads shall be provided to show the temperature in each engine cylinder and the combined exhaust. For a supercharged engine, additional points, thermocouples and leads shall be provided to show the temperature in the turbocharger exhaust gas outlet and combustion air discharge passages. Graduated scale length shall be not less than 6 inches. The selector switch shall be double pole, with an "off" position, one set of points for each thermocouple, and suitable indicating dial. The pyrometer, thermocouples, leads and compensating devices shall be calibrated to show true exhaust temperature within plus or minus 1 percent above the highest temperature encountered at 110 percent load conditions.

2.13 EMISSIONS

The finished installation shall comply with Federal, state, and local regulations and restrictions regarding the limits of emissions. Submit certification from the engine manufacturer stating that the engine exhaust emissions meet the federal, state, and local regulations and restrictions specified. At a minimum this certification shall include emission factors for criteria pollutants including nitrogen oxides, carbon monoxide, particulate matter, sulfur dioxide, non-methane hydrocarbon, and for hazardous air pollutants (HPAs).

2.14 STARTING SYSTEM

The starting system for standby engine generator sets used in emergency applications shall be in accordance with NFPA 110 and as follows.

2.14.1 Controls

An engine control switch shall be provided with functions including:
run/start (manual), off/reset, and, automatic mode. Start-stop logic shall be provided for adjustable cycle cranking and cooldown operation. The logic shall be arranged for manual starting and fully automatic starting in accordance with paragraph AUTOMATIC ENGINE-GENERATOR-SET SYSTEM OPERATION. Electrical starting systems shall be provided with an adjustable cranking limit device to limit cranking periods from 1 second up to the maximum duration.

2.14.2 Capacity

The starting system shall be of sufficient capacity, at the maximum outdoor summer temperature specified to crank the engine without damage or overheating. The system shall be capable of providing a minimum of three cranking periods with 15 second intervals between cranks. Each cranking period shall have a maximum duration of 15 seconds.

2.14.3 Electrical Starting

Manufacturers recommended dc system, utilizing a negative circuit ground.

2.14.3.1 Battery

A starting battery system shall be provided and shall include the battery, battery rack, intercell connectors, spacers, automatic battery charger with overcurrent protection, metering and relaying. The battery shall be in accordance with SAE J537. Critical system components (rack, protection, etc.) shall be sized to withstand the seismic acceleration forces specified. The battery shall be lead-acid, with sufficient capacity, at the minimum outdoor and maximum outdoor temperature specified, to provide the specified cranking periods. Valve-regulated lead-acid batteries are not acceptable. Grand Forks Air Force Base prefers AGM batteries.

2.14.3.2 Battery Charger

A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. Submit battery charger sizing calculations. The charger shall be capable of an equalize-charging rate for recharging fully depleted batteries within 24 hours and a floating charge rate for maintaining the batteries at fully charged condition. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage. A timer shall be provided for the equalize-charging-rate setting. A battery is considered to be fully depleted when the output voltage falls to a value which will not operate the engine generator set and its components.

2.14.4 Starting Aids

The manufacturer shall provide one or more of other following methods to assist engine starting.

2.14.4.1 Jacket-Coolant Heaters

A thermostatically controlled electric heater shall be mounted in the engine coolant jacketing to automatically maintain the coolant within plus or minus 3 degrees F of the control temperature. The heater shall operate
independently of engine operation so that starting times are minimized. Power for the heaters shall be 120 or 208 volts ac.

2.14.4.1.1 Standby Rated Sets

The control temperature shall be the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.14.4.2 Lubricating-Oil Heaters

A thermostatically controlled electric heater shall be mounted in the engine lubricating-oil system to automatically maintain the oil temperature within plus or minus 3 degrees F of the control temperature. The heater shall operate independently of engine operation so that starting times are minimized. Power for the heaters shall be 120 or 208 volts ac.

2.14.5 Exerciser

The exerciser shall be in accordance with Section 26 36 00.00 10 AUTOMATIC TRANSFER SWITCH AND BY-PASS/ISOLATION SWITCH.

2.15 GOVERNOR

Each engine shall be provided with a governor which maintains the frequency within a bandwidth of the rated frequency, over a steady-state load range of zero to 100 percent of rated output capacity. The governor shall be configured for safe manual adjustment of the speed/frequency during operation of the engine-generator set, without special tools, from 90 to 110 percent of the rated speed/frequency, over a steady state load range of 0 to 100 percent or rated capacity. Isochronous governors shall maintain the midpoint of the frequency bandwidth at the same value for steady-state loads over the range of zero to 100 percent of rated output capacity.

2.16 GENERATOR

Each generator shall be of the synchronous type, one or two bearing, conforming to the performance criteria in NEMA MG 1, equipped with winding terminal housings in accordance with NEMA MG 1, equipped with an amortisseur winding, and directly connected to the engine. Submit calculations of the engine and generator output power capability, including efficiency and parasitic load data. Insulation shall be Class H.

a. Generator design shall protect against mechanical, electrical and thermal damage due to vibration, 25 percent overspeeds, or voltages and temperatures at a rated output capacity of 110 percent for prime applications and 100 percent for standby applications.

b. Generator ancillary equipment shall meet the short circuit requirements of NEMA MG 1. Frames shall be the drip-proof type.

c. Submit manufacturer's standard data for each generator (prototype data at the specified rating or above is acceptable), listing the following information:

(1) Direct-Axis subtransient reactance (per unit).

(2) The generator kW rating and short circuit current capacity (both
symmetric and asymmetric).

2.16.1 Current Balance

At 100 percent rated output capacity, and load impedance equal for each of the 3 phases, the permissible current difference between any 2 phases shall not exceed 2 percent of the largest current on either of the 2 phases. Submit certification stating that the flywheel has been statically and dynamically balanced and is capable of being rotated at 125 percent of rated speed without vibration or damage.

2.16.2 Voltage Balance

At any balanced load between 75 and 100 percent of rated output capacity, the difference in line-to-neutral voltage among the 3 phases shall not exceed 1 percent of the average line-to-neutral voltage. For a single-phase load condition, consisting of 25 percent load at unity power factor placed between any phase and neutral with no load on the other 2 phases, the maximum simultaneous difference in line-to-neutral voltage between the phases shall not exceed 3 percent of rated line to neutral voltage. The single-phase load requirement shall be valid utilizing normal exciter and regulator control. The interpretation of the 25 percent load for single phase load conditions means 25 percent of rated current at rated phase voltage and unity power factor.

2.16.3 Waveform

The deviation factor of the line-to-line voltage at zero load and at balanced rated output capacity shall not exceed 10 percent. The RMS of all harmonics shall be less than 5.0 percent and that of any one harmonic less than 3.0 percent of the fundamental at rated output capacity. Each engine-generator shall be designed and configured to meet the total harmonic distortion limits of IEEE 519.

2.17 EXCITER

The generator exciter shall be of the brushless Permanent Magnet type. Semiconductor rectifiers shall have a minimum safety factor of 300 percent for peak inverse voltage and forward current ratings for all operating conditions, including 110 percent generator output at 104 degrees F ambient. The exciter and regulator in combination shall maintain generator-output voltage within the limits specified.

2.18 VOLTAGE REGULATOR

Each generator shall be provided with a solid-state voltage regulator, separate from the exciter. The regulator shall maintain the voltage within a bandwidth of the rated voltage, over a steady-state load range of zero to 100 percent of rated output capacity. Regulator shall be configured for safe manual adjustment of the engine-generator voltage output without special tools, during operation, from 90 to 110 percent of the rated voltage over the steady state load range of 0 to 100 percent of rated output capacity. Regulation drift shall not exceed plus or minus 0.5 percent for an ambient temperature change of 68 degrees F. The voltage regulator shall have a maximum droop of 2 percent of rated voltage over a load range from 0 to 100 percent of rated output capacity and automatically maintain the generator output voltage within the specified operational bandwidth.
2.19 GENERATOR ISOLATION AND PROTECTION

Devices necessary for electrical protection and isolation of each engine-generator set and its ancillary equipment shall be provided. The generator circuit breaker (IEEE Device 52) ratings shall be consistent with the generator rated voltage and frequency, with continuous, short circuit withstand, and interrupting current ratings to match the generator capacity. The generator circuit breaker shall be manually operated. Monitoring and control devices shall be as specified in paragraph GENERATOR PANEL.

2.20 SAFETY SYSTEM

Devices, wiring, remote panels, local panels, etc. shall be provided and installed as a complete system to automatically activate the appropriate signals and initiate the appropriate actions. The safety system shall be provided with a self-test method to verify its operability. Alarm signals shall have manual acknowledgment and reset devices. The alarm signal systems shall reactivate for new signals after acknowledgment is given to any signal. The systems shall be configured so that loss of any monitoring device shall be dealt with as an alarm on that system element.

2.20.1 Audible Signal

The audible alarm signal shall sound at a frequency of 70 Hz at a volume of 75 dB at 10 feet. The sound shall be continuously activated upon alarm and silenced upon acknowledgment. Signal devices shall be located as shown.

2.20.2 Visual Signal

The visual alarm signal shall be a panel light. The light shall be normally off, activated to be blinking upon alarm. The light shall change to continuously lit upon acknowledgement. If automatic shutdown occurs, the display shall maintain activated status to indicate the cause of failure and shall not be reset until cause of alarm has been cleared and/or restored to normal condition. Shutdown alarms shall be red; all other alarms shall be amber.

2.20.3 Alarms and Action Logic

2.20.3.1 Shutdown

Simultaneous activation of the audible signal, activation of the visual signal, stopping the engine, and opening the generator main circuit breakers shall be accomplished.

2.20.3.2 Problem

Activation of the visual signal shall be accomplished.

2.20.4 Local Alarm Panel

A local alarm panel shall be provided with the following shutdown and alarm functions in accordance with NFPA 110 level 1 requirements and as follows, mounted either on or adjacent to the engine generator set.
<table>
<thead>
<tr>
<th>Device/Condition/Function</th>
<th>What/Where/Size</th>
<th>NFPA 110 Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdowns w/Alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High engine temperature</td>
<td>Automatic</td>
<td>SD/CP VA</td>
</tr>
<tr>
<td>Low lube-oil pressure</td>
<td>Automatic</td>
<td>SD/CP VA</td>
</tr>
<tr>
<td>Overspeed Shutdown & Alarm</td>
<td>Automatic</td>
<td>SD/CP VA</td>
</tr>
<tr>
<td>Overcrank, Failure to start</td>
<td>Automatic/To start</td>
<td>SD/CP VA</td>
</tr>
<tr>
<td>Air shutdown damper (200-600kW)</td>
<td>When used</td>
<td>SD/CP VA</td>
</tr>
<tr>
<td>Day tank overfill limit indication & transfer pump shutdown (95 percent volume)</td>
<td>Automatic/Day Tank/Level</td>
<td></td>
</tr>
<tr>
<td>Red emergency stop switch</td>
<td>Manual Switch</td>
<td>SD/CP VA</td>
</tr>
<tr>
<td>Alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day Tank sub-base fuel storage tank (Low fuel Limit indication) (70 percent volume remaining)</td>
<td>Automatic/Day Tank Level</td>
<td></td>
</tr>
<tr>
<td>Device/Condition/Function</td>
<td>What/Where/Size</td>
<td>NFPA 110 Level 1</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Low fuel level</td>
<td>Main tank, 3 hrs remaining</td>
<td>CP VA</td>
</tr>
<tr>
<td>Sub-base Fuel Storage Tank High Fuel Level</td>
<td>95 percent volume</td>
<td></td>
</tr>
<tr>
<td>Pre-High Temperature</td>
<td>jacket water/cylinder</td>
<td>CP VA</td>
</tr>
<tr>
<td>Pre-Low lube-oil Pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High battery Voltage</td>
<td></td>
<td>CP VA</td>
</tr>
<tr>
<td>Low battery Voltage</td>
<td></td>
<td>CP VA</td>
</tr>
<tr>
<td>Battery charger AC Failure</td>
<td>AC supply not available</td>
<td>CP VA</td>
</tr>
<tr>
<td>Control switch not in AUTO</td>
<td></td>
<td>CP VA</td>
</tr>
<tr>
<td>Low starting Air pressure</td>
<td></td>
<td>CP VA</td>
</tr>
<tr>
<td>Low starting hydraulic pressure</td>
<td></td>
<td>CP VA</td>
</tr>
</tbody>
</table>

SD	Shut Down
CP	On Control Panel
VA	Visual Alarm
AA	Audible Alarm
O	Optional

2.20.5 **Time-Delay on Alarms**

For startup of the engine-generator set, time-delay devices shall be installed bypassing the low lubricating oil pressure alarm during cranking, and the coolant-fluid outlet temperature alarm. Submit the magnitude of
monitored values which define alarm or action set points, and the tolerance
(plus and/or minus) at which the devices activate the alarm or action for
items contained within the alarm panels. The lube-oil time-delay device
shall return its alarm to normal status after the engine starts. The
coolant time-delay device shall return its alarm to normal status 5 minutes
after the engine starts.

2.20.6 Remote Alarm Panel

Provide a remote alarm panel in accordance with NFPA 110 and as follows.

<table>
<thead>
<tr>
<th>Device/Condition/Function</th>
<th>What/Where/Size</th>
<th>NFPA 110 Level 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote annunciator panel</td>
<td>Battery Powered</td>
<td>Alarms</td>
</tr>
<tr>
<td>Loads on genset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery charger malfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low lube-oil Pressure/level</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Low temperature Jacket water</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>High temperature Jacket water/cylinder</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Low fuel level Main tank, 3 hrs remaining</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Overcrank Failure to start</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Overspeed</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Pre-high temperature Jacket water/cylinder</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Control switch not in</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Common alarm contacts for local & remote common</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Audible alarm silencing switch</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Air shutdown damper When used</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Common fault alarm</td>
<td>AA</td>
<td></td>
</tr>
</tbody>
</table>

X Required

SD Shutdown
2.21 ENGINE GENERATOR SET CONTROLS AND INSTRUMENTATION

Devices, wiring, remote panels, local panels, etc. shall be provided and installed as a complete system to automatically activate the appropriate signals and initiate the appropriate actions.

2.21.1 Controls

Provide a local control panel with controls in accordance with NFPA 110 level 1 mounted on the engine generator set. Control panel to be mounted on the generator set. No remote control panel provided at this time.

<table>
<thead>
<tr>
<th>Device/Condition/Function</th>
<th>What/Where/Size</th>
<th>NFPA 110 Level 1</th>
<th>Manufacturer Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>On Control Panel</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>VA</td>
<td>Visual Alarm</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>AA</td>
<td>Audible Alarm</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>O</td>
<td>Otional</td>
<td></td>
<td>CP/STD</td>
</tr>
</tbody>
</table>

Switch: run/start - off/reset - auto

Emergency stop switch & alarm

Lamp test/indicator test

Common alarm contacts/ fault relay

Panel lighting

Audible alarm & silencing/ reset switch

Voltage adjust for voltage regulator
Device/Condition/Function

<table>
<thead>
<tr>
<th>Device/Condition/Function</th>
<th>NFPA 110 Level 1</th>
<th>Manufacturer Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrometer display w/selector switch</td>
<td></td>
<td>CP VA</td>
</tr>
<tr>
<td>Remote emergency stop switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote fuel shutoff switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote lube-oil shutoff switch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X Required

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>Manufacturers Standard Offering</td>
</tr>
<tr>
<td>CP</td>
<td>On Control Panel</td>
</tr>
<tr>
<td>VA</td>
<td>Visual Alarm</td>
</tr>
<tr>
<td>O</td>
<td>Optional</td>
</tr>
</tbody>
</table>

2.21.2 Engine Generator Set Metering and Status Indication

Provide a local panel with devices in accordance with NFPA 110 level 1 mounted either on or adjacent to the engine generator set. A remote control panel shall be provided fully redundant to the local control panel.

<table>
<thead>
<tr>
<th>Device/Condition/Function</th>
<th>NFPA 110 Level 1</th>
<th>Manufacturer Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genset Status & Metering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genset supplying load</td>
<td>CP VA</td>
<td>CP VAO</td>
</tr>
<tr>
<td>System ready</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Engine oil pressure</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Engine coolant</td>
<td></td>
<td>CP/STD</td>
</tr>
</tbody>
</table>
Device/Condition/Function

<table>
<thead>
<tr>
<th>Device/Condition/Function</th>
<th>NFPA 110 Level 1</th>
<th>Manufacturer Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine RPM (tachometer)</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Engine run hours</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Pyrometer display w/selector switch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC volts (generator), 3-phase</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>AC amps (generator), 3-phase</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Generator Frequency</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Phase selector switches</td>
<td></td>
<td>CP/STD</td>
</tr>
<tr>
<td>Watts/kW</td>
<td></td>
<td>CP/VA-O</td>
</tr>
<tr>
<td>Voltage Regulator Adjustment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>Manufacturers Standard Offering</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>On Control Panel</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>Visual Alarm</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Audible Alarm</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Optional</td>
<td></td>
</tr>
</tbody>
</table>

2.22 PANELS

Each panel shall be of the type and kind necessary to provide specified functions. Panels shall be mounted on the engine-generator set base by vibration/shock absorbing type mountings. Instruments shall be mounted flush or semiflush. Convenient access to the back of panels shall be provided to facilitate maintenance. Instruments shall be calibrated using recognized industry calibration standards. Each panel shall be provided with a panel identification plate which clearly identifies the panel function. Each instrument and device on the panel shall be provided with a plate which clearly identifies the device and its function as indicated. Switch plates shall clearly identify the switch-position function.
2.22.1 Enclosures

Enclosures shall be designed for the application and environment, conforming to NEMA ICS 6. Locking mechanisms shall be keyed alike.

2.22.2 Electronic

Electronic indicating instruments shall be true RMS indicating instruments, 100 percent solid state, state-of-the-art, microprocessor controlled to provide specified functions. Control, logic, and function devices shall be compatible as a system, sealed, dust and water tight, and shall utilize modular components with metal housings and digital instrumentation. An interface module shall be provided to decode serial link data from the electronic panel and translate alarm, fault and status conditions to set of relay contacts. Instrument accuracy shall be not less than 98 percent for unit mounted devices and 99 percent for control room, panel mounted devices, throughout a temperature range of minus 4 to 158 degrees F. Data display shall utilize LED or back lit LCD. Additionally, the display shall provide indication of cycle programming and diagnostic codes for troubleshooting. Numeral height shall be 0.5 inch.

2.22.3 Parameter Display

Indication or readouts of the tachometer, lubricating-oil pressure, ac voltmeter, ac ammeter, frequency meter, and safety system parameters shall be provided. A momentary switch shall be specified for other panels.

2.23 AUTOMATIC ENGINE-GENERATOR-SET SYSTEM OPERATION

Fully automatic operation shall be provided for the following operations: engine-generator set starting and load transfer upon loss of normal source and load-sharing for multiple engine-generator sets; and stopping of each engine-generator set after cool-down. Devices shall automatically reset after termination of their function.

2.23.1 Automatic Transfer Switch

Automatic transfer switches shall be in accordance with Section 26 36 00.00 10 AUTOMATIC TRANSFER SWITCH AND BY-PASS/ISOLATION SWITCH.

2.23.2 Monitoring and Transfer

Devices shall be provided to monitor voltage and frequency for the normal power source and each engine-generator set, and control transfer from the normal source and retransfer upon restoration of the normal source. Functions, actuation, and time delays shall be as described in Section 26 36 00.00 10 AUTOMATIC TRANSFER SWITCH AND BY-PASS/ISOLATION SWITCH.

2.24 MANUAL ENGINE-GENERATOR-SET SYSTEM OPERATION

Complete facilities shall be provided for manual starting and testing of each set without load, loading and unloading of each set.

2.25 BASE

The base shall be constructed of steel. The base shall be designed to
rigidly support the engine-generator set, ensure permanent alignment of rotating parts, be arranged to provide easy access to allow changing of lube-oil, and ensure that alignment is maintained during shipping and normal operation. The base shall permit skidding in any direction during installation and shall withstand and mitigate the affects of synchronous vibration of the engine and generator. The base shall be provided with suitable holes for anchor bolts and jacking screws for leveling.

2.26 THERMAL INSULATION

Thermal insulation shall be as specified in Section 23 07 00 THERMAL INSULATION FOR MECHANICAL SYSTEMS.

2.27 PAINTING AND FINISHING

The engine-generator set shall be cleaned, primed and painted in accordance with the manufacturer's standard color and practice.

2.28 FACTORY INSPECTION AND TESTS

Submit six complete reproducible copies of the factory inspection result on the checklist format specified below. Perform the factory tests on each engine-generator set. The component manufacturer's production line test is acceptable as noted. Each engine-generator set shall be run not less than 1 hour at rated output capacity prior to inspections. Inspections shall be completed and all necessary repairs made, prior to testing. Engine generator controls and protective devices that are provided by the generator set manufacturer as part of the standard package shall be used for factory tests. When controls and switchgear are not provided as part of the generator set manufacturer's standard package, the actual controls and protective devices provided for the project are not required to be used during the factory test.

2.28.1 Factory Inspection

Perform inspections prior to beginning and after completion of testing of the assembled engine-generator set. Inspectors shall look for leaks, looseness, defects in components, proper assembly, etc. and note any item found to be in need of correction as a necessary repair. The following checklist shall be used for the inspection:

<table>
<thead>
<tr>
<th>INSPECTION ITEM</th>
<th>GOOD</th>
<th>BAD</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive belts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Governor and adjustments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine timing mark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting motor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting aids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolant type and concentration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator drains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSPECTION ITEM</td>
<td>GOOD</td>
<td>BAD</td>
<td>NOTES</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Block coolant drains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolant fill level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All coolant line connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All coolant hoses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion air filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lube oil type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lube oil sump drain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lube-oil filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lube-oil-level indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lube-oil-fill level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All lube-oil line connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All lube-oil lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel type and amount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All fuel-line connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All fuel lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel filter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling and shaft alignment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage regulators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battery-charger connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All wiring connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazards to personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nameplates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.28.2 Factory Tests

Factory Test may be provided at the enclosure packager's location.

Submit a letter giving notice of the proposed dates of factory inspections and tests at least 14 days prior to beginning tests, including:

a. A detailed description of the manufacturer's procedures for factory tests at least 14 days prior to beginning tests.

b. Six copies of the Factory Test data described below in 8-1/2 by 11 inch binders having a minimum of 3 rings from which material may readily be removed and replaced, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs. Data plots shall be full size (8-1/2 by 11 inch minimum), showing grid lines, with full resolution.

 (1) A detailed description of the procedures for factory tests.

 (2) A list of equipment used, with calibration certifications.

 (3) A copy of measurements taken, with required plots and graphs.

 (4) The date of testing.

 (5) A list of the parameters verified.

 (6) The condition specified for the parameter.

 (7) The test results, signed and dated.

 (8) A description of adjustments made.

On engine-generator set tests where the engine and generator are required to be connected and operated together, the load power factor shall be the power factor specified in the engine generator set parameter schedule. For engine-generator set with dual-fuel operating capability the following tests shall be performed using the primary fuel type. Electrical measurements shall be performed in accordance with IEEE 120. Definitions of terms are in accordance with IEEE Stds Dictionary. Temperature limits in the rating of electrical equipment and for the evaluation of electrical insulation shall be in accordance with IEEE 1. In the following tests where measurements are to be recorded after stabilization of an engine-generator set parameter (voltage, frequency, current, temperature, etc.), stabilization is considered to have occurred when measurements are maintained within the specified bandwidths or tolerances, for a minimum of four consecutive readings. Tests specifically for the generator may be
performed utilizing any prime mover.

e. Phase Balance Voltage Test, to the performance criteria specified in paragraph GENERATOR. This test can be performed with any prime mover. Generator manufacturer's production line test results are acceptable.

(1) Start and operate the generator at no load.

(2) Adjust a regulated phase voltage (line-to-neutral) to rated voltage.

(3) Read and record the generator frequency, line-to-neutral voltages, and the line-to-line voltages.

(4) Apply 75 percent rated load and record the generator frequency, line-to-neutral voltages, and the line-to-line voltages.

(5) Apply rated load and record the generator frequency, line-to-neutral voltages, and the line-to-line voltages.

(6) Calculate average line-neutral voltage and percent deviation of individual line-neutral voltages from average for each load condition.

i. Frequency and Voltage Stability and Transient Response. Verify that the engine-generator set responds to addition and dropping of blocks of load in accordance with the transient response requirements. Document maximum voltage and frequency variation from bandwidth and verify that voltage and frequency return to and stabilize within the specified bandwidth, within the specified response time period. Document results in tabular form and with high resolution, high speed strip chart recorders or comparable digital recorders, as approved by the Contracting Officer. Tabular data shall include the following:

(1) Ambient temperature (at 15 minute intervals).

(2) Generator output current (before and after load changes).

(3) Generator output voltage (before and after load changes).

(4) Frequency (before and after load changes).

(5) Generator output power (before and after load changes).

(6) Graphic representations shall include the actual instrument trace of voltage and frequency showing: charts marked at start of test; observed steady-state band; mean of observed band; momentary overshoot and undershoot (generator terminal voltage and frequency) and recovery time for each load change together with the voltage and frequency maximum and minimum trace excursions for each steady state load condition prior to and immediately following each load change. Generator terminal voltage and frequency transient recovery time for each step load increase and decrease.

(a) Perform and record engine manufacturer's recommended prestarting checks and inspections.

(b) Start the engine, make and record engine manufacturer's
after-starting checks and inspections during a reasonable warm-up period and no load. Verify stabilization of voltage and frequency within specified bandwidths.

(c) With the unit at no load, apply the Maximum Step Load Increase.

(d) Apply load in steps equal to the Maximum Step Load Increase until the addition of one more step increase will exceed the Service Load.

(e) Decrease load to the unit such that addition of the Maximum Step Load Increase will load the unit to 100 percent of Service Load.

(f) Apply the Maximum Step Load Increase.

(g) Decrease load to zero percent in steps equal to the Maximum Step Load Decrease.

(h) Repeat steps (c) through (g).

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the job, perform a Site Visit to verify the information shown on the drawings, before performing any work. Submit a letter stating the date the site was visited and listing discrepancies found. Notify the Contracting Officer in writing of any discrepancies.

3.2 GENERAL INSTALLATION

Installation shall provide clear space for operation and maintenance in accordance with NFPA 70 and IEEE C2. Submit a copy of the manufacturer's installation procedures and a detailed description of the manufacturer's recommended break-in procedure. Installation of pipe, duct, conduit, and ancillary equipment shall be configured to facilitate easy removal and replacement of major components and parts of the engine-generator set.

3.3 ELECTRICAL INSTALLATION

Electrical installation shall comply with NFPA 70, IEEE C2, and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. For vibration isolation, flexible fittings shall be provided for conduit, cable trays, and raceways attached to engine-generator sets; metallic conductor cables installed on the engine generator set and from the engine generator set to equipment not mounted on the engine generator set shall be flexible stranded conductor; and terminations of conductors on the engine generator set shall be crimp-type terminals or lugs.

3.4 ONSITE INSPECTION AND TESTS

Submit a letter giving notice of the proposed dates of onsite inspections and tests at least 14 days prior to beginning tests.
a. Submit a detailed description of the Contractor's procedures for onsite tests including the test plan and a listing of equipment necessary to perform the tests. Submission shall be at least 14 days prior to beginning tests.

b. Submit six copies of the onsite test data described below in 8-1/2 by 11 inch binders having a minimum of 3 rings from which material may readily be removed and replaced, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs. Data plots shall be full size (8-1/2 by 11 inch minimum), showing grid lines, with full resolution.

(1) A detailed description of the procedures for onsite tests.
(2) A list of equipment used, with calibration certifications.
(3) A copy of measurements taken, with required plots and graphs.
(4) The date of testing.
(5) A list of the parameters verified.
(6) The condition specified for the parameter.
(7) The test results, signed and dated.
(8) A description of adjustments made.

3.4.1 Test Conditions

3.4.1.1 Data

Measurements shall be made and recorded of all parameters necessary to verify that each set meets specified parameters. If the results of any test step are not satisfactory, adjustments, replacements, or repairs shall be made and the step repeated until satisfactory results are obtained. Unless otherwise indicated, data shall be recorded in 15 minute intervals during engine-generator set operation and shall include: readings of all engine-generator set meters and gauges for electrical and power parameters; oil pressure; ambient temperature; and engine temperatures available from meters and gauges supplied as permanent equipment on the engine-generator set. Electrical measurements shall be performed in accordance with IEEE 120. Definitions of terms are in accordance with IEEE Stds Dictionary.

Temperature limits in the rating of electrical equipment and for the evaluation of electrical insulations shall be in accordance with IEEE 1.

3.4.1.2 Power Factor

Submit the generator capability curve showing generator kVA output capability (kW vs. kvar) for lagging power factors ranging from 0 to 1.0. For all engine-generator set operating tests the load power factor shall be the power factor specified in the engine-generator set parameter schedule.
3.4.1.3 Contractor Supplied Items

Provide equipment and supplies required for inspections and tests including fuel, test instruments, and loadbanks at the specified power factors.

3.4.1.4 Instruments

Readings of panel gauges, meters, displays, and instruments provided as permanent equipment shall be verified during test runs, using test instruments of greater precision and accuracy. Test instrument accuracy shall be within the following: current plus or minus 1.5 percent, voltage plus or minus 1.5 percent, real power plus or minus 1.5 percent, reactive power plus or minus 1.5 percent, power factor plus or minus 3 percent, frequency plus or minus 0.5 percent. Test instruments shall be calibrated by a recognized standards laboratory within 30 days prior to testing.

3.4.1.5 Sequence

The sequence of testing shall be as specified in the approved testing plan unless variance is authorized by the Contracting Officer. Field testing shall be performed in the presence of the Contracting Officer. Tests may be scheduled and sequenced in order to optimize run-time periods; however, the following general order of testing shall be followed: Construction Tests; Inspections; Pre-operational Tests; Safety Run Tests; Performance Tests; and Final Inspection.

3.4.2 Construction Tests

Individual component and equipment functional tests for fuel piping, coolant piping, and lubricating-oil piping, electrical circuit continuity, insulation resistance, circuit protective devices, and equipment not provided by the engine-generator set manufacturer shall be performed prior to connection to the engine-generator set.

3.4.2.1 Piping Test

a. Lube-oil and fuel-oil piping shall be flushed with the same type of fluid intended to flow through the piping, until the outflowing fluid has no obvious sediment or emulsion.

3.4.2.2 Electrical Equipment Tests

a. Low-voltage cable insulation integrity tests shall be performed for cables connecting the generator breaker to the automatic transfer switch, panelboard, main disconnect switch and distribution bus. Low-voltage cable, complete with splices, shall be tested for insulation resistance after the cables are installed, in their final configuration, ready for connection to the equipment, and prior to energization. The test voltage shall be 500 volts dc, applied for one minute between each conductor and ground and between all possible combinations conductors in the same trench, duct, or cable, with all other conductors in the same trench, duct, or conduit. The minimum value of insulation shall be:

\[(1) \, R \, \text{in megohms} = \frac{(\text{rated voltage in kV} + 1) \times 304.8}{\text{length of cable in meters}}\]

\[(2) \, R \, \text{in megohms} = \frac{(\text{rated voltage in kV} + 1) \times 1000}{\text{length of cable}}\]
in feet)

(3) Each cable failing this test shall be repaired or replaced. The repair cable shall be retested until failures have been eliminated.

b. **Tests to be performed by Electrical Contractor.**

c. **Ground-Resistance Tests.** The resistance of each grounding electrode system shall be measured using the fall-of-potential method defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the requirements resistance, but the specified number of electrodes must still be provided as follows:

(1) Single rod electrode - 25 ohms.

d. Circuit breakers and switchgear shall be examined and tested in accordance with the manufacturer's published instructions for functional testing.

3.4.3 Inspections

Perform the following inspections jointly by the Contracting Officer and the Contractor, after complete installation of each engine-generator set and its associated equipment, and prior to startup of the engine-generator set. Submit a letter certifying that all facilities are complete and functional; that each system is fully functional; and that each item of equipment is complete, free from damage, adjusted, and ready for beneficial use. Checks applicable to the installation shall be performed. The results of those which are physical inspections (I) shall be documented and submitted in accordance with paragraph SUBMITTALS. Present manufacturer's data for the inspections designated (D) at the time of inspection. Inspections shall verify that equipment type, features, accessibility, installation and condition are in accordance with the contract specification. Manufacturer's statements shall certify provision of features which cannot be verified visually.

<table>
<thead>
<tr>
<th>Drive belts</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governor type and features</td>
<td>I</td>
</tr>
<tr>
<td>Engine timing mark</td>
<td>I</td>
</tr>
<tr>
<td>Starting motor</td>
<td>I</td>
</tr>
<tr>
<td>Starting aids</td>
<td>I</td>
</tr>
<tr>
<td>Coolant type and concentration</td>
<td>D</td>
</tr>
<tr>
<td>Radiator drains</td>
<td>I</td>
</tr>
<tr>
<td>Block coolant drains</td>
<td>I</td>
</tr>
<tr>
<td>Component</td>
<td>Grade</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Coolant fill level</td>
<td>I</td>
</tr>
<tr>
<td>Coolant line connections</td>
<td>I</td>
</tr>
<tr>
<td>Coolant hoses</td>
<td>I</td>
</tr>
<tr>
<td>Combustion air filter</td>
<td>I</td>
</tr>
<tr>
<td>Intake air silencer</td>
<td>I</td>
</tr>
<tr>
<td>Lube oil type</td>
<td>D</td>
</tr>
<tr>
<td>Lube oil sump drain</td>
<td>I</td>
</tr>
<tr>
<td>Lube-oil filter</td>
<td>I</td>
</tr>
<tr>
<td>Lube-oil level indicator</td>
<td>I</td>
</tr>
<tr>
<td>Lube-oil fill level</td>
<td>I</td>
</tr>
<tr>
<td>Lube-oil line connections</td>
<td>I</td>
</tr>
<tr>
<td>Lube-oil lines</td>
<td>I</td>
</tr>
<tr>
<td>Fuel type</td>
<td>D</td>
</tr>
<tr>
<td>Fuel level</td>
<td>I</td>
</tr>
<tr>
<td>Fuel-line connections</td>
<td>I</td>
</tr>
<tr>
<td>Fuel lines</td>
<td>I</td>
</tr>
<tr>
<td>Fuel filter</td>
<td>I</td>
</tr>
<tr>
<td>Access for maintenance</td>
<td>I</td>
</tr>
<tr>
<td>Voltage regulator</td>
<td>I</td>
</tr>
<tr>
<td>Battery-charger connections</td>
<td>I</td>
</tr>
<tr>
<td>Wiring and terminations</td>
<td>I</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>I</td>
</tr>
<tr>
<td>Hazards to personnel</td>
<td>I</td>
</tr>
<tr>
<td>Base</td>
<td>I</td>
</tr>
<tr>
<td>Nameplates</td>
<td>I</td>
</tr>
<tr>
<td>Paint</td>
<td>I</td>
</tr>
<tr>
<td>Exhaust-heat system</td>
<td>I</td>
</tr>
<tr>
<td>Exhaust muffler</td>
<td>I</td>
</tr>
<tr>
<td>Switchboard</td>
<td>I</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Switchgear</td>
<td>I</td>
</tr>
<tr>
<td>Access provided to controls</td>
<td>I</td>
</tr>
<tr>
<td>Enclosure is weather resistant</td>
<td>I</td>
</tr>
<tr>
<td>Engine and generator mounting bolts (application)</td>
<td>I</td>
</tr>
</tbody>
</table>

3.4.4 Pre-operational Tests

3.4.5 Safety Run Test

For the following tests, if any parts are changed, or adjustments made to the generator set, its controls, or auxiliaries, the associated safety tests shall be repeated.

a. Perform and record engine manufacturer's recommended prestarting checks and inspections.

b. Start the engine, record the starting time, make and record engine manufacturer's after-starting checks and inspections during a reasonable warm-up period.

c. Activate the manual emergency stop switch and verify that the engine stops.

h. Start the engine, record the starting time, make and record engine manufacturer's after-starting checks and inspections during a reasonable warm-up period. Operate the engine generator-set at no load until the output voltage and frequency stabilize.

j. Start the engine, record the starting time, make and record engine manufacturer's after-starting checks and inspections during a reasonable warm-up period.

k. Operate the engine generator-set for at least 2 hours at 75 percent of Service Load.

l. Verify proper operation and setpoints of gauges and instruments.

m. Verify proper operation of ancillary equipment.

o. Start the engine, record the starting time, make and record engine manufacturer's after-starting checks and inspections and operate the engine generator-set for at least 15 minutes at 75 percent of Service Load.

q. Manually fill the day tank to a level above the overfill limit. Record the level at which the overfill alarm sounds. Verify shutdown of the fuel transfer pump. Drain the day tank down below the overfill limit.
t. Start the engine, record the starting time, make and record engine manufacturer's after-starting checks and inspections and operate the engine generator-set for at least 15 minutes at 75 percent of Service Load.

v. Start the engine, record the starting time, make and record engine manufacturer's after-starting checks and inspections and operate the engine generator-set for at least 15 minutes at 100 percent of Service Load. Record the maximum sound level in each frequency band at a distance of 75 feet from the end of the exhaust and air intake piping directly along the path of intake and discharge for horizontal piping; or at a radius of 75 feet from the engine at 45 degrees apart in all directions for vertical piping. If a sound limiting enclosure is provided, the enclosure, the muffler, and intake silencer shall be modified or replaced as required to meet the sound requirements contained within this specification. If a sound limiting enclosure is not provided, the muffler and air intake silencer shall be modified or replaced as required to meet the sound limitations of this specification. If the sound limitations can not be obtained by modifying or replacing the muffler and air intake silencer, notify the Contracting Officers Representative and provide a recommendation for meeting the sound limitations.

w. Manually drain off fuel slowly from the day tank to empty it to below the low fuel level limit and record the level at which the audible alarm sounds. Add fuel back to the day tank to fill it above low level alarm limits.

3.4.6 Performance Tests

In the following tests, where measurements are to be recorded after stabilization of an engine-generator set parameter (voltage, frequency, current, temperature, etc.), stabilization is considered to have occurred when measurements are maintained within the specified bandwidths or tolerances, for a minimum of four consecutive readings. For the following tests, if any parts are changed, or adjustments made to the generator set, its controls, or auxiliaries, the associated tests shall be repeated.

3.4.6.1 Continuous Engine Load Run Test

Test the engine-generator set and ancillary systems at service load to demonstrate durability; verify that heat of extended operation does not adversely affect or cause failure in any part of the system; and check all parts of the system. If the engine load run test is interrupted for any reason, the entire test shall be repeated. The engine load run test shall be accomplished principally during daylight hours, with an average ambient temperature of 75 degrees F. After each change in load in the following test, measure the vibration at the end bearings (front and back of engine, outboard end of generator) in the horizontal, vertical, and axial directions. Verify that the vibration is within the allowable range. Data taken at 15 minute intervals shall include the following:

 Electrical: Output amperes, voltage, real power, power factor, frequency.

 Pressure: Lube-oil.

 Temperature: Coolant, Lube-oil, Exhaust, Ambient.
a. Perform and record engine manufacturer's recommended prestarting checks and inspections. Include as a minimum checking of coolant fluid, fuel, and lube-oil levels.

b. Start the engine, make and record engine manufacturer's after-starting checks and inspections during a reasonable warmup period.

c. Operate the engine generator-set for 2 hours at 75 percent of Service Load.

d. Increase load to 100 percent of Service Load and operate the engine generator-set for 4 hours.

g. Remove load from the engine-generator set.

3.4.6.2 Frequency and Voltage Stability and Transient Response

Verify that the engine-generator set responds to addition and dropping of blocks of load in accordance with the transient response requirements. Document maximum voltage and frequency variation from bandwidth and verify that voltage and frequency return to and stabilize within the specified bandwidth, within the specified response time period. Document results in tabular form and with high resolution, high speed strip chart recorders or comparable digital recorders, as approved by the Contracting Officer. Tabular data shall include the following:

(1) Ambient temperature (at 15 minute intervals).

(2) Generator output current (before and after load changes).

(3) Generator output voltage (before and after load changes).

(4) Frequency (before and after load changes).

(5) Generator output power (before and after load changes).

(6) Graphic representations shall include the actual instrument trace of voltage and frequency showing:

Charts marked at start of test; observed steady-state band; mean of observed band; momentary overshoot and undershoot (generator terminal voltage and frequency) and recovery time for each load change together with the voltage and frequency maximum and minimum trace excursions for each steady state load condition prior to and immediately following each load change. Generator terminal voltage and frequency transient recovery time for each step load increase and decrease.

a. Perform and record engine manufacturer's recommended prestarting checks and inspections.

b. Start the engine, make and record engine manufacturer's after-starting checks and inspections during a reasonable warm-up period and no load. Verify stabilization of voltage and frequency within specified bandwidths.

c. With the unit at no load, apply the Maximum Step Load Increase.

d. Apply load in steps equal to the Maximum Step Load Increase until the addition of one more step increase will exceed the Service Load.
e. Decrease load to the unit such that addition of the Maximum Step Load Increase will load the unit to 100 percent of Service Load.

f. Apply the Maximum Step Load Increase.

g. Decrease load to zero percent in steps equal to the Maximum Step Load Decrease.

h. Repeat steps c. through g.

3.4.7 Automatic Operation Tests

Test the automatic operating system to demonstrate automatic starting, loading and unloading, and the response to loss of operating engine-generator sets. The loads for this test shall utilize load banks at the indicated power factor and actual loads to be served, and the loading sequence shall be the indicated sequence. Perform this test for a minimum of two successive, successful tests. Data taken shall include the following:

(1) Ambient temperature (at 15 minute intervals).

(2) Generator output current (before and after load changes).

(3) Generator output voltage (before and after load changes).

(4) Generator output frequency (before and after load changes).

(6) Real power on each set.

a. Initiate loss of the preferred power source and verify the specified sequence of operation.

b. Verify resetting of automatic starting and transfer logic.

3.4.8 Automatic Operation Tests for Stand-Alone Operation

Test the automatic loading system to demonstrate automatic starting, and loading and unloading of each engine-generator set. The loads for this test shall utilize the actual loads to be served, and the loading sequence shall be the indicated sequence. Perform this test for a minimum of two successive, successful tests. Data taken shall include the following:

(1) Ambient temperature (at 15 minute intervals).

(2) Generator output current (before and after load changes).

(3) Generator output voltage (before and after load changes).

(4) Generator output frequency (before and after load changes).

a. Initiate loss of the primary power source and verify automatic sequence of operation.

b. Restore the primary power source and verify sequence of operation.

c. Verify resetting of controls to normal.
3.4.9 Fuel Consumption Tests

Perform fuel consumption tests to confirm the manufacturer's certified rates on engine generator set and tabulate and average the results. Fuel consumption tests shall be conducted under the direct supervision of the engine manufacturer's representative. Fuel consumption readings shall be taken at 15 minute intervals, over a minimum period of 1 hour at 50 percent Service Load, 1 hour at 75 percent Service Load, and 4 hours at 100 percent Service Load. Fuel consumption data may be taken during the 75 percent load test and 100 percent load tests. Fuel consumption readings at site conditions shall be correlated to the guarantee-baseline conditions. Test report shall contain: readings of the output frequency, voltage, current, power factor, and power; barometric pressure; ambient temperature; intake-air temperature; fuel temperature; the site fuel consumption readings, adjustment calculations, factors, and source references for correlation of actual consumption rate of the guaranteed rate.

a. Start and operate the generator set and allow it to stabilize at rated load, rated voltage and rated frequency. During this period, readings of all instruments including thermal instrumentation shall be recorded at minimum intervals of 10 minutes. If necessary, adjustments to the load, voltage and frequency may be made to maintain rated load at rated voltage and rated frequency. However, adjustments to the voltage and frequency shall be limited to those adjustments available to the operator, specifically adjustments to the voltage or frequency adjust devices. On generator sets utilizing a droop-type speed control system as the prime speed control, the speed and droop portions of the control may be adjusted. No other adjustments to the voltage and frequency control systems shall be made unless permitted by the procurement document. Adjustments to the load, voltage or frequency controls shall be recorded on the data sheet. Unless otherwise specified in the procurement document, stabilization will be consideration to have occurred when four consecutive voltage and current recorded readings of the generator (or exciter) field either remain unchanged or have only minor variations about an equilibrium condition with no evident continued increase or decrease in value after the last adjustment to the load, voltage or frequency has been made.

b. Perform one of the following procedures:

BALANCE SCALE PROCEDURE.

(1) Supply fuel from auxiliary container mounted on a balance scale.

(2) After stabilization has occurred, set the balance weights at any convenient value slightly less than the total weight of the fuel and container.

(3) Start the stopwatch when the balance weights fall and record the total weight.

(4) Reduce the balance weight a convenient amount and record the amount of the weights removed.

(5) Stop the stopwatch when the balance weights fall and record the total weight and the elapsed time.

(6) Repeat steps (1) thru (2) above until the timed portion of the
test exceeds the 2 hours.

(7) From the total elapsed time and total of the weights removed calculate the fuel consumption in terms of pounds per hour.

(8) Using the value obtained in step (7) above, compute the rate of fuel consumption per kilowatt hour, as follows:

\[
\text{Pounds per kWH} = \frac{\text{Fuel Consumption in Pounds per Hour}}{\text{kW Load}}
\]

(9) Repeat the test for each load condition specified.

(10) Determine the capacity of the generator set fuel tank in pounds of fuel.

(11) For each specified load, compute the number of continuous hours the generator set will operate on a full tank of fuel. The following formula shall be used.

\[
\text{Operating hours} = \frac{\text{Fuel Tank Capacity (Pounds)}}{\text{Fuel Consumption (Pounds per hour)}}
\]

ALTERNATE PROCEDURE FOR WEIGHING FUEL

(1) Supply fuel from the auxiliary fuel container, mounted on a platform balance, or other weighing device.

(2) After stabilization has occurred, record weight readings every one-half hour for a period of 2 hours.

(3) Calculate the average hourly fuel consumption rate in pounds per hour.

(4) Using the average hourly fuel consumption rate obtained above, compute the rate of fuel consumption per kilowatt hour, as follows:

\[
\text{Pounds per kWH} = \frac{\text{Fuel Consumption}}{\text{kW Load}}
\]

(5) Repeat test for each load condition specified.

(6) Determine the capacity of the generator set fuel tank in pounds of fuel.

(7) For each specified load test, compute the number of continuous hours the generator set will operate on a full tank of fuel. The following formula shall be used:

\[
\text{Operating Hours} = \frac{\text{Fuel Tank Capacity (Pounds)}}{\text{Fuel Consumption (Pounds per Hour)}}
\]

ALTERNATE PROCEDURE USING FLOWMETER.

Flowmeters may be used to determine the fuel rate. They usually are calibrated in either gallons per hour, or pounds per hour, for a fuel of a definite specific gravity and temperature.

(1) After stabilization has occurred record the fuel consumption
rate, and continue to record the fuel consumption rate at one-half hour intervals for 2 hours.

(2) Determine the average of the readings (correct for fuel specific gravity and temperature). This is the fuel consumption rate and should be converted, if necessary, to pounds per hour.

(3) Using the average value obtained above, calculate the rate of fuel consumption per kilowatt hour.

(4) Repeat the test for each load condition specified.

(5) Determine the capacity of the generator set fuel tank in pounds of fuel.

(6) For each specified load test, compute the number of continuous hours the generator set will operate on a full tank of fuel. The following formula shall be used:

\[
\text{Operating Hours} = \frac{\text{Fuel Tank Capacity (Pounds)}}{\text{Fuel Consumption (Pounds per Hour)}}
\]

c. Results. Compare the operating hours or the fuel consumption rate per kWH.

3.5 ONSITE TRAINING

Conduct training course for operating staff as designated by the Contracting Officer. The training period shall consist of a total 8 hours of normal working time and shall start after the system is functionally completed but prior to final acceptance.

a. Submit a letter giving the date proposed for conducting the onsite training course, the agenda of instruction, a description of the video taping service to be provided, and the kind and quality of the tape to be left with the Contracting Officer at the end of the instructional period.

b. The course instructions shall cover pertinent points involved in operating, starting, stopping, servicing the equipment, as well as major elements of the operation and maintenance manuals. Additionally, the course instructions shall demonstrate routine maintenance procedures as described in the operation and maintenance manuals. Two copies of a video tape of the entire training session shall be submitted.

c. Submit six copies of the operation manual (approved prior to commencing onsite tests) in 8-1/2 by 11 inch binders, having a minimum of 3 rings from which material may readily be removed and replaced, including a separate section for each system or subsystem. Sections shall be separated by heavy plastic dividers with tabs which identify the material in the section. Drawings shall be folded blue lines, with the title block visible, and placed in 8-1/2 by 11 inch plastic pockets with reinforced holes.

d. One full size reproducible mylar of each drawing shall accompany the booklets. Mylars shall be rolled and placed in a heavy cardboard tube with threaded caps on each end. The manual shall include: step-by-step procedures for system startup, operation, and shutdown; drawings, diagrams, and single-line schematics to illustrate and define
the electrical, mechanical, and hydraulic systems together with their controls, alarms, and safety systems; the manufacturer's name, model number, and a description of equipment in the system. The instructions shall include procedures for interface and interaction with related systems to include automatic transfer switches and uninterruptible power supplies. Each booklet shall include a CD containing an ASCII file of the procedures.

e. All operation and maintenance manuals shall be approved and made available for the training course. All posted instructions shall be approved and posted prior to the beginning date of the training course. The training course schedule shall be coordinated with the Using Service's work schedule, and submitted for approval 14 days prior to beginning date of proposed beginning date of training.

f. Submit six copies of the maintenance manual containing the information described below in 8-1/2 by 11 inch binders having a minimum of three rings from which material may readily be removed and replaced, including a separate section for each item listed. Each section shall be separated by a heavy plastic divider with tabs. Drawings shall be folded, with the title block visible, and placed in plastic pockets with reinforced holes.

(1) Procedures for each routine maintenance item.

(2) Procedures for troubleshooting.

(3) Factory-service, take-down overhaul, and repair service manuals, with parts lists.

(4) A copy of the posted instructions.

(5) A component list which includes the manufacturer's name, address, type or style, model or serial number, rating, and catalog number for the major components specified for nameplates.

(6) Submit six complete reproducible copies of the final relay and protective device settings. The settings shall be recorded with the name of the company and individual responsible for their accuracy.

3.6 FINAL TESTING AND INSPECTION

a. Start the engine, record the starting time, make and record all engine manufacturer's after-starting checks and inspections during a reasonable warm-up period.

b. Increase the load in steps no greater than the Maximum Step Load Increase to 100 percent of Service Load, and operate the engine-generator set for at least 30 minutes. Measure the vibration at the end bearings (front and back of engine, outboard end of generator) in the horizontal, vertical, and axial directions. Verify that the vibration is within the same range as previous measurements and is within the required range.

c. Remove load and shut down the engine-generator set after the recommended cool down period.

d. Remove the lube oil filter and have the oil and filter examined by the
engine manufacturer for excessive metal, abrasive foreign particles, etc. Any corrective action shall be verified for effectiveness by running the engine for 8 hours at Service Load, then re-examining the oil and filter.

e. Remove the fuel filter and examine the filter for trash, abrasive foreign particles, etc.

f. Visually inspect and check engine and generator mounting bolts for tightness and visible damage.

g. Replace air, oil, and fuel filters with new filters.

3.7 POSTED DATA AND INSTRUCTIONS

Posted Data and Instructions shall be posted prior to field acceptance testing of the engine generator set. Two sets of instructions/data shall be typed and framed under weatherproof laminated plastic, and posted side-by-side where directed. First set shall include a one-line diagram, wiring and control diagrams and a complete layout of the system. Second set of shall include the condensed operating instructions describing manufacturer's pre-start checklist and precautions; startup procedures for test-mode, manual-start mode, and automatic-start mode (as applicable); running checks, procedures, and precautions; and shutdown procedures, checks, and precautions. Submit posted data including wiring and control diagrams showing the key mechanical and electrical control elements, and a complete layout of the entire system.

a. Instructions shall include procedures for interrelated equipment (such as automatic transfer switches).

c. Submit instructions including: the manufacturers pre-start checklist and precautions; startup procedures for test-mode, manual-start mode, and automatic-start mode (as applicable); running checks, procedures, and precautions; and shutdown procedures, checks, and precautions. Instructions shall include procedures for interrelated equipment (such as heat recovery systems, co-generation, load-shedding, and automatic transfer switches). Instructions shall be weatherproof, laminated in plastic, and posted where directed.

3.8 ACCEPTANCE

Submit drawings which accurately depict the as-built configuration of the installation, upon acceptance of the diesel-generator set installation. Revise layout drawings to reflect the as-built conditions and submit them with the as-built drawings. Final acceptance of the engine-generator set will not be given until the Contractor has successfully completed all tests and all defects in installation material or operation have been corrected.
SECTION 26 36 00.00 10
AUTOMATIC TRANSFER SWITCH AND BY-PASS/ISOLATION SWITCH
10/07

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA ICS 4 (2015) Terminal Blocks

NEMA ICS 6 (1993; R 2016) Industrial Control and Systems: Enclosures

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code
1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
- Detail Drawings
- Equipment
- Installation

SD-03 Product Data
- Equipment

SD-06 Test Reports
- Testing; G

SD-07 Certificates
- Equipment
- Switching Equipment

SD-10 Operation and Maintenance Data
- Switching Equipment; G
- Instructions; G

1.3 QUALITY ASSURANCE

1.3.1 Detail Drawings

Submit interface equipment connection diagram showing conduit and wiring between ATS and related equipment. Submit schematic, external connection, one-line schematic and wiring diagram of each ATS assembly. Device, nameplate, and item numbers shown in list of equipment and material shall appear on drawings wherever that item appears. Diagrams shall show interlocking provisions and cautionary notes, if any. Operating instructions shall be shown either on one-line diagram or separately. Unless otherwise approved, one-line and elementary or schematic diagrams shall appear on same drawing.

1.3.2 Switching Equipment

Upon request, manufacturer shall provide notarized letter certifying
compliance with requirements of this specification, including withstand current rating (WCR). Submit evidence that ATS withstand current rating (WCR) has been coordinated with upstream protective devices as required by UL 1008. Submit an operating manual outlining step-by-step procedures for system startup, operation, and shutdown. Manual shall include manufacturer's name, model number, service manual, parts list, and brief description of equipment and basic operating features. Manufacturer's spare parts data shall be included with supply source and current cost of recommended spare parts. Manual shall include simplified wiring and control diagrams for system as installed.

1.4 SITE CONDITIONS

ATS shall be suitable for prolonged performance under following service conditions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>1000 feet above mean sea level</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>95 percent maximum, continuous</td>
</tr>
<tr>
<td>Temperature</td>
<td>Minus 20 to 110 degrees F</td>
</tr>
</tbody>
</table>

PART 2 PRODUCTS

2.1 STANDARD PRODUCTS

Provide material and equipment which are standard products of a manufacturer regularly engaged in manufacturing the products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Submit list of proposed equipment and material, containing a description of each separate item, and certificates of compliance showing evidence of UL listing and conformance with applicable NEMA standards. Such certificates are not required if manufacturer's published data, submitted and approved, reflect UL listing or conformance with applicable NEMA standards. The experience use shall include applications in similar circumstances and of same design and rating as specified ATS. Equipment shall be capable of being serviced by a manufacturer-authorized and trained organization that is, in the Contracting Officer's opinion, reasonably convenient to the site.

2.2 NAMEPLATE

Nameplate showing manufacturer's name and equipment ratings shall be made of corrosion-resistant material with not less than 1/8 inch tall characters. Nameplate shall be mounted to front of enclosure and shall comply with nameplate requirements of NEMA ICS 2.

2.3 AUTOMATIC TRANSFER SWITCH (ATS)

ATS shall be electrically operated and mechanically held in both operating positions. ATS shall be suitable for use in emergency systems described in NFPA 70. ATS shall be UL listed. ATS shall be manufactured and tested in accordance with applicable requirements of IEEE C37.90.1, IEEE C37.13, IEEE C62.41.1, IEEE C62.41.2, NEMA ICS 1, NEMA ICS 2, NEMA ICS 10 Part 2, UL 1008 and UL 1066. ATS shall conform to NFPA 110. To facilitate maintenance, manufacturer's instruction manual shall provide typical maximum contact voltage drop readings under specified conditions for use.
during periodic maintenance. Manufacturer shall provide instructions for
determination of contact integrity. ATS shall be rated for continuous duty
at specified continuous current rating. ATS shall be fully compatible and
approved for use with BP/IS specified. BP/IS shall be considered part of
ATS system. ATS shall have following characteristics:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>480 volts ac</td>
</tr>
<tr>
<td>Number of Phases</td>
<td>Three</td>
</tr>
<tr>
<td>Number of Wires</td>
<td>Four</td>
</tr>
<tr>
<td>Frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Poles</td>
<td>Three switched and switched neutral</td>
</tr>
<tr>
<td>ATS WCR</td>
<td>Rated to withstand short-circuit current of 35,000</td>
</tr>
<tr>
<td></td>
<td>amperes, RMS symmetrical.</td>
</tr>
<tr>
<td>Nonwelding Contacts</td>
<td>Rated for nonwelding of contacts when used with</td>
</tr>
<tr>
<td></td>
<td>upstream feeder overcurrent devices shown and with</td>
</tr>
<tr>
<td></td>
<td>available fault current specified.</td>
</tr>
<tr>
<td>Main and Neutral Contacts</td>
<td>Contacts shall have silver alloy composition.</td>
</tr>
<tr>
<td></td>
<td>Neutral contacts shall have same continuous current</td>
</tr>
<tr>
<td></td>
<td>rating as main or phase contacts.</td>
</tr>
</tbody>
</table>

2.3.1 Override Time Delay

Provide adjustable time delay to override monitored source deviation from 1
to 6 seconds and factory set at 1 second. ATS shall monitor phase
conductors to detect and respond to sustained voltage drop of 25 percent of
nominal between any two normal source conductors and initiate transfer
action to emergency source and start engine driven generator after set time
period. Pickup voltage shall be adjustable from 85 to 100 percent of
nominal and factory set at 90 percent. Dropout voltage shall be adjustable
from 75 to 98 percent of pickup value and factory set at 85 percent of
nominal.

2.3.2 Transfer Time Delay

Time delay before transfer to emergency power source shall be adjustable
from 0 to 5 minutes and factory set at 0 minutes. ATS shall monitor
frequency and voltage of emergency power source and transfer when frequency
and voltage are stabilized. Pickup voltage shall be adjustable from 85 to
100 percent of nominal and factory set at 90 percent. Pickup frequency
shall be adjustable from 90 to 100 percent of nominal and factory set at 90
percent.
2.3.3 Return Time Delay

Time delay before return transfer to normal power source shall be adjustable from 0 to 30 minutes and factory set at 30 minutes. Time delay shall be automatically defeated upon loss or sustained undervoltage of emergency power source, provided that normal supply has been restored.

2.3.4 Engine Shutdown Time Delay

Time delay shall be adjustable from 0 to 30 minutes and shall be factory set at 10 minutes.

2.3.5 Exerciser

Provide a generator exerciser timer. Run times shall be user programmable. The generator exerciser shall be selectable between load transfer and engine run only, and shall have a fail-safe feature that will retransfer the ATS to normal during the exercise period.

2.3.6 Auxiliary Contacts

Two normally open and two normally closed auxiliary contacts rated at 15 amperes at 120 volts shall operate when ATS is connected to normal power source, and two normally open and two normally closed contacts shall operate when ATS is connected to emergency source.

2.3.7 Supplemental Features

ATS shall be furnished with the following:

a. Engine start contact.

b. Emergency source monitor.

c. Test switch to simulate normal power outage.

d. Voltage sensing. Pickup voltage adjustable from 85 to 100 percent of nominal; dropout adjustable from 75 to 98 percent of pickup.

e. Time delay bypass switch to override return time delay to normal.

g. Means shall be provided in the ATS to insure that motor/transformer load inrush currents do not exceed normal starting currents. This shall be accomplished with either in-phase monitoring, time-delay transition, or load voltage decay sensing methods. If manufacturer supplies an in-phase monitoring system, the manufacturer shall indicate under what conditions a transfer cannot be accomplished. If the manufacturer supplies a time-delay transition system, the manufacturer shall supply recommendations for establishing time delay. If load voltage decay sensing is supplied, the load voltage setting shall be user programmable.

2.3.8 Operator

Manual operator conforming to UL 1008 shall be provided, and shall incorporate features to prevent operation by unauthorized personnel. ATS shall be designed for safe manual operation under full load conditions. If
manual operation is accomplished by opening the door, then a dead-front shall be supplied for operator safety.

2.3.9 Override Switch

Override switch shall bypass automatic transfer controls so ATS will transfer and remain connected to emergency power source, regardless of condition of normal source. If emergency source fails and normal source is available, ATS shall automatically retransfer to normal source.

2.3.10 Green Indicating Light

A green indicating light shall supervise/provide normal power source switch position indication and shall have a nameplate engraved NORMAL.

2.3.11 Red Indicating Light

A red indicating light shall supervise/provide emergency power source switch position indication and shall have a nameplate engraved EMERGENCY.

2.4 BY-PASS/ISOLATION SWITCH (BP/IS)

2.4.1 Design

Bypass/isolation switch (BP/IS) shall permit load by-pass to either normal or emergency power source and complete isolation of associated ATS, independent of ATS operating position. BP/IS and associated ATS shall be products of same manufacturer and shall be completely interconnected and tested at factory and at project site as specified. BP/IS shall be manufactured, listed, and tested in accordance with paragraph AUTOMATIC TRANSFER SWITCH (ATS) and shall have electrical ratings that exceed or equal comparable ratings specified for ATS. Operating handles shall be externally operated and arranged so that one person can perform the bypass and isolation functions through the operation of a maximum of two handles within 5 seconds. The ATS shall have provisions for locking in the isolation position. Handle for manual operation shall be permanently attached to operating mechanism. BP/IS operation shall be accomplished without disconnecting switch load terminal conductors. Isolation handle positions shall be marked with engraved plates or other approved means to indicate position or operating condition of associated ATS, as follows:

a. Indication shall be provided to show that ATS section is providing power to the load.

b. Indication shall be provided of ATS isolation. The ATS controls shall remain functional with the ATS isolated or in bypass mode to permit monitoring of the normal power source and automatic starting of the generator in the event of a loss of the normal power source. In the isolated mode, the bypass section shall be capable of functioning as a manual transfer switch to transfer the load to either power source. The ATS shall be capable of undergoing functional operation testing without service interruption. The ATS may also be completely removed from the enclosure, if required for maintenance or repair, while the bypass section continues to power the load.

2.4.2 Switch Construction

Bypass/isolation switch shall be constructed for convenient removal of parts from front of switch enclosure without removal of other parts or
disconnection of external power conductors. Contacts shall be as specified for associated ATS, including provisions for inspection of contacts without disassembly of BP/IS or removal of entire contact enclosure. To facilitate maintenance, manufacturer shall provide instructions for determination of contact integrity. BP/IS and associated ATS shall be interconnected with suitably sized copper bus bars silver-plated at each connection point, and braced to withstand magnetic and thermal forces created at WCR specified for associated ATS.

2.5 ENCLOSURE

ATS and accessories shall be installed in free-standing, floor-mounted, ventilated NEMA ICS 6, Type 1, smooth sheet metal enclosure constructed in accordance with applicable requirements of UL 1066 and/or UL 1008. Intake vent shall be screened and filtered. Exhaust vent shall be screened. Door shall have suitable hinges, locking handle latch, and gasketed jamb. Metal gauge shall be not less than No. 14. Enclosure shall be equipped with at least two approved grounding lugs for grounding enclosure to facility ground system using No. 4 AWG copper conductors. Factory wiring within enclosure and field wiring terminating within enclosure shall comply with NFPA 70. If wiring is not color coded, wire shall be permanently tagged or marked near terminal at each end with wire number shown on approved detail drawing. Terminal block shall conform to NEMA ICS 4. Terminals shall be arranged for entrance of external conductors from bottom of enclosure as shown. Main switch terminals, including neutral terminal if used, shall be pressure type suitable for termination of external copper conductors shown.

2.5.1 Construction

Enclosure shall be constructed for ease of removal and replacement of ATS components and control devices from front without disconnection of external power conductors or removal or disassembly of major components. Enclosure of ATS with BP/IS shall be constructed to protect personnel from energized BP/IS components during ATS maintenance.

2.5.2 Cleaning and Painting

Both the inside and outside surfaces of an enclosure, including means for fastening, shall be protected against corrosion by enameling, galvanizing, plating, powder coating, or other equivalent means. Protection is not required for metal parts that are inherently resistant to corrosion, bearings, sliding surfaces of hinges, or other parts where such protection is impractical. Finish shall be manufacturer's standard material, process, and color and shall be free from runs, sags, peeling, or other defects. An enclosure marked Type 1, 3R, 4 or 12 shall be acceptable if there is no visible rust at the conclusion of a salt spray (fog) test, employing a 5 percent by weight, salt solution for 24 hours. Type 4X enclosures are acceptable following performance of the above test with an exposure time of 200 hours.

2.6 TESTING

Submit a description of proposed field test procedures, including proposed date and steps describing each test, its duration and expected results, not less than 4 weeks prior to test date. Submit certified factory and field test reports, within 14 days following completion of tests. Reports shall
be certified and dated and shall demonstrate that tests were successfully completed prior to shipment of equipment.

2.6.1 Factory Testing

A prototype of specified ATS shall be factory tested in accordance with UL 1008. In addition, factory tests shall be performed on each ATS as follows:

a. Insulation resistance test to ensure integrity and continuity of entire system.

b. Main switch contact resistance test.

c. Visual inspection to verify that each ATS is as specified.

d. Mechanical test to verify that ATS sections are free of mechanical hindrances.

e. Electrical tests to verify complete system electrical operation and to set up time delays and voltage sensing settings.

2.6.2 Factory Test Reports

Manufacturer shall provide three certified copies of factory test reports.

2.7 FACTORY TESTING (MEDICAL FACILITIES)

The factory tests for ATS and By-Pass/Isolation switches used in medical facilities shall be conducted in the following sequence:

a. General
b. Normal
c. Overvoltage
d. Undervoltage
e. Overload
f. Endurance
g. Temperature Rise
h. Dielectric Voltage-Withstand
i. Contact Opening
j. Dielectric Voltage-Withstand (Repeateed)
k. Withstand
l. Instrumentation and Calibration of High Capacity
m. Closing
n. Dielectric Voltage-Withstand (Repeateed)
o. Strength of Insulating Base and Support

2.7.1 Operating Handles

The operating handles shall be externally operated, and designed and constructed not to stop in an intermediate or neutral position during operation, but shall permit load by-pass and transfer switch isolation in no more than two manual operations which can be performed by one person in 5 seconds or less. The transfer speed will be independent of the operational speed of the switch handle or handles.
PART 3 EXECUTION

3.1 INSTALLATION

ATS shall be installed as shown and in accordance with approved manufacturer's instructions. Submit dimensioned plans, sections and elevations showing minimum clearances, weights, and conduit entry provisions for each ATS.

3.2 INSTRUCTIONS

Manufacturer's approved operating instructions shall be permanently secured to cabinet where operator can see them. One-line and elementary or schematic diagram shall be permanently secured to inside of front enclosure door. Submit 6 copies of operating and 6 copies of maintenance manuals listing routine maintenance, possible breakdowns, repairs, and troubleshooting guide.

3.3 SITE TESTING

Following completion of ATS installation and after making proper adjustments and settings, site tests shall be performed in accordance with manufacturer's written instructions to demonstrate that each ATS functions satisfactorily and as specified. Advise Contracting Officer not less than 5 working days prior to scheduled date for site testing, and provide certified field test reports within 2 calendar weeks following successful completion of site tests. Test reports shall describe adjustments and settings made and site tests performed. Minimum operational tests shall include the following:

3.3.1 Insulation Resistance

Insulation resistance shall be tested, both phase-to-phase and phase-to-ground.

3.3.2 Power Failure of Normal Source

Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.

3.3.3 Power Failure of Emergency Source

Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.

3.3.4 Low Phase-to-Ground Voltage

Simulate low phase-to-ground voltage for each phase of normal source.

3.3.5 Operation and Settings

Verify operation and settings for specified ATS features, such as override time delay, transfer time delay, return time delay, engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.
3.3.6 ATS and BP/IS Functions

Verify manual and automatic ATS and BP/IS functions.

-- End of Section --
SECTION 26 41 00
LIGHTNING PROTECTION SYSTEM
11/13

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

NFPA 780 (2014) Standard for the Installation of Lightning Protection Systems

UNDERWRITERS LABORATORIES (UL)

UL 467 (2013; Reprint Jun 2017) UL Standard for Safety Grounding and Bonding Equipment

1.2 RELATED REQUIREMENTS

1.2.1 Verification of Dimensions

Confirm all details of work, verify all dimensions in field, and advise Contracting Officer of any discrepancy before performing work. Obtain prior approval of Contracting Officer before making any departures from the design.

1.2.2 System Requirements

Provide a system furnished under this specification consisting of the latest UL Listed products of a manufacturer regularly engaged in production of lightning protection system components. Comply with NFPA 70, NFPA 780, and UL 96.

1.2.3 Lightning Protection System Installers Documentation

Provide documentation showing that the installer is certified with a commercial third-party inspection company whose sole work is lightning
protection, or is a UL Listed Lightning Protection Installer. In either case, the documentation must show that they have completed and passed the requirements for certification or listing, and have a minimum of 2 years documented experience installing lightning protection systems for DoD projects of similar scope and complexity.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Overall lightning protection system; G
 Each major component; G

SD-06 Test Reports
 Lightning Protection and Grounding System Test Plan; G
 Lightning Protection and Grounding System Test; G

SD-07 Certificates
 Lightning Protection System Installers Documentation; G
 Component UL Listed and Labeled; G
 Lightning protection system inspection certificate; G
 Roof manufacturer's warranty; G

1.4 QUALITY ASSURANCE

In each standard referred to herein, consider the advisory provisions to be mandatory, as though the word "shall" or "must" has been substituted for "should" wherever it appears. Interpret references in these standards to "authority having jurisdiction," or words of similar meaning, to mean Contracting Officer.

1.4.1 Installation Drawings

1.4.1.1 Overall System Drawing

Submit installation shop drawing for the overall lightning protection system. Include on the drawings the physical layout of the equipment (plan view and elevations), mounting details, relationship to other parts of the work, and wiring diagrams.

1.4.1.2 Major Components

Submit detail drawings for each major component including manufacturer's descriptive and technical literature, catalog cuts, and installation
instructions.

1.4.2 Component UL Listed and Labeled

Submit proof of compliance that components are UL Listed and Labeled. Listing alone in UL Electrical Construction, which is the UL Electrical Construction Directory, is not acceptable evidence. In lieu of Listed and Labeled, submit written certificate from an approved, nationally recognized testing organization equipped to perform such services, stating that items have been tested and conform to requirements and testing methods of Underwriters Laboratories.

1.4.3 Lightning Protection and Grounding System Test Plan

Provide a lightning protection and grounding system test plan. Detail both the visual inspection and electrical testing of the system and components in the test plan. Identify (number) the system test points/locations along with a listing or description of the item to be tested and the type of test to be conducted. As a minimum, include a sketch of the facility and surrounding lightning protection system as part of the specific test plan for each structure. Include the requirements specified in paragraph, "Testing of Integral Lightning Protection System" in the test plan.

1.4.4 Lightning Protection System Inspection Certificate

Provide certification from a commercial third-party inspection company whose sole work is lightning protection, stating that the lightning protection system complies with NFPA 780. Third party inspection company cannot be the system installer or the system designer. Alternatively, provide a UL Lightning Protection Inspection Master Label Certificate for each facility indicating compliance to NFPA 780.

Inspection must cover every connection, air terminal, conductor, fastener, accessible grounding point and other components of the lightning protection system to ensure 100% system compliance. This includes witnessing the tests for the resistance measurements for ground rods with test wells, and for continuity measurements for bonds. It also includes verification of proper surge protective devices for power, data and telecommunication systems. Random sampling or partial inspection of a facility is not acceptable.

1.5 SITE CONDITIONS

Confirm all details of work, verify all dimensions in field, and advise Contracting Officer of any discrepancy before performing work. Obtain prior approval of Contracting Officer before changing the design.

PART 2 PRODUCTS

2.1 MATERIALS

Do not use a combination of materials that forms an electrolytic couple of such nature that corrosion is accelerated in the presence of moisture unless moisture is permanently excluded from the junction of such metals. Where unusual conditions exist which would cause corrosion of conductors, provide conductors with protective coatings, such as tin or lead, or
oversize conductors. Where a mechanical hazard is involved, increase conductor size to compensate for the hazard or protect conductors. When metallic conduit or tubing is provided, electrically bond conductor to conduit or tubing at the upper and lower ends by clamp type connectors or welds (including exothermic). All lightning protection components, such as bonding plates, air terminals, air terminal supports and braces, chimney bands, clips, connector fittings, and fasteners are to comply with the requirements of UL 96 classes as applicable.

2.1.1 Main and Bonding Conductors

NFPA 780 and UL 96 Class I, Class II, or Class II modified materials as applicable.

2.1.2 Copper Only

Provide copper conductors, except where aluminum conductors are required for connection to aluminum equipment.

2.2 COMPONENTS

2.2.1 Air Terminals

Provide solid air terminals with a blunt tip. Tubular air terminals are not permitted. Support air terminals more than 24 inches in length by suitable brace, supported at not less than one-half the height of the terminal.

2.2.2 Ground Rods

Provide ground rods made of copper-clad steel conforming to conform to UL 467. Provide ground rods that are not less than 3/4 inch in diameter and 10 feet in length. Do not mix ground rods of copper-clad steel or solid copper on the job.

2.2.3 Connections and Terminations

Provide connectors for splicing conductors that conform to UL 96, class as applicable. Conductor connections can be made by clamps or welds (including exothermic). Provide style and size connectors required for the installation.

2.2.4 Connector Fittings

Provide connector fittings for "end-to-end", "Tee", or "Y" splices that conform to NFPA 780 and UL 96.

PART 3 EXECUTION

3.1 INTEGRAL SYSTEM

Provide a lightning protection system that meets the requirements of NFPA 780. Lightning protection system consists of air terminals, roof conductors, down conductors, ground connections, and grounding electrodes and ground ring electrode conductor. Expose conductors on the structures except where conductors are required to be in protective sleeves. Bond secondary conductors with grounded metallic parts within the building. Make interconnections within side-flash distances at or below the level of
the grounded metallic parts.

3.1.1 Roof-Mounted Components

Coordinate with the roofing manufacturer and provide certification that the roof manufacturer's warranty is not violated by the installation methods for air terminals and roof conductors.

3.1.1.1 Air Terminals

Use adhesive shoes with adhesive approved by the roof manufacturer when installing air terminals on "rubber" (EPDM) type roofs. In areas of snow or constant wind, ensure that a section of roofing material (minimum dimensional area of 1 square foot) is first glued to the roof and then the air terminal is glued to it unless the roof manufacturer recommends another solution.

3.1.1.2 Roof Conductors

Use adhesive shoes with adhesive approved by the roof manufacturer when installing roof conductors on "rubber" (EPDM) type roofs.

3.1.2 Down Conductors

Protect exposed down conductors from physical damage as required by NFPA 780. Use Schedule 80 PVC to protect down conductors. Paint the Schedule 80 PVC to match the surrounding surface with paint that is approved for use on PVC. Down conductors are to be concealed within the wall cavities.

3.1.3 Ground Connections

Attach each down conductor and ground ring electrode to ground rods by welding (including exothermic), brazing, or compression. All connections to ground rods below ground level must be by exothermic weld connection or with a high compression connection using a hydraulic or electric compression tool to provide the correct circumferential pressure. Accessible connections above ground level and in test wells can be accomplished by mechanical clamping.

3.1.4 Grounding Electrodes

Extend driven ground rods vertically into the existing undisturbed earth for a distance of not less than 10 feet. Set ground rods not less than 3 feet nor more than 8 feet, from the structure foundation, and at least beyond the drip line for the facility. After the completed installation, measure the total resistance to ground using the fall-of-potential method described in IEEE 81. Maximum allowed resistance of a driven ground rod is 5 ohms, under normally dry conditions. Contact the Contracting Officer for direction on how to proceed when two of any three ground rods, driven not less than 10 feet into the ground, a minimum of 10 feet apart, and equally spaced around the perimeter, give a combined value exceeding 50 ohms immediately after having driven. For ground ring electrode, provide continuous No. 1/0 bare stranded copper cable. Lay ground ring electrode around the perimeter of the structure in a trench not less than 3 feet nor more than 8 feet from the nearest point of the structure foundation, and at least beyond the drip line for the facility. Install ground ring electrode to a minimum depth of 30 inches. Install a ground ring electrode in earth undisturbed by excavation, not earth fill, and do not locate beneath roof overhang, or wholly under paved areas or roadways where rainfall cannot
penetrate to keep soil moist in the vicinity of the cable.

3.2 APPLICATIONS

3.2.1 Nonmetallic Exterior Walls with Metallic Roof

Bond metal roof sections together which are insulated from each other so that they are electrically continuous, having a surface contact of at least 3 square inches.

3.2.2 Personnel Ramps and Covered Passageways

Place a down conductor and a driven ground at one of the corners where the ramp connects to each building or structure. Connect down conductor and driven ground to the ground ring electrode or nearest ground connection of the building or structure. Where buildings or structures and connecting ramps are clad with metal, separately bond the metal of the buildings and ramps to a down conductor as close to grade as possible.

3.3 INTERFACE WITH OTHER STRUCTURES

3.3.1 Fences

Bond metal fence and gate systems to the lightning protection system whenever the fence or gate is within 6 feet of any part of the lightning protection system in accordance with ANSI C2.

3.3.2 Exterior Overhead Systems

Bond to the nearest down conductor as close to grade as possible. This includes overhead pipes, conduits, cable trays, or any other metallic objects on the exterior of the building that enter a building. In addition, bond pipes, conduits, and cable trays to any metallic objects (such as steel structural support of air handling units or cooling towers) that are within 6 feet.

3.4 RESTORATION

Where sod has been removed, place sod as soon as possible after completing the backfilling. Restore, to original condition, the areas disturbed by trenching, storing of dirt, cable laying, and other work. Overfill to accommodate for settling. Include necessary topsoil, fertilizing, liming, seeding, sodding, sprigging or mulching in any restoration. Maintain disturbed surfaces and replacements until final acceptance.

3.5 FIELD QUALITY CONTROL

3.5.1 Lightning Protection and Grounding System Test

Test the lightning protection and grounding system to ensure continuity is not in excess of 1 ohm and that resistance to ground is not in excess of 5 ohms. Provide documentation for the measured values at each test point. Test the ground rod for resistance to ground before making connections to the rod. Tie the grounding system together and test for resistance to ground. Make resistance measurements in dry weather, not earlier than 48
hours after rainfall. Include in the written report: locations of test points, measured values for continuity and ground resistances, and soil conditions at the time that measurements were made. Submit results of each test to the Contracting Officer.

-- End of Section --
SECTION 26 42 14.00 10

CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE)
08/09

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

NACE INTERNATIONAL (NACE)

NACE SP0169 (2015) Control of External Corrosion on Underground or Submerged Metallic Piping Systems

NACE SP0177 (2014) Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems

NACE SP0188 (1999; R 2006) Discontinuity (Holiday) Testing of New Protective Coatings on Conductive Substrates

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

49 CFR 192 Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards

UNDERWRITERS LABORATORIES (UL)

UL 510 (2005; Reprint Jul 2013) Polyvinyl Chloride, Polyethylene and Rubber Insulating Tape
UL 514A (2013) Metallic Outlet Boxes
UL 6 (2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Drawings; G
 Contractor's Modifications; G

SD-03 Product Data
 Equipment; G
 Spare Parts

SD-06 Test Reports
 Tests and Measurements; G
 Contractor's Modifications; G

SD-07 Certificates
 Cathodic Protection System
 Services of "Corrosion Expert"; G

SD-10 Operation and Maintenance Data
 Cathodic Protection System; G
 Training Course; G

1.3 QUALITY ASSURANCE

1.3.1 Services of "Corrosion Expert"

Obtain the services of a "corrosion expert" to supervise, inspect, and test the installation and performance of the cathodic protection system. "Corrosion expert" refers to a person, who by thorough knowledge of the physical sciences and the principles of engineering and mathematics, acquired by professional education and related practical experience, is qualified to engage in the practice of corrosion control of buried or submerged metallic surfaces.

a. Such a person must be accredited or certified by the National Association of Corrosion Engineers (NACE) as a NACE Accredited Corrosion Specialist or a NACE certified Cathodic Protection (CP) Specialist or be a registered professional engineer who has certification or licensing that includes education and experience in corrosion control of buried or submerged metallic piping and tank
systems, if such certification or licensing includes 5 years experience in corrosion control on underground metallic surfaces of the type under this contract.

b. The "corrosion expert" shall make at least 3 visits to the project site. The first of these visits shall include obtaining soil resistivity data, acknowledging the type of pipeline coatings to be used and reporting to the Contractor the type of cathodic protection required. Once the submittals are approved and the materials delivered, the "corrosion expert" shall revisit the site to ensure the Contractor understands installation practices and laying out the components. The third visit shall involve testing the installed cathodic protection systems and training applicable personnel on proper maintenance techniques. The "corrosion expert" shall supervise installation and testing of all cathodic protection.

c. Submit evidence of qualifications of the "corrosion expert" including its name and qualifications certified in writing to the Contracting Officer prior to the start of construction. Certification shall be submitted giving the name of the firm, the number of years of experience, and a list of not less than five (5) of the firm's installations, three (3) or more years old, that have been tested and found satisfactory.

1.3.2 Isolators

Isolators are required to insulate the indicated pipes from any other structure. Isolators shall be provided with lightning protection and a test station as shown.

1.3.3 Anode and Bond Wires

A minimum of 5 magnesium anodes with an unpackaged weight of 17 pounds shall be provided uniform distances along the metallic pipe lines. A minimum of 3 test stations shall be used for these anodes. These anodes shall be in addition to anodes for the pipe under concrete slab and casing requirements. For each cathodic system, the metallic components and structures to be protected shall be made electrically continuous. This shall be accomplished by installing bond wires between the various structures. Bonding of existing buried structures may also be required to preclude detrimental stray current effects and safety hazards. Provisions shall be included to return stray current to its source without damaging structures intercepting the stray current. The electrical isolation of underground facilities in accordance with acceptable industry practice shall be included under this section. All tests shall be witnessed by the Contracting Officer.

1.3.4 Surge Protection

Approved zinc grounding cells or sealed weatherproof lightning arrestor devices shall be installed across insulated flanges or fittings installed in underground piping as indicated on the drawings. The arrestor shall be gapless, self-healing, solid state type. Lead wires shall be number 6 AWG copper with high molecular weight polyethylene (HMWPE) insulation. The zinc grounding cells shall not be prepackaged in backfill but shall be installed as detailed on the drawings. Lightning arrestors or zinc grounding cells are not required for insulated flanges on metallic
components used on nonmetallic piping systems.

1.3.5 Nonmetallic Pipe System

In the event pipe other than metallic pipe is approved and used in lieu of metallic pipe, all metallic components of this pipe system shall be protected with cathodic protection. Detailed drawings of cathodic protection for each component shall be submitted to the Contracting Officer for approval within 45 days after date of receipt of notice to proceed, and before commencement of any work.

1.3.5.1 Coatings

Coatings for metallic components shall be as required for metallic fittings. Protective covering (coating and taping) shall be completed and tested on each metallic component (such as valves, hydrants and fillings). This covering shall be as required for underground metallic pipe. Each test shall be witnessed by the Contracting Officer. Coatings shall be selected, applied, and inspected as specified in these specifications. The use of nonmetallic pipe does not change other requirements of the specifications. Any deviations due to the use of nonmetallic pipe shall be submitted for approval.

1.3.5.2 Tracer Wire

When a nonmetallic pipe line is used to extend or add to an existing metallic line, an insulated No. 8 AWG copper wire shall be thermit-welded to the existing metallic line and run the length of the new nonmetallic line. This wire shall be used as a locator tracer wire and to maintain continuity to any future extensions of the pipe line.

1.3.6 Drawings

Submit six copies of detail drawings consisting of a complete list of equipment and material including manufacturer’s descriptive and technical literature, catalog cuts, results of system design calculations including soil-resistivity, installation instructions and certified test data showing location of anodes and stating the maximum recommended anode current output density. Include in the detail drawings complete wiring and schematic diagrams, insulated fittings, test stations, permanent reference cells, and bonding, and any other details required to demonstrate that the system has been coordinated and will function properly as a unit. Locations shall be referenced to two (2) permanent facilities or mark points.

1.4 DELIVERY, STORAGE, AND HANDLING

Storage area for magnesium anodes will be designated by the Contracting Officer. If anodes are not stored in a building, tarps or similar protection should be used to protect anodes from inclement weather. Packaged anodes, damaged as a result of improper handling or being exposed to rain, shall be resacked and the required backfill added.

1.5 EXTRA MATERIALS

After approval of shop drawings, and not later than three (3) months prior to the date of beneficial occupancy, furnish spare parts data for each different item of material and equipment specified, after approval of
detail drawings and not later than six (6) months prior to the date of beneficial occupancy. The data shall include a complete list of parts, special tools, and supplies, with current unit prices and source of supply. One (1) spare anode of each type shall be furnished. In addition, supply information for material and equipment replacement for all other components of the complete system, including anodes, cables, splice kits and connectors, corrosion test stations, and any other components not listed above.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

Provide a complete, operating, sacrificial anode cathodic protection system in complete compliance with NFPA 70, with all applicable Federal, State, and local regulations and with the minimum requirements of this contract.

a. In addition to the minimum requirements of these specifications, construction of gas pipelines and associated cathodic protection systems shall be in compliance with 49 CFR 192.

b. The services required include planning, installation, adjusting and testing of a cathodic protection system, using sacrificial anodes for cathodic protection of the Water, Fire Protection and Gas lines, their connectors and lines under the slab or floor foundation. The cathodic protection system shall include anodes, cables, connectors, corrosion protection test stations, and any other equipment required for a complete operating system providing the NACE criteria of protection as specified.

c. Submit an itemized list of equipment and materials including item number, quantity, and manufacturer of each item, within 30 days after receipt of notice to proceed. The list shall be accompanied by a description of procedures for each type of testing and adjustments, including testing of coating for thickness and holidays. Installation of materials and equipment shall not commence until this submittal is approved. Insulators are required whenever needed to insulate the pipes from any other structure. Any pipe crossing the protected pipe shall have a test station. The cathodic protection shall be provided on Water, Fire Protection and Gas pipes.

d. Submit proof that the materials and equipment furnished under this section conform to the specified requirements contained in the referenced standards or publications. The label or listing by the specified agency will be acceptable evidence of such compliance.

e. Before final acceptance of the cathodic protection system, submit 6 copies of operating manuals outlining the step-by-step procedures required for system startup, operation, adjustment of current flow, and shutdown. The manuals shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features.

f. Submit 6 copies of maintenance manuals, listing routine maintenance procedures, recommendation for maintenance testing, possible breakdowns and repairs, and troubleshooting guides. The manuals shall include single-line diagrams for the system as installed; instructions in making pipe-to-reference cell and tank-to-reference cell potential measurements and frequency of monitoring; instructions for dielectric
connections, interference and sacrificial anode bonds; instructions shall include precautions to ensure safe conditions during repair of pipe or other metallic systems. The instructions shall be neatly bound between permanent covers and titled "Operating and Maintenance Instructions." These instructions shall be submitted for the Contracting Officer's approval. The instructions shall include the following:

(1) As-built drawings, to scale, of the entire system, showing the locations of the piping, location of all anodes and test stations, locations of all insulating joints, and structure-to-soil potential test points as measured during the tests required by paragraph TESTS AND MEASUREMENTS. Each test point shall be given a unique alphanumeric identification that is cross referenced to the data sheets.

(2) Recommendations for maintenance testing, including instructions in making pipe-to-reference cell potential measurements and frequency of testing.

(3) All maintenance and operating instructions and nameplate data shall be in English.

(4) Instructions shall include precautions to insure safe conditions during repair of pipe system.

2.1.1 Contractor's Modifications

The specified system is based on a complete system with magnesium sacrificial anodes. The Contractor may modify the cathodic protection system after review of the project, site verification, and analysis, if the proposed modifications include the anodes specified and will provide better overall system performance.

a. Submit six copies of detail drawings showing proposed changes in location, scope of performance indicating any variations from, additions to, or clarifications of contract drawings. Show proposed changes in anode arrangement, anode size and number, anode materials and layout details, conduit size, wire size, mounting details, wiring diagram, method for electrically-isolating each pipe, and any other pertinent information to proper installation and performance of the system. The modifications shall be fully described, shall be approved by the Contracting Officer, and shall meet the following criteria.

b. The proposed system shall achieve a minimum pipe-to-soil "instant off" potential of minus 850 millivolts with reference to a saturated copper-copper sulfate reference cell on the underground components of the piping or other metallic surface. Take resistivity measurements of the soil in the vicinity of the pipes and ground bed sites. Based upon the measurements taken, the current and voltage shall be required to produce a minimum of minus 850 millivolts "instant off" potential between the structure being tested and the reference cell. This potential shall be obtained over 95 percent of the metallic area. The anode system shall be designed for a life of twenty-five (25) years of continuous operation.

c. Submit final report regarding Contractor's modifications. The report shall include pipe-to-soil measurements throughout the affected area, indicating that the modifications improved the overall conditions, and
current measurements for anodes. The following special materials and information are required: taping materials and conductors; zinc grounding cell, installation and testing procedures, and equipment; coating material; system design calculations for anode number, life, and parameters to achieve protective potential; backfill shield material and installation details showing waterproofing; bonding and waterproofing details; insulated resistance wire; exothermic weld equipment and material.

2.1.2 Summary of Services Required

The scope of services shall include, but shall not be limited to, the following:

a. Close-interval potential surveys.
b. Cathodic Protection Systems.
c. System testing.
d. Casing corrosion control.
e. Interference testing.
f. Training.
g. Operating and maintenance manual.
h. Insulator testing and bonding testing.
i. Coating and holiday testing to be submitted within 45 days of notice to proceed.

2.1.3 Tests of Components

Perform a minimum of four (4) tests at each metallic component in the piping system. Two (2) measurements shall be made directly over the anodes and the other two (2) tests shall be over the outer edge of the component, but at the farthest point from the anodes. Structure and pipes shall be shown with the cathodic protection equipment. All components of the cathodic protection system shall be shown on drawings, showing their relationship to the protected structure or component. A narrative shall describe how the cathodic protection system will work and provide testing at each component. Components requiring cathodic protection shall include but not be limited to the following:

a. Pipes under the floor slab or foundations.
b. PIV.
c. Shutoff valves.
d. Metallic pipe extended from aboveground locations.
e. Each connector or change-of-direction device.
f. Any metallic pipe component or section.
g. Backflow preventer.
h. Culvert.

2.1.4 Electrical Potential Measurements

All potential tests shall be made at a minimum of 10 foot intervals witnessed by the Contracting Officer. Submittals shall identify test locations on separate drawing, showing all metal to be protected and all cathodic protection equipment. Test points equipment and protected metal shall be easily distinguished and identified.

2.1.5 Achievement of Criteria for Protection

All conductors, unless otherwise shown, shall be routed to or through the test stations. Each system provided shall achieve a minimum pipe-to-soil "instant off" potential of minus 850 millivolt potentials with reference to a saturated copper-copper-sulfate reference cell on all underground components of the piping. Based upon the measurements taken, the current and voltage of the anodes should be adjusted as required to produce a minimum of minus 850 millivolts "instant off" potential between the structure being tested and the reference cell. This potential should be obtained over 95 percent of the metallic area. This must be achieved without the "instant off" potential exceeding 1150 millivolts. Testing will be witnessed by the Contracting Officer. Provide additional anodes if required to achieve the minus 850 millivolts "instant off". Although acceptance criteria of the cathodic protection systems are defined in NACE SP0169, for this project the "instant off" potential of minus 850 millivolts is the only acceptable criteria.

2.1.6 Metallic Components on Nonmetallic Systems and Typicals

2.1.6.1 Metallic Components

As a minimum, protect each metallic component with two (2) magnesium anodes. This number of anodes is required to achieve minus 850 millivolts "instant off" potential on the metallic area and at the same time not provide overvoltage above 1150 millivolts "instant off." As a minimum, the magnesium anode unpackaged weight shall be 17 pounds. The magnesium anodes shall be located on each side of the metallic component and routed through a test station.

2.1.6.2 Fire Hydrants

Fire hydrant pipe components shall have a minimum of two (2) anodes. These magnesium anodes shall have an unpackaged weight of 17 pounds.

2.1.6.3 Pipe Under Concrete Slab

Pipe under concrete slab shall have a minimum of 2 magnesium anodes. These magnesium anodes shall have an unpackaged weight of 17 pounds. Pipe under concrete slab shall have 1 permanent reference electrodes located under the slab. One (1) permanent reference electrode shall be located where the pipe enters the concrete slab. All conductors shall be routed to a test station.

2.1.6.4 Valves

Each valve shall be protected with 1 magnesium anodes. The magnesium anode shall have an unpackaged weight of 17 pounds.
2.1.6.5 Metallic Pipe Component or Section

Each section of metallic pipe shall be protected with 2 magnesium anodes. The magnesium anodes shall have an unpackaged weight of 17 pounds.

2.1.6.6 Connectors or Change-of-Direction Devices

Each change-of-direction device shall be protected with 2 magnesium anodes. The magnesium anode shall have an unpackaged weight of 17 pounds.

2.1.7 Metallic Component Coating

Coatings for metallic components shall be as required for metallic fittings as indicated. This will include fire hydrants, T's, elbows, valves, etc. Coatings shall be selected, applied, and inspected as specified in these specifications. All aboveground pipeline shall be coated as indicated or as approved. The coating shall have a minimum thickness of 7 mil. The pipeline coating shall be in accordance with all applicable Federal, State, and local regulations.

2.2 MAGNESIUM ANODES

Install a minimum of 2 anodes on the Pipe system. See Paragraph METALLIC COMPONENTS ON NONMETALLIC SYSTEMS AND TYPICALS for additional anodes under slab.

2.2.1 Anode Composition

Anodes shall be of high-potential magnesium alloy, made of primary magnesium obtained from sea water or brine, and not made from scrap metal. Magnesium anodes shall conform to ASTM B843 and to the following analysis (in percents) otherwise indicated:

<table>
<thead>
<tr>
<th>Component</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, max.</td>
<td>0.010</td>
</tr>
<tr>
<td>Manganese, max.</td>
<td>0.50 to 1.30</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.05</td>
</tr>
<tr>
<td>Silicon, max.</td>
<td>0.05</td>
</tr>
<tr>
<td>Copper, max.</td>
<td>0.02</td>
</tr>
<tr>
<td>Nickel, max.</td>
<td>0.001</td>
</tr>
<tr>
<td>Iron, Max.</td>
<td>0.03</td>
</tr>
<tr>
<td>Other impurities, max.</td>
<td>0.05 each or 0.3 max. total</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Remainder</td>
</tr>
</tbody>
</table>

Furnish spectrographic analysis on samples from each heat or batch of anodes used on this project.
2.2.2 Dimensions and Weights

Dimensions and weights of anodes shall be approximately as follows:

<table>
<thead>
<tr>
<th>Nominal Weight (lbs)</th>
<th>Approx. Size (inch)</th>
<th>Nominal Gross Weight (lbs) Packaged in Backfill</th>
<th>Nominal Package Dimensions (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4 X 4 X 17</td>
<td>45</td>
<td>7-1/2 X 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.3 Packaged Anodes

Provide anodes in packaged form with the anode surrounded by specially-prepared quick-wetting backfill and contained in a water permeable cloth or paper sack. Anodes shall be centered by means of spacers in the backfill material. The backfill material shall have the following composition, unless otherwise indicated:

<table>
<thead>
<tr>
<th>Material</th>
<th>Approximate Percent by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum</td>
<td>75</td>
</tr>
<tr>
<td>Bentonite</td>
<td>20</td>
</tr>
<tr>
<td>Sodium Sulphate</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

2.2.4 Connecting Wire

2.2.4.1 Wire Requirements

Wire shall be No. 12 AWG solid copper wire, not less than 10 feet long, unspliced, complying with NFPA 70, Type RHW-USE insulation. Connecting wires for magnesium anodes shall be factory installed with the place or emergence from the anode in a cavity sealed flush with a dielectric sealing compound.
2.2.4.2 Anode Header Cable

Cable for anode header and distribution shall be No. 12 AWG stranded copper wire with type CP high molecular weight polyethylene, 7/64 inch thick insulation, 600-volt rating.

2.3 MISCELLANEOUS MATERIALS

2.3.1 Electrical Wire

Wire shall be No. 12 AWG stranded copper wire with NFPA 70, Type RHW-USE with outer covering insulation. Polyethylene insulation shall comply with the requirements of ASTM D1248 and shall be of the following types, classes, and grades:

- High-molecular weight polyethylene shall be Type I, Class C, Grade E5.
- High-density polyethylene shall be Type III, Class C, Grade E3.

2.3.1.1 Wire Splicing

Connecting wire splicing shall be made with copper compression connectors or exothermic welds, following instructions of the manufacturer. Single split-bolt connections shall not be used. Sheaths for encapsulating electrical wire splices to be buried underground shall fit the insulated wires entering the spliced joints and epoxy potting compound shall be as specified below.

2.3.1.2 Test Wires

Test wires shall be AWG No. 12 stranded copper wire with NFPA 70, Type TW or RHW-USE with outer covering or polyethylene insulation.

2.3.1.3 Resistance Wire

Resistance wire shall be AWG No. 16 or No. 22 nickel-chromium wire.

2.3.2 Conduit

Rigid galvanized steel conduit and accessories shall conform to UL 6. Non metallic conduit shall conform to NEMA TC 2.

2.3.3 Test Boxes and Junction Boxes

Boxes shall be outdoor type conforming to UL 514A.

2.3.4 Joint, Patch, Seal, and Repair Coating

Sealing and dielectric compound shall be a black, rubber based compound that is soft, permanently pliable, tacky, moldable, and unbacked. Compound shall be applied as recommended by the manufacturer, but not less than 1/2-inch thick. Coating compound shall be hot-applied coal-tar enamel. Pressure-sensitive vinyl plastic electrical tape shall conform to UL 510.

2.3.5 Backfill Shields

Shields shall consist of approved pipeline wrapping or fiberglass-reinforced, coal-tar impregnated tape, or plastic weld caps, specifically made for the purpose and installed in accordance with the
manufacturer's recommendations. When joint bonds are required, due to the use of mechanical joints, the entire joint shall be protected by the use of a kraft paper joint cover. The joint cover shall be filled with poured-in, hot coat-tar enamel.

2.3.6 Epoxy Potting Compound

Compound for encapsulating electrical wire splices to be buried underground shall be a two package system made for the purpose.

2.3.7 Test Stations

Stations shall be of the flush-curb-box type and shall be the standard product of a recognized manufacturer. Test stations shall be complete with an insulated terminal block having the required number of terminals. The test station shall be provided with a lockable cover and shall have an embossed legend, "C.P. Test." A minimum of one (1) test station shall be provided each component of the pipe. A minimum of six (6) terminals shall be provided in each test station. A minimum of two (2) leads are required to the metallic pipe from each test station. Other conductors shall be provided for each anode, other foreign pipe, and reference cells as required.

2.3.8 Joint and Continuity Bonds

Bonds shall be provided across all joints in the metallic water and gas lines, across any electrically discontinuous connections and all other pipes and structures with other than welded or threaded joints that are included in this cathodic protection system. Unless otherwise specified in the specifications, bonds between structures and across joints in pipe with other than welded or threaded joints shall be No. 8 AWG stranded copper cable with polyethylene insulation. Bonds between structures shall contain sufficient slack for any anticipated movement between structures. Bonds across pipe joints shall contain a minimum of 4 inch of slack to allow for pipe movement and soil stress. Bonds shall be attached by exothermic welding. Exothermic weld areas shall be insulated with coating compound and approved, and witnessed by the Contracting Officer. Continuity bonds shall be installed as necessary to reduce stray current interference. Additional joint bondings shall be accomplished where the necessity is discovered during construction or testing or where the Contracting Officer's representative directs that such bonding be done. Joint bonding shall include all associated excavation and backfilling. There shall be a minimum of two (2) continuity bonds between each structure and other than welded or threaded joints. Test for electrical continuity across all joints with other than welded or threaded joints and across all metallic portions or components. Provide bonding as required and as specified above until electrical continuity is achieved. Submit bonding test data for approval.

2.3.9 Resistance Bonds

Resistance bonds should be adjusted as outlined in this specification. Alternate methods may be used if they are approved by the Contracting Officer.

2.3.10 Stray Current Measurements

Stray current measurements should be performed at each test station. Stray currents resulting from lightning or overhead alternating current (AC)
power transmission systems shall be mitigated in accordance with NACE SP0177.

2.3.11 Electrical Isolation of Structures

As a minimum, isolating flanges or unions shall be provided at the following locations:

a. Connection of new metallic piping or components to existing piping.

b. Pressure piping under floor slab to a building.

Isolation shall be provided at metallic connection of all lines to existing system and where connecting to a building. Additionally, isolation shall be provided between water, fire protection and/or gas line; and foreign pipes that cross the new lines within 10 feet. Isolation fittings, including isolating flanges and couplings, shall be installed aboveground or in a concrete pit.

2.3.11.1 Electrically Isolating Pipe Joints

Electrically isolating pipe joints shall be of a type that is in regular factory production.

2.3.11.2 Electrically Conductive Couplings

Electrically conductive couplings shall be of a type that has a published maximum electrical resistance rating given in the manufacturer's literature. Cradles and seals shall be of a type that is in regular factory production made for the purpose of electrically insulating the carrier pipe from the casing and preventing the incursion of water into the annular space.

2.3.11.3 Insulating Joint Testing

A Model 601 Insulation Checker, as manufactured by "Gas Electronics" or an approved equal, shall be used for insulating joint (flange) electrical testing.

2.3.12 Underground Structure Coating

This coating specification shall take precedence over any other project specification and drawing notes, whether stated or implied, and shall also apply to the pipeline or tank supplier. No variance in coating quality shall be allowed by the Contractor or Base Construction Representative without the written consent of the designer. All underground metallic pipelines and tanks to be cathodically protected shall be afforded a good quality factory-applied coating. This includes all carbon steel, cast-iron and ductile-iron pipelines or vessels. Coatings shall be selected, applied, and inspected as specified. If non-metallic pipelines are installed, all metallic fittings on pipe sections shall be coated in accordance with this specification section.

a. The nominal thickness of the metallic pipe joint or other component coating shall be 16 mils, plus or minus 5 percent.

b. Pipe and joint coating for factory applied or field repair material shall be applied as recommended by the manufacturer and shall be one of the following:
(1) Continuously extruded polyethylene and adhesive coating system.
(2) Polyvinyl chloride pressure-sensitive adhesive tape.
(3) High density polyethylene/bituminous rubber compound tape.
(4) Butyl rubber tape.
(5) Coal tar epoxy.

2.3.12.1 Field Joints

All field joints shall be coated with materials compatible with the pipeline coating compound. The joint coating material shall be applied to an equal thickness as the pipeline coating. Unbonded coatings shall not be used on these buried metallic components. This includes the elimination of all unbonded polymer wraps or tubes. Once the pipeline or vessel is set in the trench, an inspection of the coating shall be conducted. This inspection shall include electrical holiday detection. Any damaged areas of the coating shall be properly repaired. The Contracting Officer shall be asked to witness inspection of the coating and testing using a holiday detector.

2.3.12.2 Inspection of Pipe Coatings

Any damage to the protective covering during transit and handling shall be repaired before installation. After field coating and wrapping has been applied, the entire pipe shall be inspected by an electric holiday detector with impressed current in accordance with NACE SP0188 using a full-ring, spring-type coil electrode. The holiday detector shall be equipped with a bell, buzzer, or other type of audible signal which sounds when a holiday is detected. All holidays in the protective covering shall be repaired immediately upon detection. Occasional checks of holiday detector potential will be made by the Contracting Officer's representative to determine suitability of the detector. All labor, materials, and equipment necessary for conducting the inspection shall be furnished by the Contractor.

2.3.12.2.1 Protective Covering for Aboveground Piping System

Finish painting shall conform to the applicable paragraph of SECTION: 09 90 00 PAINTS AND COATINGS and as follows:

2.3.12.2.2 Ferrous Surfaces

Shop-primed surfaces shall be touched-up with ferrous metal primer. Surfaces that have not been shop-primed shall be solvent-cleaned. Surfaces that contain loose rust, loose mil scale, and other foreign substances shall be mechanically-cleaned by power wire-brushing and primed with ferrous metal primer. Primed surface shall be finished with two (2) coats of exterior oil paint and vinyl paint. Coating for each entire piping service shall be an approved pipe line wrapping having a minimum coating resistance of 50,000 Ohms per square foot.

2.3.13 Resistance Wire

Wire shall be No. 16 or No. 22 nickel-chromium wire with TW insulation.

2.3.14 Electrical Connections

Electrical connections shall be done as follows:

a. Exothermic welds shall be "Cadweld", " Bundy", "Thermoweld", or an
approved equal. Use of this material shall be in strict accordance with the manufacturer's recommendations.

b. Electrical-shielded arc welds shall be approved for use on steel pipe by shop drawing submittal action.

c. Brazing shall be as specified in Paragraph: Lead Wire Connections.

2.3.15 Electrical Tape

Pressure-sensitive vinyl plastic electrical tape shall conform to UL 510.

2.3.16 Permanent Reference Electrodes

Permanent reference electrodes shall be Cu-CuS04 electrodes suitable for direct burial. Electrodes shall be guaranteed by the supplier for 15 years' service in the environment in which they shall be placed. Electrodes shall be installed directly beneath pipe, or metallic component.

2.3.17 Casing

Where a pipeline is installed in a casing under a roadway or railway, the pipeline shall be electrically insulated from the casing, and the annular space sealed and filled with an approved corrosion inhibiting product against incursion of water.

PART 3 EXECUTION

3.1 CRITERIA OF PROTECTION

Acceptance criteria for determining the adequacy of protection on a buried underground pipe metallic component shall be in accordance with NACE SP0169 and as specified below.

3.1.1 Iron and Steel

The following method a. shall be used for testing cathodic protection voltages. If more than one method is required, method b. shall be used.

a. A negative voltage of at least minus 850 millivolts as measured between the underground component and a saturated copper-copper sulphate reference electrode connecting the earth (electrolyte) directly over the underground component. Determination of this voltage shall be made with the cathodic protection system in operation. Voltage drops shall be considered for valid interpretation of this voltage measurement. A minimum of minus 850 millivolts "instant off" potential between the underground component being tested and the reference cell shall be achieved over 95 percent of the area of the structure. Adequate number of measurements shall be obtained over the entire structure, pipe, tank, or other metallic component to verify and record achievement of minus 850 millivolts "instant off." This potential shall be obtained over 95 percent of the total metallic area without the "instant off" potential exceeding 1200 millivolts.

b. A minimum polarization voltage shift of 100 millivolts as measured between the underground component and a saturated copper-copper sulphate reference electrode contacting the earth directly over the underground component. This polarization voltage shift shall be
determined by interrupting the protective current and measuring the polarization decay. When the protective current is interrupted, an immediate voltage shift will occur. The voltage reading, after the immediate shift, shall be used as the base reading from which to measure polarization decay. Measurements achieving 100 millivolts decay shall be made over 95 percent of the metallic surface being protected.

c. For any metallic component, a minimum of four (4) measurements shall be made using subparagraph a., above, and achieving the “instant off” potential of minus 850 millivolts. Two (2) measurements shall be made over the anodes and two (2) measurements shall be made at different locations near the component and farthest away from the anode.

3.1.2 Aluminum

Aluminum underground component shall not be protected to a potential more negative than minus 1200 millivolts, measured between the underground component and a saturated copper-copper sulphate reference electrode contacting the earth, directly over the metallic component. Resistance, if required, shall be inserted in the anode circuit within the test station to reduce the potential of the aluminum to a value which will not exceed a potential more negative than minus 1200 millivolts. Voltage shift criterion shall be a minimum negative polarization shift of 100 millivolts measured between the metallic component and a saturated copper-copper sulphate reference electrode contacting the earth, directly over the metallic component. The polarization voltage shift shall be determined as outlined for iron and steel.

3.1.3 Copper Piping

For copper piping, the following criteria shall apply: A minimum of 100 millivolts of cathodic polarization between the structure surface and a stable reference electrode contacting the electrolyte. The polarization voltage shift shall be determined as outlined for iron and steel.

3.2 TRENCHING AND BACKFILLING

Perform trenching and backfilling in accordance with Section 31 00 00 EARTHWORK. In the areas of the anode beds, all trees and underbrush shall be cleared and grubbed to the limits shown or indicated. In the event rock is encountered in providing the required depth for anodes, determine an alternate approved location and, if the depth is still not provided, submit an alternate plan to the Contracting Officer. Alternate techniques and depths must be approved prior to implementation.

3.3 INSTALLATION

3.3.1 Anode Installation

Unless otherwise authorized, installation shall not proceed without the presence of the Contracting Officer. Anodes of the size specified shall be installed to the depth indicated and at the locations shown. Locations may be changed to clear obstructions with the approval of the Contracting Officer. Anodes shall be installed in sufficient number and of the required type, size, and spacing to obtain a uniform current distribution over the surface of the structure. The anode system shall be designed for a life of 25 years of continuous operation. Anodes shall be installed as indicated in a dry condition after any plastic or waterproof protective
covering has been completely removed from the water permeable, permanent container housing the anode metal. The anode connecting wire shall not be used for lowering the anode into the hole. The annular space around the anode shall be backfilled with fine earth in 6 inch layers and each layer shall be hand tamped. Care must be exercised not to strike the anode or connecting wire with the tamper. Approximately 5 gallons of water shall be applied to each filled hole after anode backfilling and tamping has been completed to a point about 6 inch above the anode. After the water has been absorbed by the earth, backfilling shall be completed to the ground surface level.

3.3.1.1 Single Anodes

Single anodes, spaced as shown, shall be connected through a test station to the pipeline, allowing adequate slack in the connecting wire to compensate for movement during backfill operation.

3.3.1.2 Groups of Anodes

Groups of anodes, in quantity and location shown, shall be connected to an anode header cable. The anode header cable shall make contact with the structure to be protected only through a test station. Anode lead connection to the anode header cable shall be made by an approved crimp connector or exothermic weld and splice mold kit with appropriate potting compound.

3.3.1.3 Welding Methods

Connections to ferrous pipe shall be made by exothermic weld methods manufactured for the type of pipe supplied. Electric arc welded connections and other types of welded connections to ferrous pipe and structures shall be approved before use.

3.3.2 Anode Placement - General

Packaged anodes shall be installed completely dry, and shall be lowered into holes by rope sling or by grasping the cloth gather. The anode lead wire shall not be used in lowering the anodes. The hole shall be backfilled with fine soil in 6 inch layers and each layer shall be hand-tamped around the anode. Care must be exercised not to strike the anode or lead wire with the tamper. If immediate testing is to be performed, water shall be added only after backfilling and tamping has been completed to a point 6 inch above the anode. Approximately 2 gallons of water may be poured into the hole. After the water has been absorbed by the soil, backfilling and tamping may be completed to the top of the hole. Anodes shall be installed as specified or shown. In the event a rock strata is encountered prior to achieving specified augered-hole depth, anodes may be installed horizontally to a depth at least as deep as the bottom of the pipe, with the approval of the Contracting Officer.

3.3.3 Underground Pipeline

Anodes shall be installed at a minimum of 8 feet and a maximum of 10 feet from the line to be protected.

3.3.4 Installation Details

Details shall conform to the requirements of this specification. Details shown on the drawings are indicative of the general type of material.
required, and are not intended to restrict selection to material of any particular manufacturer.

3.3.5 Lead Wire Connections

3.3.5.1 Underground Pipeline (Metallic)

To facilitate periodic electrical measurements during the life of the sacrificial anode system and to reduce the output current of the anodes, if required, all anode lead wires shall be connected to a test station and buried a minimum of 24 inch in depth. The cable shall be No. 10 AWG, stranded copper, polyethylene or RHW-USE insulated cable. The cable shall make contact with the structure only through a test station. Resistance wire shall be installed between the cable and the pipe cable, in the test station, to reduce the current output, if required. Anode connections, except in the test station, shall be made with exothermic welding process, and shall be insulated by means of at least three (3) layers of electrical tape; and all lead wire connections shall be installed in a moistureproof splice mold kit and filled with epoxy resin. Lead wire-to-structure connections shall be accomplished by an exothermic welding process. All welds shall be in accordance with the manufacturer's recommendations. A backfill shield filled with a pipeline mastic sealant or material compatible with the coating shall be placed over the weld connection and shall be of such diameter as to cover the exposed metal adequately.

3.3.5.2 Resistance Wire Splices

Resistance wire connections shall be accomplished with silver solder and the solder joints wrapped with a minimum of three (3) layers of pressure-sensitive tape. Lead wire connections shall be installed in a moistureproof splice mold kit and filled with epoxy resin.

3.3.6 Location of Test Stations

Test stations shall be of the type and location shown and shall be curb box mounted. Provide buried insulating joints with test wire connections brought to a test station. Reference all test stations with GPS coordinates. Unless otherwise shown, locate other test stations as follows:

a. At 1,000-foot intervals or less.

b. Where the pipe or conduit crosses any other metal pipe.

c. At both ends of casings under roadways and railways.

d. Where both sides of an insulating joint are not accessible above ground for testing purposes.

3.3.7 Underground Pipe Joint Bonds

Underground pipe having other than welded or threaded coupling joints shall be made electrically continuous by means of a bonding connection installed across the joint.

3.4 ELECTRICAL ISOLATION OF STRUCTURES

3.4.1 Isolation Joints and Fittings

Isolating fittings, including main line isolating flanges and couplings,
shall be installed aboveground, or within manholes, wherever possible. Where isolating joints must be covered with soil, they shall be fitted with a paper joint cover specifically manufactured for covering the particular joint, and the space within the cover filled with hot coal-tar enamel. Isolating fittings in lines entering buildings shall be located at least 12 inch above grade of floor level, when possible. Isolating joints shall be provided with grounding cells to protect against over-voltage surges or approved surge protection devices. The cells shall provide a low resistance across isolating joint without excessive loss of cathodic current.

3.4.2 Gas Distribution Piping

Electrical isolation shall be provided at each building riser pipe to the pressure regulator, at all points where a short to another structure or to a foreign structure may occur, and at other locations as indicated on the drawings.

3.5 TESTS AND MEASUREMENTS

Submit test reports in booklet form tabulating all field tests and measurements performed, upon completion and testing of the installed system and including close interval potential survey, casing and interference tests, final system test verifying protection, insulated joint and bond tests, and holiday coating test. Submit a certified test report showing that the connecting method has passed a 120-day laboratory test without failure at the place of connection, wherein the anode is subjected to maximum recommended current output while immersed in a three percent sodium chloride solution.

3.5.1 Baseline Potentials

Each test and measurement will be witnessed by the Contracting Officer. Notify the Contracting Officer a minimum of five (5) working days prior to each test. After backfill of the pipe, the static potential-to-soil of the pipe shall be measured. The locations of these measurements shall be identical to the locations specified for pipe-to-reference electrode potential measurements. The initial measurements shall be recorded.

3.5.2 Isolation Testing

Before the anode system is connected to the pipe, an isolation test shall be made at each isolating joint or fitting. This test shall demonstrate that no metallic contact, or short circuit exists between the two isolated sections of the pipe. Any isolating fittings installed and found to be defective shall be reported to the Contracting Officer.

3.5.2.1 Insulation Checker

A Model 601 insulation checker, as manufactured by "Gas Electronics", or an approved equal, using the continuity check circuit, shall be used for isolating joint (flange) electrical testing. Testing shall conform to the manufacturer's operating instructions. Test shall be witnessed by the Contracting Officer. An isolating joint that is good will read full scale on the meter. If an isolating joint is shorted, the meter pointer will be deflected or near zero on the meter scale. Location of the fault shall be determined from the instructions, and the joint shall be repaired. If an isolating joint is located inside a vault, the pipe shall be sleeved with
insulator when entering and leaving the vault.

3.5.2.2 Cathodic Protection Meter

A Model B3A2 cathodic protection meter, as manufactured by "M.C. Miller", or an approved equal, using the continuity check circuit, shall be used for isolating joint (flange) electrical testing. This test shall be performed in addition to the Model 601 insulation checker. Continuity is checked across the isolation joint after the test lead wire is shorted together and the meter adjusted to scale. A full-scale deflection indicates the system is shorted at some location. The Model 601 verifies that the particular insulation under test is good and the Model B3A2 verifies that the system is isolated. If the system is shorted, further testing shall be performed to isolate the location of the short.

3.5.3 Anode Output

As the anodes or groups of anodes are connected to the pipe, current output shall be measured with an approved clamp-on milliammeter, calibrated shunt with a suitable millivoltmeter or multimeter, or a low resistance ammeter. (Of the three methods, the low-resistance ammeter is the least desirable and most inaccurate. The clamp-on milliammeter is the most accurate.) The values obtained and the date, time, and location shall be recorded.

3.5.4 Reference Electrode Potential Measurements

Upon completion of the installation and with the entire cathodic protection system in operation, electrode potential measurements shall be made using a copper-copper sulphate reference electrode and a potentiometer-voltmeter, or a direct-current voltmeter having an internal resistance (sensitivity) of not less than 10 megohms per volt and a full scale of 10 volts. The locations of these measurements shall be identical to the locations used for baseline potentials. The values obtained and the date, time, and locations of measurements shall be recorded. No less than eight (8) measurements shall be made over any length of line or component. Additional measurements shall be made at each distribution service riser, with the reference electrode placed directly over the service line.

3.5.5 Location of Measurements

3.5.5.1 Piping or Conduit

For coated piping or conduit, measurements shall be taken from the reference electrode located in contact with the earth, directly over the pipe. Connection to the pipe shall be made at service risers, valves, test leads, or by other means suitable for test purposes. Pipe-to-soil potential measurements shall be made at intervals not exceeding 10 feet. The Contractor may use a continuous pipe-to-soil potential profile in lieu of 5 foot interval pipe-to-soil potential measurements. Additional measurements shall be made at each distribution service riser, with the reference electrode placed directly over the service line adjacent to the riser. Potentials shall be plotted versus distance to an approved scale. Locations where potentials do not meet or exceed the criteria shall be identified and reported to the Contracting Officer's representative.
3.5.5.2 Casing Tests

Before final acceptance of the installation, the electrical separation of carrier pipe from casings shall be tested and any short circuits corrected.

3.5.5.3 Interference Testing

Before final acceptance of the installation, interference tests shall be made with respect to any foreign pipes in cooperation with the owner of the foreign pipes. A full report of the tests giving all details shall be made. Stray current measurements shall be performed at all isolating locations and at locations where the new pipeline crosses foreign metallic pipes; results of stray current measurements shall also be submitted for approval. The method of measurements and locations of measurements shall be submitted for approval. As a minimum, stray current measurements shall be performed at the following locations:

a. Connection point of new pipeline to existing pipeline.
b. Crossing points of new pipeline with existing lines.

3.5.5.4 Holiday Test

Any damage to the protective covering during transit and handling shall be repaired before installation. After field-coating and wrapping has been applied, the entire pipe shall be inspected by an electric holiday detector with impressed current in accordance with NACE SP0188 using a full-ring, spring-type coil electrode. The holiday detector shall be equipped with a bell, buzzer, or other type of audible signal which sounds when a holiday is detected. Holidays in the protective covering shall be repaired upon detection. Occasional checks of holiday detector potential will be made by the Contracting Officer to determine suitability of the detector. Labor, materials, and equipment necessary for conducting the inspection shall be furnished by the Contractor. The coating system shall be inspected for holes, voids, cracks, and other damage during installation.

3.5.5.5 Recording Measurements

All pipe-to-soil potential measurements, including initial potentials where required, shall be recorded. Locate, correct and report to the Contracting Officer any short circuits to foreign pipes encountered during checkout of the installed cathodic protection system. Pipe-to-soil potential measurements shall be taken on as many pipes as necessary to determine the extent of protection or to locate short-circuits.

3.6 TRAINING COURSE

Conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of 4 hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. Submit the proposed Training Course Curriculum (including topics and dates of discussion) indicating that all of the items contained in the operating and maintenance instructions, as well as demonstrations of routine maintenance operations, including testing procedures included in the maintenance instructions, are to be covered. The field instructions shall cover all of the items contained in the operating and maintenance instructions, as well as demonstrations of routine maintenance operations, including testing procedures included in the maintenance instructions. At least 14 days
prior to date of proposed conduction of the training course, the training course curriculum shall be submitted for approval, along with the proposed training date. Training shall consist of demonstration of test equipment, providing forms for test data and the tolerances which indicate that the system works.

3.7 SYSTEM TESTING

Submit a report including potential measurements taken at adequately-close intervals to establish that minus 850 millivolts potential, "instant-off" potential, is provided, and that the cathodic protection is not providing interference to other foreign pipes causing damage to paint or pipes. The report shall provide a narrative describing how the criteria of protection is achieved without damaging other pipe or structures in the area.

3.8 SEEDING

Seeding shall be done as directed, in all unsurfaced locations disturbed by this construction. In areas where grass cover exists, it is possible that sod can be carefully removed, watered, and stored during construction operations, and replaced after the operations are completed since it is estimated that no section of pipeline should remain uncovered for more than two (2) days. The use of sod in lieu of seeding shall require approval by the Contracting Officer.

3.9 CLEANUP

The Contractor is responsible for cleanup of the construction site. All paper bags, wire clippings, etc., shall be disposed of as directed. Paper bags, wire clippings and other waste shall not be put in bell holes or anodes excavation.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE)

ASTM INTERNATIONAL (ASTM)

ASTM A653/A653M (2015; E 2016) Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process

CALIFORNIA ENERGY COMMISSION (CEC)

ILLUMINATING ENGINEERING SOCIETY (IES)

IES HB-10 (2011; Errata 2015) IES Lighting Handbook

IES RP-16 (2010; Addendum A 2008; Addenda B 2009; Addendum C 2016) Nomenclature and Definitions for Illuminating Engineering

IES TM-21 (2011) Projecting Long Term Lumen Maintenance of LED Light Sources

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA 250 (2014) Enclosures for Electrical Equipment (1000 Volts Maximum)

NEMA C82.77 (2002) Harmonic Emission Limits - Related Power Quality Requirements for Lighting Equipment

NEMA ICS 2 (2000; R 2005; Errata 2008) Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 V

NEMA SSL 1 (2010) Electronic Drivers for Led Devices, Arrays, or Systems

NEMA SSL 3 (2011) High-Power White LED Binning for General Illumination
1.2 RELATED REQUIREMENTS

Materials not considered to be luminaires or luminaire accessories are specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Luminaires and
accessories mounted on exterior surfaces of buildings are specified in Section 26 56 00 EXTERIOR LIGHTING.

1.3 DEFINITIONS

a. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, must be as defined in IEEE 100 and IES RP-16.

c. For LED luminaire light sources, "Useful Life" is the operating hours before reaching 70 percent of the initial rated lumen output (L70) with no catastrophic failures under normal operating conditions. This is also known as 70 percent "Rated Lumen Maintenance Life" as defined in IES LM-80.

e. For LED luminaires, "Luminaire Efficacy" (LE) is the appropriate measure of energy efficiency, measured in lumens/watt. This is gathered from LM-79 data for the luminaire, in which absolute photometry is used to measure the lumen output of the luminaire as one entity, not the source separately and then the source and housing together.

f. Total harmonic distortion (THD) is the root mean square (RMS) of all the harmonic components divided by the total fundamental current.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Data, drawings, and reports must employ the terminology, classifications and methods prescribed by the IES HB-10 as applicable, for the lighting system specified. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
 Luminaire Drawings; G
 Occupancy/Vacancy Sensor Coverage Layout; G

SD-03 Product Data
 Luminaires; G
 Light Sources; G
 Drivers, Ballasts and Generators; G
 LED Luminaire Warranty; G
 Luminaire Design Data; G
 Vacancy Sensors; G
 Dimming Controllers (Dimmers); G
Lighting Contactor; G

Exit Signs; G

Occupancy Sensors; G

Ambient Light Level Sensor; G

Lighting Control Panel; G

SD-06 Test Reports

LED Luminaire - IES LM-79 Test Report; G

LED Light Source - IES LM-80 Test Report; G

LED Light Source - IES TM-21 Test Report; G

Occupancy/Vacancy Sensor Verification Tests; G

Energy Efficiency; G

SD-07 Certificates

Luminaire Useful Life Certificate; G

LED Driver and Dimming Switch Compatibility Certificate; G

1.5 QUALITY CONTROL

1.5.1 Luminaire Drawings

Include dimensions, accessories, and installation and construction details. Photometric data, including zonal lumen data, average and minimum ratio, aiming diagram, and computerized candlepower distribution data must accompany shop drawings.

1.5.2 Occupancy/Vacancy Sensor Coverage Layout

Provide floor plans showing coverage layouts of all devices using manufacturer's product information.

1.5.3 LED Driver and Dimming Switch Compatibility Certificate

Submit certification from the luminaire, driver, or dimmer switch manufacturer that ensures compatibility and operability between devices.

1.5.4 Luminaire Design Data

a. Provide safety certification and file number for the luminaire family that must be listed, labeled, or identified per the NFPA 70 (NEC). Applicable testing bodies are determined by the US Occupational Safety Health Administration (OSHA) as Nationally Recognized Testing Laboratories (NRTL) and include: CSA (Canadian Standards Association), ETL (Edison Testing Laboratory), and UL (Underwriters Laboratories).
b. Provide long term lumen maintenance projections for each LED luminaire in accordance with IES TM-21. Data used for projections must be obtained from testing in accordance with IES LM-80.

1.5.5 LED Luminaire - IES LM-79 Test Report

Submit test report on manufacturer's standard production model luminaire. Include all applicable and required data as outlined under "14.0 Test Report" in IES LM-79.

1.5.6 LED Light Source - IES LM-80 Test Report

Submit report on manufacturer's standard production LED light source (package, array, or module). Include all applicable and required data as outlined under "8.0 Test Report" in IES LM-80.

1.5.7 LED Light Source - IES TM-21 Test Report

Submit test report on manufacturer's standard production LED light source (package, array or module). Include all applicable and required data, as well as required interpolation information as outlined under "7.0 Report" in IES TM-21.

1.5.8 Occupancy/Vacancy Sensor Verification Tests

Submit test report outlining post-installation coverage and operation of sensors.

1.5.9 Test Laboratories

Test laboratories for the IES LM-79 and IES LM-80 test reports must be one of the following:

a. National Voluntary Laboratory Accreditation Program (NVLAP) accredited for solid-state lighting testing as part of the Energy-Efficient Lighting Products laboratory accreditation program for both LM-79 and LM-80 testing.

b. One of the qualified labs listed on the Department of Energy - LED Lighting Facts Approved Testing Laboratories List at for LM-79 testing.

c. One of the EPA-Recognized Laboratories listed at for LM-80 testing.

1.5.10 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship must be in accordance with the mandatory and advisory provisions of NFPA 70, unless more stringent requirements are specified or indicated.

1.5.11 Standard Products

Provide materials and equipment that are products of manufacturers
regularly engaged in the production of such products which are of equal material, design and workmanship. Products must have been in satisfactory commercial or industrial use for two years prior to bid opening. The two-year period must include applications of equipment and materials under similar circumstances and of similar size. The product must have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the two-year period. Where two or more items of the same class of equipment are required, these items must be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.5.11.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.5.11.2 Material and Equipment Manufacturing Date

Products manufactured more than six months prior to date of delivery to site must not be used, unless specified otherwise.

1.5.11.3 Energy Efficiency

Submit data indicating lumens per watt efficacy and color rendering index of light source.

1.6 WARRANTY

Support all equipment items by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.6.1 LED Luminaire Warranty

a. Provide a written 10 year on-site replacement warranty for material, fixture finish, and workmanship. On-site replacement includes transportation, removal, and installation of new products.

 (1) Include finish warranty to include failure and substantial deterioration such as blistering, cracking, peeling, chalking, or fading.

 (2) Material warranty must include:

 (a) All drivers.

 (b) Replacement when more than 10 percent of LED sources in any lightbar or subassembly(s) are defective or non-starting.

b. Warranty period must begin on date of beneficial occupancy. Provide the Contracting Officer with signed warranty certificates prior to final payment.

1.6.1.1 Provide Luminaire Useful Life Certificate

Submit certification from the manufacturer indicating the expected useful
life of the luminaires provided. The useful life must be directly correlated from the IES LM-80 test data using procedures outlined in IES TM-21. Thermal properties of the specific luminaire and local ambient operating temperature and conditions must be taken into consideration.

PART 2 PRODUCTS

2.1 PRODUCT COORDINATION

Products and materials not considered to be luminaires, luminaire controls, or associated equipment are specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Luminaires, luminaire controls, and associated equipment for exterior applications are specified in Section 26 56 00 EXTERIOR LIGHTING.

2.2 LUMINAIRES

UL 1598, NEMA C82.77, and UL 8750. Provide luminaires as indicated in luminaire schedule and NL plates or details on project plans. Provide luminaires complete with light sources of quantity, type, and wattage indicated. Provide all luminaires of the same type by the same manufacturer. Luminaires must be specifically designed for use with the driver, ballast or generator and light source provided.

2.2.1 LED Luminaires

Provide luminaires complete with power supplies (drivers) and light sources. Provide design information including lumen output and design life in luminaire schedule on project plans for LED luminaires. LED luminaires must meet the minimum requirements in the following table:

<table>
<thead>
<tr>
<th>LUMINAIRE TYPE</th>
<th>MINIMUM LUMINAIRE EFFICACY (LE)</th>
<th>MINIMUM COLOR RENDERING INDEX (CRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED TROFFER -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 x 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 2</td>
<td>90 LPW</td>
<td>80</td>
</tr>
<tr>
<td>2 x 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED Downlight</td>
<td>50 LPW</td>
<td>90</td>
</tr>
<tr>
<td>LED Track or Accent</td>
<td>40 LPW</td>
<td>80</td>
</tr>
<tr>
<td>LED Low Bay/High Bay</td>
<td>80 LPW</td>
<td>70</td>
</tr>
<tr>
<td>LED Linear Ambient</td>
<td>80 LPW</td>
<td>80</td>
</tr>
</tbody>
</table>

LED luminaires must also meet the following minimum requirements:

a. Luminaires must have a minimum 10 year manufacturer's warranty.

b. Luminaires must have a minimum L70 lumen maintenance value of 50,000 hours as calculated by IES TM-21, with data obtained per IES LM-80 requirements.

c. Luminaire drive current value must be identical to that provided by test data for luminaire in question.

d. Luminaires must be tested to IES LM-79 and IES LM-80 standards, with the results provided as required in the Submittals paragraph of this specification.
e. Luminaires must be listed with the DesignLights Consortium 'Qualified Products List' when falling into category of "General Application" luminaires, i.e. Interior Directional, Display Case, Troffer, Linear Ambient, or Low/High Bay. Requirements are shown in the DesignLights Consortium "Technical Requirements Table" at https://data.energystar.gov/dataset/EPA-Recognized-Laboratories-For-Lighting-Products.

f. Provide Department of Energy 'Lighting Facts' label for each luminaire.

2.3 DRIVERS, BALLASTS and GENERATORS

2.3.1 LED Drivers

NEMA SSL 1, UL 8750. LED drivers must be electronic, UL Class 1, constant-current type and comply with the following requirements:

a. Output power (watts) and luminous flux (lumens) as shown in luminaire schedule for each luminaire type to meet minimum luminaire efficacy (LE) value provided.

b. Power Factor (PF) greater than or equal to 0.9 over the full dimming range when provided.

c. Current draw Total Harmonic Distortion (THD) of less than 20 percent.

d. Class A sound rating.

e. Operable at input voltage of 120-277 volts at 60 hertz.

f. Minimum 10 year manufacturer's warranty.

g. RoHS compliant.

h. Integral thermal protection that reduces or eliminates the output power if case temperature exceeds a value detrimental to the driver.

i. UL listed for dry or damp locations typical of interior installations.

j. Fully-dimmable using 0-10V control as indicated in luminaire schedule.

2.4 LIGHT SOURCES

NEMA ANSLG C78.377, NEMA SSL 3. Provide type and wattage as indicated in luminaire schedule on project plans.

2.4.1 LED Light Sources

a. Correlated Color Temperature (CCT) of 4000 degrees K.

b. Minimum Color Rendering Index (CRI) R9 value of 80.

c. High power, white light output utilizing phosphor conversion (PC) process.

d. RoHS compliant.

e. Provide light source color consistancy by utilizing a binning tolerance.
within a 4 step McAdam ellipse.

2.5 LIGHTING CONTROLS

ASHRAE 90.1 - IP ASHRAE 189.1. Provide network certification for all networked lighting control systems and devices per requirements of DOD 8500.01 and DOD 8510.01.

2.5.1 Toggle Switches

Provide line-voltage toggle switches as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.5.2 Dimming Controllers (Dimmers)

UL 1472, UL 20, IEEE C62.41, NEMA SSL 7A. 120/277 V0-10 V dimmers must provide flicker-free, continuously variable light output throughout the dimming range. Provide radio frequency interference suppression integral to device. Provide dimmers utilizing pulse width modulation (PWM)constant current reduction (CCR) technology. Provide device with a vertical slider, paddle, rotary button, or toggle (with adjacent vertical slider) type control, with finish to match switches and outlets in same area. Provide back box in wall with sufficient depth to accommodate body of switch and wiring. Devices must be capable of operating at their full rated capacity regardless of being single or ganged-mounted, and be compatible with three-way and four-way switching scenarios. Dimmers must be capable of controlling 0-10 volt LED drivers. Ensure compatibility of dimmer with separate power packs when utilized for lighting control. Dimmers and the ballasts or drivers they control, must be provided from the same manufacturer, or tested and certified as compatible for use together. Provide NEMA SSL 7A-compliant devices.

2.5.3 Sensors for Lighting Control

IEEE C62.41, NEMA WD 1, UL 94, UL 916, UL 508, ASTM D4674 REV A.

2.5.3.1 Occupancy Sensors

Provide occupancy sensors with coverage patterns as indicated on project plans. Provide no less quantity of sensors as shown on plans, but add additional sensors when required to fulfill coverage requirement for the specific model sensor provided. Sensor must be provided with an adaptive learning function that automatically sets sensor in optimum calibration in a set period of time after installation and a non-volatile memory that saves settings after a power outage. Provide sensors designed for ceiling, wall or wall-box installation as indicated. Operating voltage must be 277 volts. Operating voltage must be 24V in conjunction with a control system or separate power pack which interacts with luminaire being controlled. Provide housing of high-impact, injection-molded thermoplastic with a multi-segmented lens for PIR and dual technology sensors. Sensor operation requires movement to activate luminaires controlled, and turns luminaires off after a set time of inactivity. Provide integral photocell mounted in occupancy sensor housing when indicated.

2.5.3.1.1 Passive Infrared (PIR) Sensors

Provide ceiling or wall-mounted PIR sensors meeting the following requirements:
a. Temperature compensated, dual element sensor and a multi-element fresnel lens (Poly IR4 material).

b. Technology to optimize automatic time delay to fit occupant usage patterns.

c. No minimum load requirement for line voltage sensors and be capable of switching from zero to 800 W at 120 VAC, 50/60 Hz and from zero to 1200 W at 277 VAC, 50/60 Hz. Control voltage sensors must not exceed a maximum load requirement of 20 mA at 24VDC.

d. Time delay of five to 30 minutes in increments of five minutes with a walk through and test mode set by DIP switch.

e. LED indicator that remains active during occupancy.

f. Built-in light level sensor that is operational from 8 to 180 foot-candles.

g. Coverage pattern tested to NEMA WD 7 standards.

h. Standard five year warranty and be UL listed

i. No leakage current to load when in the off mode.

2.5.3.1.2 Ultrasonic Sensors

Provide ceiling-mounted ultrasonic sensors meeting the following requirements:

a. Operate at an ultrasonic frequency of 40 kHz.

b. LED on exterior of device to indicate occupant detection.

c. Adjustable time delay period of 15 seconds to 15 minutes.

d. UL listed with minimum five year warranty.

e. Provide with isolated relay for integrating control of HVAC or other automated systems.

2.5.3.1.3 Dual Technology Sensors

Provide dual technology sensors that meet the requirements for PIR sensors and ultrasonic sensors indicated above. If either the passive infrared or ultrasonic sensing registers occupancy, the luminaires must remain on.

2.5.3.1.4 Power Packs for Sensors

UL 2043, CEC Title 24, ASHRAE 90.1 - IP. Power packs used to provide power to one or more lighting control sensors must meet the following requirements:

a. Input voltage - 120-277 VAC; output voltage - 24 VDC at 225 mA.

b. Plenum-rated, high-impact thermoplastic enclosure.

c. Utilizes zero-crossing circuitry to prevent damage from inrush current.
d. Maximum load rating of 16 amps for electronic lighting loads.

e. RoHS compliant.

2.5.3.2 Vacancy Sensors

Provide vacancy sensors as indicated above under paragraph OCCUPANCY SENSORS, but with requirement of a manual operation to activate luminaires controlled. Provide automatic operation to turn luminaires off after a set period of inactivity.

2.5.4 Lighting Contactor

NEMA ICS 2. Provide an mechanically-held lighting contactor housed in a NEMA 1 enclosure conforming to NEMA ICS 6. Provide contactor with one normally-open (NO), single pole contacts, rated 600 volts, 30 amps. Provide coil operating voltage of 120 volts.

2.5.5 Lighting Control Panel

Provide an electronic, programmable lighting control panel, capable of providing lighting control with input from internal programming, digital switches, time clocks, and other low-voltage control devices.

Enclose panel hardware in a surface-mounted, NEMA 1, painted, steel enclosure, with hinged, lockable access door and ventilation openings. Internal low-voltage compartment must be separated from line-voltage compartment of enclosure with only low-voltage compartment accessible upon opening of door.

Input voltage - 120/277 V, 60 Hz, with internal 24 VDC power supply.

Provide 8 single-pole latching relays rated at 20 amps, 277 volts.

Relay control module must operate at 24 VDC and be rated to control a minimum of 8 relays.

2.5.6 Local Area Lighting Controller

CEC Title 24 and ASHRAE 90.1 - IP compliant. Provide controller designed for single area or room with the following requirements:

a. 277 volt input, designed for fluorescent or LED lighting loads.

b. 2 zone, with 1 relay rated 20 amps.

c. Provide daylight harvesting capability with full-range dimming control.

d. Inputs for occupancy sensor, photocell, and low-voltage wall switch.

e. Provide capability for receptacle load control.

f. Provide full 'OFF' function with input from external time clock input.

2.6 EXIT AND EMERGENCY LIGHTING EQUIPMENT

UL 924, NFPA 101, and NFPA 70 compliant.
2.6.1 Exit Signs

Provide exit signs consuming a maximum of five watts total.

2.6.1.1 LED Self-Powered Exit Signs

Provide in UV-stable, thermo-plastic housing with UL damp label, configured for mounting per plans. Provide 6 inch high, 3/4 inch stroke red lettering on face of sign. Provide chevrons on either side of lettering to indicate direction. Provide single or double face, as required. Equip with automatic power failure device, test switch, and pilot light, and fully automatic high/low trickle charger in a self-contained power pack. Battery must be sealed, maintenance free nickel-cadmium type, and must operate unattended for a period of not less than five years. Emergency run time must be a minimum of 1 1/2 hours. LEDs must have a minimum rated life of 10 years. Provide self-diagnostic circuitry integral to emergency LED driver.

2.6.2 Self-Diagnostic Circuitry for LED Emergency Drivers/Ballasts

Provide emergency lighting unit with fully-automatic, integral self-testing/diagnostic electronic circuitry. Circuitry must provide for a one minute diagnostic test every 28 days, and a 30 minute diagnostic test every six months, minimum. Any malfunction of the unit must be indicated by LED(s) visible from the exterior of the luminaire. A manual test switch must also be provided to perform a diagnostic test at any given time.

2.7 LUMINAIRE SUPPORT HARDWARE

2.7.1 Wire

ASTM A641/A641M; Galvanized, soft tempered steel, minimum 0.11 inches in diameter, or galvanized, braided steel, minimum 0.08 inches in diameter.

2.7.2 Wire for Humid Spaces

ASTM A580/A580M; Composition 302 or 304, annealed stainless steel, minimum 0.11 inches in diameter.

ASTM B164; UNS N04400, annealed nickel-copper alloy, minimum 0.11 inches in diameter.

2.7.3 Threaded Rods

Threaded steel rods, 3/16 inch diameter, zinc or cadmium coated.

2.7.4 Straps

Galvanized steel, one by 3/16 inch, conforming to ASTM A653/A653M, with a light commercial zinc coating or ASTM A1008/A1008M with an electrodeposited zinc coating conforming to ASTM B633, Type RS.

2.8 EQUIPMENT IDENTIFICATION

2.8.1 Manufacturer's Namplate

Each item of equipment must have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be
acceptable.

2.8.2 Labels

Provide labeled luminaires in accordance with UL 1598 requirements. All luminaires must be clearly marked for operation of specific light sources and ballasts, generators or drivers. Note the following light source characteristics in the format "Use Only _____":

e. Correlated color temperature (CCT) and color rendering index (CRI) for all luminaires.

All markings related to light source type must be clear and located to be readily visible to service personnel, but unseen from normal viewing angles when light sources are in place. Ballasts, generators or drivers must have clear markings indicating multi-level outputs and indicate proper terminals for the various outputs.

2.9 FACTORY APPLIED FINISH

Provide all luminaires and lighting equipment with factory-applied painting system that as a minimum, meets requirements of NEMA 250 corrosion-resistance test.

2.10 RECESS- AND FLUSH-MOUNTED LUMINAIRES

Provide access to lamp and ballast from bottom of luminaire. Provide trim and lenses for the exposed surface of flush-mounted luminaires as indicated on project drawings and specifications.

2.11 SUSPENDED LUMINAIRES

Provide hangers capable of supporting twice the combined weight of luminaires supported by hangers. Provide with swivel hangers to ensure a plumb installation. Provide cadmium-plated steel with a swivel-ball tapped for the conduit size indicated. Hangers must allow fixtures to swing within an angle of 45 degrees. Brace pendants 4 feet or longer to limit swinging. Single-unit suspended luminaires must have twin-stem hangers. Multiple-unit or continuous row luminaires must have a tubing or stem for wiring at one point and a tubing or rod suspension provided for each unit length of chassis, including one at each end. Provide rods in minimum 0.18 inch diameter.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations must conform to IEEE C2, NFPA 70, and to the requirements specified herein. Install luminaires and lighting controls to meet the requirements of ASHRAE 90.1 - IP and ASHRAE 189.1. To encourage consistancy and uniformity, install luminaires of the same manufacture and model number when residing in the same facility or building.

3.1.1 Light Sources

When light sources are not provided as an integral part of the luminaire, deliver light sources of the type, wattage, lumen output, color temperature, color rendering index, and voltage rating indicated to the
project site and install just prior to project completion, if not already installed in the luminaires from the factory.

3.1.2 Luminaires

Set luminaires plumb, square, and level with ceiling and walls, in alignment with adjacent luminaires and secure in accordance with manufacturers' directions and approved drawings. Installation must meet requirements of NFPA 70. Mounting heights specified or indicated must be to the bottom of the luminaire for ceiling-mounted luminaires and to center of luminaire for wall-mounted luminaires. Obtain approval of the exact mounting height on the job before commencing installation and, where applicable, after coordinating with the type, style, and pattern of the ceiling being installed. Recessed and semi-recessed luminaires must be independently supported from the building structure by a minimum of four wires, straps or rods per luminaire and located near each corner of the luminaire. Ceiling grid clips are not allowed as an alternative to independently supported luminaires. Round luminaires or luminaires smaller in size than the ceiling grid must be independently supported from the building structure by a minimum of four wires, straps or rods per luminaire, spaced approximately equidistant around. Do not support luminaires by acoustical tile ceiling panels. Where luminaires of sizes less than the ceiling grid are indicated to be centered in the acoustical panel, support each independently and provide at least two 3/4 inch metal channels spanning, and secured to, the ceiling tees for centering and aligning the luminaire. Provide wires, straps, or rods for luminaire support in this section. Luminaires installed in suspended ceilings must also comply with the requirements of Section 09 51 00 ACOUSTICAL CEILINGS.

3.1.3 Suspended Luminaires

Provide suspended luminaires with 45 degree swivel hangers so that they hang plumb and level. Locate so that there are no obstructions within the 45 degree range in all directions. The stem, canopy and luminaire must be capable of 45 degree swing. Pendants, rods, or chains 4 feet or longer excluding luminaire must be braced to prevent swaying using three cables at 120 degree separation. Suspended luminaires in continuous rows must have internal wireway systems for end to end wiring and must be properly aligned to provide a straight and continuous row without bends, gaps, light leaks or filler pieces. Utilize aligning splines on extruded aluminum luminaires to assure minimal hairline joints. Support steel luminaires to prevent "oil-canning" effects. Luminaire finishes must be free of scratches, nicks, dents, and warps, and must match the color and gloss specified. Match supporting pendants with supported luminaire. Aircraft cable must be stainless steel. Canopies must be finished to match the ceiling and must be low profile unless otherwise shown. Maximum distance between suspension points must be 10 feet or as recommended by the manufacturer, whichever is less.

3.1.4 Ballasts, Generators and Power Supplies

Typically, provide ballasts, generators, and power supplies (drivers) integral to luminaire as constructed by the manufacturer.

3.1.5 Exit Signs and Emergency Lighting Units

Wire exit signs and emergency lighting units ahead of the local switch, to the normal lighting circuit located in the same room or area.
3.1.5.1 Exit Signs

Connect exit signs on separate circuits and serve from an emergency panel. Provide only one source of control, which would be the circuit breaker in the emergency panel. Paint source of control red and provide lockout capability.

3.1.6 Photocell Switch Aiming

Aim switch according to manufacturer's recommendations.

3.1.7 Occupancy/Vacancy Sensors

Provide testing of sensor coverage in all spaces where sensors are placed. This should be done only after all furnishings (carpet, furniture, workstations, etc.) have been installed. Provide quantity of sensor units indicated as a minimum. Provide additional units to give full coverage over controlled area. Full coverage must provide hand and arm motion detection for office and administration type areas and walking motion for industrial areas, warehouses, storage rooms and hallways. Locate the sensor(s) as indicated and in accordance with the manufacturer's recommendations to maximize energy savings and to avoid nuisance activation and deactivation due to sudden temperature or airflow changes and usage.

3.1.8 Daylight or Ambient Light Level Sensor

Locate sensor as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for 30 footcandles or for the indicated light level measured at the work plane for that particular area.

3.2 FIELD APPLIED PAINTING

Paint lighting equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Provide painting as specified in Section 09 90 00 PAINTS AND COATINGS.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ILLUMINATING ENGINEERING SOCIETY (IES)

IES HB-10 (2011; Errata 2015) IES Lighting Handbook
IES RP-16 (2010; Addendum A 2008; Addenda B 2009; Addendum C 2016) Nomenclature and Definitions for Illuminating Engineering
IES TM-15 (2011) Luminaire Classification System for Outdoor Luminaires
IES TM-21 (2011) Projecting Long Term Lumen Maintenance of LED Light Sources

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

1.2 RELATED REQUIREMENTS

Materials not considered to be luminaires or lighting equipment are specified in Section(s) 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION. Luminaires and accessories installed in interior of buildings are specified in Section 26 51 00 INTERIOR LIGHTING.
1.3 DEFINITIONS

a. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings shall be as defined in IEEE 100 and IES RP-16.

c. For LED luminaire light sources, "Useful Life" is the operating hours before reaching 70 percent of the initial rated lumen output (L70) with no catastrophic failures under normal operating conditions. This is also known as 70 percent "Rated Lumen Maintenance Life" as defined in IES LM-80.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

Photometric Plan; G

LED Luminaire Warranty; G

SD-02 Shop Drawings

Luminaire drawings; G

SD-03 Product Data

LED Luminaires; G

Luminaire Light Sources; G

Luminaire Power Supply Units (Drivers); G

Time switch; G

Photocell; G

SD-05 Design Data

Design Data for luminaires; G

SD-06 Test Reports

LED Luminaire - IES LM-79 Test Report; G

LED Light Source - IES LM-80 Test Report; G
Operating test

Submit operating test results as stated in paragraph entitled "Field Quality Control."

SD-07 Certificates

Luminaire Useful Life Certificate; G

Submit certification from the manufacturer indicating the expected useful life of the luminaires provided. The useful life shall be directly correlated from the IES LM-80 test data using procedures outlined in IES TM-21. Thermal properties of the specific luminaire and local ambient operating temperature and conditions shall be taken into consideration.

SD-10 Operation and Maintenance Data

Electronic Ballast Warranty

Submit documentation that includes contact information, summary of procedures, and the limitations and conditions applicable to the project. Indicate manufacturer's commitment to reclaim materials for recycling and/or reuse.

1.5 QUALITY ASSURANCE

1.5.1 Drawing Requirements

1.5.1.1 Luminaire Drawings

Include dimensions, effective projected area (EPA), accessories, and installation and construction details. Photometric data, including zonal lumen data, average and minimum ratio, aiming diagram, and candela distribution data shall accompany shop drawings.

1.5.2 Photometric Plan

For LED luminaires, include computer-generated photometric analysis of the "designed to" values for the "end of useful life" of the luminaire installation using a light loss factor of 0.7. For LED and all other types of luminaires, the submittal shall include the following:

Horizontal illuminance measurements at finished grade, taken at a maximum of every 10 feet.

Vertical illuminance measurements at 5 feet above finished grade.

Minimum and maximum footcandle levels.

Average maintained footcandle level.

Maximum to minimum ratio for horizontal illuminance only.
1.5.3 Design Data for Luminaires

a. Provide distribution data according to IES classification type as defined in IES HB-10.

b. Shielding as defined by IES RP-8 or B.U.G. rating for the installed position as defined by IES TM-15.

c. Provide safety certification and file number for the luminaire family. Include listing, labeling and identification per NFPA 70 (NEC). Applicable testing bodies are determined by the US Occupational Safety Health Administration (OSHA) as Nationally Recognized Testing Laboratories (NRTL) and include: CSA (Canadian Standards Association), ETL (Edison Testing Laboratory), and UL (Underwriters Laboratories).

d. Provide long term lumen maintenance projections for each LED luminaire in accordance with IES TM-21. Data used for projections shall be obtained from testing in accordance with IES LM-80.

e. Provide wind loading calculations for luminaires mounted on poles. Weight and effective projected area (EPA) of luminaires and mounting brackets shall not exceed maximum rating of pole as installed in particular wind zone area.

1.5.4 LED Luminaire - IES LM-79 Test Report

Submit test report on manufacturer's standard production model luminaire. Submittal shall include all photometric and electrical measurements, as well as all other pertinent data outlined under "14.0 Test Report" in IES LM-79.

1.5.5 LED Light Source - IES LM-80 Test Report

Submit report on manufacturer's standard production LED package, array, or module. Submittal shall include:

a. Testing agency, report number, date, type of equipment, and LED light source being tested.

b. All data required by IES LM-80.

1.5.5.1 Test Laboratories

Test laboratories for the IES LM-79 and IES LM-80 test reports shall be one of the following:

a. National Voluntary Laboratory Accreditation Program (NVLAP) accredited for solid-state lighting testing as part of the Energy-Efficient Lighting Products laboratory accreditation program.

c. A manufacturer's in-house lab that meets the following criteria:
 1. Manufacturer has been regularly engaged in the design and production of high intensity discharge roadway and area luminaires and the manufacturer's lab has been successfully certifying these fixtures for a minimum of 15 years.
2. Annual equipment calibration including photometer calibration in accordance with National Institute of Standards and Technology.

1.5.6 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.5.7 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.5.7.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if the manufacturer has been regularly engaged in the design and production of high intensity discharge roadway and area luminaires for a minimum of 15 years. Products shall have been in satisfactory commercial or industrial use for 15 years prior to bid opening. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 15-year period.

1.5.7.2 Material and Equipment Manufacturing Date

Products manufactured more than 1 year prior to date of delivery to site shall not be used, unless specified otherwise.

1.6 WARRANTY

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.6.1 LED Luminaire Warranty

Provide Luminaire Useful Life Certificate.

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.
a. Provide a written five year on-site replacement warranty for material, fixture finish, and workmanship. On-site replacement includes transportation, removal, and installation of new products.

1. Finish warranty shall include warranty against failure and against substantial deterioration such as blistering, cracking, peeling, chalking, or fading.

2. Material warranty shall include:
 (a) All power supply units (drivers).
 (b) Replacement when more than 10 percent of LED sources in any lightbar or subassembly(s) are defective or non-starting.

b. Warranty period must begin on date of beneficial occupancy. Contractor shall provide the Contracting Officer signed warranty certificates prior to final payment.

1.6.2 Electronic Ballast Warranty

Furnish the electronic ballasts manufacturer's warranty. The warranty period shall not be less than five (5) years from the date of manufacture. Ballast assembly in the lighting fixture, transportation, and on-site storage shall not exceed twelve (12) months, thereby permitting four (4) years of the five (5) year warranty to be in service and energized. The warranty shall state that the malfunctioning ballast shall be exchanged by the manufacturer and promptly shipped to the using Government facility. The replacement ballast shall be identical to, or an improvement upon, the original design of the malfunctioning ballast.

PART 2 PRODUCTS

2.1 PRODUCT COORDINATION

Products and materials not considered to be luminaires, equipment or accessories are specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION, and Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Luminaires and associated equipment and accessories for interior applications are specified in Section 26 51 00 INTERIOR LIGHTING.

2.2 LED LUMINAIRES

UL 1598, NEMA C82.77 and UL 8750. Provide luminaires as indicated in luminaire schedule and XL plates or details on project plans. Provide luminaires complete with light sources of quantity, type, and wattage indicated. All luminaires of the same type shall be provided by the same manufacturer.

2.2.1 General Requirements

a. LED luminaire housings shall be die cast or extruded aluminum.

b. LED luminaires shall be rated for operation within an ambient temperature range of minus 22 degrees F to 122 degrees F.

c. Luminaires shall be UL listed for wet locations per UL 1598. Optical compartment for LED luminaires shall be sealed and rated a minimum of
IP65 per NEMA IEC 60529.

d. LED luminaires shall produce a minimum efficacy as shown in the following table, tested per IES LM-79. Theoretical models of initial raw LED lumens per watt are not acceptable.

<table>
<thead>
<tr>
<th>Application</th>
<th>Luminaire Efficacy in Lumens per Watt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall-Mounted Area Luminaires</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

e. Luminaires shall have IES distribution and NEMA field angle classifications as indicated in luminaire schedule on project plans per IES HB-10.

f. Housing finish shall be baked-on enamel, anodized, or baked-on powder coat paint. Finish shall be capable of surviving ASTM B117 salt fog environment testing for 2500 hours minimum without blistering or peeling.

g. Luminaires shall not exceed the following IES TM-15 Backlight, Uplight and Glare (B.U.G.) ratings:

 1. Maximum Backlight (B) rating shall be determined by lighting zone in which luminaire is placed.
 2. Maximum Uplight (U) rating shall be U0.
 3. Maximum Glare (G) rating shall be determined by lighting zone in which luminaire is placed.

h. Luminaires shall be fully assembled and electrically tested prior to shipment from factory.

i. The finish color shall be as indicated in the luminaire schedule or detail on the project plans.

j. Luminaire arm bolts shall be 304 stainless steel or zinc-plated steel.

k. Luminaire lenses shall be constructed of clear tempered glass or UV-resistant acrylic.

l. The wiring compartment on pole-mounted, street and area luminaires must be accessible without the use of hand tools to manipulate small screws, bolts, or hardware.

m. Incorporate modular electrical connections, and construct luminaires to
allow replacement of all or any part of the optics, heat sinks, power supply units, ballasts, surge suppressors and other electrical components using only a simple tool, such as a manual or cordless electric screwdriver.

n. Luminaires shall have a nameplate bearing the manufacturer's name, address, model number, date of manufacture, and serial number securely affixed in a conspicuous place. The nameplate of the distributing agent will not be acceptable.

o. Roadway and area luminaires shall have an integral tilt adjustment of plus or minus 5 degrees to allow the unit to be leveled in accordance with ANSI C136.3.

p. Luminaire must pass 3G vibration testing in accordance with NEMA C136.31.

q. All factory electrical connections shall be made using crimp, locking, or latching style connectors. Twist-style wire nuts are not acceptable.

2.2.2 Luminaire Light Sources

2.2.2.1 LED Light Sources

a. Correlated Color Temperature (CCT) shall be in accordance with NEMA ANSI1G C78.377:

Nominal CCT: 4000 degrees K: 3985 plus or minus 275 degrees K

b. Color Rendering Index (CRI) shall be:

Greater than or equal to 70 for 4000 degrees K light sources.

c. Color Consistency:

Manufacturer shall utilize a maximum 4-step MacAdam ellipse binning tolerance for color consistency of LEDs used in luminaires.

2.2.3 Luminaire Power Supply Units (Drivers)

2.2.3.1 LED Power Supply Units (Drivers)

UL 1310. LED Power Supply Units (Drivers) shall meet the following requirements:

a. Minimum efficiency shall be 85 percent.

b. Drive current to each individual LED shall not exceed 600 mA, plus or minus 10 percent.

c. Shall be rated to operate between ambient temperatures of minus 22 degrees F and 104 degrees F 122 degrees F.

d. Shall be designed to operate on the voltage system to which they are connected, typically ranging from 120 V to 480 V nominal.

e. Operating frequency shall be: 50 or 60 Hz.

f. Power Factor (PF) shall be greater than or equal to 0.90.
g. Total Harmonic Distortion (THD) current shall be less than or equal to 20 percent.

h. Shall meet requirements of 47 CFR 15, Class B.

i. Shall be RoHS-compliant.

j. Shall be mounted integral to luminaire. Remote mounting of power supply is not allowed.

k. Power supplies in luminaires mounted under a covered structure, such as a canopy, or where otherwise appropriate shall be UL listed with a sound rating of A.

l. Shall be dimmable, and compatible with a standard dimming control circuit of 0 - 10V or other approved dimming system.

m. Shall be equipped with over-temperature protection circuit that turns light source off until normal operating temperature is achieved.

2.2.4 LED Luminaire Surge Protection

Provide surge protection integral to luminaire to meet C Low waveforms as defined by IEEE C62.41.2, Scenario 1, Location Category C.

2.3 EXTERIOR LUMINAIRE CONTROLS

2.3.1 Photocell

UL 773 or UL 773A. Photocells shall be hermetically sealed, cadmium sulfide light sensor type, rated at 1500 watts, 277 volts, 50/60 Hz with single-pole, single-throw contacts. Photocell shall be designed to fail to the ON position. Housing shall be constructed of polycarbonate, rated to operate within a temperature range of minus 40 to 158 degrees F. Photocell shall have a 1/2 in threaded base for mounting to a junction box or conduit. Provide fixed base type housing. Photocell shall turn on at 1-3 footcandles and turn off at 3 to 15 footcandles. A time delay shall prevent accidental switching from transient light sources. Provide a directional lens in front of the cell to prevent fixed light sources from creating a turnoff condition. Provide photocell with metal oxide varistor (MOV) type surge protection.

2.3.2 Timeswitch

Timeswitch shall be an electronic type with a 24 hour 7 day astronomic programming function that changes on/off settings according to seasonal variations of sunset and sunrise, providing a total of 56 on/off set points. Digital clock display format shall be AM/PM 12 hour type. Provide power outage backup for switch utilizing a capacitor which provides coverage for a minimum of 7 days. Timeswitch shall provide control to 2 channels or loads. Contacts shall be rated for 30 amps at 120-277 VAC resistive load in a SPST normally open (NO) configuration. Provide switch with function that allows automatic control to be skipped on certain selected days of the week, daylight savings time automatic adjustment and ability for photosensor input.

Timeswitch shall be housed in a surface-mounted, lockable NEMA 1 enclosure constructed of painted steel or plastic polymer conforming to NEMA ICS 6.
2.4 EQUIPMENT IDENTIFICATION

2.4.1 Manufacturer's Nameplate

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.4.2 Labels

Provide labeled luminaires in accordance with UL 1598 requirements. Luminaires shall be clearly marked for operation of specific light sources and ballasts according to proper light source type. The following light source characteristics shall be noted in the format "Use Only _____":

e. Correlated color temperature (CCT) and color rendering index (CRI) for all luminaires.

Markings related to lamp type shall be clear and located to be readily visible to service personnel, but unseen from normal viewing angles when lamps are in place.

2.5 FACTORY APPLIED FINISH

Electrical equipment shall have factory-applied painting systems which shall, as a minimum, meet the requirements of NEMA 250 corrosion-resistance test.

PART 3 EXECUTION

3.1 INSTALLATION

Electrical installations shall conform to IEEE C2, NFPA 70, and to the requirements specified herein.

3.1.1 Photocell Switch Aiming

Aim switch according to manufacturer's recommendations. Set adjustable window slide for 3 footcandles photocell turn-on.

3.1.2 GROUNDING

Ground noncurrent-carrying parts of equipment including metal poles, luminaires, mounting arms, brackets, and metallic enclosures as specified in Section 33 71 02 UNDERGROUND ELECTRICAL DISTRIBUTION. Where copper grounding conductor is connected to a metal other than copper, provide specially treated or lined connectors suitable for this purpose.

3.1.3 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.2 FIELD QUALITY CONTROL

Upon completion of installation, verify that equipment is properly installed, connected, and adjusted. Conduct an operating test after 100
hours of burn-in time to show that the equipment operates in accordance with the requirements of this section.

-- End of Section --
SECTION 27 10 00
BUILDING TELECOMMUNICATIONS CABLELING SYSTEM
08/11

PART 1 GENERAL
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)
ASTM D709 (2017) Laminated Thermosetting Materials

ELECTRONIC COMPONENTS INDUSTRY ASSOCIATION (ECIA)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INSULATED CABLE ENGINEERS ASSOCIATION (ICEA)
ICEA S-83-596 (2011) Indoor Optical Fiber Cables
ICEA S-90-661 (2012) Category 3, 5, & 5e Individually Unshielded Twisted Pair Indoor Cables for Use in General Purpose and LAN Communications Wiring Systems Technical Requirements

NATIONAL ELECTRICAL CONTRACTORS ASSOCIATION (NECA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)
ANSI/NEMA WC 66 (2013) Performance Standard for Category 6 and Category 7 100 Ohm Shielded and Unshielded Twisted Pairs

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)
NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code
TELECOMMUNICATIONS INDUSTRY ASSOCIATION (TIA)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIA-1152</td>
<td>(2009) Requirements for Field Test Instruments and Measurements for Balanced Twisted-Pair Cabling</td>
</tr>
<tr>
<td>TIA-455-21</td>
<td>(1988a; R 2012) FOTP-21 - Mating Durability of Fiber Optic Interconnecting Devices</td>
</tr>
<tr>
<td>TIA-526-14</td>
<td>(2015c) OFSTP-14A Optical Power Loss Measurements of Installed Multimode Fiber Cable Plant</td>
</tr>
<tr>
<td>TIA-526-7</td>
<td>(2015a) OFSTP-7 Measurement of Optical Power Loss of Installed Single-Mode Fiber Cable Plant</td>
</tr>
<tr>
<td>TIA-568-C.0</td>
<td>(2009; Add 1 2010; Add 2 2012) Generic Telecommunications Cabling for Customer Premises</td>
</tr>
<tr>
<td>TIA-568-C.1</td>
<td>(2009; Add 2 2011; Add 1 2012) Commercial Building Telecommunications Cabling Standard</td>
</tr>
<tr>
<td>TIA-568-C.2</td>
<td>(2009; Errata 2010) Balanced Twisted-Pair Telecommunications Cabling and Components Standards</td>
</tr>
<tr>
<td>TIA-568-C.3</td>
<td>(2008; Add 1 2011) Optical Fiber Cabling Components Standard</td>
</tr>
<tr>
<td>TIA-569</td>
<td>(2015d) Commercial Building Standard for Telecommunications Pathways and Spaces</td>
</tr>
<tr>
<td>TIA-606</td>
<td>(2012b; Add 1 2015) Administration Standard for the Telecommunications Infrastructure</td>
</tr>
<tr>
<td>TIA-607</td>
<td>(2011b) Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises</td>
</tr>
<tr>
<td>TIA/EIA-598</td>
<td>(2014d) Optical Fiber Cable Color Coding</td>
</tr>
<tr>
<td>TIA/EIA-604-10</td>
<td>(2002a) FOCIS 10 Fiber Optic Connector Intermateability Standard - Type LC</td>
</tr>
</tbody>
</table>

U.S. FEDERAL COMMUNICATIONS COMMISSION (FCC)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC Part 68</td>
<td>Connection of Terminal Equipment to the Telephone Network (47 CFR 68)</td>
</tr>
</tbody>
</table>

UNDERWRITERS LABORATORIES (UL)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 1286</td>
<td>(2008; Reprint Feb 2015) Office Furnishings</td>
</tr>
</tbody>
</table>
1.2 RELATED REQUIREMENTS

Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM apply to this section with additions and modifications specified herein.

1.3 DEFINITIONS

Unless otherwise specified or indicated, electrical and electronics terms used in this specification shall be as defined in TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-569, TIA-606 and IEEE 100 and herein.

1.3.1 Campus Distributor (CD)

A distributor from which the campus backbone cabling emanates. (International expression for main cross-connect (MC).)

1.3.2 Building Distributor (BD)

A distributor in which the building backbone cables terminate and at which connections to the campus backbone cables may be made. (International expression for intermediate cross-connect (IC).)

1.3.3 Floor Distributor (FD)

A distributor used to connect horizontal cable and cabling subsystems or equipment. (International expression for horizontal cross-connect (HC).)

1.3.4 Telecommunications Room (TR)

An enclosed space for housing telecommunications equipment, cable,
terminations, and cross-connects. The room is the recognized cross-connect between the backbone cable and the horizontal cabling.

1.3.5 Entrance Facility (EF) (Telecommunications)

An entrance to the building for both private and public network service cables (including wireless) including the entrance point at the building wall and continuing to the equipment room.

1.3.6 Equipment Room (ER) (Telecommunications)

An environmentally controlled centralized space for telecommunications equipment that serves the occupants of a building. Equipment housed therein is considered distinct from a telecommunications room because of the nature of its complexity.

1.3.7 Open Cable

Cabling that is not run in a raceway as defined by NFPA 70. This refers to cabling that is "open" to the space in which the cable has been installed and is therefore exposed to the environmental conditions associated with that space.

1.3.8 Open Office

A floor space division provided by furniture, moveable partitions, or other means instead of by building walls.

1.3.9 Pathway

A physical infrastructure utilized for the placement and routing of telecommunications cable.

1.4 SYSTEM DESCRIPTION

The building telecommunications cabling and pathway system shall include permanently installed backbone and horizontal cabling, horizontal and backbone pathways, service entrance facilities, work area pathways, telecommunications outlet assemblies, conduit, raceway, and hardware for splicing, terminating, and interconnecting cabling necessary to transport telephone and data (including LAN) between equipment items in a building. The horizontal system shall be wired in a star topology from the telecommunications work area to the floor distributor or campus distributor at the center or hub of the star. The backbone cabling and pathway system includes intrabuilding and interbuilding interconnecting cabling, pathway, and terminal hardware. The intrabuilding backbone provides connectivity from the floor distributors to the building distributors or to the campus distributor and from the building distributors to the campus distributor as required. The backbone system shall be wired in a star topology with the campus distributor at the center or hub of the star. Provide telecommunications pathway systems referenced herein as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. The telecommunications contractor must coordinate with the NMCI/COSC/NGEN contractor concerning access to and configuration of telecommunications spaces. The telecommunications contractor may be required to coordinate work effort within the telecommunications spaces with the NMCI/COSC/NGEN contractor.
1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Telecommunications drawings; G

Telecommunications Space Drawings; G

In addition to Section 01 33 00 SUBMITTAL PROCEDURES, provide shop drawings in accordance with paragraph SHOP DRAWINGS.

SD-03 Product Data

Telecommunications cabling (backbone and horizontal); G

Patch panels; G

Telecommunications outlet/connector assemblies; G

Equipment support frame; G

Connector blocks; G

Spare Parts; G

Submittals shall include the manufacturer's name, trade name, place of manufacture, and catalog model or number. Include performance and characteristic curves. Submittals shall also include applicable federal, military, industry, and technical society publication references. Should manufacturer's data require supplemental information for clarification, the supplemental information shall be submitted as specified in paragraph REGULATORY REQUIREMENTS and as required in Section 01 33 00 SUBMITTAL PROCEDURES.

SD-06 Test Reports

Telecommunications cabling testing; G

SD-07 Certificates

Telecommunications Contractor Qualifications; G

Key Personnel Qualifications; G

Manufacturer Qualifications; G

Test plan; G

SD-09 Manufacturer's Field Reports
1.6 QUALITY ASSURANCE

1.6.1 Shop Drawings

In exception to Section 01 33 00 SUBMITTAL PROCEDURES, submitted plan drawings shall be a minimum of 11 by 17 inches in size using a minimum scale of 1/8 inch per foot. Include wiring diagrams and installation details of equipment indicating proposed location, layout and arrangement, control panels, accessories, piping, ductwork, and other items that must be shown to ensure a coordinated installation. Wiring diagrams shall identify circuit terminals and indicate the internal wiring for each item of equipment and the interconnection between each item of equipment. Drawings shall indicate adequate clearance for operation, maintenance, and replacement of operating equipment devices. Submittals shall include the nameplate data, size, and capacity. Submittals shall also include applicable federal, military, industry, and technical society publication references.

1.6.1.1 Telecommunications Drawings

Provide registered communications distribution designer (RCDD) approved, drawings in accordance with TIA-606. The identifier for each termination and cable shall appear on the drawings. Drawings shall depict final telecommunications installed wiring system infrastructure in accordance with TIA-606. The drawings should provide details required to prove that the distribution system shall properly support connectivity from the EF telecommunications and ER telecommunications, CD's, BD's and FD's to the telecommunications work area outlets. Provide a plastic laminated schematic of the as-installed telecommunications cable system showing cabling, CD's, BD's, FD's, and the EF and ER for telecommunications keyed to floor plans by room number. Mount the laminated schematic in the EF telecommunications space as directed by the Contracting Officer. The following drawings shall be provided as a minimum:

a. T1 - Layout of complete building per floor - Building Area/Serving Zone Boundaries, Backbone Systems, and Horizontal Pathways. Layout of complete building per floor. The drawing indicates location of building areas, serving zones, vertical backbone diagrams, telecommunications rooms, access points, pathways, grounding system, and other systems that need to be viewed from the complete building perspective.

b. T2 - Serving Zones/Building Area Drawings - Drop Locations and Cable Identification (ID’S). Shows a building area or serving zone. These drawings show drop locations, telecommunications rooms, access points and detail call outs for common equipment rooms and other congested areas.

c. T4 - Typical Detail Drawings - Faceplate Labeling, Firestopping, Americans with Disabilities Act (ADA), Safety, Department of
Transportation (DOT). Detailed drawings of symbols and typicals such as faceplate labeling, faceplate types, faceplate population installation procedures, detail racking, and raceways.

1.6.1.2 Telecommunications Space Drawings

Provide T3 drawings in accordance with TIA-606 that include telecommunications rooms plan views, pathway layout (cable tray, racks, ladder-racks, etc.), mechanical/electrical layout, and cabinet, backboard and wall elevations. Drawings shall show layout of applicable equipment including incoming cable stub or connector blocks, building protector assembly, outgoing cable connector blocks, patch panels and equipment spaces and cabinet/racks. Drawings shall include a complete list of equipment and material, equipment rack details, proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearance for maintenance and operation. Drawings may also be an enlargement of a congested area of T1 or T2 drawings.

1.6.2 Telecommunications Qualifications

Work under this section shall be performed by and the equipment shall be provided by the approved telecommunications contractor and key personnel. Qualifications shall be provided for: the telecommunications system contractor, the telecommunications system installer, and the supervisor (if different from the installer). A minimum of 30 days prior to installation, submit documentation of the experience of the telecommunications contractor and of the key personnel.

1.6.2.1 Telecommunications Contractor

The telecommunications contractor shall be a firm which is regularly and professionally engaged in the business of the applications, installation, and testing of the specified telecommunications systems and equipment. The telecommunications contractor shall demonstrate experience in providing successful telecommunications systems within the past 3 years of similar scope and size. Submit documentation for a minimum of three and a maximum of five successful telecommunication system installations for the telecommunications contractor.

1.6.2.2 Key Personnel

Provide key personnel who are regularly and professionally engaged in the business of the application, installation and testing of the specified telecommunications systems and equipment. There may be one key person or more key persons proposed for this solicitation depending upon how many of the key roles each has successfully provided. Each of the key personnel shall demonstrate experience in providing successful telecommunications systems within the past 3 years.

Supervisors and installers assigned to the installation of this system or any of its components shall be Building Industry Consulting Services International (BICSI) Registered Cabling Installers, Technician Level. Submit documentation of current BICSI certification for each of the key personnel.

In lieu of BICSI certification, supervisors and installers assigned to the installation of this system or any of its components shall have a minimum of 3 years experience in the installation of the specified copper and fiber
optic cable and components. They shall have factory or factory approved certification from each equipment manufacturer indicating that they are qualified to install and test the provided products. Submit documentation for a minimum of three and a maximum of five successful telecommunications system installations for each of the key personnel. Documentation for each key person shall include at least two successful system installations provided that are equivalent in system size and in construction complexity to the telecommunications system proposed for this solicitation. Include specific experience in installing and testing telecommunications systems and provide the names and locations of at least two project installations successfully completed using optical fiber and copper telecommunications cabling systems. All of the existing telecommunications system installations offered by the key persons as successful experience shall have been in successful full-time service for at least 18 months prior to the issuance date for this solicitation. Provide the name and role of the key person, the title, location, and completed installation date of the referenced project, the referenced project owner point of contact information including name, organization, title, and telephone number, and generally, the referenced project description including system size and construction complexity.

Indicate that all key persons are currently employed by the telecommunications contractor, or have a commitment to the telecommunications contractor to work on this project. All key persons shall be employed by the telecommunications contractor at the date of issuance of this solicitation, or if not, have a commitment to the telecommunications contractor to work on this project by the date that the bid was due to the Contracting Officer.

Note that only the key personnel approved by the Contracting Officer in the successful proposal shall do work on this solicitation's telecommunications system. Key personnel shall function in the same roles in this contract, as they functioned in the offered successful experience. Any substitutions for the telecommunications contractor's key personnel requires approval from The Contracting Officer.

1.6.2.3 Minimum Manufacturer Qualifications

Cabling, equipment and hardware manufacturers shall have a minimum of 3 years experience in the manufacturing, assembly, and factory testing of components which comply with TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3.

1.6.3 Test Plan

Provide a complete and detailed test plan for the telecommunications cabling system including a complete list of test equipment for the components and accessories for each cable type specified, 60 days prior to the proposed test date. Include procedures for certification, validation, and testing.

1.6.4 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "shall" had been substituted for "should" wherever it appears. Interpret references in
these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship shall be in accordance with the mandatory and advisory provisions of NFPA 70 unless more stringent requirements are specified or indicated.

1.6.5 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period shall include applications of equipment and materials under similar circumstances and of similar size. The product shall have been on sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items shall be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.6.5.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.6.5.2 Material and Equipment Manufacturing Date

Products manufactured more than 1 year prior to date of delivery to site shall not be used, unless specified otherwise.

1.7 DELIVERY AND STORAGE

Provide protection from weather, moisture, extreme heat and cold, dirt, dust, and other contaminants for telecommunications cabling and equipment placed in storage.

1.8 ENVIRONMENTAL REQUIREMENTS

Connecting hardware shall be rated for operation under ambient conditions of 32 to 140 degrees F and in the range of 0 to 95 percent relative humidity, noncondensing.

1.9 WARRANTY

The equipment items shall be supported by service organizations which are reasonably convenient to the equipment installation in order to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract.

1.10 MAINTENANCE

1.10.1 Operation and Maintenance Manuals

Commercial off the shelf manuals shall be furnished for operation, installation, configuration, and maintenance of products provided as a part of the telecommunications cabling and pathway system, Data Package 5. Submit operations and maintenance data in accordance with Section 01000
OPERATION AND MAINTENANCE DATA and as specified herein not later than 2 months prior to the date of beneficial occupancy. In addition to requirements of Data Package 5, include the requirements of paragraphs TELECOMMUNICATIONS DRAWINGS, TELECOMMUNICATIONS SPACE DRAWINGS, and RECORD DOCUMENTATION. Ensure that these drawings and documents depict the as-built configuration.

1.10.2 Record Documentation

Provide T5 drawings including documentation on cables and termination hardware in accordance with TIA-606. T5 drawings shall include schedules to show information for cut-overs and cable plant management, patch panel layouts and cover plate assignments, cross-connect information and connecting terminal layout as a minimum. T5 drawings shall be provided in hard copy format. Provide the following T5 drawing documentation as a minimum:

a. Cables - A record of installed cable shall be provided in accordance with TIA-606. The cable records shall include only the required data fields in accordance with TIA-606. Include manufacture date of cable with submittal.

b. Termination Hardware - A record of installed patch panels, cross-connect points, distribution frames, terminating block arrangements and type, and outlets shall be provided in accordance with TIA-606. Documentation shall include the required data fields as a minimum in accordance with TIA-606.

1.10.3 Spare Parts

In addition to the requirements of Section 01000 OPERATION AND MAINTENANCE DATA, provide a complete list of parts and supplies, with current unit prices and source of supply, and a list of spare parts recommended for stocking.

PART 2 PRODUCTS

2.1 COMPONENTS

Components shall be UL or third party certified. Where equipment or materials are specified to conform to industry and technical society reference standards of the organizations, submit proof of such compliance. The label or listing by the specified organization will be acceptable evidence of compliance. In lieu of the label or listing, submit a certificate from an independent testing organization, competent to perform testing, and approved by the Contracting Officer. The certificate shall state that the item has been tested in accordance with the specified organization's test methods and that the item complies with the specified organization's reference standard. Provide a complete system of telecommunications cabling and pathway components using star topology. Provide support structures and pathways, complete with outlets, cables, connecting hardware and telecommunications cabinets/racks. Cabling and interconnecting hardware and components for telecommunications systems shall be UL listed or third party independent testing laboratory certified, and shall comply with NFPA 70 and conform to the requirements specified herein.
2.2 TELECOMMUNICATIONS PATHWAY

Provide telecommunications pathways in accordance with TIA-569 and as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide system furniture pathways in accordance with UL 1286.

2.3 TELECOMMUNICATIONS CABLING

Cabling shall be UL listed for the application and shall comply with TIA-568-C.0, TIA-568-C.1, TIA-568-C.2, TIA-568-C.3 and NFPA 70. Provide a labeling system for cabling as required by TIA-606 and UL 969. AF DCGS Standards and Procedures for Labeling Network and System Cables on the AF DCGS Enterprise (SOP108) and plans (see Sheets E601 and E602). Ship cable on reels or in boxes bearing manufacture date for unshielded twisted pair (UTP) in accordance with ICEA S-90-661 and optical fiber cables in accordance with ICEA S-83-596 for all cable used on this project. Cabling manufactured more than 12 months prior to date of installation shall not be used.

2.3.1 Backbone Cabling

2.3.1.1 Backbone Copper

Copper backbone cable shall be solid conductor, 24 AWG, 100 ohm, 100-pair, Category 3, UTP, in accordance with ICEA S-90-661, TIA-568-C.1, TIA-568-C.2 and UL 444, formed into 25 pair binder groups covered with a gray thermoplastic jacket. Cable shall be imprinted with manufacturers name or identifier, flammability rating, gauge of conductor, transmission performance rating (category designation) at regular length marking intervals in accordance with ICEA S-90-661. Provide plenum (CMP), riser (CMR), or general purpose (CM or CMG) communications rated cabling in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70.

2.3.1.2 Backbone Optical Fiber

Cable shall be imprinted with fiber count, fiber type and aggregate length at regular intervals not to exceed 40 inches.

Provide the number of strands indicated, (but not less than 12 strands between the main telecommunication room and each of the other telecommunication rooms), of single-mode (OS1), tight buffered fiber optic cable.

Provide tight buffered fiber optic multimode, 50/125-um diameter laser optimized (OM4).

Provide plenum (OFNP), riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. The cable cordage jacket, fiber, unit, and group color shall be in accordance with TIA/EIA-598.

Provide plenum (OFNP) riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. The cable cordage jacket, fiber, unit, and group color shall be in accordance with TIA/EIA-598 and per plans.
2.3.2 Horizontal Cabling

Provide horizontal cable in compliance with NFPA 70 and performance characteristics in accordance with TIA-568-C.1.

2.3.2.1 Horizontal Copper

Provide horizontal copper cable, UTP, 100 ohm in accordance with TIA-568-C.2, UL 444, ANSI/NEMA WC 66, ICEA S-90-661. Provide four each individually twisted pair, minimum size 24 AWG conductors, Category 6, with a blue thermoplastic jacket. Cable shall be imprinted with manufacturers name or identifier, flammability rating, gauge of conductor, transmission performance rating (category designation) and length marking at regular intervals in accordance with ICEA S-90-661. Provide plenum (CMP), riser (CMR), or general purpose (CM or CMG) communications rated cabling in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. Cables installed in conduit within and under slabs shall be UL listed and labeled for wet locations in accordance with NFPA 70.

2.3.2.2 Horizontal Optical Fiber

Provide optical fiber horizontal cable in accordance with ICEA S-83-596 and TIA-568-C.3. Cable shall be tight buffered, multimode, 50/125-um diameter laser optimized, OM4. Cable shall be imprinted with manufacturer, flammability rating and fiber count at regular intervals not to exceed 40 inches.

Provide plenum (OFNP), riser (OFNR), or general purpose (OFN or OFNG) rated non-conductive, fiber optic cable in accordance with NFPA 70. Substitution of a higher rated cable shall be permitted in accordance with NFPA 70. Cables installed in conduit within and under slabs be UL listed and labeled for wet locations in accordance with NFPA 70. The cable jacket shall be of single jacket construction with color coding of cordage jacket, fiber, unit, and group in accordance with TIA/EIA-598 and per plans.

2.3.3 Work Area Cabling

2.3.3.1 Work Area Copper

Provide work area copper cable in accordance with TIA-568-C.2, with color as per plans thermoplastic jacket.

2.3.3.2 Work Area Optical Fiber

Provide optical work area cable in accordance with TIA-568-C.3.

2.4 TELECOMMUNICATIONS SPACES

Provide connecting hardware and termination equipment in the telecommunications entrance facility and telecommunication equipment rooms to facilitate installation as shown on design drawings for terminating and cross-connecting permanent cabling. Provide telecommunications interconnecting hardware color coding in accordance with TIA-606.

2.4.1 Backboards

Provide void-free, interior gradeA-C plywood 3/4 inch thick 4 by 8 feet as
indicated. Backboards shall be fire rated by manufacturing process. Fire stamp shall be clearly visible. Paint applied over fire retardant backboard shall be UL 723 fire retardant paint. Provide label including paint manufacturer, date painted, UL listing and name of Installer. When painted, paint label and fire stamp shall be clearly visible. Backboards shall be provided on a minimum of two adjacent walls in the telecommunication spaces.

2.4.2 Equipment Support Frame

Provide in accordance with ECIA EIA/ECA 310-E and UL 50.

a. Bracket, wall mounted, 8 gauge aluminum. Provide hinged bracket compatible with 19 inches panel mounting.

c. Cabinets, freestanding modular type, 16 gauge steel construction, minimum, treated to resist corrosion. Cabinet shall have removable and lockable side panels, front and rear doors, and have adjustable feet for leveling. Cabinet shall be vented in the roof and rear door. Cabinet shall have cable access in the roof and base and be compatible with 19 inches panel mounting. Provide cabinet with grounding bar, roof mounted 550 CFM fan with filter, 3 shelves and two, three or four separate surge protected power strips with 6 duplex 20 amp receptacles, depending on rack receptacle number. PDU cords shall contain #10 AWG conductors. PDU plug shall match PDU receptacle type. All cabinets shall be keyed alike.

d. Cabinets, wall-mounted modular type, 16 gauge steel construction, minimum, treated to resist corrosion. Cabinet shall have have lockable front and rear doors, louvered side panels, 250 CFM roof mounted fan, ground lug, and top and bottom cable access. Cabinet shall be compatible with 19 inches panel mounting. All cabinets shall be keyed alike. A surge protected power strip with 6 duplex 20 amp receptacles shall be provided within the cabinet.

<table>
<thead>
<tr>
<th>Rm 140: Rack Name</th>
<th>Rack Manufacturer</th>
<th>Rack Bay Kit</th>
<th>Rack Stabilize</th>
<th>Filler Panels</th>
<th>Rack Shelves</th>
<th>Adjust Rails</th>
<th>Locking Drawer</th>
<th>PDU 120V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rm 140 Description</td>
<td>Part #</td>
<td>BW902A</td>
<td>BW932A</td>
<td>BW928A</td>
<td>253449-B21</td>
<td>332558-B21</td>
<td>361591-B21</td>
<td>H8B48A</td>
</tr>
<tr>
<td>Rack A1 FODP PP1_B54</td>
<td>HPE H6J66A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rack A2 FODP PP2_B541</td>
<td>HPE H6J66A</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rack A3 FODP PP3_B541_IC</td>
<td>HPE H6J66A</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Rack A4 SIPR PP2_Switch</td>
<td>HPE H6J66A</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Rack</td>
<td>Description</td>
<td>Part #</td>
<td>PDU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Copper PP1</td>
<td>BW902A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>SPARE EMSEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>NIPR PP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>NIPR PP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rack</th>
<th>Description</th>
<th>Part #</th>
<th>PDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA1</td>
<td>Copper PP1</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>AA2</td>
<td>FODP1_DISA_Rm 127</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>AA3</td>
<td>FODP2_542_TR130</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>A6</td>
<td>FODP1_TCFC_Black</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>A15</td>
<td>JWICS Network 1</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>A16</td>
<td>JWICS Network 2</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>A17</td>
<td>JWICS Network 3</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>B1</td>
<td>FODP1_TCFC_Red</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>C1</td>
<td>FODP1_Rm 140</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>C2</td>
<td>FODP2_Rm 261</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>C4</td>
<td>FODP4_Copper</td>
<td>HPE H6J88A</td>
<td>H8B48A</td>
</tr>
<tr>
<td>Rm 220:</td>
<td>Rack Location</td>
<td>Rack Name</td>
<td>Rack Manufacturer</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rm 220</td>
<td>Description</td>
<td>Part #</td>
<td>Pt#</td>
</tr>
<tr>
<td>Rack A1</td>
<td>NIPR PP2 _Switch</td>
<td>HPE H6J66A</td>
<td>1</td>
</tr>
<tr>
<td>Rack A2</td>
<td>NIPR PP1 _Fiber</td>
<td>HPE H6J66A</td>
<td>2</td>
</tr>
<tr>
<td>Rack A3</td>
<td>FODP PP1 _Fiber</td>
<td>HPE H6J66A</td>
<td>2</td>
</tr>
<tr>
<td>Rack A4</td>
<td>SIPR PP1 _Fiber</td>
<td>HPE H6J66A</td>
<td>2</td>
</tr>
<tr>
<td>Rack A5</td>
<td>SIPR PP12 _Switch</td>
<td>HPE H6J66A</td>
<td>1</td>
</tr>
<tr>
<td>Rm 261:</td>
<td>Rack Location</td>
<td>Rack Name</td>
<td>Rack Manufacturer</td>
</tr>
<tr>
<td>Rm 261</td>
<td>Description</td>
<td>Part #</td>
<td>Pt#</td>
</tr>
<tr>
<td>Rack A5</td>
<td>Video Mtx_MLS Wkstn</td>
<td>HPE H6J88A</td>
<td>2</td>
</tr>
<tr>
<td>Rack A6</td>
<td>Video Mtx_MLS Wkstn</td>
<td>HPE H6J88A</td>
<td>2</td>
</tr>
<tr>
<td>Rack A7</td>
<td>Video Mtx_MLS Wkstn</td>
<td>HPE H6J88A</td>
<td>1</td>
</tr>
<tr>
<td>Rack B1</td>
<td>Video Mtx_MLS Wkstn</td>
<td>HPE H6J88A</td>
<td>1</td>
</tr>
<tr>
<td>Rack B2</td>
<td>Video Mtx_MLS Wkstn</td>
<td>HPE H6J88A</td>
<td>2</td>
</tr>
<tr>
<td>Rack B3</td>
<td>Video Mtx_MLS Wkstn</td>
<td>HPE H6J88A</td>
<td>2</td>
</tr>
<tr>
<td>Rack B4</td>
<td>Video Mtx Sw/SIPR Sw</td>
<td>HPE H6J88A</td>
<td>2</td>
</tr>
<tr>
<td>Rack</td>
<td>FODP</td>
<td>HPE</td>
<td>2</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Rack</td>
<td>FODP</td>
<td>HPE</td>
<td>2</td>
</tr>
<tr>
<td>Rack</td>
<td>JWICS Switch</td>
<td>HPE</td>
<td>1</td>
</tr>
</tbody>
</table>

General Notes:
1. All racks receive one sidewall panel model H6J91A or BW906A as applicable or approved equal.
2. All racks receive one tie down kits model AF076A or approved equal.
3. All racks receive four rack hardware kits model H6J85A or approved equal.
4. All racks receive two cable management kits model AF099A or approved equal.
5. All racks receive one rack fan model 257413-B21 or approved equal.
6. All racks receive one grounding kit model BW891A or approved equal.
7. All racks receive one rack branding kit model BW935A or approved equal.

2.4.3 **Connector Blocks**

Provide insulation displacement connector (IDC) Type 110 for Category 6 systems. Provide blocks for the number of horizontal and backbone cables terminated on the block plus 25 percent spare.

2.4.4 **Cable Guides**

Provide cable guides specifically manufactured for the purpose of routing cables, wires and patch cords horizontally and vertically on 19 inches equipment cabinets and telecommunications backboards. Cable guides of ring or bracket type devices mounted on cabinet panels, backboard for horizontal cable management and individually mounted for vertical cable management. Mount cable guides with screws, nuts and lockwashers.

2.4.5 **Patch Panels**

Provide ports for the number of horizontal and backbone cables terminated on the panel plus 25 percent spare. Provide pre-connectorized optical fiber and copper patch cords for patch panels. Provide patch cords, as complete assemblies, with matching connectors as specified. Provide fiber optic patch cables with crossover orientation in accordance with TIA-568-C.3. Patch cords shall meet minimum performance requirements specified in TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3 for cables, cable length and hardware specified.
2.4.5.1 Modular to 110 Block Patch Panel

Provide in accordance with TIA-568-C.1 and TIA-568-C.2. Panels shall be third party verified and shall comply with EIA/TIA Category 6 requirements. Panel shall be constructed of 0.09 inches minimum aluminum and shall be cabinet mounted and compatible with an ECIA EIA/ECA 310-E 19 inches equipment cabinet. Panel shall provide 48 non-keyed, 8-pin modular ports, wired to T568A. Patch panels shall terminate the building cabling on Type 110 IDCs and shall utilize a printed circuit board interface. The rear of each panel shall have incoming cable strain-relief and routing guides. Panels shall have each port factory numbered and be equipped with laminated plastic nameplates above each port.

2.4.5.2 Fiber Optic Patch Panel

Provide panel for maintenance and cross-connecting of optical fiber cables. Panel shall be constructed of 16 gauge steel minimum and shall be cabinet mounted and compatible with an ECIA EIA/ECA 310-E 19 inches equipment rack. Each panel shall provide 48 multimode adapters as duplex LC in accordance with TIA/EIA-604-10 with zirconia ceramic alignment sleeves. Provide dust cover for unused adapters. The rear of each panel shall have a cable management tray a minimum of 8 inches deep with removable cover, incoming cable strain-relief and routing guides. Panels shall have each adapter factory numbered and be equipped with laminated plastic nameplates above each adapter.

2.4.6 Optical Fiber Distribution Panel

Cabinet mounted optical fiber distribution panel (OFDP) shall be constructed in accordance with ECIA EIA/ECA 310-E utilizing 16 gauge steel minimum. Panel shall be divided into two sections, distribution and user. Distribution section shall have strain relief, routing guides, splice tray and shall be lockable, user section shall have a cover for patch cord protection. Each panel shall provide 12 multimode pigtails and adapters. Provide adapters as duplex LC with zirconia ceramic alignment sleeves. Provide dust covers for adapters. Provide patch cords as specified in the paragraph PATCH PANELS.

2.5 TELECOMMUNICATIONS OUTLET/CONNECTOR ASSEMBLIES

2.5.1 Outlet/Connector Copper

Outlet/connectors shall comply with FCC Part 68, TIA-568-C.1, and TIA-568-C.2. UTP outlet/connectors shall be UL 1863 listed, non-keyed, 8-pin modular, constructed of high impact rated thermoplastic housing and shall be third party verified and shall comply with TIA-568-C.2 Category 6 requirements. Outlet/connectors provided for UTP cabling shall meet or exceed the requirements for the cable provided. Outlet/connectors shall be terminated using a Type 110 IDC PC board connector, color-coded for both T568A and T568B wiring. Each outlet/connector shall be wired T568A. UTP outlet/connectors shall comply with TIA-568-C.2 for 200 mating cycles.

2.5.2 Optical Fiber Adapters(Couplers)

Provide optical fiber adapters suitable for duplex LC in accordance with TIA/EIA-604-10 with zirconia ceramic alignment sleeves as indicated. Provide dust cover for adapters. Optical fiber adapters shall comply with TIA-455-21 for 500 mating cycles.
2.5.3 Optical Fiber Connectors

Provide in accordance with TIA-455-21. Optical fiber connectors shall be duplex LC in accordance with TIA/EIA-604-10 with zirconia ceramic alignment sleeves, crimp style compatible with 50/125 multimode fiber. The connectors shall provide a maximum attenuation of 0.3 dB at 850 nm with less than a 0.2 dB change after 500 mating cycles.

2.5.4 Cover Plates

Telecommunications cover plates shall comply with UL 514C, and TIA-568-C.1, TIA-568-C.2, TIA-568-C.3; flush design constructed to match color of receptacle/switch cover plates specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM 302 stainless material. Provide labeling in accordance with the paragraph LABELING in this section.

2.6 MULTI-USER TELECOMMUNICATIONS OUTLET ASSEMBLY (MUTOA)

Provide MUTOA(s) in accordance with TIA-568-C.1.

2.7 GROUNDING AND BONDING PRODUCTS

Provide in accordance with UL 467, TIA-607, and NFPA 70. Components shall be identified as required by TIA-606. Provide ground rods, bonding conductors, and grounding busbars as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

2.8 FIRESTOPPING MATERIAL

Provide as specified in Section 07 84 00 FIRESTOPPING.

2.9 MANUFACTURER'S NAMEPLATE

Each item of equipment shall have a nameplate bearing the manufacturer's name, address, model number, and serial number securely affixed in a conspicuous place; the nameplate of the distributing agent will not be acceptable.

2.10 FIELD FABRICATED NAMEPLATES

ASTM D709. Provide laminated plastic nameplates for each equipment enclosure, relay, switch, and device; as specified or as indicated on the drawings. Each nameplate inscription shall identify the function and, when applicable, the position. Nameplates shall be melamine plastic, 0.125 inches thick, white with black center core. Surface shall be matte finish. Corners shall be square. Accurately align lettering and engrave into the core. Minimum size of nameplates shall be one by 2.5 inches. Lettering shall be a minimum of 0.25 inches high normal block style.

2.11 TESTS, INSPECTIONS, AND VERIFICATIONS

2.11.1 Factory Reel Tests

Provide documentation of the testing and verification actions taken by manufacturer to confirm compliance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-526-7 for single mode optical fiber, and TIA-526-14 for multimode optical fiber cables.
PART 3 EXECUTION

3.1 INSTALLATION

Install telecommunications cabling and pathway systems, including the horizontal and backbone cable, pathway systems, telecommunications outlet/connector assemblies, and associated hardware in accordance with NECA/BICSI 568, TIA-568-C.1, TIA-568-C.2, TIA-568-C.3, TIA-569, NFPA 70, and UL standards as applicable. Provide cabling in a star topology network. Pathways and outlet boxes shall be installed as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Install telecommunications cabling with copper media in accordance with the following criteria to avoid potential electromagnetic interference between power and telecommunications equipment. The interference ceiling shall not exceed 3.0 volts per meter measured over the usable bandwidth of the telecommunications cabling. Cabling shall be run with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

3.1.1 Cabling

Install UTP, and optical fiber telecommunications cabling system as detailed in TIA-568-C.1, TIA-568-C.2, and TIA-568-C.3. Screw terminals shall not be used except where specifically indicated on plans. Use an approved insulation displacement connection (IDC) tool kit for copper cable terminations. Do not exceed manufacturers' cable pull tensions for copper and optical fiber cables. Provide a device to monitor cable pull tensions. Do not exceed 25 pounds pull tension for four pair copper cables. Do not chafe or damage outer jacket materials. Use only lubricants approved by cable manufacturer. Do not over cinch cables, or crush cables with staples. For UTP cable, bend radii shall not be less than four times the cable diameter. Cables shall be terminated; no cable shall contain unterminated elements. Cables shall not be spliced. Label cabling in accordance with paragraph LABELING in this section.

3.1.1.1 Open Cable

Use only where specifically indicated on plans for use in cable trays, or below raised floors. Install in accordance with TIA-568-C.1, TIA-568-C.2 and TIA-568-C.3. Do not exceed cable pull tensions recommended by the manufacturer. Copper cable not in a wireway or pathway shall be suspended a minimum of 8 inches above ceilings by cable supports no greater than 60 inches apart. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items. Placement of cable parallel to power conductors shall be avoided, if possible; a minimum separation of 12 inches shall be maintained when such placement cannot be avoided.

Plenum cable shall be used where open cables are routed through plenum areas. Cable routed exposed under raised floors shall be plenum rated. Plenum cables shall comply with flammability plenum requirements of NFPA 70. Install cabling after the flooring system has been installed in raised floor areas. Cable 6 feet long shall be neatly coiled not less than 12 inches in diameter below each feed point in raised floor areas.
3.1.1.2 Backbone Cable

a. Copper Backbone Cable. Install intrabuilding backbone copper cable, in indicated pathways, between the campus distributor, located in the telecommunications entrance facility or room, the building distributors and the floor distributors located in telecommunications rooms and telecommunications equipment rooms as indicated on drawings.

b. Optical fiber Backbone Cable. Install intrabuilding backbone optical fiber in indicated pathways. Do not exceed manufacturer's recommended bending radii and pull tension. Prepare cable for pulling by cutting outer jacket 10 inches leaving strength members exposed for approximately 10 inches. Twist strength members together and attach to pulling eye. Vertical cable support intervals shall be in accordance with manufacturer's recommendations.

3.1.1.3 Horizontal Cabling

Install horizontal cabling as indicated on drawings. Do not untwist Category 6 UTP cables more than one half inch from the point of termination to maintain cable geometry. Provide slack cable in the form of a figure eight (not a service loop) on each end of the cable, 10 feet in the telecommunications room, and 12 inches in the work area outlet.

3.1.2 Pathway Installations

Provide in accordance with TIA-569 and NFPA 70. Provide building pathway as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.1.3 Service Entrance Conduit, Underground

Provide service entrance underground as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.1.4 Cable Tray Installation

Install cable tray as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Only CMP and OFNP type cable shall be installed in a plenum.

3.1.5 Work Area Outlets

3.1.5.1 Terminations

Terminate UTP cable in accordance with TIA-568-C.1, TIA-568-C.2 and wiring configuration as specified. Terminate fiber optic cables in accordance with TIA-568-C.3.

3.1.5.2 Cover Plates

As a minimum, each outlet/connector shall be labeled as to its function and a unique number to identify cable link in accordance with the paragraph LABELING in this section.

3.1.5.3 Cables

Unshielded twisted pair and fiber optic cables shall have a minimum of 12 inches of slack cable loosely coiled into the telecommunications outlet boxes. Minimum manufacturer's bend radius for each type of cable shall not be exceeded.
3.1.5.4 Pull Cords

Pull cords shall be installed in conduit serving telecommunications outlets that do not have cable installed.

3.1.5.5 Multi-User Telecommunications Outlet Assembly (MUTOA)

Run horizontal cable in the ceiling or underneath the floor and terminate each cable on a MUTOA in each individual zone. MUTOAs shall not be located in ceiling spaces, or any obstructed area. MUTOAs shall not be installed in furniture unless that unit of furniture is permanently secured to the building structure. MUTOAs shall be located in an open work area so that each furniture cluster is served by at least one MUTOA. The MUTOA shall be limited to serving a maximum of twelve work areas. Maximum work area cable length requirements shall also be taken into account. MUTOAs must be labeled to include the maximum length of work area cables. MUTOA labeling is in addition to the labeling described in TIA-606, or other applicable cabling administration standards. Work area cables extending from the MUTOA to the work area device must also be uniquely identified and labeled.

3.1.6 Telecommunications Space Termination

Install termination hardware required for Category 6 and optical fiber system. An insulation displacement tool shall be used for terminating copper cable to insulation displacement connectors.

3.1.6.1 Connector Blocks

Connector blocks shall be cabinet mounted in orderly rows and columns. Adequate vertical and horizontal wire routing areas shall be provided between groups of blocks. Install in accordance with industry standard wire routing guides in accordance with TIA-569.

3.1.6.2 Patch Panels

Patch panels shall be mounted in equipment cabinets and on the plywood backboard with sufficient ports to accommodate the installed cable plant plus 25 percent spares.

a. Copper Patch Panel. Copper cable entering a patch panel shall be secured to the panel with cable ties to prevent movement of the cable.

b. Fiber Optic Patch Panel. Fiber optic cable loop shall be 3 feet in length. The outer jacket of each cable entering a patch panel shall be secured to the panel to prevent movement of the fibers within the panel, using clamps or brackets specifically manufactured for that purpose.

3.1.6.3 Equipment Support Frames

Install in accordance with TIA-569:

a. Bracket, wall mounted. Mount bracket to plywood backboard in accordance with manufacturer's recommendations. Mount rack so height of highest panel does not exceed 78 inches above floor.

b. Racks, floor mounted modular type. Permanently anchor cabinet to the floor in accordance with manufacturer's recommendations.
c. Cabinets, freestanding modular type. When cabinets are connected together, remove adjoining side panels for cable routing between cabinets. Mount rack mounted fan in roof of cabinet.

d. Cabinets, wall-mounted modular type. Mount cabinet to plywood backboard in accordance with manufacturer's recommendations. Mount cabinet so height of highest panel does not exceed 78 inches above floor.

3.1.7 Electrical Penetrations

Seal openings around electrical penetrations through fire resistance-rated wall, partitions, floors, or ceilings as specified in Section 07 84 00 FIRESTOPPING.

3.1.8 Grounding and Bonding

Provide in accordance with TIA-607, NFPA 70 and as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM.

3.2 LABELING

3.2.1 Labels

Provide labeling in accordance with TIA-606. Handwritten labeling is unacceptable. Stenciled lettering for voice and data circuits shall be provided using thermal ink transfer process.

3.2.2 Cable

Cables shall be labeled using color labels on both ends with identifiers in accordance with TIA-606.

3.2.3 Termination Hardware

Workstation outlets and patch panel connections shall be labeled using color coded labels with identifiers in accordance with TIA-606.

3.3 FIELD APPLIED PAINTING

Paint electrical equipment as required to match finish of adjacent surfaces or to meet the indicated or specified safety criteria. Painting shall be as specified in Section 09 90 00 PAINTS AND COATINGS.

3.3.1 Painting Backboards

If backboards are required to be painted, then the manufactured fire retardant backboard must be painted with fire retardant paint, so as not to increase flame spread and smoke density and must be appropriately labeled. Label and fire rating stamp must be unpainted.

3.4 FIELD FABRICATED NAMEPLATE MOUNTING

Provide number, location, and letter designation of nameplates as indicated. Fasten nameplates to the device with a minimum of two sheet-metal screws or two rivets.
3.5 TESTING

3.5.1 Telecommunications Cabling Testing

Perform telecommunications cabling inspection, verification, and performance tests in accordance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3. Test equipment shall conform to TIA-1152. Perform optical fiber field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.

3.5.1.1 Inspection

Visually inspect UTP and optical fiber jacket materials for UL or third party certification markings. Inspect cabling terminations in telecommunications rooms and at workstations to confirm color code for T568A or T568B pin assignments, and inspect cabling connections to confirm compliance with TIA-568-C.1, TIA-568-C.2, TIA-568-C.3. Visually confirm Category 6, marking of outlets, cover plates, outlet/connectors, and patch panels.

3.5.1.2 Verification Tests

UTP backbone copper cabling shall be tested for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has overall shield. Test operation of shorting bars in connection blocks. Test cables after termination but prior to being cross-connected.

For multimode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-14 using Method A, Optical Power Meter and Light Source Method B, OTDR for multimode optical fiber. For single-mode optical fiber, perform optical fiber end-to-end attenuation tests in accordance with TIA-568-C.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source Method B, OTDR for single-mode optical fiber. Perform verification acceptance tests.

3.5.1.3 Performance Tests

Perform testing for each outlet and MUTOA as follows:

a. Perform Category 6 link tests in accordance with TIA-568-C.1 and TIA-568-C.2. Tests shall include wire map, length, insertion loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, return loss, propagation delay, and delay skew.

b. Optical fiber Links. Perform optical fiber end-to-end link tests in accordance with TIA-568-C.3.

3.5.1.4 Final Verification Tests

Perform verification tests for UTP and optical fiber systems after the complete telecommunications cabling and workstation outlet/connectors are installed.

a. Voice Tests. These tests assume that dial tone service has been installed. Connect to the network interface device at the demarcation point. Go off-hook and listen and receive a dial tone. If a test
number is available, make and receive a local, long distance, and DSN telephone call.

b. Data Tests. These tests assume the Information Technology Staff has a network installed and are available to assist with testing. Connect to the network interface device at the demarcation point. Log onto the network to ensure proper connection to the network.

-- End of Section --
SECTION 27 51 16
RADIO AND PUBLIC ADDRESS SYSTEMS
04/06

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ELECTRONIC COMPONENTS INDUSTRY ASSOCIATION (ECIA)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

UNDERWRITERS LABORATORIES (UL)

UL 1449 (2014; Reprint Mar 2015) Surge Protective Devices

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings

Detail Drawings; G

SD-03 Product Data

Spare Parts

SD-06 Test Reports
Approved Test Procedures; G
Acceptance Tests
SD-07 Certificates
Components
SD-10 Operation and Maintenance Data
Radio and Public Address System; G

1.3 DELIVERY, STORAGE, AND HANDLING

Equipment placed in storage until installation shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, and other contaminants.

1.4 EXTRA MATERIALS

Submit spare parts data for each different item of material and equipment specified, after approval of the detail drawings and not later than 2 months prior to the date of beneficial occupancy. The data shall include a complete list of parts and supplies, with current unit prices and source of supply.

PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

The radio and public address system shall consist of an audio distribution network to include amplifiers, mixers, microphones, speakers, cabling, and ancillary components required to meet the required system configuration and operation. Submit Data Package 3 in accordance with Section 01000 OPERATION AND MAINTENANCE DATA

2.1.1 Single-Channel System

The system shall control and amplify an audio program for distribution within the areas indicated. Components of the system shall include a mixer-preamplifier, mike input expander, power amplifier, speaker system, compact disc, AM-FM tuner, cabling and other associated hardware.

2.1.2 System Performance

The system shall provide even sound distribution throughout the designated area, plus or minus 3 dB for the 1/1 octave band centered at 4000 Hz. The system shall provide uniform frequency response throughout the designated area, plus or minus 3 dB as measured with 1/3-octave bands of pink noise at locations across the designated area selected by the Contracting Officer. The system shall be capable of delivering 75 dB average program level with additional 10 dB peaking margin sound pressure level (SPL) in the area at an acoustic distortion level below 5 percent total harmonic distortion (THD). Unless otherwise specified the sound pressure reference level is 20 micro Pascal (0.00002 Newtons per square meter).

2.1.3 Detail Drawings

Submit detail drawings consisting of a complete list of equipment and
material, including manufacturer's descriptive and technical literature, performance charts and curves, catalog cuts, and installation instructions. Note that the contract drawings show layouts based on typical speakers. Check the layout based on the actual speakers to be installed and make necessary revisions in the detail drawings. Detail drawings shall also contain complete point to point wiring, schematic diagrams and other details required to demonstrate that the system has been coordinated and will properly function as a unit. Drawings shall show proposed layout of equipment and appurtenances, and equipment relationship to other parts of the work including clearances for maintenance and operation.

2.2 STANDARD PRODUCTS

Provide materials and equipment which are the standard products of a manufacturer regularly engaged in the manufacture of such products, and that essentially duplicate material and equipment that have been in satisfactory use at least 2 years. All components used in the system shall be commercial designs that comply with the requirements specified. Submit copies of current approvals or listings issued by UL, or other nationally recognized testing laboratory for all components. Equipment shall be supported by a service organization that is within 100 miles of the site.

2.2.1 Identical Items

Items of the same classification shall be identical. This requirement includes equipment, modules, assemblies, parts, and components.

2.2.2 Nameplates

Each major component of equipment shall have the manufacturer's name, address, model and catalog number, and serial number on a plate secured to the equipment.

2.3 MIXER-PREAMPLIFIER

Mixer-preamplifier shall as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output</td>
<td>18 dB</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Plus or Minus 1 dB, 20 - 20,000 Hz</td>
</tr>
<tr>
<td>Distortion</td>
<td>Less than 0.5 percent, 20 - 20,000 Hz</td>
</tr>
<tr>
<td>Signal to noise</td>
<td>Microphone - 60 dB</td>
</tr>
<tr>
<td></td>
<td>Aux - 70 dB</td>
</tr>
<tr>
<td>Inputs</td>
<td>5 independent balanced low-impedance transformer-isolated</td>
</tr>
<tr>
<td>Input Sensitivity</td>
<td>Microphone - 0.003 volts</td>
</tr>
<tr>
<td></td>
<td>Aux - 0.125 volts</td>
</tr>
<tr>
<td></td>
<td>Magnetic Cartridge - 0.0005 volts</td>
</tr>
</tbody>
</table>
2.4 POWER AMPLIFIERS

Power amplifiers as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power output</td>
<td>250 watts RMS</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Plus or Minus 3 dB, 20-20,000 Hz</td>
</tr>
<tr>
<td>Distortion</td>
<td>Less than 2 percent at RPO, 600-13,000 Hz</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>50 k ohm unbalanced</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>Balanced 4 and 8 ohms</td>
</tr>
<tr>
<td>Output voltage</td>
<td>25 and 70.7 volts</td>
</tr>
<tr>
<td>Power Requirement</td>
<td>110-125 Vac 60 Hz</td>
</tr>
</tbody>
</table>

2.5 MICROPHONE INPUT MODULES

Microphone input modules shall as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Outputs</td>
<td>0.25 volts into 10,000 ohms</td>
</tr>
<tr>
<td></td>
<td>1.0 volts into 10,000 ohms</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>Plus or Minus 2 dB, 20 - 20,000 Hz</td>
</tr>
<tr>
<td>Distortion</td>
<td>Less than 0.5 percent 20 - 20,000 Hz</td>
</tr>
<tr>
<td>Inputs</td>
<td>4 transformer - coupled balanced 150 ohm</td>
</tr>
<tr>
<td>Input Sensitivity</td>
<td>0.003 volts</td>
</tr>
<tr>
<td>Input Channel Isolation</td>
<td>70 dB minimum</td>
</tr>
</tbody>
</table>

2.6 MICROPHONES

2.6.1 Desk Microphone

Microphones shall as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Element</th>
<th>Dynamic</th>
</tr>
</thead>
</table>

SECTION 27 51 16 Page 4
Gooseneck Microphone

Gooseneck microphone shall meet the minimum requirements of the desk microphone. Microphone shall have push to talk button. Gooseneck tube length shall be 12 inch.

Microphone Jack

Each outlet for microphones shall consist of a standard outlet box, flush-mounted, and fitted with a three-pole, polarized, locking-type, female microphone jack and a corrosion resistant-steel device plate.

LOUDSPEAKERS

Cone Speaker

The cone speaker shall as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Application</th>
<th>Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>60 to 12,000 Hz</td>
</tr>
<tr>
<td>Power Rating</td>
<td>Normal - 7 watts</td>
</tr>
<tr>
<td></td>
<td>Peak - 10 watts</td>
</tr>
<tr>
<td>Voice Coil Impedance</td>
<td>8 ohms</td>
</tr>
<tr>
<td>Line Matching Transformer Type</td>
<td>25/ 70.7 volt line</td>
</tr>
<tr>
<td>Capacity</td>
<td>4 watts</td>
</tr>
<tr>
<td>Magnet</td>
<td>10 ounces or greater</td>
</tr>
<tr>
<td>Primary Taps</td>
<td>0.5, 1, 2 and 4 watts</td>
</tr>
<tr>
<td>Primary Impedance</td>
<td>25 volts - 1250, 625, and 312 ohms</td>
</tr>
<tr>
<td></td>
<td>70.7 volts - 10k, 5k, and 2.5k ohms</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>30 - 20,000 Hz</td>
</tr>
</tbody>
</table>
Insertion Loss

| Insertion Loss | Less than 1 dB |

2.7.2 Horn Speaker

The horn speaker shall as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Application</th>
<th>Indoor or Outdoor per plans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Response</td>
<td>400 - 14,000 Hz</td>
</tr>
<tr>
<td>Power Taps</td>
<td>70 volt line - .9, 1.8, 3.8, 7.5, and 15 watts</td>
</tr>
<tr>
<td>Impedance</td>
<td>5000, 2500, 1300, 670, 330, 90, and 45 ohms</td>
</tr>
<tr>
<td>Normal</td>
<td>7 watts</td>
</tr>
<tr>
<td>Peak</td>
<td>15 watts</td>
</tr>
<tr>
<td>Dispersion</td>
<td>110 degrees</td>
</tr>
</tbody>
</table>

2.7.3 High Output Speaker Enclosures

High Output speaker enclosures shall be of the tuned-port design for precise balancing and tuning of the speaker. The enclosures shall be constructed throughout of 3/4 inch high density board, with screwed and glued joints, durably braced, and padded with fiberglass where acoustically required. Speaker enclosures shall have a 25 degree vertical dispersion and 120 degrees horizontal dispersion. The effective length of throw shall be a minimum of 50 feet.

2.7.4 Ceiling Speaker Enclosures

Ceiling speaker enclosure shall be constructed of heavy gauge cold steel with interior undercoating and 1-1/2 inch thick high density fiberglass 1-1/2 lbs/cu. ft. The unit shall be round and designed for recessed installations which will be accomplished via standard screw mounting. Recessed models shall have a rust-preventive, textured black coating and the surface mount unit finished in textured white. Enclosure shall include four triple compound conduit knockouts.

2.8 SPEAKER SWITCHING PANEL

2.8.1 Selector Switches

Zone control shall be provided for the paging function. The speaker switching panel shall contain at least 8 double-pole, 3- position selector switches and shall be rack-mounted and selector switches built in desk microphone to activate priority relays. Selector switches labeling shall be provided to identify the zones.

2.8.2 System Power supply

Power supply shall be provided for priority relays and controls, rack-mounted and sized for a capacity equal to 200 percent of the as-built control system, and shall operate at 24 Vdc. Input and output shall be
protected to permit Class 2 wiring in accordance with NFPA 70.

2.9 AM/FM EQUIPMENT

2.9.1 AM/FM Tuner

AM/FM tuner shall be rack-mounted and shall as a minimum conform to the following characteristics:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>AM/FM Tuner Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning Range</td>
<td>AM - 540 to 1605 kHz</td>
</tr>
<tr>
<td></td>
<td>FM - 88 to 108 MHz</td>
</tr>
<tr>
<td>Selectivity</td>
<td>60 dB on FM</td>
</tr>
<tr>
<td></td>
<td>40 dB on AM</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>FM - 1.5 microvolts</td>
</tr>
<tr>
<td></td>
<td>AM - 2.0 microvolts</td>
</tr>
<tr>
<td>Capture Ratio</td>
<td>1.0 dB</td>
</tr>
<tr>
<td>Readout/selection</td>
<td>Digital</td>
</tr>
<tr>
<td>Other features</td>
<td>Phased Lock Loop (PLL)</td>
</tr>
<tr>
<td>Power Requirement</td>
<td>110-125 Vac, 60Hz</td>
</tr>
</tbody>
</table>

2.9.2 AM/FM Antenna

The AM/FM antenna shall be roof-mounted, either combined and suitable for both AM and FM reception or separate AM and FM antennas and shall cover all frequency bands specified for radio tuners. The system shall be furnished complete with a transformer, insulators, crossover insulator, cable of proper length, lightning arresters, coupling transformer and divider network at the radio tuners.

2.10 COMPACT DISC PLAYER

Player shall have three beam laser pickup, dual Digital-to-Analog converters, random access and random mode programmable playback. Player shall have capability to play a minimum of 6 discs automatically. Player shall as a minimum conform to the following:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Compact Disc Player Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>10 - 20,000 Hz Plus or Minus 1 dB</td>
</tr>
<tr>
<td>Signal-to-Noise</td>
<td>Minimum of 100 dB</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>Minimum of 96 dB</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>Maximum of 0.005 percent at 1 KHZ</td>
</tr>
</tbody>
</table>
Channel Separation
- Minimum 100 dB at 1 KHZ

Quantization
- Minimum of 18 Bits Linear per channel

Conversion Rate
- Minimum 8 x Oversampling

Disc Size
- 5 inch

Power Requirement
- 110-125 Vac, 60Hz

2.11 PRIORITY RELAYS AND CONTROLS

Provide priority relays and controls required to accomplish operations specified. Relays shall be completely enclosed with a plastic dust cover for maximum protection against foreign matter, and shall be plug-in type. Relays shall be provided with a diode wired across the relay coil for transient suppression and shall be installed utilizing factory-prewired, rack-mounted receptacle strips. Coil shall be maximum 24 volts dc.

2.12 SWITCHES AND CONTROLS

2.12.1 Radio System Control Switch

Provide the loudspeaker in each room, or group of speakers in a room, with a flush program channel selector rotating-switch knob. The switch shall be mounted at location and height above the floor as shown and in accordance with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Install a volume control with a switch at each station of the auto transformer type and set so that the maximum volume is sufficient for the area while not disturbing adjacent areas. If music is turned down or off, the paging signal shall override controls except speakers designated for music only. Each device plate shall be satin-finished, corrosion-resisting steel permanently marked to indicate the channel selected.

2.13 EQUIPMENT RACKS

Equipment shall be mounted on 19 inch cabinets in accordance with ECIA EIA/ECA 310-E and located as shown on drawings. Ventilated rear panels, solid side panels, and solid top panels shall be provided. Equipment racks shall be provided with lockable front panels that limit access to equipment. The lockable front shall not cover items that require operator access such as am/fm tuner, CD player, or tape player. Rack cooling shall be through top rack mounted fan. The racks and panels shall be factory finished with a uniform baked enamel over rust inhibiting primer.

2.14 CABLES

2.14.1 Speaker Cable

Cables shall be of the gauge required depending upon the cable run length. In no case shall cable be used which is smaller than 18 AWG. Insulation on the conductors shall be polyvinyl chloride (PVC) or an equivalent synthetic thermoplastic not less than 0.009 inch. Cables shall be jacketed with a PVC compound. The jacket thickness shall be 0.02 inch minimum.
2.14.2 Microphone Cable

Cable conductor shall be stranded copper 20 AWG. Insulation on the conductors shall be polyvinyl chloride (PVC) or an equivalent synthetic thermoplastic not less than 0.009 inch. Cable shall be shielded 100 percent of aluminum polyester foil with a bare 22 gauge stranded soft copper drain conductor. Cables shall be jacketed with a PVC compound. The jacket thickness shall be 0.02 inch minimum.

2.14.3 Antenna Cable

Antenna coaxial cable shall have 75 ohm plus or minus 2 ohm. Attenuation of the coaxial cable span between the antenna and amplifier shall not exceed 2.5 dB at 108 MHz.

2.15 TERMINALS

Terminals shall be solderless, tool-crimped pressure type.

2.16 SURGE PROTECTION

2.16.1 Power Line Surge Protection

Major components of the system such as power amplifiers, mixer-preamplifiers, and tuners, shall have a device, whether internal or external, which provides protection against voltage spikes and current surges originating from commercial power sources in accordance with IEEE C62.41.1/IEEE C62.41.2 B3 combination waveform and NFPA 70. Fuses shall not be used for surge protection. The surge protector shall be rated for a maximum let thru voltage of 350 Volts ac (line-to-neutral) and 350 Volt ac (neutral-to-ground). Surge protection device shall be UL listed and labeled as having been tested in accordance with UL 1449.

2.16.2 SIGNAL SURGE PROTECTION

Major components of the system shall have internal protection circuits which protects the component from mismatched loads, direct current, and shorted output lines. Communication cables/conductors shall have surge protection installed at each point where it exits or enters a building.

2.17 TELEPHONE INTERFACE MODULE

Telephone Interface module shall provide one way all call paging access from telephone to PA system. Paging shall be accomplished by the building telephone system instruments interconnected to the PA system via an interface module to allow telephone dial up access to the paging amplifier. Interface module shall produce an alert tone in the associated speakers on activation. Telephone interface module shall as a minimum conform to the following specifications:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>600 ohms</td>
</tr>
<tr>
<td>Frequency response</td>
<td>100Hz to 10Khz</td>
</tr>
<tr>
<td>70V Input Impedance</td>
<td>200K ohms</td>
</tr>
<tr>
<td>Output level</td>
<td>400mV rms</td>
</tr>
</tbody>
</table>
Input Power Requirement

<table>
<thead>
<tr>
<th>Access requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic (analog) or IA2 line key (line card required) PABX loop or ground-start trunk port, or dedicated single-line phone</td>
</tr>
</tbody>
</table>

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with the details of the work and working conditions, verify dimensions in the field, and advise the Contracting Officer of any discrepancies before performing the work.

3.2 INSTALLATION

Install equipment as indicated and specified, and in accordance with the manufacturer's recommendations except where otherwise indicated. Equipment mounted out-of-doors or subject to inclement conditions shall be weatherproofed. The antenna shall be supported at least 60 inch clear above the roof by means of self-supported or guyed mast.

3.2.1 Equipment Racks

Mount racks side-by-side and bolt together. Group items of the same function together, either vertically or side-by-side. Arrange controls symmetrically at a height as indicated. Make audio input and interconnections with approved shielded cable and plug connectors; output connections may be screw terminal type. All connections to power supplies shall utilize standard male plug and female receptacle connectors with the female receptacle being the source side of the connection. Inputs, outputs, interconnections, test points, and relays shall be accessible at the rear of the equipment rack for maintenance and testing. Each item shall be removable from the rack without disturbing other items or connections. Empty space in equipment racks shall be covered by blank panels so that the entire front of the rack is occupied by panels.

3.2.2 Wiring

Install wiring in rigid steel conduit, intermediate metal conduit, cable trays, or electric metallic tubing as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Wiring for microphone, grounding, line level, speaker and power cables shall be isolated from each other by physical isolation and metallic shielding. Shielding shall be terminated at only one end.

3.3 GROUNDING

All grounding practices shall comply with NFPA 70. The antenna mast shall be separately grounded. Equipment shall be grounded to the serving panelboard ground bus through a green grounding conductor. Metallic conduits serving the equipment shall be isolated on the equipment end with an insulating bushing to prevent noise from being transferred to the circuit. Equipment racks shall be grounded to the panelboard ground bus utilizing a #8 conductor. Grounding conductor shall be terminated to the rack using connector suitable for that purpose.
3.4 TRAINING

Conduct a training course for 4 members of the operating and maintenance staff as designated by the Contracting Officer. The training course will be given at the installation during normal working hours for a total of 4 hours and shall start after the system is functionally complete but prior to final acceptance tests. The field instructions shall cover all of the items contained in the approved operating and maintenance manuals, as well as demonstrations of routine maintenance operations. Notify the Contracting Officer at least 14 days prior to the start of the training course.

3.5 ACCEPTANCE TESTS

Submit test reports in booklet form showing all field tests performed to adjust each component and to prove compliance with the specified performance criteria, upon completion and testing of the installed system. The reports shall include the manufacturer, model number, and serial number of test equipment used in each test. Each report shall indicate the final position of controls and operating mode of the system. After installation has been completed, conduct acceptance tests, utilizing the approved test procedures, to demonstrate that equipment operates in accordance with specification requirements. Submit test plan and test procedures for the acceptance tests. The test plan and test procedures shall explain in detail, step-by-step actions and expected results to demonstrate compliance with the requirements specified. The procedure shall also explain methods for simulating the necessary conditions of operation to demonstrate system performance. Notify the Contracting Officer 14 days prior to the performance of tests. In no case shall notice be given until after the Contractor has received written Contracting Officer approval of the test plans as specified. The acceptance tests shall include originating and receiving messages at specified stations, at proper volume levels, without cross talk or noise from other links or nondesignated units.

-- End of Section --
PART 1 GENERAL

1.1 RELATED SECTIONS

Section 23 00 00 AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEMS
Section 21 13 13.00 10 WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION

Section 08 71 00 DOOR HARDWARE for door release and additional work related to finish hardware.

Section 07 84 00 FIRESTOPPING for additional work related to firestopping.

1.2 SUMMARY

1.2.1 Scope

a. This work includes completion of design and providing a new, complete, fire alarm and mass notification system as described herein and on the contract drawings for the B541. Include in the system wiring, raceways, pull boxes, terminal cabinets, outlet and mounting boxes, control equipment, alarm, and supervisory signal initiating devices, alarm notification appliances, supervising station fire alarm system transmitter, and other accessories and miscellaneous items required for a complete operating system even though each item is not specifically mentioned or described. Provide systems complete and ready for operation.

b. Provide equipment, materials, installation, workmanship, inspection, and testing in strict accordance with the required provisions of NFPA 72, ISO 7240-16, IEC 60268-16, except as modified herein. The system layout on the drawings show the intent of coverage and are shown in suggested locations. Submit plan view drawing showing device locations, terminal cabinet locations, junction boxes, other related equipment, conduit routing, wire counts, circuit identification in each conduit, and circuit layouts for all floors. Drawings shall comply with the requirements of NFPA 170. Final quantity, system layout, and coordination are the responsibility of the Contractor.

c. Each remote fire alarm control unit shall be powered from a wiring riser specifically for that use or from a local emergency power panel located on the same floor as the remote fire alarm control unit. Where remote fire control units are provided, equipment for notification appliances may be located in the remote fire alarm control units.

1.3 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
ACOUSTICAL SOCIETY OF AMERICA (ASA)

ASME INTERNATIONAL (ASME)

FM GLOBAL (FM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)

IEC 60268-16 (2003; ED 4.0) Sound System Equipment - Part 16: Objective Rating Of Speech Intelligibility By Speech Transmission Index

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70 (2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

SECTION 28 31 76 Page 2
1.4 DEFINITIONS

Wherever mentioned in this specification or on the drawings, the equipment, devices, and functions shall be defined as follows:

1.4.1 Interface Device

An addressable device that interconnects hard wired systems or devices to an analog/addressable system.
1.4.2 Remote Fire Alarm and Mass Notification Control Unit

A control panel, electronically remote from the fire alarm and mass notification control panel, that receives inputs from automatic and manual fire alarm devices; may supply power to detection devices and interface devices; may provide transfer of power to the notification appliances; may provide transfer of condition to relays or devices connected to the control unit; and reports to and receives signals from the fire alarm control panel.

1.4.3 Fire Alarm Control Unit and Mass Notification Autonomous Control Unit (FMCP)

A master control panel having the features of a fire alarm and mass notification control unit and fire alarm and mass notification control units are interconnected. The panel has central processing, memory, input and output terminals, and LCD, LED Display units.

1.4.4 Local Operating Console (LOC)

A unit designed to allow emergency responders and/or building occupants to operate the MNS including delivery or recorded and/or live messages, initiate strobe and textural visible appliance operation and other relayed functions.

1.4.5 Terminal Cabinet

A steel cabinet with locking, hinge-mounted door that terminal strips are securely mounted.

1.5 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-02 Shop Drawings
- Nameplates; G
- Instructions; G
- Wiring Diagrams; G
- System Layout; G
- System Operation; G
- Notification Appliances; G
- Amplifiers; G

SD-03 Product Data
- Technical Data And Computer Software; G
Fire Alarm Control Unit and Mass Notification Control Unit (FMCP); G
LCD, LED Display Unit (VDU); G
Terminal Cabinets; G
Manual Stations; G
Transmitters (including housing); G
Batteries; G
Battery Chargers; G
Smoke Sensors; G
Heat Detectors; G
Notification Appliances; G
Addressable Interface Devices; G
Amplifiers; G
Tone Generators; G
Digitalized Voice Generators; G
Remote Fire Alarm/Mass Notification Control Units; G
Radio Transmitter and Interface Panels; G
Digital Alarm Communicator Transmitter (DACT); G
Local Operating Console (LOC); G

SD-05 Design Data
Battery Power; G
Battery Chargers; G

SD-06 Test Reports
Field Quality Control Testing Procedures; G
Smoke Sensor Testing Procedures; G

SD-07 Certificates
Installer Formal Inspection and Tests Final Testing
1.6 TECHNICAL DATA AND COMPUTER SOFTWARE

Technical data and computer software (meaning technical data that relates to computer software) that are specifically identified in this project, and may be defined/required in other specifications, shall be delivered, strictly in accordance with the CONTRACT CLAUSES. Identify data delivered by reference to the particular specification paragraph against which it is furnished. Data to be submitted shall include complete system, equipment, and software descriptions. Descriptions shall show how the equipment will operate as a system to meet the performance requirements of this contract. The data package shall also include the following:

a. Identification of programmable portions of system equipment and capabilities.

b. Description of system revision and expansion capabilities and methods of implementation detailing both equipment and software requirements.

c. Provision of operational software data on all modes of programmable portions of the fire alarm and detection system.

d. Description of Fire Alarm and Mass Notification Control Panel equipment operation.

e. Description of auxiliary and remote equipment operations.

f. Library of application software.

g. Operation and maintenance manuals.

1.7 QUALITY ASSURANCE

Fire alarm and mass notification equipment and devices shall be provided by MONACO or SIMPLEX. Equipment and devices shall be compatible and operable with existing station fire alarm system and shall not impair reliability or operational functions of existing supervising station fire alarm system.

a. Interpret reference to "authority having jurisdiction" to mean the Contracting Offices Designated Representative (COR).

b. The recommended practices stated in the manufacturer's literature or documentation shall be considered as mandatory requirements.
c. Devices and equipment for fire alarm service must be listed by UL Fire Prot Dir or approved by FM APP GUIDE.

1.7.1 Qualifications

1.7.1.1 Design Services

Installations requiring completion of installation drawings and specification or modifications of fire detection, fire alarm, mass notification system, fire suppression systems or mass notification systems shall require the services and review of a qualified engineer. For the purposes of meeting this requirement, a qualified engineer is defined as an individual meeting one of the following conditions:

a. A registered professional engineer having a Bachelor of Science or Masters of Science Degree in Fire Protection Engineering from an accredited university engineering program, plus a minimum of four years work experience in fire protection engineering.

b. A registered professional engineer (P.E.) in fire protection engineering.

c. Registered Professional Engineer with verification of experience and at least five years of current experience in the design of the fire protection and detection systems.

1.7.1.2 Supervisor

NICET Fire Alarm Technicians to perform the installation of the system. A NICET Level 3 Fire Alarm Technician shall supervise the installation of the fire alarm system/mass notification system. The Fire Alarm technicians supervising the installation of equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.3 Technician

Fire Alarm Technicians with a minimum of four years of experience utilized to install and terminate fire alarm/mass notification devices, cabinets and panels. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.4 Installer

Fire Alarm installer with a minimum of two years of experience utilized to assist in the installation of fire alarm/mass notification devices, cabinets and panels. An electrician shall be allowed to install wire, cable, conduit and backboxes for the fire alarm system/mass notification system. The Fire Alarm installer shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.5 Test Personnel

Fire Alarm Technicians with a minimum of eight years of experience (NICET Level III) utilized to test and certify the installation of the fire alarm/mass notification devices, cabinets and panels. The Fire Alarm
technicians testing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings.

1.7.1.6 Manufacturer's Representative

The fire alarm and mass notification equipment manufacturer's representative shall be present for the connection of wiring to the control panel. The Manufacturer's Representative shall be an employee of the manufacturer with necessary technical training (NICET Level III) on the system being installed.

1.7.1.7 Manufacturer

Components shall be of current design and shall be in regular and recurrent production at the time of installation. Provide design, materials, and devices for a protected premises fire alarm system, complete, conforming to NFPA 72, except as otherwise or additionally specified herein.

1.7.2 Regulatory Requirements

1.7.2.1 Requirements for Fire Protection Service

Equipment and material shall have been tested by UL and listed in UL Fire Prot Dir or approved by FM and listed in FM APP GUIDE. Where the terms "listed" or "approved" appear in this specification, they shall mean listed in UL Fire Prot Dir or FM APP GUIDE. The omission of these terms under the description of any item of equipment described shall not be construed as waiving this requirement. All listings or approval by testing laboratories shall be from an existing ANSI or UL published standard.

1.7.2.2 Fire Alarm/Mass Notification System

Furnish equipment that is compatible and is UL listed, FM approved, or listed by a nationally recognized testing laboratory for the intended use. All listings by testing laboratories shall be from an existing ANSI or UL published standard. Submit a unique identifier for each device, including the control panel and initiating and indicating devices, with an indication of test results, and signature of the factory-trained technician of the control panel manufacturer and equipment installer. With reports on preliminary tests, include printer information. Include the NFPA 72 Record of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports.

1.7.2.3 Fire alarm Testing Services or Laboratories

construct fire alarm and fire detection equipment in accordance with UL Fire Prot Dir, UL Electrical Constructn, or FM APP GUIDE.

1.8 DELIVERY, STORAGE, AND HANDLING

Protect equipment delivered and placed in storage from the weather, humidity, and temperature variation, dirt and dust, and other contaminants.

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

Fire Alarm and Mass notification equipment and devices shall be provided by
MONACO or SIMPLEX. Submit annotated catalog data as required in the paragraph SUBMITTAL, in table format on the drawings, showing manufacturer's name, model, voltage, and catalog numbers for equipment and components. Submitted shop drawings shall not be smaller than ISO A1. Also provide UL or FM listing cards for equipment provided.

2.1.1 Standard Products

Provide materials, equipment, and devices that have been tested by a nationally recognized testing laboratory, such as UL or FM Approvals, LLC (FM), and listed or approved for fire protection service when so required by NFPA 72 or this specification. Select material from one manufacturer, where possible, and not a combination of manufacturers, for any particular classification of materials. Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least two years prior to bid opening.

2.1.2 Nameplates

Major components of equipment shall have the manufacturer's name, address, type or style, model or serial number, catalog number, date of installation, installing Contractor's name and address, and the contract number provided on a new plate permanently affixed to the item or equipment. Major components include, but are not limited to, the following:

a. FMCPs
b. Automatic transmitter/transceiver
c. Terminal Cabinet

Furnish nameplate illustrations and data to obtain approval by the Contracting Officer before installation. Obtain approval by the Contracting Officer for installation locations. Nameplates shall be etched metal or plastic, permanently attached by screws to panels or adjacent walls.

2.1.3 Keys

Keys and locks for equipment shall be identical. Provide not less than six keys of each type required. Master all keys and locks to a single key as required by the Installation Fire Department.

LOC is not permitted to be locked or lockable.

2.2 GENERAL PRODUCT REQUIREMENT

All fire alarm and mass notification equipment shall be listed for use under the applicable reference standards. Interfacing of Listed UL 864 or similar approved industry listing with Mass Notification Panels listed to UL 2017 shall be done in a laboratory listed configuration, if the software programming features cannot provide a listed interface control. If a field modification is needed, such as adding equipment like relays, the manufacturer of the panels being same or different brand from manufacturer shall provide the installing contractor for review and confirmation by the installing contractor. As part of the submittal documents, provide this information.
2.3 SYSTEM OPERATION

The Addressable Interior Fire Alarm and Mass Notification System shall be a complete, supervised, noncoded, analog/addressable fire alarm and mass notification system conforming to NFPA 72, UL 864, and UL 2017. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the control panel is reset and restored to normal. The system may be placed in the alarm mode by local microphones, LOC, or remotely from authorized locations/users.

Submit data on each circuit to indicate that there is at least 25 percent spare capacity for notification appliances, 25 percent spare capacity for initiating devices. Annotate data for each circuit on the drawings. Submit a complete description of the system operation on the drawings. Submit a complete list of device addresses and corresponding messages.

2.3.1 Alarm Initiating Devices and Notification Appliances (Visual, Voice, Textural)

a. Connect alarm initiating devices to initiating device circuits (IDC) Class "A", or to signal line circuits (SLC) Class "A" and installed in accordance with NFPA 72.

b. Connect alarm notification appliances and speakers to notification appliance circuits (NAC) Class "A".

c. The system shall operate in the alarm mode upon actuation of any alarm initiating device or a mass notification signal. The system shall remain in the alarm mode until initiating device(s) or mass notification signal is/are reset and the control panel is manually reset and restored to normal. Audible, and visual appliances and systems shall comply with NFPA 72 and as specified herein. Fire alarm system/mass notification system components requiring power, except for the control panel power supply, shall operate on 24 Volts dc.

2.3.2 Functions and Operating Features

The system shall provide the following functions and operating features:

a. The FMCP shall provide power, annunciation, supervision, and control for the system. Addressable systems shall be microcomputer (microprocessor or microcontroller) based with a minimum word size of eight bits with sufficient memory to perform as specified.

b. For Class "A" or "X" circuits with conductor lengths of 3m (10 feet) or less, the conductors shall be permitted to be installed in the same raceway in accordance with NFPA 72.

c. Provide signaling line circuits for each floor.

d. Provide signaling line circuits for the network.

e. Provide notification appliance circuits. The visual alarm notification appliances shall have the flash rates synchronized as required by NFPA 72.

f. Provide electrical supervision of the primary power (AC) supply, presence of the battery, battery voltage, and placement of system modules within the control panel.
g. Provide an audible and visual trouble signal to activate upon a single break or open condition, or ground fault (or short circuit for Class "X"). The trouble signal shall also operate upon loss of primary power (AC) supply, absence of a battery supply, low battery voltage, or removal of alarm or supervisory panel modules. Provide a trouble alarm silence feature that shall silence the audible trouble signal, without affecting the visual indicator. After the system returns to normal operating conditions, the trouble signal shall again sound until the trouble is acknowledged. A smoke sensor in the process of being verified for the actual presence of smoke shall not initiate a trouble condition.

h. Provide program capability via switches in a locked portion of the FACP to bypass the automatic notification appliance circuits, fire reporting system, air handler shutdown, smoke control operation, elevator recall, door release, door unlocking features. Operation of this programming shall indicate this action on the FACP display and printer output.

i. Alarm, supervisory, and/or trouble signals shall be automatically transmitted to the fire department.

j. Alarm functions shall override trouble or supervisory functions. Supervisory functions shall override trouble functions.

k. The system shall be capable of being programmed from the panels keyboard. Programmed information shall be stored in non-volatile memory.

l. The system shall be capable of operating, supervising, and/or monitoring both addressable and non-addressable alarm and supervisory devices.

m. There shall be no limit, other than maximum system capacity, as to the number of addressable devices, that may be in alarm simultaneously.

n. Where the fire alarm/mass notification system is responsible for initiating an action in another emergency control device or system, such as an HVAC system, releasing panel, the addressable fire alarm relay shall be in the vicinity of the emergency control device.

o. An alarm signal shall automatically initiate the following functions:

1. Transmission of an alarm signal to the fire department.

2. Visual indication of the device operated on the control panel (FACP/MNCP), LCD, LED Display unit (VDU). Indication on the graphic annunciator shall be by floor, zone or circuit, and type of device.

3. Continuous actuation of all alarm notification appliances.

4. Recording of the event via electronically in the history log of the fire control system unit.

5. Release of doors held open by electromagnetic devices.

6. Release of power to electric locks (delayed egress locks) on doors that are part of the means of egress.
(8) Operation of a smoke sensor in an elevator lobby or other location associated with the automatic recall of elevators, shall recall the elevators in addition to other requirements of this paragraph.

(9) Operation of a duct smoke sensor shall shut down the appropriate air handler in accordance with NFPA 90A in addition to other requirements of this paragraph and as allowed by NFPA 72.

(11) Operation of a sprinkler waterflow switch serving an elevator machinery room or elevator shaft shall operate shunt trip circuit breaker(s) to shut down power to the elevators in accordance with ASME A17.1/CSA B44.

(12) Operation of an interface, that operates vibrating pagers worn by hearing-impaired occupants.

p. A supervisory signal shall automatically initiate the following functions:

(1) Visual indication of the device operated on the FACP, VDU, and on the graphic annunciator, and sound the audible alarm at the respective panel.

(2) Transmission of a supervisory signal to the fire department.

(3) Recording of the event electronically in the history log of the control unit.

q. A trouble condition shall automatically initiate the following functions:

(1) Visual indication of the system trouble on the FACP, VDU, and on the graphic annunciator, and sound the audible alarm at the respective panel.

(2) Transmission of a trouble signal to the fire department.

(3) Recording of the event in the history log of the control unit.

r. The maximum permissible elapsed time between the actuation of an initiating device and its indication at the FACP is 10 seconds.

s. The maximum elapsed time between the occurrence of the trouble condition and its indication at the FACP is 200 seconds.

t. Activation of a LOC pushbutton shall activate the audible and visual alarms in the facility. The audible message shall be the one associated with the pushbutton activated.

2.4 SYSTEM MONITORING

2.4.1 Valves

Each valve affecting the proper operation of a fire protection system, including automatic sprinkler control valves, standpipe control valves, sprinkler service entrance valve, valves at fire pumps, isolating valves for pressure type waterflow or supervision switches, and valves at backflow...
preventers, whether supplied under this contract or existing, shall be electrically monitored to ensure its proper position. Provide each tamper switch with a separate address.

2.4.2 Independent Fire Detection System

Each existing independent smoke detection subsystem and releasing system (e.g. AFFF) shall be monitored both for the presence of an alarm condition and for a trouble condition. Provide each monitored condition with a separate address.

2.5 MASS NOTIFICATION SYSTEM FUNCTIONS

2.5.1 Notification Appliance Network

The audible notification appliance network consists of speakers located to provide intelligible instructions at areas as indicated. The Mass Notification System announcements shall take priority over all other audible announcements of the system including the output of the fire alarm system in a normal or alarm state. When a mass notification announcement is activated during a fire alarm, all fire alarm system functions shall continue in an alarm state except for the output signals of the fire alarm audible and visual notification appliances.

2.5.2 Strobes

Provide strobes to alert hearing-impaired occupants.

2.5.3 Wide Area MNS

The Wide Area MNS system (if available) in the area of the building shall not be activated by the in-building MNS.

2.5.4 Voice Notification

An autonomous voice notification control unit is used to monitor and control the notification appliance network and provide consoles for local operation. Using a console, personnel in the building can initiate delivery of pre-recorded voice messages, provide live voice messages and instructions, and initiate visual strobe and optional textual message notification appliances. The autonomous voice notification control unit will temporarily override audible fire alarm notification while delivering Mass Notification messages to ensure they are intelligible.

2.5.5 Installation-Wide Control

If an installation-wide control system for mass notification exists on the base, the autonomous control unit shall communicate with the central control unit of the installation-wide system. The autonomous control unit shall receive commands/messages from the central control unit and provide status information.

2.6 OVERVOLTAGE AND SURGE PROTECTION

2.6.1 Signaling Line Circuit Surge Protection

For systems having circuits located outdoors, communications equipment shall be protected against surges induced on any signaling line circuit and shall comply with the applicable requirements of IEEE C62.41.1 and
IEEE C62.41.2. Cables and conductors, that serve as communications links, shall have surge protection circuits installed at each end that meet the following waveform(s):

a. A 10 microsecond by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 microsecond by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Protection shall be provided at the equipment. Additional triple electrode gas surge protectors, rated for the application, shall be installed on each wireline circuit within 3 feet of the building cable entrance. Fuses shall not be used for surge protection.

2.6.2 Sensor Wiring Surge Protection

Digital and analog inputs and outputs shall be protected against surges induced by sensor wiring installed outdoors and as shown. The inputs and outputs shall be tested with the following waveform:

a. A 10 by 1000 microsecond waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.

b. An 8 by 20 microsecond waveform with a peak voltage of 1000 volts and a peak current of 500 amperes. Fuses shall not be used for surge protection.

2.7 ADDRESSABLE INTERFACE DEVICES

The initiating device being monitored shall be configured as a Class "A" initiating device circuits. The system shall be capable of defining any module as an alarm module and report alarm trouble, loss of polling, or as a supervisory module, and reporting supervisory short, supervisory open or loss of polling such as waterflow switches, valve supervisory switches, fire pump monitoring, independent smoke detection systems, relays for output function actuation, etc. The module shall be UL or FM listed as compatible with the control panel. The monitor module shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. Monitor module shall contain an integral LED that flashes each time the monitor module is polled and is visible through the device cover plate. Pull stations with a monitor module in a common backbox are not required to have an LED.

2.8 ADDRESSABLE CONTROL MODULE

The control module shall be capable of operating as a relay (dry contact form C) for interfacing the control panel with other systems, and to control door holders or initiate elevator fire service. The module shall be UL or FM listed as compatible with the control panel. The indicating device or the external load being controlled shall be configured as a Class "B" notification appliance circuits. The system shall be capable of supervising, audible, visual and dry contact circuits. The control module shall have both an input and output address. The supervision shall detect a short on the supervised circuit and shall prevent power from being applied to the circuit. The control module shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. The control module shall contain an integral LED that flashes each time the control module is polled and is visible through the device cover plate. Control Modules shall be located in
environmental areas that reflect the conditions to which they were listed.

2.9 ISOLATION MODULES

Provide isolation modules to subdivide each signaling line circuit into groups of not more than 20 addressable devices between adjacent isolation modules.

2.10 SMOKE SENSORS

2.10.1 Photoelectric Smoke Sensors

Provide addressable photoelectric smoke sensors as follows:

a. Provide analog/addressable photoelectric smoke sensors utilizing the photoelectric light scattering principle for operation in accordance with UL 268. Smoke sensors shall be listed for use with the fire alarm control panel.

b. Provide self-restoring type sensors that do not require any readjustment after actuation at the FACP to restore them to normal operation. Sensors shall be UL listed as smoke-automatic fire sensors.

c. Components shall be rust and corrosion resistant. Vibration shall have no effect on the sensor's operation. Protect the detection chamber with a fine mesh metallic screen that prevents the entrance of insects or airborne materials. The screen shall not inhibit the movement of smoke particles into the chamber.

d. Provide twist lock bases for the sensors. The sensors shall maintain contact with their bases without the use of springs. Provide companion mounting base with screw terminals for each conductor. Terminate field wiring on the screw terminals. The sensor shall have a visual indicator to show actuation.

e. The sensor address shall identify the particular unit, its location within the system, and its sensitivity setting. Sensors shall be of the low voltage type rated for use on a 24 VDC system.

f. An operator at the control panel, having a proper access level, shall have the capability to manually access the following information for each initiating device.

(1) Primary status
(2) Device type
(3) Present average value
(4) Present sensitivity selected
(5) Sensor range (normal, dirty, etc.)

2.10.2 Duct Smoke Sensors

Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry
shall be mounted in a metallic enclosure exterior to the duct. (It is not permitted to cut the duct insulation to install the duct detector directly on the duct). Detectors shall have a manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm panel.

a. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. The control functions, operation, reset, and bypass shall be controlled from the fire alarm control panel.

b. Lights to indicate the operation and alarm condition; and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Remote indicators shall be provided where required by NFPA 72 and these shall be provided with test and reset switches.

c. Remote lamps and switches as well as the affected fan units shall be properly identified in etched plastic placards. Detectors shall provide for control of auxiliary contacts that provide control, interlock, and shutdown functions specified in Section 23 09 00 to INSTRUMENTATION AND CONTROL FOR HVAC. Auxiliary contacts provide for this function shall be located within 3 feet of the controlled circuit or appliance. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility.

2.10.3 Air Sampling Smoke Detectors

Air sampling detectors are early warning devices use to detect what may be the beginning of a fire. The detector uses a series of perforated pipes in the protected area to continuously draw smoke into the sampling chamber. Once in the sampling chamber the air is sampled by mass scattering of light to determine if there is possibly a fire in the protected area. These units shall be programmable in multiple levels to indicate detection of particles that are not normally present, to indicate the presence of particle that could be produced by a fire and to indicate the presence of particles of the proper size and quantity to indicate that a fire conditions exists.

2.10.4 Smoke Sensor Testing

Smoke sensors shall be tested in accordance with NFPA 72 and manufacturer's recommended calibrated test method. Submit smoke sensor testing procedures for approval. In addition to the NFPA 72 requirements, smoke detector sensitivity shall be tested during the preliminary tests.

2.11 HEAT DETECTORS

2.11.1 Heat Detectors

Heat detectors shall be designed for detection of fire by combination fixed temperature and rate-of-rise principle. The alarm condition shall be determined by comparing sensor valve with the stored values. Heat detector spacing shall be rated in accordance with UL 521. Detectors located in areas subject to moisture, exterior atmospheric conditions, or hazardous locations as defined by NFPA 70, shall be types approved for such locations.
2.11.1.1 Combination Fixed-Temperature and Rate-of-Rise Detectors

Detectors shall be designed for semi-flush outlet box mounting and supported independently of wiring connections. Contacts shall be self-resetting after response to rate-of-rise principle. Under fixed temperature actuation, the detector shall have a permanent external indication that is readily visible. Detector units located in boiler rooms, showers, or other areas subject to abnormal temperature changes shall operate on fixed temperature principle only. The UL 521 test rating for the fixed temperature portion shall be 135 degrees F. The UL 521 test rating for the Rate-of-Rise detectors shall be rated for 50 by 50 feet.

2.11.2 Self-Test Routines

Automatic self-test routines shall be performed on each sensor that will functionally check sensor sensitivity electronics and ensure the accuracy of the value being transmitted. Any sensor that fails this test shall indicate a trouble condition with the sensor location at the control panel.

2.11.3 Operator Access

An operator at the control panel, having the proper access level, shall have the capability to manually access the following information for each heat sensor:

a. Primary status
b. Device type
c. Present average value
d. Sensor range

2.11.4 Operator Control

An operator at the control panel, having the proper access level, shall have the capability to manually control the following information for each heat sensor:

a. Alarm detection sensitivity values
b. Enable or disable the point/device
c. Control sensors relay driver output

2.12 ELECTRIC POWER

2.12.1 Primary Power

Power shall be 120 VAC service for the FMCP from the AC service to the building in accordance with NFPA 72.

2.13 SECONDARY POWER SUPPLY

Provide for system operation in the event of primary power source failure. Transfer from normal to auxiliary (secondary) power or restoration from auxiliary to normal power shall be automatic and shall not cause transmission of a false alarm.
2.13.1 Batteries

Provide sealed, maintenance-free, sealed lead acid batteries as the source for emergency power to the FMCP. Batteries shall contain suspended electrolyte. The battery system shall be maintained in a fully charged condition by means of a solid state battery charger. Provide an automatic transfer switch to transfer the load to the batteries in the event of the failure of primary power.

2.13.1.1 Capacity

Battery size shall be the greater of the following two capacities.

a. Sufficient capacity to operate the fire alarm system under supervisory and trouble conditions, including audible trouble signal devices for 24 hours and audible and visual signal devices under alarm conditions for an additional 15 minutes.

b. Sufficient capacity to operate the mass notification for 60 minutes after loss of AC power.

2.13.1.2 Battery Power Calculations

a. Verify that battery capacity exceeds supervisory and alarm power requirements.

(1) Substantiate the battery calculations for alarm, alert, and supervisory power requirements. Include ampere-hour requirements for each system component and each panel component, and compliance with UL 864.

(2) Provide complete battery calculations for both the alarm, alert, and supervisory power requirements. Submit ampere-hour requirements for each system component with the calculations.

(3) A voltage drop calculation to indicate that sufficient voltage is available for proper operation of the system and all components, at the minimum rated voltage of the system operating on batteries.

b. For battery calculations use the following assumptions: Assume a starting voltage of 24 VDC for starting the calculations to size the batteries. Calculate the required Amp-Hours for the specified standby time, and then calculate the required Amp-Hours for the specified alarm time. Calculate the nominal battery voltage after operation on batteries for the specified time period. Using this voltage perform a voltage drop calculation for circuit containing device and/or appliances remote from the power sources.

2.13.2 Battery Chargers

Provide a solid state, fully automatic, variable charging rate battery charger. The charger shall be capable of providing 120 percent of the connected system load and shall maintain the batteries at full charge. In the event the batteries are fully discharged (20.4 Volts dc), the charger shall recharge the batteries back to 95 percent of full charge within 48 hours after a single discharge cycle as described in paragraph CAPACITY above. Provide pilot light to indicate when batteries are manually placed on a high rate of charge as part of the unit assembly if a high rate switch is provided.
2.14 FIRE ALARM CONTROL UNIT AND MASS NOTIFICATION CONTROL UNIT (FMCP)

Provide a complete control panel fully enclosed in a lockable steel cabinet as specified herein. Operations required for testing or for normal care and maintenance of the systems shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit cabinets shall match exactly.

a. Each control unit shall provide power, supervision, control, and logic for the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Each control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide each panel with supervisory functions for power failure, internal component placement, and operation.

b. Visual indication of alarm, supervisory, or trouble initiation on the fire alarm control panel shall be by liquid crystal display or similar means with a minimum of 80 characters. The mass notification control unit shall have the capability of temporarily deactivate the fire alarm audible notification appliances while delivering voice messages.

c. Provide secure operator console for initiating recorded messages, strobes and displays; and for delivering live voice messages. Provide capacity for at least eight pre-recorded messages. Provide the ability to automatically repeat pre-recorded messages. Provide a secure microphone for delivering live messages. Provide adequate discrete outputs to temporarily deactivate fire alarm audible notification, and initiate/synchronize strobes. Provide a complete set of self-diagnostics for controller and appliance network. Provide local diagnostic information display and local diagnostic information and system event log file.

2.14.1 Cabinet

Install control panel components in cabinets large enough to accommodate all components and also to allow ample gutter space for interconnection of panels as well as field wiring. The enclosure shall be identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall say "Fire Alarm and Mass Notification Control Panel" and shall not be less than 1 inch high. Provide prominent rigid plastic or metal identification plates for lamps, circuits, meters, fuses, and switches. The cabinet shall be provided in a sturdy steel housing, complete with back box, hinged steel door with cylinder lock, and surface mounting provisions.

2.14.2 Control Modules

Provide power and control modules to perform all functions of the FACP. Provide audible signals to indicate any alarm, supervisory, or trouble condition. The alarm signals shall be different from the trouble signal. Connect circuit conductors entering or leaving the panel to screw-type terminals with each terminal marked for identification. Locate diodes and resistors, if any, on screw terminals in the FACP. Circuits operating at 24 VDC shall not operate at less than the UL listed voltage at the sensor or appliance connected. Circuits operating at any other voltage shall not have a voltage drop exceeding 10 percent of nominal voltage.
2.14.3 Silencing Switches

2.14.3.1 Alarm Silencing Switch

Provide an alarm silencing switch at the FMCP that shall silence the audible and visual. This switch shall be overridden upon activation of a subsequent alarm.

2.14.3.2 Supervisory/Trouble Silencing Switch

Provide supervisory and trouble silencing switch that shall silence the audible trouble and supervisory signal, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent alarm, supervision, or trouble condition. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated.

2.14.4 Non-Interfering

Power and supervise each circuit such that a signal from one device does not prevent the receipt of signals from any other device. Circuits shall be manually reset by switch from the FACP after the initiating device or devices have been restored to normal.

2.14.5 Audible Notification System

The Audible Notification System shall comply with the requirements of NFPA 72 for Emergency Voice/Alarm Communications System requirements ISO 7240-16, IEC 60268-16, except as specified herein. The system shall be a one-way multi-channel voice notification system incorporating user selectability of a minimum eight distinct sounds for tone signaling, and the incorporation of a voice module for delivery of prerecorded messages. Audible appliances shall produce a temporal code 3 tone for three cycles followed by a voice message that is repeated until the control panel is reset or silenced. Automatic messages shall be broadcast through speakers throughout the building/facility but not in stairs or elevator cabs. A live voice message shall override the automatic audible output through use of a microphone input at the control panel or the LOC.

a. When using the microphone, live messages shall be broadcast throughout a selected floor or floors or all call. The system shall be capable of operating all speakers at the same time. The microprocessor shall actively interrogate circuitry, field wiring, and digital coding necessary for the immediate and accurate rebroadcasting of the stored voice data into the appropriate amplifier input. Loss of operating power, supervisory power, or any other malfunction that could render the digitalized voice module inoperative shall automatically cause the code 3 temporal tone to take over all functions assigned to the failed unit in the event an alarm is activated.

b. The Mass Notification functions shall override the manual or automatic fire alarm notification or Public Address (PA) functions. Other fire alarm functions including transmission of a signal(s) to the fire department shall remain operational. The system shall have the capability of utilizing LOC with redundant controls of the notification system control panel. Notification Appliance Circuits (NAC) shall be provided for the activation of strobe appliances. The activation of the NAC Circuits shall follow the operation of the speaker NAC circuits. Audio output shall be selectable for line level. Amplifier
outputs shall be not greater than 100 watts RMS output. The strobe NAC Circuits shall provide at least 2 amps of 24 VDC power to operate strobes and have the ability to synchronize all strobes. A hand held microphone shall be provided and, upon activation, shall take priority over any tone signal, recorded message or PA microphone operation in progress, while maintaining the strobe NAC Circuits activation.

2.14.5.1 Outputs and Operational Modules

All outputs and operational modules shall be fully supervised with on-board diagnostics and trouble reporting circuits. Provide form "C" contacts for system alarm and trouble conditions. Provide circuits for operation of auxiliary appliance during trouble conditions. During a Mass Notification event the panel shall not generate nor cause any trouble alarms to be generated with the Fire Alarm system.

2.14.5.2 Mass Notification

a. Mass Notification functions shall take precedence over all other function performed by the Audible Notification System. Messages shall utilize a male voice and shall be similar to the following:

(1) 1000 Hz tones (as required in 18.4.2.1 of NFPA 72)

(2) "May I have your attention please. May I have your attention please. An fire emergency has been reported in the building. Please leave the building by the nearest exit or exit stairway. Do not use the elevators." (Provide a 2 second pause.) "May I have your attention please, (repeat the message)."

(3) "May I have your attention please. May I have your attention please." (Provide a 2 second pause.) (repeat the message)

(4) "May I have your attention please. May I have your attention please." (Provide a 2 second pause.) (repeat the message)

(5) "May I have your attention please. May I have your attention please." (Provide a 2 second pause.) (repeat the message)

(6) "May I have your attention please. May I have your attention please." (Provide a 2 second pause.) (repeat the message)

b. Include ALL installation specific message in this section.

c. The LOC shall incorporate a Push-To-Talk (PTT) microphone, redundant controls and system status indicators of/for the system. The unit shall incorporate microphone override of any tone generation or prerecorded messages. The unit shall be fully supervised from the control panel. The housing shall contain a latch (not lock).

d. Auxiliary Input Module shall be designed to be an outboard expansion module to either expand the number of optional LOC's, or allow a telephone interface.

e. LOC shall incorporate a Push-To-Talk (PTT) microphone, and controls to allow Public Address paging in the facility. The Public Address paging function shall not override any alarm or notification functions and shall be disabled by such signals. The microphone shall be handheld
style. All wiring to the LOC shall be supervised in accordance with UFC 4-021-01. Systems that require field modification or are not supervised for multiple LOC’s shall not be approved.

f. When an installation has more than one LOC, the LOC's shall be programmed to allow only one LOC to be available for page or messaging at a time. Once one LOC becomes active, all other LOC's will have an indication that the system is busy (Amber Busy Light) and cannot be used at that time. This is to avoid two messages being given at the same time. Also, it must be possible to override or lockout the LOC's from the Master Command Panel (in accordance with NFPA 72.)

2.14.6 Memory

Provide each control unit with non-volatile memory and logic for all functions. The use of long life batteries, capacitors, or other age-dependent devices shall not be considered as equal to non-volatile processors, PROMS, or EPROMS.

2.14.7 Field Programmability

Provide control units and control panels that are fully field programmable for control, initiation, notification, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment. Any proprietary equipment and proprietary software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract.

2.14.8 Input/Output Modifications

The FMCP shall contain features that allow the bypassing of input devices from the system or the modification of system outputs. These control features shall consist of a panel mounted keypad. Any bypass or modification to the system shall indicate a trouble condition on the FMCP.

2.14.9 Resetting

Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm, supervisory or trouble condition on the system still exists.

2.14.10 Instructions

Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. Install the instructions on the interior of the FACP. The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory, and trouble. The instructions shall be approved by the Contracting Officer before being posted.

2.14.11 Walk Test

The FACP shall have a walk test feature. When using this feature, operation of initiating devices shall result in limited system outputs, so that the notification appliances operate for only a few seconds and the event is indicated on the system printer, but no other outputs occur.
2.14.12 History Logging

In addition to the required printer output, the control panel shall have the ability to store a minimum of 400 events in a log. These events shall be stored in a battery-protected memory and shall remain in the memory until the memory is downloaded or cleared manually. Resetting of the control panel shall not clear the memory.

2.14.13 Remote LCD Text Display

An LCD text display shall be provided at locations as shown on the drawings. The size shall not exceed 16 inches length by 3 inches deep with a height necessary to meet the requirements of Chapter 24 of NFPA 72). The text display shall as a minimum meet the following requirements:

a. Two lines of information for high priority messaging.
b. Minimum of 20 characters per line (40 total) displayed.
c. Text shall be no less than height requirements in Table 24.4.2.20.14.5 of NFPA 72 and color/contrast requirements of 24.4.2.20 of NFPA 72.
d. 32K character memory.
e. Display shall be wall or ceiling mounted.
f. Mounting brackets for a convenient wall/cubicle mount.
g. During non-emergency periods, display date and time.
h. All programming shall be accomplished from the Mass Notification network. No user programming shall be required.

An LCD text display shall be provided at locations as shown on the drawings. The LCD text display shall spell out the words "EVACUATE" and "ANNOUNCEMENT" and the remainder of the emergency instructions. The design of LCD text display shall be such that it cannot be read when not illuminated.

2.15 REMOTE FIRE ALARM/MASS NOTIFICATION CONTROL UNITS

Provide complete remote control units fully enclosed in a lockable steel enclosure as specified herein. Operations required for testing or for normal care and maintenance of the control units shall be performed from the front of the enclosure. If more than a single unit is required at a location to form a complete control panel, the unit enclosures shall match exactly. Each control unit shall provide power, supervision, control, and logic for its portion of the entire system, utilizing solid state, modular components, internally mounted and arranged for easy access. Each control unit shall be suitable for operation on a 120 volt, 60 hertz, normal building power supply. Provide each unit with supervisory functions for power failure, internal component placement, and operation.

2.15.1 Cabinet

Install remote control unit components in cabinets large enough to accommodate components and also to allow ample gutter space for interconnection of units as well as field wiring. The enclosure shall be
identified by an engraved laminated phenolic resin nameplate. Lettering on the nameplate shall be labeled "Remote Fire Alarm/Mass Notification Control Unit" and shall not be less than one inch high. Provide prominent rigid plastic or metal identification plates for lamps, circuits, meters, fuses, and switches. The cabinet shall be provided in a sturdy steel housing, complete with back box, hinged steel door with cylinder lock (keyed the same as the FMCP), and surface mounting provisions.

2.15.2 Control Modules

Provide power and control modules to perform all functions of the remote control unit. Provide audible signals to indicate any alarm or trouble condition. The alarm signals shall be different from the trouble signal. Connect circuit conductors entering or leaving the panel to screw-type terminals with each terminal marked for identification. Locate diodes and relays, if any, on screw terminals in the remote control unit. Circuits shall not have a voltage drop exceeding 10 percent of nominal voltage. Circuits shall be arranged so that there is 25 percent spare capacity for any circuit.

2.15.3 Silencing Switches

Provide an alarm silencing switch at the remote control unit that shall silence the audible signal and extinguish the visual alarms. This switch shall be overridden upon activation of a subsequent alarm. Provide trouble and supervisory silencing switch that shall silence the audible trouble and supervisory signal, but not extinguish the visual indicator. This switch shall be overridden upon activation of a subsequent trouble or supervisory signal. Audible trouble indication must resound automatically every 24 hours after the silencing feature has been operated.

2.15.4 Non-Interfering

Power and supervise each circuit such that a signal from one device does not prevent the receipt of signals from any other device. Circuits shall be manually resettable by switch from the remote control unit after the initiating device or devices have been restored to normal.

2.15.5 Memory

Provide each control unit with non-volatile memory and logic for all functions. The use of long life batteries, capacitors, or other age-dependent devices shall not be considered as equal to non-volatile processors, PROMS, or EPROMS.

2.15.6 Field Programmability

Provide control units that are fully field programmable for control, initiating, supervisory, and trouble functions of both input and output. The system program configuration shall be menu driven. System changes shall be password protected and shall be accomplished using personal computer based equipment. Any proprietary equipment and proprietary software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract.

2.15.7 Input/Output Modifications

Each remote control unit shall contain features that allow the elimination of input devices from the system or the modification of system outputs.
Any such modifications shall indicate a trouble condition on the remote control unit, the FACP, and a printed output of the trouble condition.

2.15.8 Resetting

Provide the necessary controls to prevent the resetting of any alarm, supervisory, or trouble signal while the alarm, supervisory, or trouble condition on the system still exists.

2.15.9 Instructions

Provide a typeset printed or typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame. Install the frame in a conspicuous location observable from the remote fire alarm control unit. The card shall show those steps to be taken by an operator when a signal is received as well as the functional operation of the system under all conditions, normal, alarm, supervisory, and trouble. The instructions shall be approved by the Contracting Officer before being posted.

2.15.10 Walk Test

Each remote control unit shall have a walk test feature. When using this feature, operation of initiating devices shall result in limited system outputs, so that the notification appliances operate for only a few seconds and the event is indicated on the system printer, but no other outputs occur.

2.15.11 History Logging

In addition to the required printer output, the control panel shall have the ability to store a minimum of 1000 events in a log. These events shall be stored in a battery-protected memory and shall remain in the memory until the memory is downloaded or cleared manually. Resetting of the control panel shall not clear the memory.

2.16 AMPLIFIERS, PREAMPLIFIERS, TONE GENERATORS

Any amplifiers, preamplifiers, tone generators, digitalized voice generators, and other hardware necessary for a complete, operational, textual audible circuit conforming to NFPA 72 shall be housed in a remote FMCP, terminal cabinet, or in the FMCP. Submit data to indicate that the amplifiers have sufficient capacity to simultaneously drive all notification speakers at the maximum rating plus 50 percent spare capacity. Annotate data for each circuit on the drawings.

2.16.1 Operation

The system shall automatically operate and control all building speakers except those installed in the stairs and within elevator cabs. The speakers in the stairs and elevator cabs shall operate only when the microphone is used to deliver live messages.

2.16.2 Construction

Amplifiers shall utilize computer grade solid state components and shall be provided with output protection devices sufficient to protect the amplifier against any transient up to 10 times the highest rated voltage in the system.
2.16.3 Inputs

Equip each system with separate inputs for the tone generator, digitalized voice driver and panel mounted microphone. Microphone inputs shall be of the low impedance, balanced line type. Both microphone and tone generator input shall be operational on any amplifier.

2.16.4 Tone Generator

The tone generator shall be of the modular, plug-in type with securely attached labels to identify the component as a tone generator and to identify the specific tone it produces. The tone generator shall produce a code 3 temporal tone and shall be constantly repeated until interrupted by either the digitalized voice message, the microphone input, or the alarm silence mode as specified. The tone generator shall be single channel with an automatic backup generator per channel such that failure of the primary tone generator causes the backup generator to automatically take over the functions of the failed unit and also causes transfer of the common trouble relay.

2.16.5 Protection Circuits

Each amplifier shall be constantly supervised for any condition that could render the amplifier inoperable at its maximum output. Failure of any component shall cause automatic transfer to a designated backup amplifier, illumination of a visual "amplifier trouble" indicator on the control panel, appropriate logging of the condition on the system printer, and other actions for trouble conditions as specified.

2.17 LCD, LED DISPLAY UNIT (VDU)

a. The VDU shall be the secondary operator-to-system interface for data retrieval, alarm annunciation, commands, and programming functions. The desk mounted VDU shall consist of a LCD monitor and a keyboard. The VDU shall have a 12 inch minimum touch screen, capable of displaying 25 lines of 80 characters each. Communications with the FACP shall be supervised. Faults shall be recorded on the printer. Power required shall be 120 VAC, 60 Hz from the same source as the fire alarm control panel.

b. To eliminate confusion during an alarm situation, the screen shall have dedicated areas for the following functions:

 (1) Alarm and returns to normal

 (2) Commands, reports, and programming

 (3) Time, day, and date

c. Use Full English language throughout to describe system activity and instructions. Full English language descriptors defining system points shall be 100 percent field programmable by factory trained personnel, alterable and user definable to accurately describe building areas.

d. Alarms and other changes of status shall be displayed in the screen area reserved for this information. Upon receipt of alarm, an audible alarm shall sound and the condition and point type shall flash until acknowledged by the operator. Returns to normal shall also be
annunciated and shall require operator acknowledgment. The following information shall be provided in English:

(1) Condition of device (alarm, trouble, or supervisory).
(2) Type of device (manual pull, waterflow, etc.)
(3) Location of device plus numerical system address.

e. The system shall have multiple levels of priority for displaying alarms to conform with UL 864. Priority levels shall be as follows:

(1) Level 1 - Mass Notification
(2) Level 2 - Fire Alarms
(3) Level 3 - Supervisory Alarms
(4) Level 4 - Trouble Signals

f. Provide the system with memory so that no alarm is lost. A highlighted message shall advise the operator when unacknowledged alarms are in the system.

g. Multiple levels of access shall be provided for operators and supervisors via user-defined passwords. Provide the following functions for each level:

(1) Operator level access functions:
 (a) Display system directory, definable by device.
 (b) Display status of an individual device.
 (c) Manual command (alarm device with an associated command shall use the same system address for both functions).
 (d) Report generation, definable by device, output on either the VDU or printer, as desired by the operator.
 (e) Activate building notification appliances.

(2) Supervisory level access functions:
 (a) Reset time and date.
 (b) Enable or disable event initiated programs, printouts, and initiators.
 (c) Enable or disable individual devices and system components.

h. The above supervisory level functions shall not require computer programming skills. Changes to system programs shall be recorded on the printer and maintained in the control panel as a trouble condition.
2.18 ANNUNCIATOR

2.18.1 Annunciator Panel

Provide an annunciator that includes an LCD display. The display shall indicate the device in trouble/alarm or any supervisory device. Display the device name, address, and actual building location.

A building floor plan shall be provided mounted (behind plexiglass or similar protective material) at the annunciator location. The floor plan shall indicate all rooms by name and number including the locations of stairs and elevators. The floor plan shall show all devices and their programmed address to facilitate their physical location from the LCD display information.

2.18.2 Programming

Where programming for the operation of the annunciator is accomplished by a separate software program than the software for the FMCP, the software program shall not require reprogramming after loss of power. The software shall be reprogrammable in the field.

2.19 MANUAL STATIONS

Provide metal or plastic, semi-flush mounted, double action, addressable manual stations, that are not subject to operation by jarring or vibration. Stations shall be equipped with screw terminals for each conductor. Stations that require the replacement of any portion of the device after activation are not permitted. Stations shall be finished in fire-engine red with molded raised lettering operating instructions of contrasting color. The use of a key or wrench shall be required to reset the station. Manual stations shall be mounted at 42 inches. Stations shall have a separate screw terminal for each conductor.

2.20 NOTIFICATION APPLIANCES

2.20.1 Fire Alarm/Mass Notification Speakers

Audible appliances shall conform to the applicable requirements of UL 464. Appliances shall be connected into notification appliance circuits. Surface mounted audible appliances shall be painted red. Recessed audible appliances shall be installed with a grill that is painted red.

a. Speakers shall conform to the applicable requirements of UL 1480. Speakers shall have six different sound output levels and operate with audio line input levels of 70.7 VRMs and 25 VRMs, by means of selectable tap settings. Tap settings shall include taps of 1/8, 1/4, 1/2, 1, and 2 watt. Speakers shall incorporate a high efficiency speaker for maximum output at minimum power across a frequency range of 150 Hz to 10,000 Hz, and shall have a sealed back construction. Speakers shall be capable of installation on standard 4 inch square electrical boxes. Where speakers and strobes are provided in the same location, they may be combined into a single unit. All inputs shall be polarized for compatibility with standard reverse polarity supervision of circuit wiring via the FMCP.

b. Provide speaker mounting plates constructed of cold rolled steel having a minimum thickness of 16 gauge or molded high impact plastic and equipped with mounting holes and other openings as needed for a
complete installation. Fabrication marks and holes shall be ground and finished to provide a smooth and neat appearance for each plate. Each plate shall be primed and painted.

c. Speakers shall utilize screw terminals for termination of all field wiring.

d. Audible appliances located in exterior locations shall be approved for such locations. Utilize exterior sealant on exterior boxes.

2.20.2 Visual Notification Appliances

Visual notification appliances shall conform to the applicable requirements of UL 1971 and conform to the Architectural Barriers Act (ABA). Colored lens, such as amber, shall comply with UL 1638. The manufacturer shall have the color lens tested to the full UL 1971 polar plotting criteria, voltage drop, and temperature rise as stated in 1971. Fire Alarm Notification Appliances shall have clear high intensity optic lens, xenon flash tubes, and be marked "Fire" in red letters. Fire Alarm/Mass Notification Appliances shall have amber high intensity optic lens, xenon flash tubes, and output white light and be marked "ALERT" in red letters. The light pattern shall be disbursed so that it is visible above and below the strobe and from a 90 degree angle on both sides of the strobe. Strobe flash rate shall be 1 flash per second and a minimum of 15 candela (actual output after derating for tinted lens) based on the UL 1971 test. Strobe shall be semi-flush mounted. Where more than two appliances are located in the same room or corridor or field of view, provide synchronized operation. Devices shall use screw terminals for all field wiring.

2.20.3 Chimes

Chimes shall be electrically operated, supervised, electronic type, with an adjustable frequency of 800 to 1200 Hertz. Chimes shall have a minimum sound rating of 80 dBA at 10 feet. Chimes shall ring the bell codes, as indicated.

2.21 ENVIRONMENTAL ENCLOSURES OR GUARDS

Environmental enclosures shall be provided to permit Fire Alarm or Mass Notification components to be used in areas that exceed the environmental limits of the listing. The enclosure shall be listed for the device or appliance as either a manufactured part number or as a listed compatible accessory for the UL category that the component is currently listed. Guards required to deter mechanical damage shall be either a listed manufactured part or a listed accessory for the category of the initiating device or notification appliance.

2.22 INTERFACE TO THE BASE WIDE MASS NOTIFICATION NETWORK

2.22.1 Fiber Optic

The fiber optic transceiver shall be fully compatible with EIA standards for RS-232, RS-422 and RS-485 at data rates from 0 (DC) to 2.1 mbps (200 kbps for RS-232) in the low speed mode or from 10 kbps to 10 mbps in the high-speed mode. The fiber optic transceiver shall be capable of simplex or full duplex asynchronous transmissions in both point-to-point systems and drop-and-repeat data networks. The fiber optic transceiver shall be user configurable for the protocol, speed and mode of operation required. The fiber optic transceiver shall be installed as a card-cage unit. The
fiber optic transceiver shall operate on Multi-mode fiber optic cable. The fiber optic transceiver shall be supplied with ST or FCPC type optical connectors. Cabling: as specified in Section 27 10 00 BUILDING TELECOMMUNICATIONS CABLEING SYSTEM.

2.22.2 Radio

The radio transceiver shall be bi-direction and meet all the requirements of paragraph, RADIO TRANSMITTER AND INTERFACE PANELS as specified in this Specification Section. The transceiver utilized in the Mass Notification System shall be capable of the following:

a. Communication with the Central Control/Monitoring System to provide supervision of communication link and status changes are reported by automatic and manual poll/reply/acknowledge routines.

b. All monitored points/status changes are transmitted immediately and at programmed intervals until acknowledged by the Central Control/Monitoring System.

c. Each transceiver shall transmits a unique identity code as part of all messages; the code is set by the user at the transceiver.

2.22.2.1 Radio Frequency Communications

Use of radio frequency-type communications systems shall comply with National Telecommunications and Information Administration (NTIA) requirements.

2.22.2.2 Licensed Radio Frequency Systems

An approved DD Form 1494 for the system is required prior to operation.

2.22.3 Telephone

A modem shall be provide for communication with the Central Control/Monitoring System. The modem shall be 56k, compatible with data mode V.90, utilizing Hayes compatible command codes. The modem shall be capable of Auto dialing a preset number based on preprogrammed events. The modem shall auto answer and provide a secure password protection system. Cabling: as specified in Section 27 10 00 BUILDING TELECOMMUNICATIONS CABLEING SYSTEM.

2.22.4 Secure Radio System

2.22.4.1 Communications Network

The communications network provides two-way signals between central control units and autonomous control units (in individual building systems), and should include redundant (primary and backup) communication links. The system shall incorporate technology to prevent easy interruption of the radio traffic for MNS Alerting.

2.22.4.2 Radio Frequency Communications

Use of radio frequency-type communications systems shall comply with National Telecommunications and Information Administration (NTIA) requirements. The systems shall be designed to minimize the potential for interference, jamming, eavesdropping, and spoofing.
2.22.4.3 Licensed Radio Frequency Systems

An approved DD Form 1494 for the system is required prior to operation.

2.23 AUTOMATIC FIRE TRANSMITTERS

2.23.1 Radio Transmitter and Interface Panels

Transmitters shall be compatible with proprietary supervising station receiving equipment. Each radio alarm transmitter shall be the manufacturer's recognized commercial product, completely assembled, wired, factory tested, and delivered ready for installation and operation. Transmitters shall be provided in accordance with applicable portions of NFPA 72, Federal Communications Commission (FCC) 47 CFR 90 and Federal Communications Commission (FCC) 47 CFR 15. Transmitter electronics module shall be contained within the physical housing as an integral, removable assembly. The proprietary supervising station receiving equipment is MONACO and the transceiver shall be fully compatible with this equipment. At the contractors option, and if UL or FM listed, the transmitter may be housed in the same panel as the fire alarm control panel. The transmitter shall be Narrowband radio, with FCC certification for narrowband operation and meets the requirements of the NTIA (National Telecommunications and Information Administration) Manual of Regulations and Procedures for Federal Frequency Management.

2.23.1.1 Operation

Operate each transmitter from 120-volt ac power. In the event of 120-volt ac power loss, the transmitter shall automatically switch to battery operation. Switchover shall be accomplished with no interruption of protective service, and shall automatically transmit a trouble message. Upon restoration of ac power, transfer back to normal ac power supply shall also be automatic.

2.23.1.2 Battery Power

Transmitter standby battery capacity shall provide sufficient power to operate the transmitter in a normal standby status for a minimum of 72 hours and be capable of transmitting alarms during that period.

2.23.1.3 Transmitter Housing

Use NEMA Type 1 for housing. The housing shall contain a lock that is keyed identical to the fire alarm system for the building. Radio alarm transmitter housing shall be factory painted with a suitable priming coat and not less than two coats of a hard, durable weatherproof enamel.

2.23.1.4 Antenna

Antenna shall be omnidirectional, coaxial, halfwave dipole antennas for radio alarm transmitters with a driving point impedance to match transmitter output. The antenna and antenna mounts shall be corrosion resistant and designed to withstand wind velocities of 100 mph. Do not mount antennas to any portion of the building roofing system. Protect the antenna from physical damage.
2.23.2 Digital Alarm Communicator Transmitter (DACT)

Provide DACT that is compatible with the existing supervising station fire alarm system. Transmitter shall have a means to transmit alarm, supervisory, and trouble conditions via a single transmitter. Transmitter shall have a source of power for operation that conforms to NFPA 72. Transmitter shall be capable of initiating a test signal daily at any selected time. Transmitter shall be arranged to seize telephone circuits in accordance with NFPA 72.

2.23.3 Signals to Be Transmitted to the Base Receiving Station

The following signals shall be sent to the base receiving station:

a. Sprinkler water flow
b. Manual pull stations
c. Smoke detectors
d. Duct smoke detectors
f. Heat detectors
g. Fire Extinguishing System
h. Sprinkler valve supervision
k. Water supply level and temperature

2.24 WIRING

Provide wiring materials under this section as specified in Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM with the additions and modifications specified herein. NFPA 70 accepted fire alarm cables that do not require the use of raceways except as modified herein are permitted.

2.24.1 Alarm Wiring

The SLC wiring shall be fiber optic or solid copper cable in accordance with the manufacturers requirements. Copper signaling line circuits and initiating device circuit field wiring shall be No. 14 AWG size twisted and shielded solid conductors at a minimum. Visual notification appliance circuit conductors, that contain audible alarm appliances, shall be solid copper No. 14 AWG size conductors at a minimum. Wire size shall be sufficient to prevent voltage drop problems. Circuits operating at 24 VDC shall not operate at less than the UL listed voltages for the sensors and/or appliances. Power wiring, operating at 120 VAC minimum, shall be a minimum No. 12 AWG solid copper having similar insulation. Acceptable power-limited cables are FPL, FPLR or FPLP as appropriate with red colored covering. Nonpower-limited cables shall comply with NFPA 70.
PART 3 EXECUTION

3.1 INSTALLATION OF FIRE ALARM INITIATING DEVICES AND NOTIFICATION APPLIANCES

3.1.1 FMCP

Locate the FMCP where indicated on the drawings. Surface mount the enclosure with the top of the cabinet 6 feet above the finished floor or center the cabinet at 5 feet, whichever is lower. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the FMCP.

3.1.2 Manual Stations:

Locate manual stations as required by NFPA 72 and as indicated on drawings. Mount stations so that their operating handles are 4 feet above the finished floor. Mount stations so they are located no farther than 5 feet from the exit door they serve, measured horizontally.

3.1.3 Notification Appliance Devices

Locate notification appliance devices where indicated. Mount assemblies on walls as required by NFPA 72 and to meet the intelligibility requirements. Ceiling mounted speakers shall conform to NFPA 72.

3.1.4 Smoke and Heat Sensors

Locate sensors as required by NFPA 72 and their listings and as indicated on a 4 inch mounting box. Locate smoke and heat sensors on the ceiling. Install heat sensors not less than 4 inches from a side wall to the near edge. Heat sensors located on the wall shall have the top of the sensor at least 4 inches below the ceiling, but not more than 12 inches below the ceiling. Smoke sensors are permitted to be on the wall no lower than 12 inches from the ceiling with no minimum distance from the ceiling. In raised floor spaces, install the smoke sensors to protect 225 square feet per sensor. Install smoke sensors no closer than 5 feet from air handling supply outlets.

3.1.5 Annunciator

Locate the annunciator as shown on the drawings. Surface mount the panel, with the top of the panel 6 feet above the finished floor or center the panel at 5 feet, whichever is lower.

3.1.6 Water Flow Detectors and Tamper Switches

Connect to water flow detectors and tamper switches.

3.1.7 Firefighter Telephones

Locate wall mounted in each stair at each floor landing, in each elevator lobby, and in each elevator cab 4 feet above the finished floor.

3.1.8 Local Operating Console (LOC)

Locate the LOC as required by NFPA 72 and as indicated. Mount the console so that the top message button is no higher than 44 inches above the floor.
3.2 SYSTEM FIELD WIREFING

3.2.1 Wiring within Cabinets, Enclosures, and Boxes

Provide wiring installed in a neat and workmanlike manner and installed parallel with or at right angles to the sides and back of any box, enclosure, or cabinet. Conductors that are terminated, spliced, or otherwise interrupted in any enclosure, cabinet, mounting, or junction box shall be connected to screw-type terminal blocks. Mark each terminal in accordance with the wiring diagrams of the system. The use of wire nuts or similar devices is prohibited. Conform wiring to NFPA 70.

Indicate the following in the wiring diagrams.

a. Point-to-point wiring diagrams showing the points of connection and terminals used for electrical field connections in the system, including interconnections between the equipment or systems that are supervised or controlled by the system. Diagrams shall show connections from field devices to the FACP and remote fire alarm control units, initiating circuits, switches, relays and terminals.

b. Complete riser diagrams indicating the wiring sequence of devices and their connections to the control equipment. Include a color code schedule for the wiring. Include floor plans showing the locations of devices and equipment.

3.2.2 Terminal Cabinets

Provide a terminal cabinet at the base of any circuit riser, on each floor at each riser, and where indicated on the drawings. Terminal size shall be appropriate for the size of the wiring to be connected. Conductor terminations shall be labeled and a drawing containing conductors, their labels, their circuits, and their interconnection shall be permanently mounted in the terminal cabinet. Minimum size is 8 inches by 8 inches. Only screw-type terminals are permitted.

3.2.3 Alarm Wiring

Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. Provide all wiring in electrical metallic conduit. Conceal conduit in finished areas of new construction and wherever practicable in existing construction. The use of flexible conduit not exceeding a 6 foot length shall be permitted in initiating device or notification appliance circuits. Run conduit or tubing (rigid, IMC, EMT, FMC, etc. as permitted by NFPA 72 and NFPA 70) concealed unless specifically indicated otherwise.

3.2.4 Conductor Terminations

Labeling of conductors at terminal blocks in terminal cabinets, FMCP, and remote FMCP and the LOC shall be provided at each conductor connection. Each conductor or cable shall have a shrink-wrap label to provide a unique and specific designation. Each terminal cabinet, FMCP, and remote FMCP shall contain a laminated drawing that indicates each conductor, its label, circuit, and terminal. The laminated drawing shall be neat, using 12 point lettering minimum size, and mounted within each cabinet, panel, or unit so that it does not interfere with the wiring or terminals. Maintain existing
color code scheme where connecting to existing equipment.

3.3 FIRESTOPPING

Provide firestopping for holes at conduit penetrations through floor slabs, fire rated walls, partitions with fire rated doors, corridor walls, and vertical service shafts in accordance with Section 07 84 00 FIRESTOPPING.

3.4 PAINTING

Paint exposed electrical, fire alarm conduit, and surface metal raceway to match adjacent finishes in exposed areas. Paint junction boxes red in unfinished areas and conduits and surface metal raceways shall be painted with a 1-inch wide red band every 10 feet in unfinished areas. Painting shall comply with Section 09 90 00 PAINTS AND COATINGS.

3.5 FIELD QUALITY CONTROL

3.5.1 Testing Procedures

Submit detailed test procedures, prepared and signed by a Registered Professional Engineer or a NICET Level 3 Fire Alarm Technician, and signed by representative of the installing company, for the fire detection and alarm system 60 days prior to performing system tests. Detailed test procedures shall list all components of the installed system such as initiating devices and circuits, notification appliances and circuits, signaling line devices and circuits, control devices/equipment, batteries, transmitting and receiving equipment, power sources/supply, annunciators, special hazard equipment, emergency communication equipment, interface equipment, Guard's Tour equipment, and transient (surge) suppressors. Test procedures shall include sequence of testing, time estimate for each test, and sample test data forms. The test data forms shall be in a check-off format (pass/fail with space to add applicable test data; similar to the forms in NFPA 72) and shall be used for the preliminary testing and the acceptance testing. The test data forms shall record the test results and shall:

a. Identify the NFPA Class of all Initiating Device Circuits (IDC), Notification Appliance Circuits (NAC), Voice Notification System Circuits (NAC Audio), and Signaling Line Circuits (SLC).

b. Identify each test required by NFPA 72 Test Methods and required test herein to be performed on each component, and describe how this test shall be performed.

c. Identify each component and circuit as to type, location within the facility, and unique identity within the installed system. Provide necessary floor plan sheets showing each component location, test location, and alphanumeric identity.

d. Identify all test equipment and personnel required to perform each test (including equipment necessary for testing smoke detectors using real smoke).

e. Provide space to identify the date and time of each test. Provide space to identify the names and signatures of the individuals conducting and witnessing each test.
3.5.2 Tests Stages

3.5.2.1 Preliminary Testing

Conduct preliminary tests to ensure that devices and circuits are functioning properly. Tests shall meet the requirements of paragraph entitled "Minimum System Tests." After preliminary testing is complete, provide a letter certifying that the installation is complete and fully operable. The letter shall state that each initiating and indicating device was tested in place and functioned properly. The letter shall also state that panel functions were tested and operated properly. The letter shall include the names and titles of the witnesses to the preliminary tests. The Contractor and an authorized representative from each supplier of equipment shall be in attendance at the preliminary testing to make necessary adjustments.

3.5.2.2 Request for Formal Inspection and Tests

When tests have been completed and corrections made, submit a signed, dated certificate with a request for formal inspection and tests to the Contracting Offices Designated Representative (COR).

3.5.2.3 Final Testing

Notify the Contracting Officer in writing when the system is ready for final acceptance testing. Submit request for test at least 15 calendar days prior to the test date. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. Furnish instruments and personnel required for the tests. A final acceptance test will not be scheduled until the following are provided at the job site:

a. The systems manufacturer's technical representative
b. Marked-up red line drawings of the system as actually installed
c. Megger test results
d. Loop resistance test results
e. Complete program printout including input/output addresses

The final tests will be witnessed by the Contracting Offices Designated Representative (COR). At this time, any and all required tests shall be repeated at their discretion.

3.5.2.4 System Acceptance

Following acceptance of the system, as-built drawings and O&M manuals shall be delivered to the Contracting Officer for review and acceptance. Submit six sets of detailed as-built drawings. The drawings shall show the system as installed, including deviations from both the project drawings and the approved shop drawings. These drawings shall be submitted within two weeks after the final acceptance test of the system. At least one set of as-built (marked-up) drawings shall be provided at the time of, or prior to the final acceptance test.

a. Furnish one set of full size paper as-built drawings and schematics. The drawings shall be prepared on uniform sized mylar sheets not less
than 30 by 42 inches with 8 by 4 inch title block similar to contract drawings.

b. Include complete wiring diagrams showing connections between devices and equipment, both factory and field wired.

c. Include a riser diagram and drawings showing the as-built location of devices and equipment.

3.5.3 Minimum System Tests

Test the system in accordance with the procedures outlined in NFPA 72, ISO 7240-16, IEC 60268-16. The required tests are as follows:

a. Megger Tests: After wiring has been installed, and prior to making any connections to panels or devices, wiring shall be megger tested for insulation resistance, grounds, and/or shorts. Conductors with 300 volt rated insulation shall be tested at a minimum of 250 VDC. Conductors with 600 volt rated insulation shall be tested at a minimum of 500 VDC. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

b. Loop Resistance Tests: Measure and record the resistance of each circuit with each pair of conductors in the circuit short-circuited at the farthest point from the circuit origin. The tests shall be witnessed by the Contracting Officer and test results recorded for use at the final acceptance test.

c. Verify the absence of unwanted voltages between circuit conductors and ground. The tests shall be accomplished at the preliminary test with results available at the final system test.

d. Verify that the control unit is in the normal condition as detailed in the manufacturer's O&M manual.

e. Test each initiating device and notification appliance and circuit for proper operation and response at the control unit. Smoke sensors shall be tested in accordance with manufacturer's recommended calibrated test method. Use of magnets is prohibited. Testing of duct smoke detectors shall comply with the requirements of NFPA 72 except that, for item 12(e) (Supervision) in Table 14.4.2.2, disconnect at least 20 percent of devices. If there is a failure at these devices, then supervision shall be tested at each device.

f. Test the system for specified functions in accordance with the contract drawings and specifications and the manufacturer's O&M manual.

g. Test both primary power and secondary power. Verify, by test, the secondary power system is capable of operating the system for the time period and in the manner specified.

h. Determine that the system is operable under trouble conditions as specified.

i. Visually inspect wiring.

j. Test the battery charger and batteries.

k. Verify that software control and data files have been entered or
programmed into the FACP. Hard copy records of the software shall be provided to the Contracting Officer.

1. Verify that red-line drawings are accurate.

m. Measure the current in circuits to ensure there is the calculated spare capacity for the circuits.

n. Measure voltage readings for circuits to ensure that voltage drop is not excessive.

o. Disconnect the verification feature for smoke sensors during tests to minimize the amount of smoke needed to activate the sensor. Testing of smoke sensors shall be conducted using real smoke or the use of canned smoke which is permitted.

p. Measure the voltage drop at the most remote appliance (based on wire length) on each notification appliance circuit.

3.5.3.1 Intelligibility Tests

Intelligibility testing of the System shall be accomplished in accordance with NFPA 72 for Voice Evacuation Systems, IEC 60268-16, and ASA S3.2. Following are the specific requirements for intelligibility tests:

a. Intelligibility Requirements: Verify intelligibility by measurement after installation.

b. Ensure that a CIS value greater than the required minimum value is provided in each area where building occupants typically could be found. The minimum required value for CIS is .7.

c. Areas of the building provided with hard wall and ceiling surfaces (such as metal or concrete) that are found to cause excessive sound reflections may be permitted to have a CIS score less than the minimum required value if approved by the DOD installation, and if building occupants in these areas can determine that a voice signal is being broadcast and they must walk no more than 33 feet to find a location with at least the minimum required CIS value within the same area.

d. Areas of the building where occupants are not expected to be normally present are permitted to have a CIS score less than the minimum required value if personnel can determine that a voice signal is being broadcast and they must walk no more than 50 feet to a location with at least the minimum required CIS value within the same area.

e. Take measurements near the head level applicable for most personnel in the space under normal conditions (e.g., standing, sitting, sleeping, as appropriate).

f. The distance the occupant must walk to the location meeting the minimum required CIS value shall be measured on the floor or other walking surface as follows:

 (1) Along the centerline of the natural path of travel, starting from any point subject to occupancy with less than the minimum required CIS value.

 (2) Curving around any corners or obstructions, with a 12 inches
clearance therefrom.

(3) Terminating directly below the location where the minimum required CIS value has been obtained.

Use commercially available test instrumentation to measure intelligibility as specified by ISO 7240-19 and ISO 7240-16 as applicable. Use the mean value of at least three readings to compute the intelligibility score at each test location.

3.6 INSTRUCTION OF GOVERNMENT EMPLOYEES

3.6.1 Instructor

Include in the project the services of an instructor, who has received specific training from the manufacturer for the training of other persons regarding the inspection, testing, and maintenance of the system provided. The instructor shall train the Government employees designated by the Contracting Officer, in the care, adjustment, maintenance, and operation of the fire alarm and fire detection system. Each instructor shall be thoroughly familiar with all parts of this installation. The instructor shall be trained in operating theory as well as in practical O&M work. Submit the instructors information and qualifications including the training history.

3.6.2 Required Instruction Time

Provide 8 hours of instruction after final acceptance of the system. The instruction shall be given during regular working hours on such dates and times as are selected by the Contracting Officer. The instruction may be divided into two or more periods at the discretion of the Contracting Officer. The training shall allow for rescheduling for unforeseen maintenance and/or fire department responses.

3.7 Technical Data and Computer Software

Provide, in manual format, lesson plans, operating instructions, maintenance procedures, and training data for the training courses. The operations training shall familiarize designated government personnel with proper operation of the installed system. The maintenance training course shall provide the designated government personnel adequate knowledge required to diagnose, repair, maintain, and expand functions inherent to the system.

3.8 OPERATION AND MAINTENANCE (O&M) INSTRUCTIONS

Submit 6 copies of the Operation and Maintenance Instructions, indexed and in booklet form. The Operation and Maintenance Instructions shall be a single volume or in separate volumes, and may be submitted as a Technical Data Package. Manuals shall be approved prior to training. The Interior Fire Alarm And Mass Notification System Operation and Maintenance Instructions shall include:

a. "Manufacturer Data Package 5" as specified in Section 01000 OPERATION AND MAINTENANCE DATA.

b. Operating manual outlining step-by-step procedures required for system startup, operation, and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and
complete description of equipment and their basic operating features.

c. Maintenance manual listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The manuals shall include conduit layout, equipment layout and simplified wiring, and control diagrams of the system as installed.

d. The manuals shall include complete procedures for system revision and expansion, detailing both equipment and software requirements.

e. Software delivered for this project shall be provided, on each type of CD/DVD media utilized.

f. Printouts of configuration settings for all devices.

g. Routine maintenance checklist. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all installed devices, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency of the maintenance activity, and the fourth column for additional comments or reference. All data (devices, testing frequencies, etc.) shall comply with UFC 3-601-02.

3.9 EXTRA MATERIALS

3.9.1 Repair Service/Replacement Parts

Repair services and replacement parts for the system shall be available for a period of 10 years after the date of final acceptance of this work by the Contracting Officer. During guarantee period, the service technician shall be on-site within 24 hours after notification. All repairs shall be completed within 24 hours of arrival on-site.

3.9.2 Interchangeable Parts

Spare parts furnished shall be directly interchangeable with the corresponding components of the installed system. Spare parts shall be suitably packaged and identified by nameplate, tagging, or stamping. Spare parts shall be delivered to the Contracting Officer at the time of the final acceptance testing.

3.9.3 Spare Parts

Furnish the following spare parts and accessories:

a. Four fuses for each fused circuit

b. Two of each type of notification appliance in the system (e.g. speaker, FA strobe, MNS strobe, etc.)

c. Two of each type of initiating device included in the system (e.g. smoke detector, thermal detector, manual station, etc.)

3.9.4 Special Tools

Software, connecting cables and proprietary equipment, necessary for the maintenance, testing, and reprogramming of the equipment shall be furnished to the Contracting Officer.
-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO T 180 (2015) Standard Method of Test for Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and a 457-mm (18-in.) Drop

AASHTO T 224 (2010) Standard Method of Test for Correction for Coarse Particles in the Soil Compaction Test

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C600 (2017) Installation of Ductile-Iron Mains and Their Appurtenances

ASTM INTERNATIONAL (ASTM)

ASTM D1140 (2014) Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve

ASTM D1557 (2012; E 2015) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³) (2700 kN-m/m³)

ASTM D2487 (2011) Soils for Engineering Purposes (Unified Soil Classification System)

ASTM D4318 (2010; E 2014) Liquid Limit, Plastic Limit, and Plasticity Index of Soils

ASTM D698 (2012; E 2014; E 2015) Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/cu. ft. (600 kN-m/cu. m.))
U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

1.2 DEFINITIONS

1.2.1 Satisfactory Materials

Satisfactory materials comprise any materials classified by ASTM D2487 as SW, SP, SM, SW-SM, SC, SW-SC, SP-SM, SP-SC. Satisfactory materials for grading comprise stones less than 3 inches.

1.2.2 Unsatisfactory Materials

Materials which do not comply with the requirements for satisfactory materials are unsatisfactory. This includes all existing fill material as noted in the Geotechnical Report attached at the end of this Section. Unsatisfactory materials also include man-made fills; trash; refuse; backfills from previous construction; and material classified as satisfactory which contains root and other organic matter or frozen material. Notify the Contracting Officer when encountering any contaminated materials.

1.2.3 Cohesionless and Cohesive Materials

Cohesionless materials include materials classified in ASTM D2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM will be identified as cohesionless only when the fines are nonplastic. Perform testing, required for classifying materials, in accordance with ASTM D4318, ASTM C136/C136M and ASTM D1140.

1.2.4 Degree of Compaction

Degree of compaction required, except as noted in the second sentence, is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D1557 abbreviated as a percent of laboratory maximum density. Since ASTM D1557 applies only to soils that have 30 percent or less by weight of their particles retained on the 3/4 inch sieve, express the degree of compaction for material having more than 30 percent by weight of their particles retained on the 3/4 inch sieve as a percentage of the maximum density in accordance with AASHTO T 180 and corrected with AASHTO T 224. To maintain the same percentage of coarse material, use the "remove and replace" procedure as described in NOTE 8 of Paragraph 7.2 in AASHTO T 180.

1.2.5 Hard/Unyielding Materials

Hard/Unyielding materials comprise weathered rock, dense consolidated deposits, or conglomerate materials with stones greater than 3 inch in any dimension.
1.2.6 Unstable Material

Unstable materials are too wet to properly support the utility pipe, conduit, or appurtenant structure.

1.2.7 Select Granular Material

1.2.7.1 General Requirements

Select granular material consist of materials classified as GW, GP, SW, SP, by ASTM D2487 where indicated. The liquid limit of such material must not exceed 35 percent when tested in accordance with ASTM D4318. The plasticity index must not be greater than 12 percent when tested in accordance with ASTM D4318, and not more than 35 percent by weight may be finer than No. 200 sieve when tested in accordance with ASTM D1140.

1.2.8 Initial Backfill Material

Initial backfill consists of select granular material or satisfactory materials free from rocks 3 inches or larger in any dimension.

1.2.9 Expansive Soils

Expansive soils are defined as soils that have a plasticity index equal to or greater than 35% when tested in accordance with ASTM D4318.

1.3 SYSTEM DESCRIPTION

Subsurface soil boring logs are included in the Geotechnical Report attached at the end of this Section. This data represents the best subsurface information available; however, variations may exist in the subsurface between boring locations.

1.3.1 Classification of Excavation

1.3.1.1 Common Excavation

Include common excavation with the satisfactory removal and disposal of all materials as specified herein.

1.3.2 Dewatering Work Plan

Submit procedures for accomplishing dewatering work.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-01 Preconstruction Submittals

Dewatering Work Plan

SD-03 Product Data

Utilization of Excavated Materials
SD-06 Test Reports

Testing; G

Within 24 hours of conclusion of physical tests, submit 2 copies of test results, including calibration curves and results of calibration tests.

PART 2 PRODUCTS

2.1 REQUIREMENTS FOR OFFSITE SOILS

Test offsite soils brought in for use as backfill for Total Petroleum Hydrocarbons (TPH), Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and full Toxicity Characteristic Leaching Procedure (TCLP) including ignitability, corrosivity and reactivity. Backfill shall contain a maximum of 100 parts per million (ppm) of total petroleum hydrocarbons (TPH) and a maximum of 10 ppm of the sum of Benzene, Toluene, Ethyl Benzene, and Xylene (BTEX) and shall pass the TCLP test. Determine TPH concentrations by using EPA 600/4-79/020 Method 418.1. Determine BTEX concentrations by using EPA SW-846.3-3 Method 5030/8020. Perform TCLP in accordance with EPA SW-846.3-3 Method 1311. Do not bring material onsite until tests have been approved by the Contracting Officer.

2.2 BURIED WARNING AND IDENTIFICATION

Provide polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inches minimum width, color coded as specified below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Provide permanent color and printing, unaffected by moisture or soil.

<table>
<thead>
<tr>
<th>Warning Tape Color Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
</tr>
<tr>
<td>Yellow</td>
</tr>
<tr>
<td>Orange</td>
</tr>
<tr>
<td>Blue</td>
</tr>
<tr>
<td>Green</td>
</tr>
</tbody>
</table>

2.2.1 Warning Tape for Metallic Piping

Provide acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above, with a minimum thickness of 0.003 inch and a minimum strength of 1500 psi lengthwise, and 1250 psi crosswise, with a maximum 350 percent elongation.

2.2.2 Detectable Warning Tape for Non-Metallic Piping

Provide polyethylene plastic tape conforming to the width, color, and...
printing requirements specified above, with a minimum thickness of 0.004 inch, and a minimum strength of 1500 psi lengthwise and 1250 psi crosswise. Manufacture tape with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 3 feet deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.

2.3 DETECTION WIRE FOR NON-METALLIC PIPING

Insulate a single strand, solid copper detection wire with a minimum of 12 AWG.

PART 3 EXECUTION

3.1 GENERAL EXCAVATION

Perform excavation of every type of material encountered within the limits of the project to the lines, grades, and elevations indicated and as specified. Perform the grading in accordance with the typical sections shown and the tolerances specified in paragraph FINISHING. Transport satisfactory excavated materials and place in fill within the limits of the work. Excavate unsatisfactory materials encountered within the limits of the work below grade and replace with satisfactory materials as directed. Include such excavated material and the satisfactory material ordered as replacement in excavation. Dispose surplus satisfactory excavated material not required for fill in areas approved for surplus material storage or designated waste areas. Dispose unsatisfactory excavated material in designated waste or spoil areas. During construction, perform excavation and fill in a manner and sequence that will provide proper drainage at all times.

3.1.1 Drainage

Provide for the collection and disposal of surface and subsurface water encountered during construction. Completely drain construction site during periods of construction to keep soil materials sufficiently dry. Construct storm drainage features (ponds/basins) at the earliest stages of site development, and throughout construction grade the construction area to provide positive surface water runoff away from the construction activity and/or provide temporary ditches, swales, and other drainage features and equipment as required to maintain dry soils. When unsuitable working platforms for equipment operation and unsuitable soil support for subsequent construction features develop, remove unsuitable material and provide new soil material as specified herein. It is the responsibility of the Contractor to assess the soil and ground water conditions presented by the plans and specifications and to employ necessary measures to permit construction to proceed.

3.1.2 Dewatering

Control groundwater flowing toward or into excavations to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. Do not permit French drains, sumps, ditches or trenches within 3 feet of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Take control measures by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, maintain the water level.
continuously, at least two feet below the working level. Operate
dewatering system continuously until construction work below existing water
levels is complete. Submit performance records weekly.

3.1.3 Trench Excavation Requirements

Excavate the trench as recommended by the manufacturer of the pipe to be
installed. Slope trench walls below the top of the pipe, or make vertical,
and of such width as recommended in the manufacturer's printed installation
manual. Provide vertical trench walls where no manufacturer's printed
installation manual is available. Shore trench walls more than 6 feet
high, cut back to a stable slope, or provide with equivalent means of
protection for employees who may be exposed to moving ground or cave in.
Shore vertical trench walls more than 10 feet high. Excavate trench walls
which are cut back to at least the angle of repose of the soil. Give
special attention to slopes which may be adversely affected by weather or
moisture content. Do not exceed the trench width below the pipe top of 24
inches plus pipe outside diameter (O.D.) for pipes of less than 24 inches
inside diameter, and do not exceed 36 inches plus pipe outside diameter for
sizes larger than 24 inches inside diameter. Where recommended trench
widths are exceeded, provide redesign, stronger pipe, or special
installation procedures by the Contractor. The Contractor is responsible
for the cost of redesign, stronger pipe, or special installation procedures
without any additional cost to the Government.

3.1.3.1 Bottom Preparation

Grade the bottoms of trenches accurately to provide uniform bearing and
support for the bottom quadrant of each section of the pipe. Excavate bell
holes to the necessary size at each joint or coupling to eliminate point
bearing. Remove stones of 3 inch or greater in any dimension, or as
recommended by the pipe manufacturer, whichever is smaller, to avoid point
bearing.

3.1.3.2 Removal of Unyielding Material

Where overdepth is not indicated and unyielding material is encountered in
the bottom of the trench, remove such material 12 inch below the required
grade and replaced with suitable materials as provided in paragraph
BACKFILLING AND COMPACTION.

3.1.3.3 Removal of Unstable Material

Where unstable material is encountered in the bottom of the trench, remove
such material to the depth directed and replace it to the proper grade with
select granular material as provided in paragraph BACKFILLING AND
COMPACTION. When removal of unstable material is required due to the
Contractor's fault or neglect in performing the work, the Contractor is
responsible for excavating the resulting material and replacing it without
additional cost to the Government.

3.1.3.4 Excavation for Appurtenances

Provide excavation for manholes, catch-basins, inlets, or similar
structures of sufficient size to permit the placement and removal of forms
for the full length and width of structure footings and foundations as
shown. Clean rock or loose debris and cut to a firm surface either level,
stepped, or serrated, as shown or as directed. Remove loose disintegrated
rock and thin strata. Specify removal of unstable material. When concrete
or masonry is to be placed in an excavated area, take special care not to disturb the bottom of the excavation. Do not excavate to the final grade level until just before the concrete or masonry is to be placed.

3.1.3.5 Jacking, Boring, and Tunneling

Unless otherwise indicated, provide excavation by open cut except that sections of a trench may be jacked, bored, or tunneled if, in the opinion of the Contracting Officer, the pipe, cable, or duct can be safely and properly installed and backfill can be properly compacted in such sections.

3.1.4 Underground Utilities

The Contractor is responsible for movement of construction machinery and equipment over pipes and utilities during construction. Perform work adjacent to non-Government utilities as indicated in accordance with procedures outlined by utility company. Excavation made with power-driven equipment is not permitted within 2 feet of known Government-owned utility or subsurface construction. For work immediately adjacent to or for excavations exposing a utility or other buried obstruction, excavate by hand. Start hand excavation on each side of the indicated obstruction and continue until the obstruction is uncovered or until clearance for the new grade is assured. Support uncovered lines or other existing work affected by the contract excavation until approval for backfill is granted by the Contracting Officer. Report damage to utility lines or subsurface construction immediately to the Contracting Officer.

3.1.5 Structural Excavation

Ensure that footing subgrades have been inspected and approved by the Contracting Officer prior to concrete placement. Backfill and compact over excavations to 95 percent of ASTM D698 maximum density.

3.2 SELECTION OF BORROW MATERIAL

Select borrow material to meet the requirements and conditions of the particular fill for which it is to be used. Obtain borrow material from approved private sources. Unless otherwise provided in the contract, the Contractor is responsible for obtaining the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling from the owners. Do not obtain borrow within the limits of the project site. Consider necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon related operations to the borrow excavation.

3.3 OPENING AND DRAINAGE OF EXCAVATION AND BORROW PITS

Notify the Contracting Officer sufficiently in advance of the opening of any excavation to permit elevations and measurements of the undisturbed ground surface to be taken. Transport overburden and other spoil material to designated spoil areas or otherwise dispose of as directed. Ensure that excavation of any area or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING AREAS

Where indicated, divide work into grading areas within which satisfactory excavated material will be placed in required backfills. Do not haul satisfactory material excavated in one grading area to another grading area.
except when so directed in writing. Place and grade stockpiles of satisfactory and unsatisfactory materials as specified. Keep stockpiles in a neat and well drained condition, giving due consideration to drainage at all times. Clear, grub, and seal by rubber-tired equipment, the ground surface at stockpile locations; separately stockpile excavated satisfactory and unsatisfactory materials. Protect stockpiles of satisfactory materials from contamination which may destroy the quality and fitness of the stockpiled material. If the Contractor fails to protect the stockpiles, and any material becomes unsatisfactory, remove and replace such material with satisfactory material from approved sources.

3.5 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE

Do not excavate to final grade until just before concrete is to be placed. Roughen the level surfaces, and cut the sloped surfaces, as indicated, into rough steps or benches to provide a satisfactory bond. Protect shales from slaking and all surfaces from erosion resulting from ponding or water flow.

3.6 GROUND SURFACE PREPARATION

3.6.1 General Requirements

Remove and replace unsatisfactory material with satisfactory materials, as directed by the Contracting Officer, in surfaces to receive fill or in excavated areas. Scarify the surface to a depth of 6 inches before the fill is started. Plow, step, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so that the fill material will bond with the existing material. When subgrades are less than the specified density, break up the ground surface to a minimum depth of 6 inches, pulverizing, and compacting to the specified density. When the subgrade is part fill and part excavation or natural ground, scarify the excavated or natural ground portion to a depth of 12 inches and compact it as specified for the adjacent fill.

3.6.2 Frozen Material

Do not place material on surfaces that are muddy, frozen, or contain frost. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment well suited to the soil being compacted. Moisten material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.

3.7 UTILIZATION OF EXCAVATED MATERIALS

Dispose unsatisfactory materials removed from excavations off of Government property. Submit proposed source of borrow material. Do not waste any satisfactory excavated material without specific written authorization. Dispose of satisfactory material, authorized to be wasted, in designated areas approved for surplus material storage or designated waste areas as directed. Do not dispose excavated material to obstruct the flow of any stream, endanger a partly finished structure, impair the efficiency or appearance of any structure, or be detrimental to the completed work in any way.
3.8 BURIED TAPE AND DETECTION WIRE

3.8.1 Buried Warning and Identification Tape

Provide buried utility lines with utility identification tape. Bury tape 12 inches below finished grade; under pavements and slabs, bury tape 6 inches below top of subgrade.

3.8.2 Buried Detection Wire

Bury detection wire directly above non-metallic piping at a distance not to exceed 12 inches above the top of pipe. Extend the wire continuously and unbroken, from manhole to manhole. Terminate the ends of the wire inside the manholes at each end of the pipe, with a minimum of 3 feet of wire, coiled, remaining accessible in each manhole. Furnish insulated wire over it's entire length. Install wires at manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, terminate the wire in the valve pit at the pump station end of the pipe.

3.9 BACKFILLING AND COMPACTION

Place backfill adjacent to any and all types of structures, in successive horizontal layers of loose materia not more than 8 inches in depth. Compact to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials, to prevent wedging action or eccentric loading upon or against the structure. Backfill material must be within the range of -2 to +2 percent of optimum moisture content at the time of compaction.

Prepare ground surface on which backfill is to be placed and provide compaction requirements for backfill materials in conformance with the applicable portions of paragraphs GROUND SURFACE PREPARATION. Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment.

3.9.1 Trench Backfill

Backfill trenches to the grade shown. Backfill the trench to one foot above the top of pipe prior to performing the required pressure tests. Leave the joints and couplings uncovered during the pressure test. Do not backfill the trench until all specified tests are performed.

3.9.1.1 Replacement of Unyielding Material

Replace unyielding material removed from the bottom of the trench with select granular material or initial backfill material.

3.9.1.2 Replacement of Unstable Material

Replace unstable material removed from the bottom of the trench or excavation with select granular material placed in layers not exceeding 6 inches loose thickness.

3.9.1.3 Bedding and Initial Backfill

Place initial backfill material and compact it with approved tampers to a height of at least one foot above the utility pipe or conduit. Bring up the backfill evenly on both sides of the pipe for the full length of the
pipe. Take care to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Compact backfill to top of pipe to 95 percent of ASTM D698 maximum density. Provide plastic piping with bedding to spring line of pipe. Provide materials as follows:

3.9.1.3.1 Class I

Angular, 0.25 to 1.5 inch, graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.

3.9.1.3.2 Class II

Coarse sands and gravels with maximum particle size of 1.5 inch, including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.

3.9.1.3.3 Sand

Clean, coarse-grained sand classified as SW or SP by ASTM D2487 for bedding and backfill.

3.9.1.3.4 Gravel and Crushed Stone

Clean, coarsely graded natural gravel, crushed stone or a combination thereof having a classification of GW or GP in accordance with ASTM D2487 for bedding and backfill. Do not exceed maximum particle size of 3 inches.

3.9.1.4 Final Backfill

Fill the remainder of the trench with satisfactory material. Place backfill material and compact as follows:

3.9.2 Backfill for Appurtenances

After the manhole, catchbasin, inlet, or similar structure has been constructed and the concrete has been allowed to cure for 14 days, place backfill in such a manner that the structure is not be damaged by the shock of falling earth. Deposit the backfill material, compact it as specified for final backfill, and bring up the backfill evenly on all sides of the structure to prevent eccentric loading and excessive stress.

3.10 SPECIAL REQUIREMENTS

Special requirements for both excavation and backfill relating to the specific utilities are as follows:

3.10.1 Water Lines

Excavate trenches to a depth that provides a minimum cover of 9'-0" from the existing ground surface, or from the indicated finished grade, whichever is lower, to the top of the pipe.

3.10.2 Electrical Distribution System

Provide a minimum cover of 24 inches from the finished grade to direct
burial cable and conduit or duct line, unless otherwise indicated.

3.11 SUBGRADE PREPARATION

3.11.1 Construction

Shape subgrade to line, grade, and cross section, and compact as specified. Include plowing, disking, and any moistening or aerating required to obtain specified compaction for this operation. Remove soft or otherwise unsatisfactory material and replace with satisfactory excavated material or other approved material as directed. Excavate rock encountered in the cut section to a depth of 6 inches below finished grade for the subgrade. Bring up low areas resulting from removal of unsatisfactory material or excavation of rock to required grade with satisfactory materials, and shape the entire subgrade to line, grade, and cross section and compact as specified. Do not vary the elevation of the finish subgrade more than 0.05 foot from the established grade and cross section.

3.11.2 Compaction

Finish compaction by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Except for paved areas, compact each layer to at least 95 percent of laboratory maximum density.

3.11.2.1 Subgrade for Pavements

Compact subgrade for pavements to at least 95 percentage laboratory maximum density for the depth below the surface of the pavement shown. When more than one soil classification is present in the subgrade, thoroughly blend, reshape, and compact the top 8 inch of subgrade.

3.12 FINISHING

Finish the surface of excavations and subgrades to a smooth and compact surface in accordance with the lines, grades, and cross sections or elevations shown. Provide the degree of finish for graded areas within 0.1 foot of the grades and elevations indicated except that the degree of finish for subgrades specified in paragraph SUBGRADE PREPARATION. Repair graded, topsoiled, or backfilled areas prior to acceptance of the work, and re-established grades to the required elevations and slopes.

3.12.1 Subgrade

During construction, keep excavations shaped and drained. Maintain ditches and drains along subgrade to drain effectively at all times. Do not disturb the finished subgrade by traffic or other operation. Protect and maintain the finished subgrade in a satisfactory condition until subbase, base, or pavement is placed. Do not permit the storage or stockpiling of materials on the finished subgrade. Do not lay subbase, base course, or pavement until the subgrade has been checked and approved, and in no case place subbase, base, surfacing or pavement on a muddy, spongy, or frozen subgrade.

3.12.2 Grading Around Structures

Construct areas within 5 feet outside of each building and structure line true-to-grade, shape to drain, and maintain free of trash and debris until final inspection has been completed and the work has been accepted.
3.13 TESTING

Perform testing by the Contractor's validated testing facility. Submit qualifications of the Contractor's validated testing facilities.

a. Determine field in-place density in accordance with ASTM D1556/D1556M.

b. When test results indicate, as determined by the Contracting Officer, that compaction is not as specified, remove the material, replace and recompact to meet specification requirements.

c. Perform tests on recompacted areas to determine conformance with specification requirements. Appoint a registered professional civil engineer to certify inspections and test results. These certifications shall state that the tests and observations were performed by or under the direct supervision of the engineer and that the results are representative of the materials or conditions being certified by the tests. The following number of tests, if performed at the appropriate time, will be the minimum acceptable for each type operation.

3.13.1 Fill and Backfill Material Gradation

One test per 30 cubic yards stockpiled or in-place source material. Determine gradation of fill and backfill material in accordance with ASTM C136/C136M.

3.13.2 In-Place Densities

a. One test per 2000 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by other than hand-operated machines.

b. One test per 2000 square feet, or fraction thereof, of each lift of fill or backfill areas compacted by hand-operated machines.

3.13.3 Moisture Contents

In the stockpile, excavation, or borrow areas, perform a minimum of two tests per day per type of material or source of material being placed during stable weather conditions. During unstable weather, perform tests as dictated by local conditions and approved by the Contracting Officer.

3.13.4 Optimum Moisture and Laboratory Maximum Density

Perform tests for each type material or source of material including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test per 30 cubic yards of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density.

3.13.5 Tolerance Tests for Subgrades

Perform continuous checks on the degree of finish specified in paragraph SUBGRADE PREPARATION during construction of the subgrades.

3.14 DISPOSITION OF SURPLUS MATERIAL

Remove surplus material or other soil material not required or suitable for filling or backfilling, and brush, refuse, stumps and roots from Government
property to an approved location.

-- End of Section --
Geotechnical Engineering Report
Proposed B541 Generator Base
Grand Forks Air Force Base, North Dakota
January 11, 2018
Terracon Project No. M5175096

Prepared for:
Kenneth Hahn Architects
Omaha, Nebraska

Prepared by:
Terracon Consultants, Inc.
Grand Forks, North Dakota
January 11, 2018

Kenneth Hahn Architects
1343 South 75th Street
Omaha, NE 68124

Attn: Mr. Jerry Hahn
P: (402) 391 2111
E: jerry.kharch@gmail.com

Re: Geotechnical Engineering Report
Proposed B541 Generator Base
Grand Forks Air Force Base, North Dakota
Terracon Project No. M5175096

Dear Mr. Hahn:

We have completed the Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with Terracon Proposal No. PM5175096 dated November 1, 2017. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of slabs for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely,
Terracon Consultants, Inc.

Jonathan J. Malaterre, EI
Staff Engineer

William R. Olson, PE
Geotechnical Department Manager
REPORT TOPICS

INTRODUCTION .. 1
SITE CONDITIONS .. 1
PROJECT DESCRIPTION ... 2
GEOTECHNICAL CHARACTERIZATION ... 2
GEOTECHNICAL OVERVIEW ... 3
EARTHWORK .. 3
GENERATOR SLAB ... 6
FROST CONSIDERATIONS .. 7
GENERAL COMMENTS .. 7

Note: This report was originally delivered in a web-based format. Orange Bold text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the logo will bring you back to this page. For more interactive features, please view your project online at client.terracon.com.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES
SITE LOCATION AND EXPLORATION PLANS
EXPLORATION RESULTS (Boring Log and Laboratory Data)
SUPPORTING INFORMATION (General Notes and Unified Soil Classification System)
INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed generator base to be at the Grand Forks Air Force Base, North Dakota. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil conditions
- Groundwater conditions
- Site preparation and earthwork
- Generator slab design and construction

The geotechnical engineering scope of services for this project included the advancement of one test boring to a depth of approximately 25 feet below existing site grades.

Maps showing the site and boring locations are shown in the Site Location and Exploration Plan sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and as separate graphs in the Exploration Results section of this report.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parcel Information</td>
<td>The project is located south of building 541 at the Grand Forks Air Force Base.</td>
</tr>
<tr>
<td></td>
<td>Approximate coordinates:</td>
</tr>
<tr>
<td></td>
<td>47.948683° N, 97.389995° W</td>
</tr>
<tr>
<td>Existing Improvements</td>
<td>Concrete parking lot, generator</td>
</tr>
<tr>
<td>Current Ground Cover</td>
<td>Concrete parking lot, concrete pad, snow</td>
</tr>
</tbody>
</table>
Geotechnical Engineering Report
Proposed B541 Generator Base ■ Grand Forks Air Force Base, North Dakota
January 11, 2018 ■ Terracon Project No. M5175096

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finished slab elevation</td>
<td>We estimate the new generator base will match the existing generator base elevation.</td>
</tr>
<tr>
<td>Existing Topography</td>
<td>Relatively flat</td>
</tr>
</tbody>
</table>

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed in the project planning stage. Our final understanding of the project conditions is as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Description</td>
<td>The project will include a new generator in place of the existing generator at Building 541.</td>
</tr>
<tr>
<td>Proposed Improvements</td>
<td>It is our understanding that the generator will be supported on a concrete slab supported at the same elevation of the existing generator. The proposed generator slab will be 42'-3" by 13'-4".</td>
</tr>
<tr>
<td>Maximum Loads</td>
<td>Slabs: 500 pounds per square foot (psf)</td>
</tr>
<tr>
<td>Grading/Slopes</td>
<td>Cuts/fills less than 2 feet</td>
</tr>
</tbody>
</table>

GEOTECHNICAL CHARACTERIZATION

Subsurface Profile

Our boring encountered existing clay fill to a depth of approximately 4 ½ feet below grade. The existing fill is underlain by silt and lean clay to a depth of approximately 9 ½ feet before fat clay is encountered. Lean clay and sandy lean clay extend to the termination depth of our boring.

The borehole was observed while drilling and after completion for the presence and level of groundwater. Groundwater was not observed in the boring while drilling, or for the short duration that the boring could remain open. However, this does not necessarily mean this boring terminated above groundwater. Due to the low permeability of the soils encountered in the boring, a relatively long period may be necessary for a groundwater level to develop and stabilize in a borehole in these materials. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type. Based on our experience at the Grand Forks Air Force Base, we estimate the groundwater level was within 5 to 10 feet below grade at the time of our field activities.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. The possibility of
groundwater level fluctuations should be considered when developing the design and construction plans for the project.

GEOTECHNICAL OVERVIEW

One boring was advanced in the proposed generator base slab area and encountered existing fill to a depth of approximately 4 ½ feet below grade. The existing fill is underlain by silt and lean clay to a depth of 9 ½ before fat clay is encountered. Lean clay and sandy lean clay extend to the termination depth of our boring.

Based on the soil conditions encountered in our boring, supporting the generator on a slab is feasible. We recommend the slab bear on a uniform thickness of granular engineered fill after the removal of the existing fill. The Generator Slab section provides recommendations for the design and construction of the generator base slab.

The native clay and silt soils encountered in the slab area are highly susceptible to frost action. These soils will experience heaving during winter months and a subsequent loss of strength and settlement during spring thaw. Therefore, seasonal movement of exterior slabs should be expected due to the extreme temperature changes which will occur. The Frost Considerations section addresses recommendations to reduce the potential for frost heaving. If seasonal movement is not acceptable, the foundations should be supported below frost depth.

The General Comments section provides an understanding of the report limitations.

EARTHWORK

Earthwork will include the removal of the existing slab, existing fill and any otherwise unsuitable material and replacement with a well compacted granular (sand) fill. The following sections provide recommendations for use in the preparation of specifications for the work.

Site Preparation

Prior to placing engineered fill or concrete, we recommend excavating the slab area to a relatively uniform elevation that will remove the existing fill and any otherwise unsuitable materials. Based on the soil conditions encountered at our boring locations, we estimate excavation depths on the order of 4 ½ feet below existing grade. The excavation should be oversized a minimum of 8 inches beyond the outer edge of the slab for each foot of engineered fill below the slab.
Fill Material Types

Earthen materials used for engineered fill should meet the following material property requirements:

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>USCS Classification</th>
<th>Acceptable location for placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select Granular Fill</td>
<td>SP, SP-SM, SP-SC,</td>
<td>Support of concrete slab</td>
</tr>
<tr>
<td></td>
<td>SW, SW-SM, SW-SC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(P200<12%)</td>
<td></td>
</tr>
<tr>
<td>Inorganic on-site native soils</td>
<td>CL, CH, ML</td>
<td>Exterior fill</td>
</tr>
</tbody>
</table>

1. Engineered fill should consist of approved materials that are free of particles larger than about 3 inches, organic matter and debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the Geotechnical Engineer for evaluation prior to use on this site.

Fill Compaction Requirements

Engineered fill should meet the following compaction requirements.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill Lift Thickness</td>
<td>9 inches or less in loose thickness when heavy, self-propelled compaction equipment is used</td>
</tr>
<tr>
<td></td>
<td>4 to 6 inches in loose thickness when hand-guided equipment (i.e. jumping jack or plate compactor) is used</td>
</tr>
<tr>
<td>Minimum compaction requirements</td>
<td>95% beneath slabs</td>
</tr>
<tr>
<td>Water content cohesive soils</td>
<td>±3 percent of the optimum water content</td>
</tr>
<tr>
<td>Water content granular material</td>
<td>Workable moisture levels</td>
</tr>
</tbody>
</table>

1. Compaction levels are relative to the maximum dry density as determined ASTM D698.
2. Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction to be achieved without cohesionless fill material pumping when proofrolled.

Grading and Drainage

All grades must provide effective drainage away from the structure during and after construction. Effective drainage should be maintained for the life of the structure. After slab construction and landscaping, we recommend verifying final grades to document that effective drainage has been achieved. Grades around the structure should also be periodically inspected and adjusted as necessary, as part of the structure’s maintenance program. Where paving or flatwork abuts the structure, we recommend a maintenance program to effectively seal and maintain joints to prevent surface water infiltration.
Earthwork Construction Considerations

The natural soils are highly sensitive to disturbance from construction traffic. The final excavation should be performed by an excavator with a smooth cutting surface. Construction or heavy foot traffic should not be allowed to travel directly on the exposed soils intended for foundation support. If any of the natural soils become disturbed, they should be replaced with engineered fill or concrete.

We estimate the groundwater level was on the order of 5 to 10 feet below grade at the time of our field activities. Groundwater seepage will be expected in open excavations that extend below the groundwater level. We anticipate groundwater seepage in open excavations would be controllable by sump pumping.

Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction of floor slabs. Construction traffic over the completed subgrades should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Any water that collects over, or adjacent to, construction areas should be promptly removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or these materials should be scarified, moisture conditioned, and recompacted, prior to floor slab construction. All these processes should be observed by Terracon.

As a minimum, excavations should be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P, “Excavations” and its appendices, and in accordance with any applicable local, and/or state regulations.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming any responsibility for construction site safety, or the contractor's activities; such responsibility shall neither be implied nor inferred.

Construction Observation and Testing

Each lift of compacted fill should be tested, evaluated, and reworked as necessary until approved by the Geotechnical Engineer prior to placement of additional lifts. Each lift of fill should be tested for density and water content at a frequency of at least one test for every 2,500 square feet of compacted fill. One density and water content test for every 50 linear feet of compacted utility trench backfill.
In areas of foundation excavations, the bearing subgrade should be evaluated under the direction of the Geotechnical Engineer. In the event unanticipated conditions are encountered, the Geotechnical Engineer should provide mitigation options.

In addition to the documentation of the essential parameters necessary for construction, the continuation of the Geotechnical Engineer into the construction phase of the project provides the continuity to maintain the Geotechnical Engineer’s evaluation of subsurface conditions, including assessing variations and associated design changes.

GENERATOR SLAB

After removing the existing slab, we recommend the removal of existing uncontrolled fill below the concrete slab and replacement with a well compacted engineered fill in accordance with the *Earthwork* section of this report.

Generator Slab Design Parameters

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator slab support</td>
<td>Engineered fill after removal of existing fill</td>
</tr>
<tr>
<td>Modulus of subgrade reaction</td>
<td>100 pounds per square inch per inch (psi/in) for point loads</td>
</tr>
<tr>
<td>Maximum net allowable bearing pressure</td>
<td>500 psf</td>
</tr>
<tr>
<td>Estimated total settlement from loads</td>
<td>Less than 1 inch</td>
</tr>
<tr>
<td>Estimated differential settlement</td>
<td>Approximate 2/3 of total settlement</td>
</tr>
</tbody>
</table>

1. Modulus of subgrade reaction is an estimated value based upon our experience with the subgrade condition, the requirements noted in *Earthwork*, and the floor slab support as noted in this table. It is provided for point loads. For large area loads the modulus of subgrade reaction would be lower.

2. Values provided are for the assumed load and foundation size noted in *Project Description*.

3. Connections to generator should be designed to accommodate the settlement that is expected to occur.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual. Joints or any cracks that develop should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy duty concrete pavement and wet environments.

Generator Slab Construction Considerations

Finished subgrade within and for at least 10 feet beyond the floor slab should be protected from traffic, rutting, or other disturbance and maintained in a relatively moist condition until slabs are constructed. If the subgrade should become damaged or desiccated prior to construction of slabs,
the affected material should be removed and structural fill should be added to replace the resulting excavation. Final conditioning of the finished subgrade should be performed immediately prior to placement of the floor slab support course.

The Geotechnical Engineer should approve the condition of the slab subgrades immediately prior to placement of the slab support course, reinforcing steel and concrete. Attention should be paid to high traffic areas that were rutted and disturbed earlier.

FROST CONSIDERATIONS

The native clay and silt soils encountered at the site are extremely susceptible to frost heaving and ice lens formation. Therefore, exterior slabs will experience frost heaving over the winter months and a subsequent loss of strength and settlement during spring thaw. To prevent seasonal movement of the generator, the foundations would need to be supported below frost depth.

As an alternative to frost depth foundations, consideration can be given to placing extruded polystyrene or cellular concrete under a buffer of at least 4 feet of non-frost susceptible fill.

If providing sand fill or insulation below exterior slabs is cost prohibitive, the owner must be willing accept seasonal movement associated with frost heaving. Connections to the generator should be designed to accommodate the movement that is expected to occur.

GENERAL COMMENTS

As the project progresses, we address assumptions by incorporating information provided by the design team, if any. Revised project information that reflects actual conditions important to our services is reflected in the final report. The design team should collaborate with Terracon to confirm these assumptions and to prepare the final design plans and specifications. This facilitates the incorporation of our opinions related to implementation of our geotechnical recommendations. Any information conveyed prior to the final report is for informational purposes only and should not be considered or used for decision-making purposes.

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in the final report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.
Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third party beneficiaries intended. Any third party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.
EXPLORATION AND TESTING PROCEDURES

<table>
<thead>
<tr>
<th>Number of Borings</th>
<th>Boring Depth (feet)</th>
<th>Location¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>Generator base slab area</td>
</tr>
</tbody>
</table>

1. The boring layout is illustrated on the Exploration Plan.

Boring Layout and Elevations: The boring was laid out in the field by a Terracon representative prior to our field exploration. Coordinates were obtained with a handheld GPS unit (estimated horizontal accuracy of about ± 20 feet). Elevation of the boring was measured in the field using a surveyor’s level and grade rod, referenced to the existing slab with an assumed elevation of 100.0’.

Subsurface Exploration Procedures: We advanced the soil boring with a track-mounted drill rig using continuous flight hollow stem augers. We obtained representative samples by the split-barrel and Shelby tube sampling procedures. In the split-barrel sampling procedure, a standard, 2-inch O.D., split-barrel sampling spoon is driven into the boring with a 140-pound automatic SPT (Standard Penetration Test) hammer falling 30 inches. We recorded the number of blows required to advance the sampling spoon the last 1 1/2 inches of an 18-inch sampling interval as the standard penetration resistance value, N. In the Shelby tube sampling procedure, a thin wall seamless steel tube with a sharp cutting edge is pushed into the soil by hydraulic pressure to obtain a relatively undisturbed sample of cohesive soil. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer.

An automatic SPT hammer was used to advance the split-barrel sampler in the boring performed at this site. A greater efficiency is typically achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. Published correlations between the SPT values and soil properties are based on the lower efficiency cathead and rope method. This higher efficiency affects the standard penetration resistance blow count (N) value by increasing the penetration per hammer blow over what would be obtained using the cathead and rope method.

The sampling depths, penetration distances, and other sampling information were recorded on the field boring log. The samples were placed in appropriate containers and taken to our soil laboratory for testing and classification by a geotechnical engineer. Our exploration team prepared field boring logs as part of the drilling operations. The field log included visual classifications of the materials encountered during drilling and our interpretation of the subsurface conditions between samples. The final boring log was prepared from the field log. The final boring log represented the geotechnical engineer’s interpretation of the field log and included modifications based on observations and tests of the samples in our laboratory.
Property Disturbance: We backfilled our boring with auger cuttings after completion. Our services did not include repair of the site beyond backfilling our boreholes. Excess auger cuttings were dispersed within the general vicinity of the borehole. Because backfill material often settles below the surface after a period, we recommend the borehole is checked periodically and backfilled, if necessary.

Laboratory Testing

The project engineer reviewed the field data and assigned various laboratory tests to better understand the engineering properties of the various soil strata as necessary for this project. Procedural standards noted below are for reference to methodology in general. In some cases, variations to methods were applied because of local practice or professional judgment. Standards noted below included reference to other, related standards. Such references are not necessarily applicable to describe the specific test performed.

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D1140-17 Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing
- ASTM D7263-09 Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens

The laboratory testing program included examination of soil samples by an engineer. Based on the material's texture and plasticity, we described and classified the soil samples in accordance with the Unified Soil Classification System.
SITE LOCATION AND EXPLORATION PLANS
SITE LOCATION and NEARBY GEOTECHNICAL DATA
Proposed B541 Generator Base ■ Grand Forks Air Force Base, North Dakota
January 11, 2018 ■ Terracon Project No. M5175096

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES
MAP PROVIDED BY MICROSOFT BING MAPS
EXPLORATION PLAN
Proposed B541 Generator Base ■ Grand Forks Air Force Base, North Dakota
January 11, 2018 ■ Terracon Project No. M5175096

Attachment 1, FA465918R0005

Diagram is for general location only, and is not intended for construction purposes

Map provided by Microsoft Bing Maps
EXPLORATION RESULTS
PROJECT: Proposed B541 Generator Base

SITE:
- Steen Blvd
- Grand Forks Air Force Base, North Dakota

CLIENT: Kenneth Hahn Architects
- Omaha, Nebraska

GRAPHIC LOG

<table>
<thead>
<tr>
<th>Depth (Ft.)</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>FILL - LEAN CLAY, trace sand and gravel, dark brown and black, frozen to 1', concrete rubble at 2.5'</td>
</tr>
<tr>
<td>7.0</td>
<td>SILT (ML), olive brown mottled, medium stiff, iron staining</td>
</tr>
<tr>
<td>9.5</td>
<td>LEAN CLAY (CL), olive brown mottled, medium stiff, iron staining, silt lenses</td>
</tr>
<tr>
<td>12.0</td>
<td>FAT CLAY (CH), olive brown mottled, medium stiff, iron staining</td>
</tr>
<tr>
<td>14.5</td>
<td>LEAN CLAY (CL), olive brown, soft, iron staining</td>
</tr>
<tr>
<td>19.5</td>
<td>SANDY LEAN CLAY (CL), trace gravel, dark olive brown, stiff, occasional cobbles/boulders</td>
</tr>
<tr>
<td>26.0</td>
<td>SANDY LEAN CLAY (CL), trace gravel, dark gray, stiff, occasional cobbles/boulders</td>
</tr>
</tbody>
</table>

WATER LEVEL OBSERVATIONS

- No free water observed

FIELD TEST RESULTS

<table>
<thead>
<tr>
<th>Depth (Ft.)</th>
<th>Field Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4-3-2, N=5, 2000 (HP)</td>
</tr>
<tr>
<td>15</td>
<td>1-2-2, N=4, 2000 (HP)</td>
</tr>
<tr>
<td>20</td>
<td>3-4-4, N=8, 2500 (HP)</td>
</tr>
<tr>
<td>25</td>
<td>3-3-5, N=8, 4000 (HP)</td>
</tr>
</tbody>
</table>

Notes:
- Advancement Method: 3 ¼ inch hollow stem auger
- Abandonment Method: Boring backfilled with auger cuttings after completion

Drill Rig: D-90
- Driller: CAS

Boring Terminated at 26 Feet

Stratification lines are approximate. In-situ, the transition may be gradual.

Hammer Type: Automatic

Unconfined Compressive Strength (psf):
- 3000 (HP) at 2000 ft
- 3000 (HP) at 2000 ft
- 3500 (HP) at 2500 ft

Atterberg Limits:
- LL: 30-24-6
- PL: 46
- PI: 86-33-53

Notes:
- Boring Started: 12-21-2017
- Boring Completed: 12-21-2017

Drill Rig: D-90
- Driller: CAS

WATER LEVEL OBSERVATIONS:

- No free water observed

Surface Elev.: 99.8 (Ft.)

Notes:
- See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (if any).
- See Supporting Information for explanation of symbols and abbreviations.
Atterberg Limits Results

ASTM D4318

Atterberg Limits Diagram

<table>
<thead>
<tr>
<th>Boring ID</th>
<th>Depth</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>Fines</th>
<th>USCS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>4.5 - 6.5</td>
<td>30</td>
<td>24</td>
<td>6</td>
<td>ML</td>
<td>ML</td>
<td>SILT</td>
</tr>
<tr>
<td>B-1</td>
<td>9.5 - 11.5</td>
<td>86</td>
<td>33</td>
<td>53</td>
<td>CH</td>
<td>CH</td>
<td>FAT CLAY</td>
</tr>
</tbody>
</table>

Laboratory Tests

- **Site:** Steen Blvd
- **PROJECT:** Proposed B541 Generator Base
- **PROJECT NUMBER:** M5175096
- **CLIENT:** Kenneth Hahn Architects
- **Site:** Grand Forks Air Force Base, North Dakota

1555 N 42nd St Unit B
Grand Forks, ND

1/8/18

Attachment 1, FA465918R0005
UNCONFINED COMPRESSION TEST
ASTM D2166

Sample Location: B-1 @ 9.5 - 11.5 feet
Sample Type: Shelby Tube
Description: FAT CLAY

<table>
<thead>
<tr>
<th>SPECIMEN TEST DATA</th>
<th>SPECIMEN FAILURE PHOTOGRAPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content: %</td>
<td></td>
</tr>
<tr>
<td>Dry Density: pcf</td>
<td></td>
</tr>
<tr>
<td>Diameter: in.</td>
<td></td>
</tr>
<tr>
<td>Height: in.</td>
<td></td>
</tr>
<tr>
<td>Height / Diameter Ratio:</td>
<td></td>
</tr>
<tr>
<td>Calculated Saturation: %</td>
<td></td>
</tr>
<tr>
<td>Calculated Void Ratio:</td>
<td></td>
</tr>
<tr>
<td>Assumed Specific Gravity:</td>
<td></td>
</tr>
<tr>
<td>Failure Strain: %</td>
<td></td>
</tr>
<tr>
<td>Unconfined Compressive Strength (psf)</td>
<td></td>
</tr>
<tr>
<td>Undrained Shear Strength:</td>
<td></td>
</tr>
<tr>
<td>Strain Rate: in/min</td>
<td></td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
</tbody>
</table>
LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

UNCONFined COMPRESSION TEST

ASTM D2166

SPECIMEN FAILURE PHOTOGRAPH

SPECIMEN TEST DATA

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Content:</td>
<td>20%</td>
</tr>
<tr>
<td>Dry Density:</td>
<td>111 pcf</td>
</tr>
<tr>
<td>Diameter:</td>
<td>2.86 in.</td>
</tr>
<tr>
<td>Height:</td>
<td>5.57 in.</td>
</tr>
<tr>
<td>Height / Diameter Ratio:</td>
<td>1.95</td>
</tr>
<tr>
<td>Calculated Saturation:</td>
<td>105.51</td>
</tr>
<tr>
<td>Calculated Void Ratio:</td>
<td>0.49</td>
</tr>
<tr>
<td>Assumed Specific Gravity:</td>
<td>2.65</td>
</tr>
<tr>
<td>Failure Strain:</td>
<td>12.21</td>
</tr>
<tr>
<td>Unconfined Compressive Strength:</td>
<td>3217 psf</td>
</tr>
<tr>
<td>Undrained Shear Strength:</td>
<td>1609 psf</td>
</tr>
<tr>
<td>Strain Rate:</td>
<td>0.1200 in/min</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPE: Shelby Tube

DESCRIPTION: SANDY LEAN CLAY

<table>
<thead>
<tr>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>Percent < #200 Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

SAMPLE LOCATION: B-1 @ 14.5 - 16.5 feet

PROJECT: Proposed B541 Generator Base

SITE: Steen Blvd
Grand Forks Air Force Base, North Dakota

CLIENT: Kenneth Hahn Architects
Omaha, Nebraska

PROJECT NUMBER: M5175096

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

UNCONFINED WITH PHOTOS M5175096 PROPOSED B541 GEN.GPJ TERRACON_DATATEMPLATE.GDT 1/8/18
SUPPORTING INFORMATION
Proposed B541 Generator Base Grand Forks Air Force Base, North Dakota

1/11/2018 Terracon Project No. M5175096

<table>
<thead>
<tr>
<th>SAMPLING</th>
<th>WATER LEVEL</th>
<th>FIELD TESTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auger Cuttings</td>
<td>Water Initially Encountered</td>
<td>N Standard Penetration Test Resistance (Blows/Ft.)</td>
</tr>
<tr>
<td>Shelby Tube</td>
<td>Water Level After a Specified Period of Time</td>
<td>(HP) Hand Penetrometer</td>
</tr>
<tr>
<td>Split Spoon</td>
<td>Water Level After a Specified Period of Time</td>
<td>(T) Torvane</td>
</tr>
</tbody>
</table>

Water levels indicated on the soil boring logs are the levels measured in the borehole at the times indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not possible with short term water level observations.

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

RELATIVE DENSITY OF COARSE-GRAINED SOILS

(50% or more passing the No. 200 sieve)

<table>
<thead>
<tr>
<th>Descriptive Term (Density)</th>
<th>Standard Penetration or N-Value Blows/Ft.</th>
<th>Descriptive Term (Consistency)</th>
<th>Unconfined Compressive Strength Qc, (psf)</th>
<th>Standard Penetration or N-Value Blows/Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0 - 3</td>
<td>Very Soft</td>
<td>less than 50</td>
<td>0 - 1</td>
</tr>
<tr>
<td>Loose</td>
<td>4 - 9</td>
<td>Soft</td>
<td>500 to 1,000</td>
<td>2 - 4</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>10 - 29</td>
<td>Medium Stiff</td>
<td>1,000 to 2,000</td>
<td>4 - 8</td>
</tr>
<tr>
<td>Dense</td>
<td>30 - 50</td>
<td>Stiff</td>
<td>2,000 to 4,000</td>
<td>8 - 15</td>
</tr>
<tr>
<td>Very Dense</td>
<td>> 50</td>
<td>Very Stiff</td>
<td>4,000 to 8,000</td>
<td>15 - 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard</td>
<td>> 8,000</td>
<td>> 30</td>
</tr>
</tbody>
</table>

STRENGTH TERMS

STRENGTH TERMS

RELATIVE PROPORTIONS OF SAND AND GRAVEL

<table>
<thead>
<tr>
<th>Descriptive Term(s) of other constituents</th>
<th>Percent of Dry Weight</th>
<th>Descriptive Term(s) of other constituents</th>
<th>Percent of Dry Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace</td>
<td><15</td>
<td>Trace</td>
<td><5</td>
</tr>
<tr>
<td>With</td>
<td>15-29</td>
<td>With</td>
<td>5-12</td>
</tr>
<tr>
<td>Modifier</td>
<td>>30</td>
<td>Modifier</td>
<td>>12</td>
</tr>
</tbody>
</table>

RELATIVE PROPORTIONS OF FINES

<table>
<thead>
<tr>
<th>Major Component of Sample</th>
<th>Particle Size</th>
<th>Term</th>
<th>Plasticity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>Over 12 in. (300 mm)</td>
<td>Non-plastic</td>
<td>0</td>
</tr>
<tr>
<td>Cobbles</td>
<td>12 in. to 3 in. (300mm to 75mm)</td>
<td>Low</td>
<td>1 - 10</td>
</tr>
<tr>
<td>Gravel</td>
<td>3 in. to #4 sieve (75mm to 4.75 mm)</td>
<td>Medium</td>
<td>11 - 30</td>
</tr>
<tr>
<td>Sand</td>
<td>#4 to #200 sieve (4.75mm to 0.075mm)</td>
<td>High</td>
<td>> 30</td>
</tr>
<tr>
<td>Silt or Clay</td>
<td>Passing #200 sieve (0.075mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

<table>
<thead>
<tr>
<th>Major Component of Sample</th>
<th>Particle Size</th>
<th>Term</th>
<th>Plasticity Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>Over 12 in. (300 mm)</td>
<td>Non-plastic</td>
<td>0</td>
</tr>
<tr>
<td>Cobbles</td>
<td>12 in. to 3 in. (300mm to 75mm)</td>
<td>Low</td>
<td>1 - 10</td>
</tr>
<tr>
<td>Gravel</td>
<td>3 in. to #4 sieve (75mm to 4.75 mm)</td>
<td>Medium</td>
<td>11 - 30</td>
</tr>
<tr>
<td>Sand</td>
<td>#4 to #200 sieve (4.75mm to 0.075mm)</td>
<td>High</td>
<td>> 30</td>
</tr>
<tr>
<td>Silt or Clay</td>
<td>Passing #200 sieve (0.075mm)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESCRIPTION OF ROCK PROPERTIES

Proposed B541 Generator Base ■ Grand Forks Air Force Base, North Dakota

January 11, 2018 ■ Terracon Project No. M5175096

Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests

<table>
<thead>
<tr>
<th>Soil Classification</th>
<th>Group Symbol</th>
<th>Group Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Gravels:</td>
<td>Cu ≥ 4 and 1 ≤ Cc ≤ 3</td>
<td>GW Well-graded gravel</td>
</tr>
<tr>
<td>Less than 5% fines</td>
<td>Cu < 4 and/or 1 > Cc > 3</td>
<td>GP Poorly graded gravel</td>
</tr>
<tr>
<td>Gravels with Fines:</td>
<td>Cc ≤ 3</td>
<td>GM Silty gravel</td>
</tr>
<tr>
<td>More than 12% fines C</td>
<td>Fines classify as ML or MH</td>
<td>GC Clayey gravel</td>
</tr>
<tr>
<td>Clean Sands:</td>
<td>Cu ≥ 6 and 1 ≤ Cc ≤ 3</td>
<td>SW Well-graded sand</td>
</tr>
<tr>
<td>Less than 5% fines</td>
<td>Cu < 6 and/or 1 > Cc > 3</td>
<td>SP Poorly graded sand</td>
</tr>
<tr>
<td>Gravels with Fines:</td>
<td>Cc ≤ 3</td>
<td>GM Silty gravel</td>
</tr>
<tr>
<td>More than 12% fines C</td>
<td>Fines classify as ML or MH</td>
<td>GC Clayey gravel</td>
</tr>
<tr>
<td>Sands with Fines:</td>
<td>Fines classify as ML or MH</td>
<td>SM Silty sand</td>
</tr>
<tr>
<td>Inorganic:</td>
<td>PI > 7 and plots on or above “A” line</td>
<td>CL Lean clay</td>
</tr>
<tr>
<td>Organic:</td>
<td>PI < 4 or plots below “A” line</td>
<td>ML Silt</td>
</tr>
<tr>
<td>Liquid limit - oven dried</td>
<td>< 0.75</td>
<td>OL Organic clay</td>
</tr>
<tr>
<td>Organic:</td>
<td>PI plots on or above “A” line</td>
<td>CH Fat clay</td>
</tr>
<tr>
<td>Inorganic:</td>
<td>PI plots below “A” line</td>
<td>MH Elastic Silt</td>
</tr>
<tr>
<td>Liquid limit - oven dried</td>
<td>< 0.75</td>
<td>OH Organic silt</td>
</tr>
<tr>
<td>Highly organic soils: Primarily organic matter, dark in color, and organic odor</td>
<td>PT Peat</td>
<td></td>
</tr>
</tbody>
</table>

Gravels: More than 50% of coarse fraction retained on No. 4 sieve

Sands: 50% or more of coarse fraction passes No. 4 sieve

Silt: 50% or more passes the No. 200 sieve

Silt and Clay: Liquid limit less than 50

Silt: Liquid limit 50 or more

Gravels with 5 to 12% fines require dual symbols: GW-GC well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GC poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SM well-graded sand with clay, SP-SC poorly graded sand with silt, SP-SC poorly graded sand with clay.

Cu = D_{60}/D_{10} \quad Cc = (D_{30})^2 / D_{10} \times D_{60}

If fines are organic, add “with organic fines” to group name.

If soil contains ≥ 15% gravel, add “with gravel” to group name.

If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

If soil contains 15 to 29% plus No. 200, add “with sand” or “with gravel,” whichever is predominant.

If soil contains ≥ 30% plus No. 200 predominantly sand, add “sandy” to group name.

If soil contains ≥ 30% plus No. 200, predominantly gravel, add “gravelly” to group name.

If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.
January 16, 2018

Kenneth Hahn Architects
1343 South 75th Street
Omaha, NE 68124

Attn: Mr. Jerry Hahn
 P: (402) 391 2111
 E: jerry.kharch@gmail.com

Re: Addendum No. 1
 Geotechnical Engineering Report
 Proposed B541 Generator Base
 Grand Forks Air Force Base, North Dakota
 Terracon Project No. M5175096

Dear Mr. Hahn:

This letter is an addendum to our Geotechnical Engineering Report (M5175096 dated January 11, 2018). The purpose of this addendum is to present our recommendations for drilled pier foundations based on the request of Joel Fairfax of Nielsen Baumert Engineering. The following is intended to supplement the original report. Please attach a copy of this addendum to your report copies.

Sincerely,
Terracon Consultants, Inc.

Jonathan J. Malaterre, EI
Staff Engineer

William R. Olson, PE
Geotechnical Department Manager
We understand the generator, fuel and enclosure will weigh approximately 77 kips and be supported on a structural slab near the existing grade. The structural slab will be supported on shallow drilled piers. Supporting the generator base on a drilled pier foundation is feasible. Design recommendations for drilled piers are provided in the following sections.

Drilled Pier Design Recommendations

Shallow drilled piers which only extend a short distance below frost depth would be subject to frost jacking. Therefore, we recommend the drilled piers extend a minimum depth of 12 feet below existing grade to prevent uplift from frost jacking. If the piers terminate closer to the ground surface, the owner must be willing to accept seasonal movement due to frost action. The potential for movement could be reduced by coating the piers in plastic or other products designed to reduce adhesion to the surrounding soils within the frost zone. We recommend a void form, capable of accommodating at least 8 inches of movement, be provided below the structural slab to reduce the potential for uplift due to frost action.

Soil parameters which may be used in the design of the drilled piers are presented in the following table. The values provided in the table are based on our analysis of the existing subsurface conditions and were estimated using generally accepted engineering correlations. The values are based on undisturbed soil conditions. We recommend neglecting the upper 6 feet of soils due to softening during spring thaw. We recommend a minimum pier spacing of 3 pier diameters on center. We expect settlement of the drilled piers of less than one inch.

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Description and Soil Model Type</th>
<th>Wet Unit Weight (pcf)</th>
<th>Submerged Unit Weight (pcf)</th>
<th>Allowable Skin Friction (psf)</th>
<th>Allowable End Bearing Pressure (psf)</th>
<th>Internal Angle of Friction (degrees)</th>
<th>Cohesion (psf)</th>
<th>Soil Modulus Parameter k (pci)</th>
<th>Soil Strain Parameter E50 (in/in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 6</td>
<td>Frost Zone</td>
<td>120</td>
<td>58</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
<td>Ignore</td>
</tr>
<tr>
<td>6 – 7</td>
<td>Silt</td>
<td>105</td>
<td>43</td>
<td>200</td>
<td>1,200</td>
<td>0</td>
<td>600</td>
<td>100</td>
<td>0.010</td>
</tr>
<tr>
<td>7 – 9 ½</td>
<td>Lean clay</td>
<td>115</td>
<td>63</td>
<td>300</td>
<td>1,500</td>
<td>0</td>
<td>750</td>
<td>100</td>
<td>0.010</td>
</tr>
<tr>
<td>9 ¼ - 12</td>
<td>Fat clay</td>
<td>110</td>
<td>48</td>
<td>300</td>
<td>1,200</td>
<td>0</td>
<td>600</td>
<td>100</td>
<td>0.010</td>
</tr>
<tr>
<td>12 – 14 ½</td>
<td>Lean clay</td>
<td>115</td>
<td>53</td>
<td>300</td>
<td>1,200</td>
<td>0</td>
<td>600</td>
<td>50</td>
<td>0.020</td>
</tr>
<tr>
<td>14 ¼ - 26</td>
<td>Sandy lean clay</td>
<td>135</td>
<td>73</td>
<td>500</td>
<td>3,000</td>
<td>5</td>
<td>1,500</td>
<td>200</td>
<td>0.007</td>
</tr>
</tbody>
</table>

The soil modulus parameter and soil strain parameter are for use in lateral and moment load analysis using the computer program L-PILE. These values are not factored (i.e., they represent the ultimate soil parameters with no factor of safety applied). However, the skin friction and bearing pressure each have a factor of safety of 2 and 3, respectively. Group action for lateral resistance should be taken into account when spacing is less than 8 diameters on center.
Terracon can provide additional lateral and moment load analysis for individual piers and pier groups once detailed foundation design information becomes available.

Drilled Pier Foundation Construction Considerations

The drilling equipment should be adequately sized to penetrate the soils encountered at the site. Conventional drilling equipment should be capable of excavating the native soils. The methods and equipment used for drilled shaft installation should leave the side and bottom of the shaft free of loose and disturbed material. The drilled shaft construction should be conducted in accordance with applicable portions of ACI 336.3R or other similar, approved specification.

Groundwater seepage would be expected in drilled pier excavations that extend below the groundwater level. Groundwater seepage in short term excavations would be controllable by sump pumping. Temporary casing will likely be needed during the pier excavation to prevent the sidewall soils from sloughing. The temporary casing should be removed immediately following concrete placement. Our boring indicated that the soils encountered could include the presence of cobbles and boulders which can cause construction difficulties in drilled pier excavations. We should be notified if the subsurface conditions differ from those encountered at our test boring location. We recommend a geotechnical engineer or his representative be on site during construction to observe the drilled pier excavations.
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

ASPHALT INSTITUTE (AI)

AI MS-2 (1997 6th Ed) Mix Design Methods

ASTM INTERNATIONAL (ASTM)

SECTION 32 12 17 Page 1
of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate

ASTM D1073 (2011) Fine Aggregate for Bituminous Paving Mixtures

ASTM D2041/D2041M (2011) Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures

ASTM D2172/D2172M (2011) Quantitative Extraction of Bitumen from Bituminous Paving Mixtures

ASTM D4867/D4867M (2009) Effect of Moisture on Asphalt Concrete Paving Mixtures

1.2 SUBMITTALS

Submit the following in accordance with Section 01000:
SD-05 Design Data

Job-mix formula; G

Submit a job-mix formula, prepared specifically for this project, for approval prior to preparing and placing the bituminous mixture. Design mix using procedures contained in Chapter V, Marshall Method of Mix Design, of AI MS-2. Formulas shall indicate physical properties of the mixes as shown by tests made by a commercial laboratory approved by the Contracting Officer, using materials identical to those to be provided on this project. Submit formulas with material samples. Job-mix formula for each mixture shall be in effect until modified in writing by the Contractor and approved by the Contracting Officer. Provide a new job-mix formula for each source change. Submittal shall include all tests indicated in MIX DESIGN section of this specification.

SD-06 Test Reports

Specific gravity test of asphalt
Coarse aggregate tests
Weight of slag test
Percent of crushed pieces in gravel
Fine aggregate tests
Specific gravity of mineral filler
Bituminous mixture tests
Aggregates tests
Bituminous mix tests
Pavement courses

1.3 QUALITY ASSURANCE

1.3.1 Safety Requirements

Provide adequate and safe stairways with handrails to the mixer platform, and safe and protected ladders or other means for accessibility to plant operations. Guard equipment and exposed steam or other high temperature lines or cover with a suitable type of insulation.

1.3.2 Required Data

Job-mix formula shall show the following:

a. Source and proportions, percent by weight, of each ingredient of the mixture;

b. Correct gradation, the percentages passing each size sieve listed in the specifications for the mixture to be used, for the aggregate and mineral filler from each separate source and from each different size
to be used in the mixture and for the composite mixture;
c. Amount of material passing the No. 200 sieve determined by dry sieving;
d. Number of blows of hammer compaction per side of molded specimen;
e. Temperature viscosity relationship of the asphalt cement;
f. Stability, flow, percent voids in mineral aggregate, percent air voids, unit weight;
g. Asphalt absorption by the aggregate;
h. Effective asphalt content as percent by weight of total mix;
i. Temperature of the mixture immediately upon completion of mixing;
j. Asphalt performance grade viscosity grade penetration range; and
k. Curves for the leveling binder and wearing courses.

1.3.3 Charts

Plot and submit, on a grain size chart, the specified aggregate gradation band, the job-mix gradation and the job-mix tolerance band.

1.3.4 Selection of Optimum Asphalt Content

Base selection on percent of total mix and the average of values at the following points on the curves for each mix:

a. Stability: Peak
b. Unit Weight: Peak
c. Percent Air Voids: Median

1.4 DELIVERY, STORAGE, AND HANDLING

Inspect materials delivered to the site for damage and store with a minimum of handling. Store aggregates in such a manner as to prevent segregation, contamination, or intermixing of the different aggregate sizes.

1.5 ENVIRONMENTAL CONDITIONS

Place bituminous mixture only during dry weather and on dry surfaces. Place courses only when the surface temperature of the underlying course is greater than 45 degrees F for course thicknesses greater than one inch and 55 degrees F for course thicknesses one inch or less.

1.6 CONSTRUCTION EQUIPMENT

Calibrated equipment, such as scales, batching equipment, spreaders and similar equipment, shall have been recalibrated by a calibration laboratory approved by the Contracting Officer within 12 months of commencing work.

1.6.1 Mixing Plant

Design, coordinate, and operate the mixing plant to produce a mixture
within the job-mix formula tolerances and to meet the requirements of AASHTO M 156, including additional plant requirements specified herein. The plant shall be a batch type, continuous mix type or drum-dryer mixer type, and shall have sufficient capacity to handle the new bituminous construction. Minimum plant capacity shall be 100 tons per hour. The mixing plant and equipment shall remain accessible at all times for inspecting operation, verifying weights, proportions and character of materials, and checking mixture temperatures.

1.6.1.1 Cold Aggregate Feeder

Provide plant with a feeder or feeders capable of delivering the maximum number of aggregate sizes required in their proper proportion. Provide adjustment for total and proportional feed and feeders capable of being locked in any position. When more than one cold elevator is used, feed each elevator as a separate unit and install individual controls integrated with a master control.

1.6.1.2 Dryer

Provide rotary drum-dryer which continuously agitates the mineral aggregate during the heating and drying process. When one dryer does not dry the aggregate to specified moisture requirements, provide additional dryers.

1.6.1.3 Plant Screens and Bins for Batch and Continuous Mix Plants

Use screen to obtain accurate gradation and allow no bin to contain more than 10 percent oversize or undersize. Inspect screens each day prior to commencing work for plugged, worn, or broken screens. Clean plugged screens and replace worn or broken screens with new screens prior to beginning operations. Divide hot aggregate bins into at least three compartments arranged to ensure separate and adequate storage of appropriate fractions of the aggregate.

1.6.1.4 Testing Laboratory

Provide a testing laboratory for control and acceptance testing functions during periods of mix production, sampling and testing, and whenever materials subject to the provisions of these specifications are being supplied or tested. The laboratory shall provide adequate equipment, space, and utilities as required for the performance of the specified tests.

1.6.1.5 Surge and Storage Bins

Use for temporary storage of hot bituminous mixtures will be permitted under the following conditions:

a. When stored in surge bins for a period of time not to exceed 3 hours.

b. When stored in insulated and heated storage bins for a period of time not to exceed 12 hours. If it is determined by the Contracting Officer that there is an excessive amount of heat loss, segregation and oxidation of the mixture due to temporary storage, discontinue use of surge bins or storage bins.

1.6.1.6 Drum-Dryer Mixer

Do not use drum-dryer mixer if specified requirements of the bituminous mixture or of the completed bituminous pavement course cannot be met. If
drum-dryer mixer is prohibited, use either batch or continuous mix plants meeting the specifications and producing a satisfactory mix.

1.6.2 Paving Equipment

1.6.2.1 Spreading Equipment

Self-propelled electronically controlled type, unless other equipment is authorized by the Contracting Officer. Equip spreading equipment of the self-propelled electronically controlled type with hoppers, tamping or vibrating devices, distributing screws, electronically adjustable screeds, and equalizing devices. Capable of spreading hot bituminous mixtures without tearing, shoving, or gouging and to produce a finished surface of specified grade and smoothness. Operate spreaders, when laying mixture, at variable speeds between 5 and 45 feet per minute. Design spreader with a quick and efficient steering device; a forward and reverse traveling speed; and automatic devices to adjust to grade and confine the edges of the mixture to true lines. The use of a spreader that leaves indented areas or other objectionable irregularities in the fresh laid mix during operations is prohibited.

1.6.2.2 Rolling Equipment

Self-propelled pneumatic-tired rollers supplemented by three-wheel and tandem type steel wheel rollers. The number, type and weight of rollers shall be sufficient to compact the mixture to the required density without detrimentally affecting the compacted material. Rollers shall be suitable for rolling hot-mix bituminous pavements and capable of reversing without backlash. Pneumatic-tired rollers shall be capable of being operated both forward and backward without turning on the mat, and without loosening the surface being rolled. Equip rollers with suitable devices and apparatus to keep the rolling surfaces wet and prevent adherence of bituminous mixture. Vibratory rollers especially designed for bituminous concrete compaction may be used provided rollers do not impair stability of pavement structure and underlying layers. Repair depressions in pavement surfaces resulting from use of vibratory rollers. Rollers shall be self-propelled, single or dual vibrating drums, and steel drive wheels, as applicable; equipped with variable amplitude and separate controls for energy and propulsion.

1.6.2.3 Hand Tampers

Minimum weight of 25 pounds with a tamping face of not more than 50 square inches.

1.6.2.4 Mechanical Hand Tampers

Commercial type, operated by pneumatic pressure or by internal combustion.

PART 2 PRODUCTS

2.1 AGGREGATES

Grade and proportion aggregates and filler so that combined mineral aggregate conforms to specified grading.

2.1.1 Coarse Aggregates

ASTM D692/D692M, except as modified herein. At least 75 percent by weight of aggregate retained on the No. 4 sieve shall have two or more fractured
faces. Percentage of wear, Los Angeles test, except for slag, shall not exceed 40 in accordance with ASTM C131. Weight of slag shall not be less than 70 pounds per cubic foot. Soundness test is required in accordance with ASTM C88; after 5 cycles, loss shall not be more than 12 percent when tested with sodium sulfate or 18 percent when tested with magnesium sulfate.

2.1.2 Fine Aggregate

ASTM D1073, except as modified herein. Fine aggregate shall be produced by crushing stone, slag or gravel that meets requirements for wear and soundness specified for coarse aggregate. Where necessary to obtain the gradation of aggregate blend or workability, natural sand may be used. Quantity of natural sand to be added shall be approved by the Contracting Officer and shall not exceed 15 percent of weight of coarse and fine aggregate and material passing the No. 200 sieve.

2.1.3 Mineral Filler

Nonplastic material meeting the requirements of ASTM D242/D242M.

2.1.4 Aggregate Gradation

The combined aggregate gradation shall conform to gradations specified in Table I, when tested in accordance with ASTM C136 and ASTM C117, and shall not vary from the low limit on one sieve to the high limit on the adjacent sieve or vice versa, but grade uniformly from coarse to fine.

<table>
<thead>
<tr>
<th>Table I. Aggregate Gradations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradation 1</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Sieve Size, inch</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3/4</td>
</tr>
<tr>
<td>1/2</td>
</tr>
<tr>
<td>3/8</td>
</tr>
<tr>
<td>No. 4</td>
</tr>
<tr>
<td>No. 8</td>
</tr>
<tr>
<td>No. 16</td>
</tr>
<tr>
<td>No. 30</td>
</tr>
<tr>
<td>No. 50</td>
</tr>
<tr>
<td>No. 100</td>
</tr>
<tr>
<td>No. 200</td>
</tr>
</tbody>
</table>
2.2 ASPHALT CEMENT BINDER

Asphalt cement binder shall conform to AASHTO M 320 Performance Grade (PG) 58-34. Test data indicating grade certification shall be provided by the supplier at the time of delivery of each load to the mix plant. Copies of these certifications shall be submitted to the Contracting Officer. The supplier is defined as the last source of any modification to the binder. The Contracting Officer may sample and test the binder at the mix plant at any time before or during mix production. Samples for this verification testing shall be obtained by the Contractor in accordance with ASTM D140/D140M and in the presence of the Contracting Officer. These samples shall be furnished to the Contracting Officer for the verification testing, which shall be at no cost to the Contractor. Samples of the asphalt cement specified shall be submitted for approval not less than 14 days before start of the test section.

2.3 MIX DESIGN

The Contractor shall develop the mix design. The asphalt mix shall be composed of a mixture of well-graded aggregate, mineral filler if required, and asphalt material. The aggregate fractions shall be sized, handled in separate size groups, and combined in such proportions that the resulting mixture meets the grading requirements of the job mix formula (JMF). No hot-mix asphalt for payment shall be produced until a JMF has been approved. The hot-mix asphalt shall be designed using procedures contained in AI MS-2 and the criteria shown in Table II. If the Tensile Strength Ratio (TSR) of the composite mixture, as determined by ASTM D4867/D4867M is less than 75, the aggregates shall be rejected or the asphalt mixture treated with an approved anti-stripping agent. The amount of anti-stripping agent added shall be sufficient to produce a TSR of not less than 75. If an antistrip agent is required, it shall be provided by the Contractor at no additional cost.

2.3.1 JMF Requirements

The job mix formula shall be submitted in writing by the Contractor for approval at least 14 days prior to the start of the test section and shall include as a minimum:

a. Percent passing each sieve size.

b. Percent of asphalt cement.

c. Percent of each aggregate and mineral filler to be used.

d. Asphalt viscosity grade, penetration grade, or performance grade.

e. Number of blows of hammer per side of molded specimen.

f. Laboratory mixing temperature.

g. Lab compaction temperature.

h. Temperature-viscosity relationship of the asphalt cement.

i. Plot of the combined gradation on the 0.45 power gradation chart, stating the nominal maximum size.

j. Graphical plots of stability, flow, air voids, voids in the mineral
aggregate, and unit weight versus asphalt content as shown in AI MS-2.

k. Specific gravity and absorption of each aggregate.

l. Percent natural sand.

m. Percent particles with two or more fractured faces (in coarse aggregate).

n. Pine aggregate angularity.

o. Percent flat or elongated particles (in coarse aggregate).

p. Tensile Strength Ratio.

q. Antistrip agent (if required) and amount.

r. List of all modifiers and amount.

s. Percentage and properties (asphalt content, binder properties, and aggregate properties) of RAP in accordance with paragraph RECYCLED HOT-MIX ASPHALT, if RAP is used.

<table>
<thead>
<tr>
<th>Table II. Marshall Design Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Property</td>
</tr>
<tr>
<td>Stability, pounds minimum</td>
</tr>
<tr>
<td>Flow, 0.01 inch</td>
</tr>
<tr>
<td>Air voids, percent</td>
</tr>
<tr>
<td>Percent Voids in mineral aggregate (minimum)</td>
</tr>
<tr>
<td>TSR, minimum percent</td>
</tr>
</tbody>
</table>

* This is a minimum requirement. The average during construction shall be significantly higher than this number to ensure compliance with the specifications.

<table>
<thead>
<tr>
<th>Table III. Minimum Percent Voids in Mineral Aggregate (VMA)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate (See Table 2)</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Gradation 1</td>
</tr>
<tr>
<td>Gradation 2</td>
</tr>
<tr>
<td>Gradation 3</td>
</tr>
</tbody>
</table>
Table III. Minimum Percent Voids in Mineral Aggregate (VMA) **

<table>
<thead>
<tr>
<th>Aggregate (See Table 2)</th>
<th>Minimum VMA, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>** Calculate VMA in accordance with AI MS-2, based on ASTM D2726/D2726M bulk specific gravity for the aggregate.</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 Adjustments to JMF

The JMF for each mixture shall be in effect until a new formula is approved in writing by the Contracting Officer. Should a change in sources of any materials be made, a new mix design shall be performed and a new JMF approved before the new material is used. The Contractor will be allowed to adjust the JMF within the limits specified below to optimize mix volumetric properties. Adjustments to the JMF shall be limited to plus or minus 3 percent on the 1/2 inch, No. 4, and No. 8 sieves; plus or minus 1.0 percent on the No. 200 sieve; and plus or minus 0.40 percent binder content. If adjustments are needed that exceed these limits, a new mix design shall be developed. Tolerances given above may permit the aggregate grading to be outside the limits shown in Table I; this is acceptable.

2.4 RECYCLED HOT MIX ASPHALT

Recycled HMA shall consist of reclaimed asphalt pavement (RAP), coarse aggregate, fine aggregate, mineral filler, and asphalt cement. The RAP shall be of a consistent gradation and asphalt content and properties. When RAP is fed into the plant, the maximum RAP chunk size shall not exceed 2 inches. The recycled HMA mix shall be designed using procedures contained in AI MS-2. The job mix shall meet the requirements of paragraph MIX DESIGN. RAP should only be used for shoulder surface course mixes and for any intermediate courses. The amount of RAP shall be limited to 30 percent.

2.4.1 RAP Aggregates and Asphalt Cement

The blend of aggregates used in the recycled mix shall meet the requirements of paragraph AGGREGATES. The percentage of asphalt in the RAP shall be established for the mixture design according to ASTM D2172/D2172M using the appropriate dust correction procedure.

2.4.2 RAP Mix

The blend of new asphalt cement and the RAP asphalt binder shall meet the penetration requirements in paragraph ASPHALT CEMENT BINDER. The virgin asphalt cement shall not be more than two standard asphalt material grades different than that specified in paragraph ASPHALT CEMENT BINDER.

2.5 SOURCE QUALITY CONTROL

Employ a commercial laboratory approved by the Contracting Officer to perform testing. The laboratory used to develop the JMF and the laboratory used to perform all sampling and testing shall meet the requirements of ASTM D3666. A certification signed by the manager of the laboratory stating that it meets these requirements or clearly listing all deficiencies shall be submitted to the Contracting Officer prior to the start of construction. The certification shall contain as a minimum:

a. Qualifications of personnel; laboratory manager, supervising
technician, and testing technicians.

b. A listing of equipment to be used in developing the job mix.

c. A copy of the laboratory's quality control system.

d. Evidence of participation in the AASHTO Materials Reference Laboratory (AMRL) program.

2.5.1 Tests

Perform testing in accordance with the following:

a. Specific Gravity Test of Asphalt: ASTM D70

b. Coarse Aggregate Tests:
 (1) Bulk Specific Gravity: ASTM C127
 (2) Abrasion Loss: ASTM C131
 (3) Soundness Loss: ASTM C88

c. Weight of Slag Test: ASTM C29/C29M

d. Percent of Crushed Pieces in Gravel: Count by observation and weight

e. Fine Aggregate Tests:
 (1) Bulk Specific Gravity: ASTM C128
 (2) Soundness Loss: ASTM C88

f. Specific Gravity of Mineral Filler: ASTM C188 or ASTM D854

g. Bituminous Mixture Tests:
 (1) Bulk Specific Gravity: ASTM D1188 or ASTM D2726/D2726M
 (2) Theoretical Maximum Specific Gravity: ASTM D2041/D2041M
 (3) Tensile Strength Ratio: ASTM D4867/D4867M

2.5.2 Specimens

ASTM D6927 for the making and testing of bituminous specimens with the following exceptions:

a. Compaction: Apply 75 blows of the hammer to each flat face of the specimens.

b. Curves: Plot curves for the leveling, binder, and wearing courses to show the effect on the test properties of at least four different percentages of asphalt on the unit weight, stability, flow, air voids, and voids in mineral aggregate; each point on the curves shall represent the average of at least four specimens.

c. Cooling of Specimen: After compaction is completed, allow the specimen to cool in air to the same temperature approximately as that of the
PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Preparation of Asphalt Binder Material

The asphalt cement material shall be heated avoiding local overheating and providing a continuous supply of the asphalt material to the mixer at a uniform temperature. The temperature of unmodified asphalts shall be no more than 160 degrees C 325 degrees F when added to the aggregates. Modified asphalts shall be no more than 174 degrees C 350 degrees F when added to the aggregate.

3.1.2 Preparation of Mineral Aggregates

Store different size aggregate in separate stockpiles so that different sizes will not mix. Stockpile different-sized aggregates in uniform layers by use of a clam shell or other approved method so as to prevent segregation. The use of bulldozers in stockpiling of aggregate or in feeding aggregate to the dryer is prohibited. Feed aggregates into the cold elevator by means of separate mechanical feeders so that aggregates are graded within requirements of the job-mix formulas and tolerances specified. Regulate rates of feed of the aggregates so that moisture content and temperature of aggregates are within tolerances specified herein. Dry and heat aggregates to the temperature necessary to achieve the mixture determined by the job mix formula within the job tolerance specified. Provide adequate dry storage for mineral filler.

3.1.3 Preparation of Bituminous Mixture

Accurately weigh aggregates and dry mineral filler and convey into the mixer in the proportionate amounts of each aggregate size required to meet the job-mix formula. In batch mixing, after aggregates and mineral filler have been introduced into the mixer and mixed for not less than 15 seconds, add asphalt by spraying or other approved methods and continue mixing for a period of not less than 20 seconds, or as long as required to obtain a homogeneous mixture. The time required to add or spray asphalt into the mixer will not be added to the total wet-mixing time provided the operation does not exceed 10 seconds and a homogeneous mixture is obtained. When a continuous mixer is employed, mixing time shall be more than 35 seconds to obtain a homogeneous mixture. Additional mixing time, when required, will be as directed by the Contracting Officer. When mixture is prepared in a twin-pugmill mixer, volume of the aggregates, mineral filler, and asphalt shall not extend above tips of mixer blades when blades are in a vertical position. Overheated and carbonized mixtures, or mixtures that foam or show indication of free moisture, will be rejected. When free moisture is detected in batch or continuous mix plant produced mixtures, waste the mix and withdraw the aggregates in the hot bins immediately and return to the respective stockpiles; for drum-dryer mixer plants, waste the mix, including that in surge or storage bins that is affected by free moisture.

3.1.4 Transportation of Bituminous Mixtures

Transport bituminous material from the mixing plant to the paving site in trucks having tight, clean, smooth beds that have been coated with a minimum amount of concentrated solution of hydrated lime and water or other approved coating to prevent adhesion of the mixture to the truck. Petroleum
products will not be permitted for coating truck. If air temperature is
less than 60 degrees F or if haul time is greater than 30 minutes, cover
each load with canvas or other approved material of ample size to protect
the mixture from the loss of heat. Make deliveries so that the spreading
and rolling of all the mixture prepared for one day's run can be completed
during daylight, unless adequate approved artificial lighting is provided.
Deliver mixture to area to be paved so that the temperature at the time of
dumping into the spreader is within the range specified herein. Reject
loads that are below minimum temperature, that have crusts of cold
unworkable material, or that have been wet excessively by rain. Hauling
over freshly laid material is prohibited.

3.1.5 Surface Preparation of Underlying Course

Prior to the laying of the asphalt concrete, clean underlying course of
foreign or objectionable matter with power blowers or power brooms,
supplemented by hand brooms and other cleaning methods where necessary.
During the placement of multiple lifts of bituminous concrete, each
succeeding lift of bituminous concrete shall have its underlying lift
cleaned and provided with a bituminous tack coat if the time period between
the placement of each lift of bituminous concrete exceeds 14 days, or the
underlying bituminous concrete has become dirty. Remove grass and other
vegetative growth from existing cracks and surfaces.

3.1.6 Spraying of Contact Surfaces

Spray contact surfaces of previously constructed pavement with a thin coat
of bituminous materials to act as an anti-stripping agent. Paint contact
surfaces of structures with a thin coat of emulsion or other approved
bituminous material prior to placing the bituminous mixture. Tack coat the
previously placed primed coats on base courses when surface has become
excessively dirty and cannot be cleaned or when primed surface has cured to
the extent that it has lost all bonding effect.

3.2 PLACEMENT

3.2.1 Machine Spreading

The range of temperatures of the mixtures at the time of spreading shall be
between 250 degrees F and 300 degrees F. Bituminous concrete having
temperatures less than minimum spreading temperature when dumped into the
spreader will be rejected. Adjust spreader and regulate speed so that the
surface of the course is smooth and continuous without tears and pulling,
and of such depth that, when compacted, the surface conforms with the cross
section, grade, and contour indicated. Unless otherwise directed, begin
the placing along the centerline of areas to be paved on a crowned section
or on the high side of areas with a one-way slope. Place mixture in
consecutive adjacent strips having a minimum width of 10 feet, except where
the edge lanes require strips less than 10 feet to complete the area.
Construct longitudinal joints and edges to true line markings. Establish
lines parallel to the centerline of the area to be paved, and place string
lines coinciding with the established lines for the spreading machine to
follow. Provide the number and location of the lines needed to accomplish
proper grade control. When specified grade and smoothness requirements can
be met for initial lane construction by use of an approved long ski-type
device of not less than 30 feet in length and for subsequent lane
construction by use of a short ski or shoe, in-place string lines for grade
control may be omitted. Place mixture as nearly continuous as possible and
adjust the speed of placing as needed to permit proper rolling.
3.2.2 Shoveling, Raking, and Tamping After Machine-Spreading

Shovelers and rakers shall follow the spreading machine. Add or remove hot mixture and rake the mixture as required to obtain a course that when completed will conform to requirements specified herein. Broadcasting or fanning of mixture over areas being compacted is prohibited. When segregation occurs in the mixture during placing, suspend spreading operation until the cause is determined and corrected. Correct irregularities in alignment left by the spreader by trimming directly behind the machine. Immediately after trimming, compact edges of the course by tamping laterally with a metal lute or by other approved methods. Distortion of the course during tamping is prohibited.

3.2.3 Hand-Spreading in Lieu of Machine-Spreading

In areas where the use of machine spreading is impractical, spread mixture by hand. The range of temperatures of the mixtures when dumped onto the area to be paved shall be between 250 and 300 degrees F. Mixtures having temperatures less than minimum spreading temperature when dumped onto the area to be paved will be rejected. Spread hot mixture with rakes in a uniformly loose layer of a thickness that, when compacted, will conform to the required grade, thickness, and smoothness. During hand spreading, place each shovelful of mixture by turning the shovel over in a manner that will prevent segregation. Do not place mixture by throwing or broadcasting from a shovel. Do not dump loads any faster than can be properly handled by the shovelers and rakers.

3.3 Compaction of Mixture

Compact mixture by rolling. Begin rolling as soon as placement of mixture will bear rollers. Delays in rolling freshly spread mixture shall not be permitted. Start rolling longitudinally at the extreme sides of the lanes and proceed toward center of pavement, or toward high side of pavement with a one-way slope. Operate rollers so that each trip overlaps the previous adjacent strip by at least one foot. Alternate trips of the roller shall be of slightly different lengths. Conduct tests for conformity with the specified crown, grade and smoothness immediately after initial rolling. Before continuing rolling, correct variations by removing or adding materials as necessary. If required, subject course to diagonal rolling with the steel wheeled roller crossing the lines of the previous rolling while mixture is hot and in a compactible condition. Speed of the rollers shall be slow enough to avoid displacement of hot mixture. Correct displacement of mixture immediately by use of rakes and fresh mixture, or remove and replace mixture as directed. Continue rolling until roller marks are eliminated and course has a density of at least 92 percent but not more than 100 percent of that attained in a laboratory specimen of the same mixture prepared in accordance with ASTM D6927. During rolling, moisten wheels of the rollers enough to prevent adhesion of mixture to wheels, but excessive water is prohibited. Operation of rollers shall be by competent and experienced operators. Provide sufficient rollers for each spreading machine in operation on the job and to handle plant output. In places not accessible to the rollers, compact mixture thoroughly with hot hand tampers. Skin patching of an area after compaction is prohibited. Remove mixture that becomes mixed with foreign materials or is defective and replace with fresh mixture compacted to the density specified herein. Roller shall pass over unprotected edge of the course only when laying of course is to be discontinued for such length of time as to permit mixture to become cold.
3.4 JOINTS

Joints shall present the same texture and smoothness as other portions of the course, except permissible density at the joint may be up to 2 percent less than the specified course density. Carefully make joints between old and new pavement or within new pavements in a manner to ensure a thorough and continuous bond between old and new sections of the course. Vertical contact surfaces of previously constructed sections that are coated with dust, sand, or other objectionable material shall be painted with a thin uniform coat of emulsion or other approved bituminous material just before placing fresh mixture.

3.4.1 Transverse

Roller shall pass over unprotected end of freshly laid mixture only when laying of course is to be discontinued. Except when an approved bulkhead is used, cut back the edge of previously laid course to expose an even, vertical surface for the full thickness of the course. When required, rake fresh mixture against joints, thoroughly tamp with hot tampers, smooth with hot smoothers, and roll. Transverse joints in adjacent lanes shall be offset a minimum of 2 feet.

3.4.2 Longitudinal Joints

Space 6 inches apart. Do not allow joints to coincide with joints of existing pavement or previously placed courses. Spreader screed shall overlap previously placed lanes 2 to 3 inches and be of such height to permit compaction to produce a smooth dense joint. With a lute, push back mixture placed on the surface of previous lanes to the joint edge. Do not scatter mix. Remove and waste excess material. When edges of longitudinal joints are irregular, honeycombed, or poorly compacted, cut back unsatisfactory sections of joint and expose an even vertical surface for the full thickness of the course. When required, rake fresh mixture against joint, thoroughly tamp with hot tampers, smooth with hot smoothers, and roll while hot.

3.5 FIELD QUALITY CONTROL

3.5.1 Sampling

3.5.1.1 Aggregates At Source

Prior to production and delivery of aggregates, take at least one initial sample in accordance with ASTM D75/D75M from each stockpile. Collect each sample by taking three incremental samples at random from the source material to make a composite sample of not less than 50 pounds. Repeat the sampling when the material source changes or when testing reveals unacceptable deficiencies or variations from the specified grading of materials.

3.5.1.2 Cold Feed Aggregate Sampling

Take two samples daily from the belt conveying materials from the cold feed. Collect materials in three increments at random to make a representative composite sample of not less than 50 pounds. Take samples in accordance with ASTM D75/D75M.
3.5.1.3 Coarse and Fine Aggregates

Take a 50 pound sample from the cold feed at least once daily for sieve analyses and specific gravity tests. Additional samples may be required to perform more frequent tests when analyses show deficiencies, or unacceptable variances or deviations. The method of sampling is as specified herein for aggregates.

3.5.1.4 Mineral Filler

ASTM D546. Take samples large enough to provide ample material for testing.

3.5.1.5 Pavement and Mixture

Take plant samples for the determination of mix properties and field samples for thickness and density of the completed pavements. Furnish tools, labor and material for samples, and satisfactory replacement of pavement. Take samples and tests at not less than frequency specified hereinafter and at the beginning of plant operations; for each day’s work as a minimum; each change in the mix or equipment; and as often as directed. Accomplish sampling in accordance with ASTM D979/D979M.

3.5.2 Testing

3.5.2.1 Aggregates Tests

c. Abrasion: ASTM C131 for wear (Los Angeles test). Perform one test initially prior to incorporation into the work and each time the source is changed.

3.5.2.2 Bituminous Mix Tests

Test one sample for each 500 tons, or fraction thereof, of the uncompacted mix for extraction in accordance with ASTM D2172/D2172M; perform a sieve analysis on each extraction sample in accordance with ASTM C136 and ASTM C117. Test one sample for each 500 tons or fraction thereof for stability and flow in accordance with ASTM D6927. Test one sample for each material blend for Tensile Strength Ratio in accordance with ASTM D4867/D4867M.

3.5.2.3 Pavement Courses

Perform the following tests:

a. Density: For each 1000 tons of bituminous mixture placed, determine the representative laboratory density by averaging the density of four laboratory specimens prepared in accordance with ASTM D6927. Samples for laboratory specimens shall be taken from trucks delivering mixture to the site; record in a manner approved by the Contracting Officer the project areas represented by the laboratory densities. From each representative area recorded, determine field density of pavement by averaging densities of 4 inch diameter cores obtained from leveling, binder, and wearing courses; take one core for each 2000 square yards or fraction thereof of course placed. Determine density of laboratory prepared specimens and cored samples in accordance with ASTM D1188 or
ASTM D2726/D2726M, as applicable. Separate pavement layers by sawing or other approved means. Maximum allowable deficiency at any point, excluding joints, shall not be more than 2 percent less than the specified density for any course. The average density of each course, excluding joints, shall be not less than the specified density. Joint densities shall not be more than 2 percent less than specified course densities and are not included when calculating average course densities. When the deficiency exceeds the specified tolerances, correct each such representative area or areas by removing the deficient pavement and replacing with new pavement.

b. Thickness: Determine thickness of binder and wearing courses from samples taken for the field density test. The maximum allowable deficiency at any point shall not be more than 1/4 inch less than the thickness for the indicated course. Average thickness of course or of combined courses shall be not less than the indicated thickness. Where a deficiency exceeds the specified tolerances, correct each such representative area or areas by removing the deficient pavement and replacing with new pavement.

c. Smoothness: Straightedge test the compacted surface of leveling, binder, and wearing courses as work progresses. Apply straightedge parallel with and at right angles to the centerline after final rolling. Unevenness of leveling and binder courses shall not vary more than 1/4 inch in 10 feet; variations in the wearing course shall not vary more than 1/8 inch in 10 feet. Correct each portion of the pavement showing irregularities greater than that specified.

d. Finished Grades: Finish grades of each course placed shall not vary from the finish elevations, profiles, and cross sections indicated by more than 1/2 inch. Finished surface of the final wearing course will be tested by the Contracting Officer by running lines of levels at intervals of 25 feet longitudinally and transversely to determine elevations of completed pavement. Within 45 days after completion of final placement, the Contracting Officer will inform the Contractor in writing of paved areas that fail to meet the final grades indicated within the specified tolerances. Correct deficient paved areas by removing existing work and replacing with new materials that meet the specifications. Skin patching for correcting low areas is prohibited.

e. Finish Surface Texture of Wearing Course: Visually check final surface texture for uniformity and reasonable compactness and tightness. Final wearing course with a surface texture having undesirable irregularities such as segregation, cavities, pulls or tears, checking, excessive exposure of coarse aggregates, sand streaks, indentations, ripples, or lack of uniformity shall be removed and replaced with new materials.

3.6 PROTECTION

Do not permit vehicular and aircraft traffic, including heavy equipment, on pavement until surface temperature has cooled to at least 120 degrees F. Measure surface temperature by approved surface thermometers or other satisfactory methods.

-- End of Section --
SECTION 32 16 13
CONCRETE SIDEWALKS AND CURBS AND GUTTERS

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO)

AASHTO M 182 (2005; R 2012) Standard Specification for Burlap Cloth Made from Jute or Kenaf and Cotton Mats

ASTM INTERNATIONAL (ASTM)

ASTM A615/A615M (2016) Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement

ASTM C172/C172M (2014a) Standard Practice for Sampling Freshly Mixed Concrete

ASTM C231/C231M (2014) Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method

ASTM C31/C31M (2015a; E 2016) Standard Practice for Making and Curing Concrete Test Specimens in the Field

1.2 SYSTEM DESCRIPTION

1.2.1 General Requirements

Provide plant, equipment, machines, and tools used in the work subject to approval and maintained in a satisfactory working condition at all times. The equipment shall have the capability of producing the required product, meeting grade controls, thickness control and smoothness requirements as specified. Use of the equipment shall be discontinued if it produces unsatisfactory results. The Contracting Officer shall have access at all times to the plant and equipment to ensure proper operation and compliance with specifications.

1.2.2 Slip Form Equipment

Slip form paver or curb forming machine, will be approved based on trial use on the job and shall be self-propelled, automatically controlled, crawler mounted, and capable of spreading, consolidating, and shaping the plastic concrete to the desired cross section in 1 pass.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data
 Concrete; G

SD-06 Test Reports
 Field Quality Control; G

1.4 ENVIRONMENTAL REQUIREMENTS

1.4.1 Placing During Cold Weather

Do not place concrete when the air temperature reaches 40 degrees F and is falling, or is already below that point. Placement may begin when the air temperature reaches 35 degrees F and is rising, or is already above 40
degrees F. Make provisions to protect the concrete from freezing during the specified curing period. If necessary to place concrete when the temperature of the air, aggregates, or water is below 35 degrees F, placement and protection shall be approved in writing. Approval will be contingent upon full conformance with the following provisions. The underlying material shall be prepared and protected so that it is entirely free of frost when the concrete is deposited. Mixing water and aggregates shall be heated as necessary to result in the temperature of the in-place concrete being between 50 and 85 degrees F. Methods and equipment for heating shall be approved. The aggregates shall be free of ice, snow, and frozen lumps before entering the mixer. Covering and other means shall be provided for maintaining the concrete at a temperature of at least 50 degrees F for not less than 72 hours after placing, and at a temperature above freezing for the remainder of the curing period.

1.4.2 Placing During Warm Weather

The temperature of the concrete as placed shall not exceed 85 degrees F except where an approved retarder is used. The mixing water and/or aggregates shall be cooled, if necessary, to maintain a satisfactory placing temperature. The placing temperature shall not exceed 95 degrees F at any time.

PART 2 PRODUCTS

2.1 CONCRETE

Provide concrete conforming to the applicable requirements of Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE except as otherwise specified. Concrete shall have a minimum compressive strength of 3500 psi at 28 days. Maximum size of aggregate shall be 1-1/2 inches. Submit copies of certified delivery tickets for all concrete used in the construction.

2.1.1 Air Content

Mixtures shall have air content by volume of concrete of 5 to 7 percent, based on measurements made immediately after discharge from the mixer.

2.1.2 Slump

The concrete slump shall be 2 inches plus or minus 1 inch where determined in accordance with ASTM C143/C143M.

2.1.3 Reinforcement Steel

Reinforcement bars shall conform to ASTM A615/A615M. Wire mesh reinforcement shall conform to ASTM A1064/A1064M.

2.2 CONCRETE CURING MATERIALS

2.2.1 Impervious Sheet Materials

Impervious sheet materials shall conform to ASTM C171, type optional, except that polyethylene film, if used, shall be white opaque.

2.2.2 Burlap

Burlap shall conform to AASHTO M 182.
2.2.3 White Pigmented Membrane-Forming Curing Compound

White pigmented membrane-forming curing compound shall conform to ASTM C309, Type 2.

2.3 CONCRETE PROTECTION MATERIALS

Concrete protection materials shall be a linseed oil mixture of equal parts, by volume, of linseed oil and either mineral spirits, naphtha, or turpentine. At the option of the Contractor, commercially prepared linseed oil mixtures, formulated specifically for application to concrete to provide protection against the action of deicing chemicals may be used, except that emulsified mixtures are not acceptable.

2.4 JOINT FILLER STRIPS

2.4.1 Contraction Joint Filler for Curb and Gutter

Contraction joint filler for curb and gutter shall consist of hard-pressed fiberboard.

2.4.2 Expansion Joint Filler, Premolded

Expansion joint filler, premolded, shall conform to ASTM D1751 or ASTM D1752, 1/2 inch thick, unless otherwise indicated.

2.5 JOINT SEALANTS

Joint sealant, cold-applied shall conform to ASTM C920 or ASTM D5893/D5893M.

2.6 FORM WORK

Design and construct form work to ensure that the finished concrete will conform accurately to the indicated dimensions, lines, and elevations, and within the tolerances specified. Forms shall be of wood or steel, straight, of sufficient strength to resist springing during depositing and consolidating concrete. Wood forms shall be surfaced plank, 2 inches nominal thickness, straight and free from warp, twist, loose knots, splits or other defects. Wood forms shall have a nominal length of 10 feet. Radius bends may be formed with 3/4 inch boards, laminated to the required thickness. Steel forms shall be channel-formed sections with a flat top surface and with welded braces at each end and at not less than two intermediate points. Ends of steel forms shall be interlocking and self-aligning. Steel forms shall include flexible forms for radius forming, corner forms, form spreaders, and fillers. Steel forms shall have a nominal length of 10 feet with a minimum of 3 welded stake pockets per form. Stake pins shall be solid steel rods with chamfered heads and pointed tips designed for use with steel forms.

2.6.1 Sidewalk Forms

Sidewalk forms shall be of a height equal to the full depth of the finished sidewalk.

2.6.2 Curb and Gutter Forms

Curb and gutter outside forms shall have a height equal to the full depth of the curb or gutter. The inside form of curb shall have batter as indicated and shall be securely fastened to and supported by the outside
form. Rigid forms shall be provided for curb returns, except that benders or thin plank forms may be used for curb or curb returns with a radius of 10 feet or more, where grade changes occur in the return, or where the central angle is such that a rigid form with a central angle of 90 degrees cannot be used. Back forms for curb returns may be made of 1-1/2 inch benders, for the full height of the curb, cleated together. In lieu of inside forms for curbs, a curb "mule" may be used for forming and finishing this surface, provided the results are approved.

PART 3 EXECUTION

3.1 SUBGRADE PREPARATION

The subgrade shall be constructed to the specified grade and cross section prior to concrete placement. Subgrade shall be placed and compacted as directed.

3.1.1 Sidewalk Subgrade

The subgrade shall be tested for grade and cross section with a template extending the full width of the sidewalk and supported between side forms.

3.1.2 Curb and Gutter Subgrade

The subgrade shall be tested for grade and cross section by means of a template extending the full width of the curb and gutter. The subgrade shall be of materials equal in bearing quality to the subgrade under the adjacent pavement.

3.1.3 Maintenance of Subgrade

The subgrade shall be maintained in a smooth, compacted condition in conformity with the required section and established grade until the concrete is placed. The subgrade shall be in a moist condition when concrete is placed. The subgrade shall be prepared and protected to produce a subgrade free from frost when the concrete is deposited.

3.2 FORM SETTING

Set forms to the indicated alignment, grade and dimensions. Hold forms rigidly in place by a minimum of 3 stakes per form placed at intervals not to exceed 4 feet. Corners, deep sections, and radius bends shall have additional stakes and braces, as required. Clamps, spreaders, and braces shall be used where required to ensure rigidity in the forms. Forms shall be removed without injuring the concrete. Bars or heavy tools shall not be used against the concrete in removing the forms. Any concrete found defective after form removal shall be promptly and satisfactorily repaired. Forms shall be cleaned and coated with form oil each time before concrete is placed. Wood forms may, instead, be thoroughly wetted with water before concrete is placed, except that with probable freezing temperatures, oiling is mandatory.

3.2.1 Sidewalks

Set forms for sidewalks with the upper edge true to line and grade with an allowable tolerance of 1/8 inch in any 10 foot long section. After forms are set, grade and alignment shall be checked with a 10 foot straightedge. Forms shall have a transverse slope of 1/4 inch per foot with the low side adjacent to the roadway. Side forms shall not be removed for 12 hours.
after finishing has been completed.

3.2.2 Curbs and Gutters

The forms of the front of the curb shall be removed not less than 2 hours nor more than 6 hours after the concrete has been placed. Forms back of curb shall remain in place until the face and top of the curb have been finished, as specified for concrete finishing. Gutter forms shall not be removed while the concrete is sufficiently plastic to slump in any direction.

3.3 SIDEWALK CONCRETE PLACEMENT AND FINISHING

3.3.1 Formed Sidewalks

Place concrete in the forms in one layer. When consolidated and finished, the sidewalks shall be of the thickness indicated. After concrete has been placed in the forms, a strike-off guided by side forms shall be used to bring the surface to proper section to be compacted. The concrete shall be consolidated by tamping and spading or with an approved vibrator, and the surface shall be finished to grade with a strike off.

3.3.2 Concrete Finishing

After straightedging, when most of the water sheen has disappeared, and just before the concrete hardens, finish the surface with a wood or magnesium float or darby to a smooth and uniformly fine granular or sandy texture free of waves, irregularities, or tool marks. A scored surface shall be produced by brooming with a fiber-bristle brush in a direction transverse to that of the traffic, followed by edging.

3.3.3 Edge and Joint Finishing

All slab edges, including those at formed joints, shall be finished with an edger having a radius of 1/8 inch. Transverse joint shall be edged before brooming, and the brooming shall eliminate the flat surface left by the surface face of the edger. Corners and edges which have crumbled and areas which lack sufficient mortar for proper finishing shall be cleaned and filled solidly with a properly proportioned mortar mixture and then finished.

3.3.4 Surface and Thickness Tolerances

Finished surfaces shall not vary more than 5/16 inch from the testing edge of a 10-foot straightedge. Permissible deficiency in section thickness will be up to 1/4 inch.

3.4 CURB AND GUTTER CONCRETE PLACEMENT AND FINISHING

3.4.1 Formed Curb and Gutter

Concrete shall be placed to the section required in a single lift. Consolidation shall be achieved by using approved mechanical vibrators. Curve shaped gutters shall be finished with a standard curb "mule".

3.4.2 Curb and Gutter Finishing

Approved slipformed curb and gutter machines may be used in lieu of hand placement.
3.4.3 Concrete Finishing

Exposed surfaces shall be floated and finished with a smooth wood float until true to grade and section and uniform in texture. Floated surfaces shall then be brushed with a fine-hair brush with longitudinal strokes. The edges of the gutter and top of the curb shall be rounded with an edging tool to a radius of 1/2 inch. Immediately after removing the front curb form, the face of the curb shall be rubbed with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The front curb surface, while still wet, shall be brushed in the same manner as the gutter and curb top. The top surface of gutter and entrance shall be finished to grade with a wood float.

3.4.4 Joint Finishing

Curb edges at formed joints shall be finished as indicated.

3.4.5 Surface and Thickness Tolerances

Finished surfaces shall not vary more than 1/4 inch from the testing edge of a 10-foot straightedge. Permissible deficiency in section thickness will be up to 1/4 inch.

3.5 SIDEWALK JOINTS

Sidewalk joints shall be constructed to divide the surface into rectangular areas. Transverse contraction joints shall be spaced at a distance equal to the sidewalk width or 5 feet on centers, whichever is less, and shall be continuous across the slab. Longitudinal contraction joints shall be constructed along the centerline of all sidewalks 10 feet or more in width. Transverse expansion joints shall be installed at sidewalk returns and opposite expansion joints in adjoining curbs. Where the sidewalk is not in contact with the curb, transverse expansion joints shall be installed as indicated. Expansion joints shall be formed about structures and features which project through or into the sidewalk pavement, using joint filler of the type, thickness, and width indicated. Expansion joints are not required between sidewalks and curb that abut the sidewalk longitudinally.

3.5.1 Sidewalk Contraction Joints

The contraction joints shall be formed in the fresh concrete by cutting a groove in the top portion of the slab to a depth of at least one-fourth of the sidewalk slab thickness, using a jointer to cut the groove, or by sawing a groove in the hardened concrete with a power-driven saw, unless otherwise approved. Sawed joints shall be constructed by sawing a groove in the concrete with a 1/8 inch blade to the depth indicated. An ample supply of saw blades shall be available on the job before concrete placement is started, and at least one standby sawing unit in good working order shall be available at the jobsite at all times during the sawing operations.

3.5.2 Sidewalk Expansion Joints

Expansion joints shall be formed with 1/2 inch joint filler strips. Joint filler in expansion joints surrounding structures and features within the sidewalk may consist of preformed filler material conforming to ASTM D1752 or building paper. Joint filler shall be held in place with steel pins or
other devices to prevent warping of the filler during floating and finishing. Immediately after finishing operations are completed, joint edges shall be rounded with an edging tool having a radius of 1/8 inch, and concrete over the joint filler shall be removed. At the end of the curing period, expansion joints shall be cleaned and filled with cold-applied joint sealant. Joint sealant shall be gray or stone in color. The joint opening shall be thoroughly cleaned before the sealing material is placed. Sealing material shall not be spilled on exposed surfaces of the concrete. Concrete at the joint shall be surface dry and atmospheric and concrete temperatures shall be above 50 degrees F at the time of application of joint sealing material. Excess material on exposed surfaces of the concrete shall be removed immediately and concrete surfaces cleaned.

3.5.3 Reinforcement Steel Placement

Reinforcement steel shall be accurately and securely fastened in place with suitable supports and ties before the concrete is placed.

3.6 CURB AND GUTTER JOINTS

Curb and gutter joints shall be constructed at right angles to the line of curb and gutter.

3.6.1 Contraction Joints

Contraction joints shall be constructed directly opposite contraction joints in abutting portland cement concrete pavements and spaced so that monolithic sections between curb returns will not be less than 5 feet nor greater than 15 feet in length.

a. Contraction joints (except for slip forming) shall be constructed by means of 1/8 inch thick separators and of a section conforming to the cross section of the curb and gutter. Separators shall be removed as soon as practicable after concrete has set sufficiently to preserve the width and shape of the joint and prior to finishing.

b. When slip forming is used, the contraction joints shall be cut in the top portion of the gutter/curb hardened concrete in a continuous cut across the curb and gutter, using a power-driven saw. The depth of cut shall be at least one-fourth of the gutter/curb depth and 1/8 inch in width.

3.6.2 Expansion Joints

Expansion joints shall be formed by means of preformed expansion joint filler material cut and shaped to the cross section of curb and gutter. Expansion joints shall be provided in curb and gutter directly opposite expansion joints of abutting portland cement concrete pavement, and shall be of the same type and thickness as joints in the pavement. Where curb and gutter do not abut portland cement concrete pavement, expansion joints at least 1/2 inch in width shall be provided at intervals not less than 30 feet nor greater than 120 feet. Expansion joints shall be provided in nonreinforced concrete gutter at locations indicated. Expansion joints shall be sealed immediately following curing of the concrete or as soon thereafter as weather conditions permit. Expansion joints and the top 1 inch depth of curb and gutter contraction-joints shall be sealed with joint sealant. The joint opening shall be thoroughly cleaned before the sealing material is placed. Sealing material shall not be spilled on exposed surfaces of the concrete. Concrete at the joint shall be surface dry and atmospheric and concrete temperatures shall be above 50 degrees F at the time of application of joint sealing material.
atmospheric and concrete temperatures shall be above 50 degrees F at the
time of application of joint sealing material. Excess material on exposed
surfaces of the concrete shall be removed immediately and concrete surfaces
cleaned.

3.7 CURING AND PROTECTION

3.7.1 General Requirements

Protect concrete against loss of moisture and rapid temperature changes for
at least 7 days from the beginning of the curing operation. Protect
unhardened concrete from rain and flowing water. All equipment needed for
adequate curing and protection of the concrete shall be on hand and ready
for use before actual concrete placement begins. Protection shall be
provided as necessary to prevent cracking of the pavement due to
temperature changes during the curing period.

3.7.1.1 Mat Method

The entire exposed surface shall be covered with 2 or more layers of
burlap. Mats shall overlap each other at least 6 inches. The mat shall be
thoroughly wetted with water prior to placing on concrete surface and shall
be kept continuously in a saturated condition and in intimate contact with
concrete for not less than 7 days.

3.7.1.2 Impervious Sheeting Method

The entire exposed surface shall be wetted with a fine spray of water and
then covered with impervious sheeting material. Sheets shall be laid
directly on the concrete surface with the light-colored side up and
overlapped 12 inches when a continuous sheet is not used. The curing
medium shall not be less than 18-inches wider than the concrete surface to
be cured, and shall be securely weighted down by heavy wood planks, or a
bank of moist earth placed along edges and laps in the sheets. Sheets
shall be satisfactorily repaired or replaced if torn or otherwise damaged
during curing. The curing medium shall remain on the concrete surface to
be cured for not less than 7 days.

3.7.1.3 Membrane Curing Method

A uniform coating of white-pigmented membrane-curing compound shall be
applied to the entire exposed surface of the concrete as soon after
finishing as the free water has disappeared from the finished surface.
Formed surfaces shall be coated immediately after the forms are removed and
in no case longer than 1 hour after the removal of forms. Concrete shall
not be allowed to dry before the application of the membrane. If any
drying has occurred, the surface of the concrete shall be moistened with a
fine spray of water and the curing compound applied as soon as the free
water disappears. Curing compound shall be applied in two coats by
hand-operated pressure sprayers at a coverage of approximately 200 square
feet/gallon for the total of both coats. The second coat shall be applied
in a direction approximately at right angles to the direction of
application of the first coat. The compound shall form a uniform,
continuous, coherent film that will not check, crack, or peel and shall be
free from pinholes or other imperfections. If pinholes, abrasion, or other
discontinuities exist, an additional coat shall be applied to the affected
areas within 30 minutes. Concrete surfaces that are subjected to heavy
rainfall within 3 hours after the curing compound has been applied shall be
resprayed by the method and at the coverage specified above. Areas where
the curing compound is damaged by subsequent construction operations within
the curing period shall be resprayed. Necessary precautions shall be taken
to insure that the concrete is properly cured at sawed joints, and that no
curing compound enters the joints. The top of the joint opening and the
joint groove at exposed edges shall be tightly sealed before the concrete
in the region of the joint is resprayed with curing compound. The method
used for sealing the joint groove shall prevent loss of moisture from the
joint during the entire specified curing period. Approved standby
facilities for curing concrete pavement shall be provided at a location
accessible to the jobsite for use in the event of mechanical failure of the
spraying equipment or other conditions that might prevent correct
application of the membrane-curing compound at the proper time. Concrete
surfaces to which membrane-curing compounds have been applied shall be
adequately protected during the entire curing period from pedestrian and
vehicular traffic, except as required for joint-sawing operations and
surface tests, and from any other possible damage to the continuity of the
membrane.

3.7.2 Backfilling

After curing, debris shall be removed and the area adjoining the concrete
shall be backfilled, graded, and compacted to conform to the surrounding
area in accordance with lines and grades indicated.

3.7.3 Protection

Completed concrete shall be protected from damage until accepted. Repair
damaged concrete and clean concrete discolored during construction.
Concrete that is damaged shall be removed and reconstructed for the entire
length between regularly scheduled joints. Refinishing the damaged portion
will not be acceptable. Removed damaged portions shall be disposed of as
directed.

3.7.4 Protective Coating

Protective coating, of linseed oil mixture, shall be applied to the
exposed-to-view concrete surface after the curing period, if concrete will
be exposed to de-icing chemicals within 6 weeks after placement. Concrete
to receive a protective coating shall be moist cured.

3.7.4.1 Application

Curing and backfilling operation shall be completed prior to applying two
coats of protective coating. Concrete shall be surface dry and clean
before each application. Coverage shall be by spray application at not
more than 50 square yards/gallon for first application and not more than 70
square yards/gallon for second application, except that the number of
applications and coverage for each application for commercially prepared
mixture shall be in accordance with the manufacturer's instructions.
Coated surfaces shall be protected from vehicular and pedestrian traffic
until dry.

3.7.4.2 Precautions

Protective coating shall not be heated by direct application of flame or
electrical heaters and shall be protected from exposure to open flame,
sparks, and fire adjacent to open containers or applicators. Material
shall not be applied at ambient or material temperatures lower than 50
degrees F.
3.8 FIELD QUALITY CONTROL

Submit copies of all test reports within 24 hours of completion of the test.

3.8.1 General Requirements

Perform the inspection and tests described and meet the specified requirements for inspection details and frequency of testing. Based upon the results of these inspections and tests, take the action and submit reports as required below, and any additional tests to insure that the requirements of these specifications are met.

3.8.2 Concrete Testing

3.8.2.1 Strength Testing

Provide molded concrete specimens for strength tests. Samples of concrete placed each day shall be taken not less than once a day nor less than once for every 250 cubic yards of concrete. The samples for strength tests shall be taken in accordance with ASTM C172/C172M. Cylinders for acceptance shall be molded in conformance with ASTM C31/C31M by an approved testing laboratory. Each strength test result shall be the average of 2 test cylinders from the same concrete sample tested at 28 days, unless otherwise specified or approved. Concrete specified on the basis of compressive strength will be considered satisfactory if the averages of all sets of three consecutive strength test results equal or exceed the specified strength, and no individual strength test result falls below the specified strength by more than 500 psi.

3.8.2.2 Air Content

Determine air content in accordance with ASTM C173/C173M or ASTM C231/C231M. ASTM C231/C231M shall be used with concretes and mortars made with relatively dense natural aggregates. Two tests for air content shall be made on randomly selected batches of each class of concrete placed during each shift. Additional tests shall be made when excessive variation in concrete workability is reported by the placing foreman or the Government inspector. If results are out of tolerance, the placing foreman shall be notified and he shall take appropriate action to have the air content corrected at the plant. Additional tests for air content will be performed on each truckload of material until such time as the air content is within the tolerance specified.

3.8.2.3 Slump Test

Two slump tests shall be made on randomly selected batches of each class of concrete for every 250 cubic yards, or fraction thereof, of concrete placed during each shift. Additional tests shall be performed when excessive variation in the workability of the concrete is noted or when excessive crumbling or slumping is noted along the edges of slip-formed concrete.

3.8.3 Thickness Evaluation

The anticipated thickness of the concrete shall be determined prior to placement by passing a template through the formed section or by measuring the depth of opening of the extrusion template of the curb forming machine. If a slip form paver is used for sidewalk placement, the subgrade shall be true to grade prior to concrete placement and the thickness will
be determined by measuring each edge of the completed slab.

3.8.4 Surface Evaluation

The finished surface of each category of the completed work shall be uniform in color and free of blemishes and form or tool marks.

3.9 SURFACE DEFICIENCIES AND CORRECTIONS

3.9.1 Thickness Deficiency

When measurements indicate that the completed concrete section is deficient in thickness by more than 1/4 inch the deficient section will be removed, between regularly scheduled joints, and replaced.

3.9.2 High Areas

In areas not meeting surface smoothness and plan grade requirements, high areas shall be reduced either by rubbing the freshly finished concrete with carborundum brick and water when the concrete is less than 36 hours old or by grinding the hardened concrete with an approved surface grinding machine after the concrete is 36 hours old or more. The area corrected by grinding the surface of the hardened concrete shall not exceed 5 percent of the area of any integral slab, and the depth of grinding shall not exceed 1/4 inch. Pavement areas requiring grade or surface smoothness corrections in excess of the limits specified above shall be removed and replaced.

3.9.3 Appearance

Exposed surfaces of the finished work will be inspected by the Government and any deficiencies in appearance will be identified. Areas which exhibit excessive cracking, discoloration, form marks, or tool marks or which are otherwise inconsistent with the overall appearances of the work shall be removed and replaced.

-- End of Section --
SECTION 32 92 23

SODDING
04/06

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

ASTM D4972 (2013) pH of Soils

TURFGRASS PRODUCERS INTERNATIONAL (TPI)

TPI GSS (1995) Guideline Specifications to Turfgrass Sodding

U.S. DEPARTMENT OF AGRICULTURE (USDA)

1.2 DEFINITIONS

1.2.1 Stand of Turf

100 percent ground cover of the established species.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01000:

SD-03 Product Data

Fertilizer

Include physical characteristics, and recommendations.

SD-07 Certificates

Sod farm certification for sod; G

Indicate type of sod in accordance with TPI GSS.
1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery

1.4.1.1 Sod Protection

Protect from drying out and from contamination during delivery, on-site storage, and handling.

1.4.1.2 Fertilizer Delivery

Deliver to the site in original, unopened containers bearing manufacturer's chemical analysis, name, trade name, trademark, and indication of conformance to state and federal laws. Instead of containers, fertilizer may be furnished in bulk with certificate indicating the above information.

1.4.2 Storage

1.4.2.1 Sod Storage

Lightly sprinkle with water, cover with moist burlap, straw, or other approved covering; and protect from exposure to wind and direct sunlight until planted. Provide covering that will allow air to circulate so that internal heat will not develop. Do not store sod longer than 24 hours. Do not store directly on concrete or bituminous surfaces.

1.4.2.2 Topsoil

Prior to stockpiling topsoil, treat growing vegetation with application of appropriate specified non-selective herbicide. Clear and grub existing vegetation three to four weeks prior to stockpiling topsoil.

1.4.2.3 Handling

Do not drop or dump materials from vehicles.

1.5 TIME RESTRICTIONS AND PLANTING CONDITIONS

1.5.1 Restrictions

Spring planting season shall be from May 15 to June 30 inclusive. Fall planting season shall be from August 15 to September 30 inclusive. Actual planting shall be performed only during periods of favorable weather conditions or when conditions are suitable for planting operations.

1.6 TIME LIMITATIONS

1.6.1 Sod

Place sod a maximum of thirty six hours after initial harvesting, in accordance with TPI GSS as modified herein.

PART 2 PRODUCTS

2.1 SOD

2.1.1 Classification

Sod shall be commercially produced on or harvested from mineral-based
soils. The soil up which sod is produced or harvested from shall consist of less than 10 percent organic matter by mass. The sod shall be dense, fine leafed, and of uniform texture. The sod shall consist of a blend of 4 or 5 fine leafed turf grasses. At least 35 percent of the grasses, as determined by initial seeding proportions, shall consist of improved type Kentucky bluegrass varieties. It shall be vigorous, well-rooted, healthy sod, free from disease, insect pests, weeds, other grasses, stone, and any other harmful or deleterious matter. Sod shall be machine stripped at a uniform soil thickness of approximately one inch. The measurement for thickness shall exclude top growth and thatch, and shall be determined at the time of cutting in the field.

2.2 TOPSOIL

2.2.1 On-Site Topsoil

Surface soil stripped and stockpiled on site and modified as necessary to meet the requirements specified for topsoil in paragraph entitled "Composition." When available topsoil shall be existing surface soil stripped and stockpiled on-site in accordance with Section 31 00 00 EARTHWORK.

2.2.2 Off-Site Topsoil

Conform to requirements specified in paragraph entitled "Composition." Additional topsoil shall be furnished by the Contractor.

2.2.3 Composition

Containing from 5 to 10 percent organic matter as determined by the topsoil composition tests of the Organic Carbon, 6A, Chemical Analysis Method described in DOA SSIR 42. Maximum particle size, 3/4 inch, with maximum 3 percent retained on 1/4 inch screen. The pH shall be tested in accordance with ASTM D4972. Topsoil shall be free of sticks, stones, roots, and other debris and objectionable materials.

2.3 FERTILIZER

2.3.1 Granular Fertilizer

Organic granular controlled release fertilizer containing the following minimum percentages, by weight, of plant food nutrients:

- 20 percent available nitrogen
- 10 percent available phosphorus
- 5 percent available potassium

2.4 WATER

Source of water shall be approved by Contracting Officer and of suitable quality for irrigation containing no element toxic to plant life.

PART 3 EXECUTION

3.1 PREPARATION

3.1.1 Extent Of Work

Provide soil preparation (including soil conditioners), fertilizing, and
sodding of all newly graded finished earth surfaces, unless indicated otherwise, and at all areas inside or outside the limits of construction that are disturbed by the Contractor's operations.

3.1.2 Soil Preparation

Provide 4 inches of topsoil to meet indicated finish grade. After areas have been brought to indicated finish grade, incorporate fertilizer into soil a minimum depth of 2 inches by diskng, harrowing, tilling or other method approved by the Contracting Officer. Remove debris and stones larger than 3/4 inch in any dimension remaining on the surface after finish grading. Correct irregularities in finish surfaces to eliminate depressions. Protect finished topsoil areas from damage by vehicular or pedestrian traffic.

3.1.2.1 Fertilizer Application Rates

Organic Granular Fertilizer 1 pound per 1000 square feet.

3.2 SODDING

3.2.1 Finished Grade and Topsoil

Prior to the commencement of the sodding operation, the Contractor shall verify that finished grades are as indicated on drawings; the placing of topsoil, smooth grading, and compaction requirements have been completed in accordance with Section 31 00 00 EARTHWORK.

The prepared surface shall be a maximum 1 inch below the adjoining grade of any surfaced area. New surfaces shall be blended to existing areas. The prepared surface shall be completed with a light raking to remove from the surface debris and stones over a minimum 5/8 inch in any dimension.

3.2.2 Placing

Place sod a maximum of 36 hours after initial harvesting, in accordance with TPI GSS as modified herein.

3.2.3 Sodding Slopes and Ditches

For slopes 2:1 and greater, lay sod with long edge perpendicular to the contour. For V-ditches and flat bottomed ditches, lay sod with long edge perpendicular to flow of water. Anchor each piece of sod with wood pegs or wire staples maximum 2 feet on center. On slope areas, start sodding at bottom of the slope.

3.2.4 Finishing

After completing sodding, blend edges of sodded area smoothly into surrounding area. Air pockets shall be eliminated and a true and even surface shall be provided. Frayed edges shall be trimmed and holes and missing corners shall be patched with sod.

3.2.5 Rolling

Immediately after sodding, firm entire area except for slopes in excess of 3 to 1 with a roller not exceeding 90 pounds for each foot of roller width.
3.2.6 Watering

Start watering areas sodded as required by daily temperature and wind conditions. Apply water at a rate sufficient to ensure thorough wetting of soil to minimum depth of 6 inches. Run-off, puddling, and wilting shall be prevented. Unless otherwise directed, watering trucks shall not be driven over turf areas. Watering of other adjacent areas or plant material shall be prevented.

3.3 PROTECTION OF TURF AREAS

Immediately after turfing, protect area against traffic and other use.

3.4 RESTORATION

Restore to original condition existing turf areas which have been damaged during turf installation operations. Keep clean at all times at least one paved pedestrian access route and one paved vehicular access route to each building. Clean other paving when work in adjacent areas is complete.

-- End of Section --
PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA B300 (2010; Addenda 2011) Hypochlorites
AWWA B301 (2010) Liquid Chlorine
AWWA C500 (2009) Metal-Seated Gate Valves for Water Supply Service
AWWA C502 (2014) Dry-Barrel Fire Hydrants
AWWA C508 (2017) Swing-Check Valves for Waterworks Service, 2 In. Through 48-In. (50-mm Through 1,200-mm) NPS
AWWA C515 (2015) Reduced-Wall, Resilient-Seated Gate Valves for Water Supply Service
AWWA C600 (2017) Installation of Ductile-Iron Mains and Their Appurtenances
AWWA C604 (2011) Installation of Buried Steel Water
Pipe—4 In. (100 mm) and Larger

AWWA C605 (2013) Underground Installation of Polyvinyl Chloride (PVC) and Molecularly Oriented Polyvinyl Chloride (PVCO) Pressure Pipe and Fittings

AWWA C606 (2015) Grooved and Shouldered Joints

AWWA C651 (2014) Standard for Disinfecting Water Mains

AWWA C900 (2016) Polyvinyl Chloride (PVC) Pressure Pipe, and Fabricated Fittings, 4 In. Through 60 In. (100 mm Through 1,500 mm)

AWWA C905 (2010; Errata 2012; Errata 2013) Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings 14 In. Through 48 In. (350 mm through 1,200 mm) for Water Transmission and Distribution

AWWA C909 (2016) Molecularly Oriented Polyvinyl Chloride (PVCO) Pressure Pipe, 4 In. (100 mm) and Larger

AWWA M9 (2008; Errata 2013) Manual: Concrete Pressure Pipe

ASME INTERNATIONAL (ASME)

ASME B16.15 (2013) Cast Copper Alloy Threaded Fittings Classes 125 and 250

ASME B16.18 (2012) Cast Copper Alloy Solder Joint Pressure Fittings

ASME B18.5.2.1M (2006; R 2011) Metric Round Head Short Square Neck Bolts

ASME B18.5.2.2M (1982; R 2010) Metric Round Head Square Neck Bolts
ASTM INTERNATIONAL (ASTM)

ASTM B62 (2017) Standard Specification for Composition Bronze or Ounce Metal Castings

FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR)

FCCCHR List (continuously updated) List of Approved Backflow Prevention Assemblies

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-80 (2013) Bronze Gate, Globe, Angle and Check Valves

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

1.2 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance with Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Pipe, Fittings, Joints and Couplings; G
Valves; G
Indicator Posts; G
Valve Boxes; G
1.3 QUALITY CONTROL

1.3.1 Regulatory Requirements

Comply with NSF/ANSI 61 and NSF 372 for materials for potable water piping, components and specialties for domestic water; comply with lead content requirements for "lead-free" plumbing as defined by the U.S. Safe Drinking Water Act effective January 2014.

Comply with NSF/ANSI 14 for plastic potable water piping and components. Provide plastic pipe and fittings, bearing the seal of the National Sanitation Foundation (NSF) for potable water service from the same manufacturer.

Comply with NFPA 24 for materials, installation, and testing of fire main piping and components.
1.3.2 Backflow Preventers

1.3.2.1 Backflow Preventers Certificate

Certificate of Full Approval from FCCCHR List, University of Southern California, attesting that the design, size and make of each backflow preventer has satisfactorily passed the complete sequence of performance testing and evaluation for the respective level of approval. Certificate of Provisional Approval will not be acceptable.

1.3.2.1.1 Backflow Tester Certificate

Prior to testing, submit to the Contracting Officer certification issued by the State or local regulatory agency attesting that the backflow tester has successfully completed a certification course sponsored by the regulatory agency. Tester must not be affiliated with any company participating in any other phase of this Contract.

1.3.2.1.2 Backflow Prevention Training Certificate

Submit a certificate recognized by the State or local authority that states the Contractor has completed at least 10 hours of training in backflow preventer installations. The certificate must be current.

1.4 DELIVERY, STORAGE, AND HANDLING

1.4.1 Delivery and Storage

Inspect materials delivered to site for damage. Unload and store with minimum handling and in accordance with manufacturer's instructions. Store materials on site in enclosures or under protective covering. Store plastic piping, jointing materials and rubber gaskets under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes, fittings, valves, hydrants, and other accessories free of dirt and debris.

1.4.2 Handling

Handle pipe, fittings, valves, hydrants, and other accessories in accordance with manufacturer’s instructions and in a manner to ensure delivery to the trench in sound undamaged condition. Avoid injury to coatings and linings on pipe and fittings; make repairs if coatings or linings are damaged. Do not place other material, hooks, or pipe inside a pipe or fitting after the coating has been applied. Inspect the pipe for defects before installation. Carry, do not drag pipe to the trench. Use of pinch bars and tongs for aligning or turning pipe will be permitted only on the bare ends of the pipe. Clean the interior of pipe and accessories of foreign matter before being lowered into the trench and keep them clean during laying operations by plugging. Replace material found to be defective before or after laying with sound material without additional expense to the Government. Store rubber gaskets that are not to be installed immediately, under cover out of direct sunlight.

Handle ductile iron pipe, fittings, and accessories in accordance with AWWA C600. Handle PVC and PVCO pipe, fittings, and accessories in accordance with AWWA C605. Handle steel pipe, fittings and accessories in accordance with AWWA C604.
PART 2 PRODUCTS

2.1 SYSTEM DESCRIPTION

2.1.1 Water Transmission Mains

Provide water transmission mains indicated as greater than 12 inch diameter pipe sizes of ductile iron, PVC pipe. Provide water main accessories and valves as specified and where indicated.

2.1.2 Water Distribution Mains

Provide water distribution mains indicated as 4 through 12 inch lines of ductile iron, PVC, steel pipe. Provide water main accessories and valves as specified and where indicated.

2.1.3 Water Service Lines

Provide water service lines indicated as less than 4 inch diameter pipe sizes from water distribution main to building service at a point approximately 5 feet from building. Provide water service lines of copper pipe, copper tubing, or PVC pipe. Provide water service line appurtenances as specified and where indicated.

2.2 PIPE, FITTINGS, JOINTS AND COUPLINGS

Submit manufacturer's standard drawings or catalog cuts, except submit both drawings and cuts for push-on and rubber-gasketed bell-and-spigot joints. Include information concerning gaskets with submittal for joints and couplings.

2.2.1 Ductile-Iron Piping

2.2.1.1 Pipe and Fittings

a. Pipe, AWWA C151/A21.51, Pressure Class 150. Fittings, AWWA C110/A21.10 or AWWA C153/A21.53. Provide fittings with pressure ratings equivalent to that of the pipe. Pipe ends and fittings are to be compatible for the specified joints. Provide cement-mortar lining, AWWA C104/A21.4, standard thickness on pipe and fittings.

2.2.1.2 Joints and Jointing Material

Provide push-on joints or mechanical joints for pipe and fittings. Provide mechanical joints where indicated. Provide mechanically coupled type joints using a sleeve-type mechanical coupling where indicated. Sleeve-type mechanical couplings in lieu of push-on joints are acceptable, subject to the limitations specified in the paragraph SLEEVE-TYPE MECHANICAL COUPLINGS. Utilize shouldered type joints in lieu of flanged joint or push-on joint, except where joint is buried.

a. Push-On Joints: Shape of pipe ends and fitting ends, gaskets, and lubricant for joint assembly as recommended in AWWA C111/A21.11.

b. Mechanical Joints: Dimensional and material requirements for pipe ends, glands, bolts and nuts, and gaskets as recommended in AWWA C111/A21.11.

c. Flanged Joints: Bolts, nuts, and gaskets for flanged connections...
as recommended in the Appendix to AWWA C115/A21.15. Provide ductile iron setscrewed flanges, ASTM A536, Grade 70-50-05 or 60-42-10, and conform to ASME B16.1, Class 125. Provide setscrews for setscrewed flanges with a tensile strength of 190,000 psi, heat treated and zinc-coated steel. Gasket and lubricants for setscrewed flanges, in accordance with mechanical-joint gaskets specified in AWWA C111/A21.11. During the design of setscrewed gasket provide for confinement and compression of gasket when joint to adjoining flange is made.

d. Insulating Joints: Designed to prevent metal-to-metal contact at the joint between adjacent sections of piping. Provide flanged type joint with insulating gasket, insulating bolt sleeves, and insulating washers. Provide full face dielectric type gaskets, as recommended in the Appendix to AWWA C115/A21.15. Bolts and nuts, as recommended in the Appendix to AWWA C115/A21.15.

e. Sleeve-Type Mechanical Coupled Joints: As specified in the paragraph SLEEVE-TYPE MECHANICAL COUPLINGS.

2.2.2 Plastic Piping

2.2.2.1 PVC Piping

a. Plain end or gasket bell end, with a minimum Pressure Class 165 (DR25), AWWA C900 with ductile iron outside diameter (DIOD).

b. Plain end or gasket bell end, with a minimum Pressure Class 165 (DR 25) AWWA C905 with ductile iron outside diameter (DIOD).

c. Plain end or gasket bell end, Pressure Class 165 PVC0 pressure pipe, AWWA C909 with ductile iron outside diameter (DIOD).

2.2.2.1.1 Fittings for PVC Pipe

Gray iron or ductile iron fittings, AWWA C110/A21.10 or AWWA C153/A21.53, with cement-mortar lining for fittings, AWWA C104/A21.4, standard thickness. Fittings with push-on joint ends are to conform to the same requirements as fittings with mechanical-joint ends, except that bell design is to be factory modified for push-on joint compatible for use with PVC plastic pipe specified in this paragraph. Provide cement-mortar lined iron fittings and specials in accordance with AWWA C104/A21.4.

2.2.2.1.2 Joints and Jointing Material

Provide push-on joints ASTM D3139 between pipes, pipes and metal fittings, valves, and other accessories or compression-type joints/mechanical joints, ASTM D3139 and AWWA C111/A21.11. Provide each joint connection with an elastomeric gasket compatible for the bell or coupling with which it is to be used. Gaskets for push-on joints for pipe, ASTM F477. Gaskets for push-on joints and compression-type joints/mechanical joints for joint connections between pipe and metal fittings, valves, and other accessories, AWWA C111/A21.11, respectively, for push-on joints and mechanical joints. Utilize mechanically coupled joints using a sleeve-type mechanical...
coupling, as specified in the paragraph SLEEVE-TYPE MECHANICAL COUPLINGS, as an optional jointing method in lieu of push-on joints on plain-end PVC plastic pipe, subject to the limitations specified for mechanically coupled joints using a sleeve-type mechanical coupling and to the use of internal stiffeners as specified for compression-type joints in ASTM D3139.

2.2.3 Copper Pipe and Tubing

2.2.3.1 Copper Pipe and Associated Fittings

Pipe, ASTM B42, regular, threaded ends. Provide lead-free brass or bronze fittings, ASME B16.15, 125 pound.

2.2.3.2 Copper Tubing and Associated Fittings

Tubing, ASTM B88, Type K. Fittings for solder-type joint, ASME B16.18 or ASME B16.22; fittings for compression-type joint, ASME B16.26, flared tube type.

2.2.4 Pipe Anchorage

Provide pipe anchorage designed for a minimum working pressure of 350 psi and in accordance with AWWA C600 or AWWA C605. Provide concrete thrust blocks (reaction backing) restrained joints and meeting the requirements of AWWA C110/A21.10.

2.3 VALVES

2.3.1 Gate Valves 3 Inch Size and Larger on Buried Piping

AWWA C500, AWWA C509, AWWA C515, or UL 262. Unless otherwise specified, valves matching requirements of: (1) AWWA C500: nonrising stem type with double-disc gates and mechanical-joint ends or push-on joint ends compatible for the adjoining pipe, (2) AWWA C509 or AWWA C515: nonrising stem type with mechanical-joint ends or resilient-seated gate valves 3 to 12 inches in size, and (3) UL 262: inside-screw type with operating nut, double-disc or split-wedge type gate, designed for a hydraulic working pressure of 175 psi, and have mechanical-joint ends or push-on joint ends as appropriate for the pipe to which it is joined. Match materials for UL 262 valves to the reference standards specified in AWWA C500. Valves open by counterclockwise rotation of the valve stem. Stuffing boxes have O-ring stem seals. Stuffing boxes are bolted and constructed so as to permit easy removal of parts for repair. Use valves with special ends for connection to sleeve-type mechanical coupling in lieu of mechanical-joint ends and push-on joint ends. Provide valve ends and gaskets for connection to sleeve-type mechanical couplings that conform to the requirements specified for the joint or coupling. Where an indicator post is shown, provide an indicator post flange; indicator post flange for AWWA C500, AWWA C509, or AWWA C515 valve is to conform to the requirements of UL 262.

2.3.2 Check Valves

Swing-check type, AWWA C508 or UL 312. Valves matching requirements of: (1) AWWA C508: Iron or steel body and cover and flanged ends, and (2) UL 312: Cast iron or steel body and cover, flanged ends, and designed for a minimum working pressure of 150 psi. Materials for UL 312 valves are to match the reference standards specified in AWWA C508. Provide valves with a clear port opening. Provide valves from one manufacturer.
2.3.3 Water Service Valves

2.3.3.1 Gate Valves Smaller than 3 Inch in Size on Buried Piping

Gate valves smaller than 3 inch size on Buried Piping MSS SP-80, Class 150, solid wedge, nonrising stem, with flanged or threaded end connections, a union on one side of the valve, and a handwheel operator.

2.3.4 Indicator Posts

Provide upright gate valve with indicator post in accordance with UL 789 and NFPA 24, where indicated. Construct indicator post body of cast iron, ductile iron or a combination of both, bronze operating nut, cast iron locking wrench meeting the requirements of ASTM A126 Class B, with open and shut target window.

2.3.5 Valve Boxes

Provide a valve box for each gate valve on buried piping, except where indicator post is shown. Construct adjustable valve boxes manufactured from cast iron of a size compatible for the valve on which it is used. Provide cast iron valve boxes with a minimum cover and wall thickness of 3/16 inch and conforming to ASTM A48/A48M, Class 35B. Coat the cast-iron box with a heavy coat of bituminous paint.

2.4 FIRE HYDRANTS AND HOSE HOUSES

2.4.1 Fire Hydrants

Provide hydrants where indicated. Paint hydrants with at least one coat of primer and two coats of enamel paint. Paint barrel and bonnet colors in accordance with UFC 3-600-01. Stencil hydrant number and main size on the hydrant barrel using black stencil paint.

2.4.1.1 Dry-Barrel Type Fire Hydrants

Provide Dry-barrel type hydrants, AWWA C502 or UL 246, "Base Valve" design, with 6 inch inlet, 5 1/4 inch valve opening, one 4 1/2 inch pumper connection, and two 2 1/2 inch hose connections. Provide mechanical-joint end only inlet with end matching requirements as specified for the joint as specified in AWWA C502 or UL 246 for size and shape of operating nut, cap nuts, and threads on hose and pumper connections. Design the hydrant with special couplings joining upper and lower sections of hydrant barrel and upper and lower sections of hydrant stem that break from a force imposed by a moving vehicle. Hydrant is to be fully operational under normal conditions.

2.5 ACCESSORIES

2.5.1 Tapping Sleeves

Provide cast gray, ductile, malleable iron or stainless steel, split-sleeve type tapping sleeves of the sizes indicated for connection to existing main with flanged or grooved outlet, and with bolts, follower rings and gaskets on each end of the sleeve. Utilize similar metals for bolts, nuts, and washers to minimize the possibility of galvanic corrosion. Provide dielectric gaskets where dissimilar metals adjoin. Construction is to be compatible with a maximum working pressure of 150 psi. Provide bolts with square heads and hexagonal nuts. Longitudinal gaskets and mechanical
joints with gaskets as recommended by the manufacturer of the sleeve. When using grooved mechanical tee, utilize an upper housing with full locating collar for rigid positioning which engages a machine-cut hole in pipe, encasing an elastomeric gasket which conforms to the pipe outside diameter around the hole and a lower housing with positioning lugs, secured together during assembly by nuts and bolts as specified, pre-torqued to 50 foot-pound.

2.5.2 Sleeve-Type Mechanical Couplings

Design couplings to join plain-end piping by compression of a ring gasket at each end of the adjoining pipe sections. The coupling consists of one middle ring flared or beveled at each end to provide a gasket seat; two follower rings; two resilient tapered rubber gaskets; and bolts and nuts to draw the follower rings toward each other to compress the gaskets. The middle ring and the follower rings are to be true circular sections free from irregularities, flat spots, and surface defects; provide for confinement and compression of the gaskets. For ductile iron and PVC plastic pipe, the middle ring is cast-iron. Malleable and ductile iron are to meet the requirements of ASTM A47/A47M and ASTM A536, respectively. Design gaskets for resistance to set after installation and to meet the requirements specified for gaskets for mechanical joint in AWWA C111/A21.11. Provide track-head type bolts ASTM A307, Grade A, with nuts, ASTM A563, Grade A; or round-head square-neck type bolts, ASME B18.5.2.1M and ASME B18.5.2.2M with hex nuts, ASME B18.2.2. Shape bolt holes in follower rings to hold fast to the necks of the bolts used. Do not use mechanically coupled joints using a sleeve-type mechanical coupling as an optional method of jointing except where pipeline is adequately anchored to resist tension pull across the joint. Provide a tight flexible joint with mechanical couplings under reasonable conditions, such as pipe movements caused by expansion, contraction, slight settling or shifting in the ground, minor variations in trench gradients, and traffic vibrations. Match coupling strength to that of the adjoining pipeline.

2.5.3 Insulating Joints

Provide a rubber-gasketed insulating joint or dielectric coupling between pipe of dissimilar metals which will effectively prevent metal-to-metal contact between adjacent sections of piping.

2.5.4 Dielectric Fittings

Install dielectric fittings between threaded ferrous and nonferrous metallic pipe, fittings and valves, except where corporation stops join mains to prevent metal-to-metal contact of dissimilar metallic piping elements and compatible with the indicated working pressure.

2.5.5 Tracer Wire for Nonmetallic Piping

Provide bare copper or aluminum wire not less than 0.10 inch in diameter in sufficient length to be continuous over each separate run of nonmetallic pipe.

2.5.6 Water Service Line Appurtenances

2.5.6.1 Curb or Service Stops

Ground key, round way, inverted key type; made of lead-free bronze, ASTM B61 or ASTM B62; and compatible with the working pressure of the system. Provide compatible ends for connection to the service piping. Cast an
arrow into body of the curb or service stop indicating direction of flow.

2.5.6.2 Curb Boxes

Provide a curb box for each curb or service stop manufactured from cast iron of a size capable of containing the stop on which it is to be used. Provide a round head. Cast the word "WATER" on the lid. Factory coat the box with a heavy coat of bituminous paint.

2.5.7 Fire Department Connections

Provide freestanding, fire department connections with cast-bronze body, thread inlets according to NFPA 1963 and matching local fire department hose threads, threaded bottom outlet and match requirements of NFPA 24. Include lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 48 inch high brass sleeve; and round escutcheon plate.

2.6 DISINFECTION

Chlorinating materials are to conform to: Chlorine, Liquid: AWWA B301; Hypochlorite, Calcium and Sodium: AWWA B300.

PART 3 EXECUTION

3.1 PRECAUTIONS

3.1.1 Connections to Existing System

Perform all connections to the existing water system in the presence of the Contracting Officer.

3.1.2 Operation of Existing Valves

Do not operate valves within or directly connected to the existing water system unless expressly directed to do so by the Contracting Officer.

3.2 INSTALLATION OF PIPELINES

3.2.1 General Requirements for Installation of Pipelines

Submit manufacturer's instructions for pipeline installations. These manufacturer's instructions apply to all pipeline installation except as noted herein.

3.2.1.1 Location of Water Lines

Terminate the work covered by this section at a point approximately 5 feet from the building, unless otherwise indicated.

Where the location of the water line is not clearly defined by dimensions on the drawings, do not lay water line closer horizontally than 10 feet from any sewer line.

Do not lay water lines in the same trench with gas lines, fuel lines, electric wiring, or any other utility. Do not install copper tubing in the same trench with ferrous piping materials. Where nonferrous metallic pipe, e.g. copper tubing, cross any ferrous piping, provide a minimum vertical separation of 12 inches between pipes.
Where water piping is required to be installed within 3 feet of existing structures, sleeve the water pipe. Provide ductile-iron or Schedule 40 steel sleeves. Fill annular space between pipe and sleeves with mastic. Install the water pipe and sleeve ensuring that there will be no damage to the structures and no settlement or movement of foundations or footings.

3.2.1.1 Water Piping Installation Parallel With Sewer Piping

3.2.1.1.1 Normal Conditions

Lay water piping at least 10 feet horizontally from a sewer or sewer manhole whenever possible. Measure the distance edge-to-edge. Provide at least 18 inches above the top (crown) of the sewer piping and the bottom (invert) of the water piping.

3.2.1.1.2 Installation of Water Piping Crossing Sewer Piping

a. Normal Conditions: Provide a separation of at least 18 inches between the bottom of the water piping and the top of the sewer piping in cases where water piping crosses above sewer piping.

b. Unusual Conditions: When local conditions prevent a vertical separation described above, construct sewer piping passing over or under water piping of AWWA-compliant ductile iron water piping, pressure tested in place without leakage prior to backfilling. Protect water piping passing under sewer piping by providing a vertical separation of at least 18 inches between the bottom of the sewer piping and the top of the water piping; adequate structural support for the sewer piping to prevent excessive deflection of the joints and the settling on and breaking of the water piping; and that the length, minimum 20 feet, of the water piping be centered at the point of the crossing so that joints are equidistant and as far as possible from the sewer piping.

3.2.1.3 Sewer Piping or Sewer Manholes

No water piping is to pass through or come in contact with any part of a sewer manhole.

3.2.1.2 Earthwork

Perform earthwork operations in accordance with Section 31 00 00 EARTHWORK.

3.2.1.3 Pipe Laying and Jointing

Remove fins and burrs from pipe and fittings. Before placing in position, clean pipe, fittings, valves, and accessories, and maintain in a clean condition. Provide proper facilities for lowering sections of pipe into trenches. Under no circumstances is it permissible to drop or dump pipe, fittings, valves, or other water line material into trenches. Cut pipe cleanly, squarely, and accurately to the length established at the site and work into place without springing or forcing. Replace a pipe or fitting that does not allow sufficient space for installation of jointing material. Blocking or wedging between bells and spigots is not permitted. Lay bell-and-spigot pipe with the bell end pointing in the direction of laying. Grade the pipeline in straight lines; avoid the formation of dips and low points. Support pipe at the design elevation and grade. Secure firm, uniform support. Wood support blocking is not permitted. Lay pipe
so that the full length of each section of pipe and each fitting rests solidly on the pipe bedding; excavate recesses to accommodate bells, joints, and couplings. Provide anchors and supports for fastening work into place. Make provision for expansion and contraction of pipelines. Keep trenches free of water until joints have been assembled. At the end of each work day, close open ends of pipe temporarily with wood blocks or bulkheads. Do not lay pipe when conditions of trench or weather prevent installation.

3.2.1.4 Installation of Tracer Wire

Install a continuous length of tracer wire for the full length of each run of nonmetallic pipe. Attach wire to top of pipe in such manner that it will not be displaced during construction operations.

3.2.1.5 Connections to Existing Water Lines

Make connections to existing water lines after coordination with the facility and with a minimum interruption of service on the existing line. Make connections to existing lines under pressure in accordance with the recommended procedures of the manufacturer of the pipe being tapped and as indicated, except as otherwise specified, tap concrete pipe in accordance with AWWA M9 for tapping concrete pressure pipe.

3.2.1.6 Penetrations

Provide ductile-iron or Schedule 40 steel wall sleeves for pipe passing through walls of valve pits and structures. Fill annular space between walls and sleeves with rich cement mortar. Fill annular space between pipe and sleeves with mastic.

3.2.1.7 Flanged Pipe

Only install flanged pipe aboveground or with the flanges in valve pits.

3.2.2 Special Requirements for Installation of Water Lines

3.2.2.1 Installation of Ductile-Iron Piping

Unless otherwise specified, install pipe and fittings in accordance with the paragraph GENERAL REQUIREMENTS FOR INSTALLATION OF PIPELINES and with the requirements of AWWA C600 for pipe installation, joint assembly, valve-and-fitting installation, and thrust restraint.

a. Jointing: Make push-on joints with the gaskets and lubricant specified for this type joint; assemble in accordance with the applicable requirements of AWWA C600 for joint assembly. Make mechanical joints with the gaskets, glands, bolts, and nuts specified for this type joint; assemble in accordance with the applicable requirements of AWWA C600 for joint assembly and the recommendations of Appendix A to AWWA C111/A21.11. Make flanged joints with the gaskets, bolts, and nuts specified for this type joint. Make flanged joints up tight; avoid undue strain on flanges, fittings, valves, and other equipment and accessories. Align bolt holes for each flanged joint. Use full size bolts for the bolt holes; use of undersized bolts will not be permitted. Do not allow adjoining flange faces to be out of parallel to such degree that the flanged joint cannot be made watertight without overstraining the flange. When flanged pipe or fitting has dimensions that do not allow the making of a flanged joint as specified, replace...
it. Use setscrewed flanges to make flanged joints where conditions prevent the use of full-length flanged pipe and assemble in accordance with the recommendations of the setscrewed flange manufacturer. Assemble joints made with sleeve-type mechanical couplings in accordance with the recommendations of the coupling manufacturer.

b. Allowable Deflection: Follow AWWA C600 for the maximum allowable deflection. If the alignment requires deflection in excess of the above limitations, provide special bends or a sufficient number of shorter lengths of pipe to achieve angular deflections within the limit set forth.

c. Exterior Protection: Completely encase buried ductile iron pipelines with polyethylene tube or sheet, using Class A polyethylene film, in accordance with AWWA C105/A21.5.

3.2.2.2 Installation of PVC Water Main Pipe

Unless otherwise specified, install pipe and fittings in accordance with the paragraph GENERAL REQUIREMENTS FOR INSTALLATION OF PIPELINES; with the requirements of AWWA C605 for laying of pipe, joining PVC pipe to fittings and accessories, and setting of hydrants, valves, and fittings; and with the recommendations for pipe joint assembly and appurtenance installation in AWWA M23, Chapter 7, "Installation."

a. Jointing: Make push-on joints with the elastomeric gaskets specified for this type joint, using either elastomeric-gasket bell-end pipe or elastomeric-gasket couplings. For pipe-to-pipe push-on joint connections, use only pipe with push-on joint ends having factory-made bevel; for push-on joint connections to metal fittings, valves, and other accessories, cut spigot end of pipe off square and re-bevel pipe end to a bevel approximately the same as that on ductile-iron pipe used for the same type of joint. Use a lubricant recommended by the pipe manufacturer for push-on joints. Assemble push-on joints for pipe-to-pipe joint connections in accordance with the requirements of AWWA C605 for laying the pipe and the recommendations in AWWA M23, Chapter 7, "Installation," for pipe joint assembly. Assemble push-on joints for connection to fittings, valves, and other accessories in accordance with the requirements of AWWA C605 for joining PVC pipe to fittings and accessories and with the requirements of AWWA C600 for joint assembly. Make compression-type joints/mechanical joints with the gaskets, glands, bolts, nuts, and internal stiffeners previously specified for this type joint; assemble in accordance with the requirements of AWWA C605 for joining PVC pipe to fittings and accessories, with the requirements of AWWA C600 for joint assembly, and with the recommendations of Appendix A to AWWA C111/A21.11. Cut off spigot end of pipe for compression-type joint/mechanical-joint connections and do not re-bevel. Assemble joints made with sleeve-type mechanical couplings in accordance with the recommendations of the coupling manufacturer using internal stiffeners as previously specified for compression-type joints.

b. Offset: Maximum offset in alignment between adjacent pipe joints as recommended by the manufacturer and not to exceed 5 degrees.

c. Fittings: Install in accordance with AWWA C605.

d. PVC Pipe shall not be used for the chilled water system that contains propylene glycol.
3.2.2.3 Fire Protection Service Lines for Sprinkler Supplies

Connect water service lines used to supply building sprinkler systems for fire protection to the water distribution main in accordance with NFPA 24.

3.2.2.4 Pipe Anchorage Installation

a. Provide thrust blocks where indicated. Use concrete, ASTM C94/C94M, having a minimum compressive strength of 2,500 psi at 28 days; or use concrete of a mix not leaner than one part cement, two and one half parts sand, and five parts gravel, having the same minimum compressive strength.

b. Provide restrained joints in accordance with NFPA 24, Chapter 10.

3.2.3 Installation of Valves

3.2.3.1 Installation of Gate Valves

Install gate valves, AWWA C500 and UL 262, in accordance with the requirements of AWWA C600 for valve-and-fitting installation and with the recommendations of the Appendix ("Installation, Operation, and Maintenance of Gate Valves") to AWWA C500. Install gate valves, AWWA C509 or AWWA C515, in accordance with the requirements of AWWA C600 for valve-and-fitting installation and with the recommendations of the Appendix ("Installation, Operation, and Maintenance of Gate Valves") to AWWA C509 or AWWA C515. Install gate valves on PVC water mains in accordance with the recommendations for appurtenance installation in AWWA M23, Chapter 7, "Installation." Make and assemble joints to gate valves as specified for making and assembling the same type joints between pipe and fittings.

3.2.3.2 Installation of Check Valves

Install check valves in accordance with the applicable requirements of AWWA C600 for valve-and-fitting installation. Make and assemble joints to check valves as specified for making and assembling the same type joints between pipe and fittings.

3.2.4 Installation of Fire Hydrants

Install hydrants in accordance with AWWA C600 for hydrant installation and as indicated. Make and assemble joints as specified for making and assembling the same type joints between pipe and fittings. Install hydrants with the 4 1/2 inch connections facing the adjacent paved surface. If there are two paved adjacent surfaces, install hydrants with the 4 1/2 inch connection facing the paved surface where the connecting main is located.

3.2.5 Installation of Water Service Piping

3.2.5.1 Location

Connect water service piping to the building service where the building service has been installed. Where building service has not been installed, terminate water service lines approximately 5 feet from the building line at the points indicated; close such water service lines with plugs or caps.
3.2.5.2 Service Line Connections to Water Mains

Connect service lines to ductile-iron water mains in accordance with AWWA C600 for service taps. Connect service lines to PVC plastic water mains in accordance with UBPPA UNI-PUB-08 and the recommendations of AWWA M23, Chapter 9, "Service Connections."

3.2.6 Disinfection

Disinfection of systems supplying nonpotable water is not required. Prior to disinfection, provide disinfection procedures, proposed neutralization and disposal methods of waste water from disinfection procedures as part of the disinfection submittal. Disinfect new water piping and existing water piping affected by Contractor's operations in accordance with AWWA C651. Fill piping systems with solution containing minimum of 50 parts per million of available chlorine and allow solution to stand for minimum of 24 hours. Flush solution from the systems with domestic water until maximum residual chlorine content is within the range of 0.2 and 0.5 parts per million, or the residual chlorine content of domestic water supply. Obtain at least two consecutive bacteriological samples from new water piping. Analyze samples by a certified laboratory, and submit the results of the bacteriological samples. Obtain approval by the Contracting Officer prior to the new water piping being placed into service.

3.3 FIELD QUALITY CONTROL

3.3.1 Field Tests and Inspections

Notify the Contracting Officer a minimum of five days in advance of hydrostatic testing. Coordinate the proposed method for disposal of waste water from hydrostatic testing. Perform field tests, and provide labor, equipment, and incidentals required for testing. Provide documentation that all items of work have been constructed in accordance with the Contract documents. Do not begin testing on any section of a pipeline where concrete thrust blocks have been provided until at least five days after placing of the concrete.

3.3.2 Testing Procedure

3.3.2.1 Hydrostatic Testing

Test the water system in accordance with the applicable specified standard. Where water mains provide fire service, test in accordance with the special testing requirements given in the paragraph SPECIAL TESTING REQUIREMENTS FOR FIRE SERVICE. Test ductile-iron water mains in accordance with the requirements of AWWA C600 for hydrostatic testing. The amount of leakage on ductile-iron pipelines with mechanical-joints or push-on joints is not to exceed the amounts given in AWWA C600; no leakage will be allowed at joints made by any other methods. Test PVC plastic water systems made with PVC pipe in accordance with the requirements of AWWA C605 for pressure and leakage tests. The amount of leakage on pipelines made of PVC plastic water main pipe is not to exceed the amounts given in AWWA C605, except that at joints made with sleeve-type mechanical couplings, no leakage will be allowed. Test water service lines in accordance with requirements of AWWA C600 for hydrostatic testing. No leakage will be allowed at copper pipe joints, copper tubing joints (soldered, compression type, brazed), plastic pipe joints, flanged joints, and screwed joints.
3.3.2.2 Leakage Testing

For leakage test, use a hydrostatic pressure not less than the maximum working pressure of the system. Leakage test may be performed at the same time and at the same test pressure as the pressure test.

3.3.3 Special Testing Requirements for Fire Service

Test water mains and water service lines providing fire service or water and fire service in accordance with NFPA 24. The additional water added to the system must not exceed the limits given in NFPA 24.

3.3.4 Tracer Wire Continuity

Test tracer wire for continuity after service connections have been completed and prior to final pavement or restoration. Verify that tracer wire is locatable with electronic utility locating equipment. Repair breaks or separations and re-test for continuity.

3.4 CLEANUP

Upon completion of the installation of water lines and appurtenances, remove all debris and surplus materials resulting from the work.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

1.1.1 Sanitary Sewer Gravity Pipeline

Provide mains and laterals of polyvinyl chloride (PVC) plastic pipe. Provide building connections of cast iron soil pipe or polyvinyl chloride (PVC) plastic pipe. Provide new and modify existing exterior sanitary gravity sewer piping and appurtenances. Provide each system complete and ready for operation. The exterior sanitary gravity sewer system includes equipment, materials, installation, and workmanship as specified herein more than 5 feet outside of building walls.

1.1.2 USACE Project

The construction required herein shall include appurtenant structures and building sewers to points of connection with the building drains 5 feet outside the building to which the sewer system is to be connected. Replace damaged material and redo unacceptable work at no additional cost to the Government. Backfilling shall be accomplished after inspection by the Contracting Officer. Before, during, and after installation, plastic pipe and fittings shall be protected from any environment that would result in damage or deterioration to the material. Keep a copy of the manufacturer's instructions available at the construction site at all times and shall follow these instructions unless directed otherwise by the Contracting Officer. Solvents, solvent compounds, lubricants, elastomeric gaskets, and any similar materials required to install the plastic pipe shall be stored in accordance with the manufacturer's recommendation and shall be discarded if the storage period exceeds the recommended shelf life. Solvents in use shall be discarded when the recommended pot life is exceeded.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C600 (2017) Installation of Ductile-Iron Mains and Their Appurtenances

AWWA C605 (2013) Underground Installation of Polyvinyl Chloride (PVC) and Molecularly Oriented Polyvinyl Chloride (PVCO) Pressure Pipe and Fittings

and Installation

ASTM INTERNATIONAL (ASTM)

ASTM D2412 (2011) Determination of External Loading Characteristics of Plastic Pipe by Parallel-Plate Loading

Interior and Fittings

CAST IRON SOIL PIPE INSTITUTE (CISPI)

UNI-BELL PVC PIPE ASSOCIATION (UBPPA)

UBPPA UNI-B-6 (1998) Recommended Practice for Low-Pressure Air Testing of Installed Sewer Pipe

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Preconstruction Submittals

 Existing Conditions

SD-02 Shop Drawings

 Drawings

SD-03 Product Data

 Pipeline Materials

SD-06 Test Reports

 Reports

SD-07 Certificates

 Portland Cement
 Request for Field Support; G
 Request for Pre-Connection Inspection; G

1.4 QUALITY ASSURANCE

1.4.1 Installer Qualifications

Install specified materials by a licensed underground utility Contractor licensed for such work in the state where the work is to be performed. Installing Contractor's License shall be current and be state certified or
state registered.

1.4.2 Drawings

a. Submit Installation Drawings showing complete detail, both plan and side view details with proper layout and elevations.

b. Submit As-Built Drawings for the complete sanitary sewer system showing complete detail with all dimensions, both above and below grade, including invert elevation.

c. Sign and seal As-Built Drawings by a Professional Surveyor and Mapper. Include the following statement: "All potable water lines crossed by sanitary hazard mains are in accordance with the permitted utility separation requirements."

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Delivery and Storage

1.5.1.1 Piping

Inspect materials delivered to site for damage; store with minimum of handling. Store materials on site in enclosures or under protective coverings. Store plastic piping and jointing materials and rubber gaskets under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes and fittings free of dirt and debris.

1.5.1.2 Metal Items

Check upon arrival; identify and segregate as to types, functions, and sizes. Store off the ground in a manner affording easy accessibility and not causing excessive rusting or coating with grease or other objectionable materials.

1.5.1.3 Cement, Aggregate, and Reinforcement

As specified in Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.

1.5.2 Handling

Handle pipe, fittings, and other accessories in such manner as to ensure delivery to the trench in sound undamaged condition. Carry, do not drag, pipe to trench.

1.6 PROJECT/SITE CONDITIONS

Submit drawings of existing conditions, after a thorough inspection of the area in the presence of the Contracting Officer. Details shall include the environmental conditions of the site and adjacent areas. Submit copies of the records for verification before starting work.

PART 2 PRODUCTS

2.1 PIPELINE MATERIALS

Pipe shall conform to the respective specifications and other requirements specified below. Submit manufacturer's standard drawings or catalog cuts.
2.1.1 Cast-Iron Soil Piping

2.1.1.1 Cast-Iron Hub and Spigot Soil Pipe and Fittings

ASTM A74, service, with ASTM C564 compression-type rubber gaskets.

2.1.1.2 Cast-Iron Hubless Soil Pipe and Fittings

CISPI 301 with CISPI 310 coupling joints.

2.1.2 PVC Plastic Gravity Sewer Piping

2.1.2.1 PVC Plastic Gravity Pipe and Fittings

ASTM D3034, SDR 35, or ASTM F949 with ends suitable for elastomeric gasket joints.

2.1.2.2 PVC Plastic Gravity Joints and Jointing Material

Joints shall conform to ASTM D3212. Gaskets shall conform to ASTM F477.

2.2 CONCRETE MATERIALS

2.2.1 Cement Mortar

Cement mortar shall conform to ASTM C270, Type M with Type II cement.

2.2.2 Portland Cement

Submit certificates of compliance stating the type of cement used in manufacture of concrete pipe, fittings and precast manholes. Portland cement shall conform to ASTM C150/C150M, Type II for concrete used in concrete pipe, concrete pipe fittings, and manholes and type optional with the Contractor for cement used in concrete cradle, concrete encasement, and thrust blocking. Where aggregates are alkali reactive, as determined by Appendix XI of ASTM C33/C33M, a cement containing less than 0.60 percent alkalies shall be used.

2.2.3 Portland Cement Concrete

Portland cement concrete shall conform to ASTM C94/C94M, compressive strength of 4000 psi at 28 days, except for concrete cradle and encasement or concrete blocks for manholes. Concrete used for cradle and encasement shall have a compressive strength of 2500 psi minimum at 28 days. Concrete in place shall be protected from freezing and moisture loss for 7 days.

2.3 MISCELLANEOUS MATERIALS

2.4 REPORTS

Compaction and density test shall be in accordance with Section 31 00 00 EARTHWORK. Submit Test Reports. Submit Inspection Reports for daily activities during the installation of the sanitary system. Information in the report shall be detailed enough to describe location of work and amount of pipe laid in place, measured in linear feet.
PART 3 EXECUTION

3.1 INSTALLATION OF PIPELINES AND APPURTEÑANT CONSTRUCTION

3.1.1 Connections to Existing Lines

Obtain approval from the Contracting Officer before making connection to existing line. Conduct work so that there is minimum interruption of service on existing line.

Submit request for field support from the Installation's Utilities Field Support two weeks prior to making connection. Submit request for pre-connection inspection to be conducted after trenching and layout is completed, but before the proposed service has been connected.

3.1.2 General Requirements for Installation of Pipelines

These general requirements apply except where specific exception is made in the following paragraphs entitled "Special Requirements."

3.1.2.1 Location

The work covered by this section shall terminate at a point approximately 5 feet from the building. Where the location of the sewer is not clearly defined by dimensions on the drawings, do not lay sewer line closer horizontally than 10 feet to a water main or service line.

3.1.2.1.1 Sanitary Piping Installation Parallel with Water Line

3.1.2.1.1.1 Normal Conditions

Sanitary piping or manholes shall be laid at least 10 feet horizontally from a water line whenever possible. The distance shall be measured edge-to-edge.

3.1.2.1.1.2 Unusual Conditions

When local conditions prevent a horizontal separation of 10 feet, the sanitary piping or manhole may be laid closer to a water line provided that:

a. The top (crown) of the sanitary piping shall be at least 18 inches below the bottom (invert) of the water main.

b. Where this vertical separation cannot be obtained, the sanitary piping shall be constructed of AWWA-approved ductile iron water pipe pressure tested in place without leakage prior to backfilling.

c. The sewer manhole shall be of watertight construction and tested in place.

3.1.2.2 Earthwork

Perform earthwork operations in accordance with Section 31 00 00 EARTHWORK.

3.1.2.3 Pipe Laying and Jointing

Inspect each pipe and fitting before and after installation; replace those found defective and remove from site. Provide proper facilities for lowering sections of pipe into trenches. Lay nonpressure pipe with the
bell ends in the upgrade direction. Adjust spigots in bells to give a uniform space all around. Blocking or wedging between bells and spigots will not be permitted. Replace by one of the proper dimensions, pipe or fittings that do not allow sufficient space for installation of joint material. At the end of each work day, close open ends of pipe temporarily with wood blocks or bulkheads. Provide batterboards not more than 25 feet apart in trenches for checking and ensuring that pipe invert elevations are as indicated. Laser beam method may be used in lieu of batterboards for the same purpose. Branch connections shall be made by use of regular fittings or solvent cemented saddles as approved. Saddles for ABS and PVC composite pipe shall conform to Figure 2 of ASTM D2680; saddles for ABS pipe shall comply with Table 3 of ASTM D2751; and saddles for PVC pipe shall conform to Table 4 of ASTM D3034.

3.1.3 Special Requirements

3.1.3.1 Installation of Cast Iron Soil Piping

Unless otherwise specified, install pipe and fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" of this section and with the recommendations of the pipe manufacturer. Make joints with the rubber gaskets specified for cast iron soil pipe joints and assemble in accordance with the recommendations of the pipe manufacturer.

3.1.3.2 Installation of PVC Plastic Piping

Install pipe and fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" of this section and with the requirements of ASTM D2321 for laying and joining pipe and fittings. Make joints with the gaskets specified for joints with this piping and assemble in accordance with the requirements of ASTM D2321 for assembly of joints. Make joints to other pipe materials in accordance with the recommendations of the plastic pipe manufacturer.

3.1.3.3 Installation of PVC Plastic Pressure Pipe and Fittings

Unless otherwise specified, install pipe and fittings in accordance with paragraph entitled "General Requirements for Installation of Pipelines" of this section; with the requirements of AWWA C605 for laying of pipe, joining PVC pipe to fittings and accessories, and setting of hydrants, valves, and fittings; and with the recommendations for pipe joint assembly and appurtenance installation in AWWA M23, Chapter 7, "Installation."

3.1.3.3.1 Pipe 4 Inch Diameter Joints

Make push-on joints with the elastomeric gaskets specified for this type joint, using either elastomeric-gasket bell-end pipe or elastomeric-gasket couplings. For pipe-to-pipe push-on joint connections, use only pipe with push-on joint ends having factory-made bevel; for push-on joint connections to fittings, cut spigot end of pipe off square and re-bevel pipe end to a bevel approximately the same as that on ductile-iron pipe used for the same type of joint. Use an approved lubricant recommended by the pipe manufacturer for push-on joints. Assemble push-on joints for pipe-to-pipe joint connections in accordance with the requirements of AWWA C605 for laying the pipe and the recommendations in AWWA M23, Chapter 7, "Installation," for pipe joint assembly. Assemble push-on joints for connection to fittings in accordance with the requirements of AWWA C605 for joining PVC pipe to fittings and accessories and with the applicable requirements of AWWA C600 for joint assembly. Make compression-type
joints/mechanical-joints with the gaskets, glands, bolts, nuts, and internal stiffeners specified for this type joint and assemble in accordance with the requirements of AWWA C605 for joining PVC pipe to fittings and accessories, with the applicable requirements of AWWA C600 for joint assembly, and with the recommendations of Appendix A to AWWA C111/A21.11. Cut off spigot end of pipe for compression-type joint/mechanical-joint connections and do not re-bevel.

3.1.4 Concrete Work

Cast-in-place concrete is included in Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE. The pipe shall be supported on a concrete cradle, or encased in concrete where indicated or directed.

3.1.5 Miscellaneous Construction and Installation

3.1.5.1 Connecting to Existing Manholes

Pipe connections to existing manholes shall be made so that finish work will conform as nearly as practicable to the applicable requirements specified for new manholes, including all necessary concrete work, cutting, and shaping. The connection shall be centered on the manhole. Holes for the new pipe shall be of sufficient diameter to allow packing cement mortar around the entire periphery of the pipe but no larger than 1.5 times the diameter of the pipe. Cutting the manhole shall be done in a manner that will cause the least damage to the walls.

3.1.5.2 Metal Work

3.1.5.2.1 Workmanship and Finish

Perform metal work so that workmanship and finish will be equal to the best practice in modern structural shops and foundries. Form iron to shape and size with sharp lines and angles. Do shearing and punching so that clean true lines and surfaces are produced. Make castings sound and free from warp, cold shuts, and blow holes that may impair their strength or appearance. Give exposed surfaces a smooth finish with sharp well-defined lines and arises. Provide necessary rabbets, lugs, and brackets wherever necessary for fitting and support.

3.1.5.2.2 Field Painting

After installation, clean cast-iron frames, covers, gratings, and steps not buried in concrete to bare metal of mortar, rust, grease, dirt, and other deleterious materials and apply a coat of bituminous paint. Do not paint surfaces subject to abrasion.

3.1.6 Installations of Wye Branches

Cutting into piping for connections shall not be done except in special approved cases. When the connecting pipe cannot be adequately supported on undisturbed earth or tamped backfill, the pipe shall be encased in concrete backfill or supported on a concrete cradle as directed. Concrete required because of conditions resulting from faulty construction methods or negligence shall be installed at no additional cost to the Government. The installation of wye branches in an existing sewer shall be made by a method which does not damage the integrity of the existing sewer. One acceptable method consists of removing one pipe section, breaking off the upper half of the bell of the next lower section and half of the running bell of wye.
section. After placing the new section, it shall be rotated so that the broken half of the bell will be at the bottom. The two joints shall then be made with joint packing and cement mortar.

3.2 FIELD QUALITY CONTROL

3.2.1 Field Tests and Inspections

The Contracting Officer will conduct field inspections and witness field tests specified in this section. Perform field tests and provide labor, equipment, and incidentals required for testing. Be able to produce evidence, when required, that each item of work has been constructed in accordance with the drawings and specifications.

3.2.2 Tests for Nonpressure Lines

Check each straight run of pipeline for gross deficiencies by holding a light in a manhole; it shall show a practically full circle of light through the pipeline when viewed from the adjoining end of line. When pressure piping is used in a nonpressure line for nonpressure use, test this piping as specified for nonpressure pipe.

3.2.2.1 Leakage Tests

Test lines for leakage by either infiltration tests or exfiltration tests, or by low-pressure air tests. Prior to testing for leakage, backfill trench up to at least lower half of pipe. When necessary to prevent pipeline movement during testing, place additional backfill around pipe sufficient to prevent movement, but leaving joints uncovered to permit inspection. When leakage or pressure drop exceeds the allowable amount specified, make satisfactory correction and retest pipeline section in the same manner. Correct visible leaks regardless of leakage test results.

3.2.2.1.1 Infiltration Tests and Exfiltration Tests

Perform these tests for sewer lines made of the specified materials, not only concrete, in accordance with ASTM C969. Make calculations in accordance with the Appendix to ASTM C969.

3.2.2.1.2 Low-Pressure Air Tests

Perform tests as follows:

3.2.2.1.2.1 PVC Plastic Pipelines

Test in accordance with UBPPA UNI-B-6. Allowable pressure drop shall be as given in UBPPA UNI-B-6. Make calculations in accordance with the Appendix to UBPPA UNI-B-6.

3.2.2.2 Deflection Testing

Perform a deflection test on entire length of installed plastic pipeline on completion of work adjacent to and over the pipeline, including leakage tests, backfilling, placement of fill, grading, paving, concreting, and any other superimposed loads determined in accordance with ASTM D2412. Deflection of pipe in the installed pipeline under external loads shall not exceed 4.5 percent of the average inside diameter of pipe. Determine whether the allowable deflection has been exceeded by use of a pull-through device or a deflection measuring device.
3.2.2.2.1 Pull-Through Device

This device shall be a spherical, spheroidal, or elliptical ball, a cylinder, or circular sections fused to a common shaft. Circular sections shall be so spaced on the shaft that distance from external faces of front and back sections will equal or exceed diameter of the circular section. Pull-through device may also be of a design promulgated by the Uni-Bell Plastic Pipe Association, provided the device meets the applicable requirements specified in this paragraph, including those for diameter of the device, and that the mandrel has a minimum of 9 arms. Ball, cylinder, or circular sections shall conform to the following:

a. A diameter, or minor diameter as applicable, of 95 percent of the average inside diameter of the pipe; tolerance of plus 0.5 percent will be permitted.

b. Homogeneous material throughout, shall have a density greater than 1.0 as related to water at 39.2 degrees F, and shall have a surface Brinell hardness of not less than 150.

c. Center bored and through-bolted with a 1/4 inch minimum diameter steel shaft having a yield strength of not less than 70,000 psi, with eyes or loops at each end for attaching pulling cables.

d. Each eye or loop shall be suitably backed with a flange or heavy washer such that a pull exerted on opposite end of shaft will produce compression throughout remote end.

3.2.2.2.2 Deflection Measuring Device

Sensitive to 1.0 percent of the diameter of the pipe being tested and shall be accurate to 1.0 percent of the indicated dimension. Deflection measuring device shall be approved prior to use.

3.2.2.2.3 Pull-Through Device Procedure

Pass the pull-through device through each run of pipe, either by pulling it through or flushing it through with water. If the device fails to pass freely through a pipe run, replace pipe which has the excessive deflection and completely retest in same manner and under same conditions.

3.2.2.2.4 Deflection measuring device procedure

Measure deflections through each run of installed pipe. If deflection readings in excess of 4.5 percent of average inside diameter of pipe are obtained, retest pipe by a run from the opposite direction. If retest continues to show a deflection in excess of 4.5 percent of average inside diameter of pipe, replace pipe which has excessive deflection and completely retest in same manner and under same conditions.

3.2.3 Tests for Pressure Lines

Test pressure lines in accordance with the applicable standard specified in this paragraph, except for test pressures. For hydrostatic pressure test, use a hydrostatic pressure 50 psi in excess of the maximum working pressure of the system, but not less than 100 psi, holding the pressure for a period of not less than one hour. For leakage test, use a hydrostatic pressure not less than the maximum working pressure of the system. Leakage test may
be performed at the same time and at the same test pressure as the pressure test. Test PVC plastic pressure lines in accordance with the requirements of AWWA C605 for pressure and leakage tests, using the allowable leakage given therein.

3.2.4 Field Tests for Concrete

Field testing requirements are covered in Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.

-- End of Section --
PART 1 GENERAL

1.1 SUMMARY

The gas distribution system includes natural gas piping and appurtenances from point of connection with existing system, to a point approximately 5 feet from the facility. Section 31 00 00 EARTHWORK, applies to this section unless otherwise specified.

1.2 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

AMERICAN GAS ASSOCIATION (AGA)

AGA ANSI B109.1 (2000) Diaphragm Type Gas Displacement Meters (Under 500 cubic ft./hour Capacity)

AGA ANSI B109.2 (2000) Diaphragm Type Gas Displacement Meters (500 cubic ft./hour Capacity and Over)

AGA ANSI B109.4 (2016) Self-Operated Diaphragm-Type Natural Gas Service Regulators for Nominal Pipe Size 1¼ inches (32 mm) and Smaller with Outlet Pressures of 2 psig (13.8 kPa) and Less

AGA XR0603 (2006; 8th Ed) AGA Plastic Pipe Manual for Gas Service

AMERICAN PETROLEUM INSTITUTE (API)

API Spec 6D (2014; Errata 1-2 2014; Errata 3-6 2015; ADD 1 2015; ADD 2 2016; Errata 7-8 2016; Errata 9 2017) Specification for Pipeline and Piping Valves

API Std 1104 (2013; Errata 1-3 2014; Addendum 1 2014; Errata 4 2015; Addendum 2 2016) Welding of Pipeline and Related Facilities

AMERICAN WATER WORKS ASSOCIATION (AWWA)

AWWA C213 (2015) Fusion-Bonded Epoxy Coating for the Interior and Exterior of Steel Water Pipelines

ASME INTERNATIONAL (ASME)

ASME B1.20.1 (2013) Pipe Threads, General Purpose (Inch)
ASME B16.11 (2016) Forged Fittings, Socket-Welding and Threaded
ASME B16.21 (2011) Nonmetallic Flat Gaskets for Pipe Flanges
ASME B16.34 (2017) Valves - Flanged, Threaded and Welding End
ASME B31.8 (2014; Supplement 2014) Gas Transmission and Distribution Piping Systems

ASTM INTERNATIONAL (ASTM)

ASTM D2513 (2014; E 2014) Thermoplastic Gas Pressure Pipe, Tubing, and Fittings
ASTM D2774 (2012) Underground Installation of Thermoplastic Pressure Piping
ASTM D3308 (2012; R 2017) PStandard Specification for TFE Resin Skived Tape

MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS)

MSS SP-110 (2010) Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

MASTER PAINTERS INSTITUTE (MPI)

MPI 9 (Oct 2009) Exterior Alkyd, Gloss, MPI Gloss Level 6

NACE INTERNATIONAL (NACE)

NACE SP0274 (1974; R 2011) High Voltage Electrical Inspection of Pipeline Coatings

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

SOCIETY FOR PROTECTIVE COATINGS (SSPC)

SSPC 7/NACE No.4 (2007; E 2004) Brush-Off Blast Cleaning

SSPC Paint 25 (1997; E 2004) Zinc Oxide, Alkyd, Linseed Oil Primer for Use Over Hand Cleaned Steel, Type I and Type II

SSPC SP 1 (2015) Solvent Cleaning

SSPC SP 3 (1982; E 2004) Power Tool Cleaning

SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

49 CFR 192 Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards

UNDERWRITERS LABORATORIES (UL)

UL FLAMMABLE & COMBUSTIBLE (2012) Flammable and Combustible Liquids
1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for Contractor Quality Control approval. Submittals with an "S" are for inclusion in the Sustainability eNotebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

- SD-02 Shop Drawings
 - Pipe, Fittings, and Associated Materials

- SD-03 Product Data
 - Materials and Equipment; G
 - Spare Parts; G
 - Pipe and Accessory Coatings; G

- SD-05 Design Data
 - Connections to Existing Lines; G
 - Connection and Abandonment Plan; G

- SD-06 Test Reports
 - Pressure and Leak Tests

- SD-07 Certificates
 - Welder's training, qualifications and procedures
 - Jointing of Polyethylene Piping
 - Utility Work

- SD-08 Manufacturer's Instructions

- SD-10 Operation and Maintenance Data
 - Gas Distribution System and Equipment Operation; G
 - Gas Distribution System Maintenance; G
 - Gas Distribution Equipment Maintenance; G

1.4 QUALITY ASSURANCE

1.4.1 Qualifications

1.4.1.1 Welding General

 a. Submit a certificate of Welder's training, qualifications and procedures, in conformance with API Std 1104, for metal along with a list of names
and identification symbols of performance qualified welders and welding operators.

c. Weld structural members in accordance with Section 05 12 00 STRUCTURAL WELDING.

1.4.1.2 Jointing of Polyethylene Piping

a. Join piping by performance qualified PE joiners, qualified by a person who has been trained and certified by the manufacturer of the pipe, using manufacturer’s pre-qualified joining procedures in accordance with AGA XR0603. Inspect joints by an inspector qualified in the joining procedures being used and in accordance with AGA XR0603. Welders training, qualifications and procedures, (metal and PE) includes use of equipment, explanation of the procedure, and successfully making joints which pass tests specified in AGA XR0603.

b. Submit a certificate of qualified jointing procedures, training procedures, qualifications of trainer, and training test results for joiners and inspectors. Notify the Contracting Officer at least 24 hours in advance of the date to qualify joiners and inspectors.

1.4.2 Pre-Installation Conference

1.4.2.1 Shop Drawings

Submit shop drawings, within 30 days of contract award, containing complete schematic and piping diagrams and any other details required to demonstrate that the system has been coordinated and functions properly as a unit. Show on the drawings proposed layout and anchorage of the system and appurtenances, and equipment relationship to other parts of the work including clearances for maintenance and operation.

1.4.2.2 Connecting and Abandonment Plan

Submit written notification of the method and schedule for making connections to existing gas lines, to the Contracting Officer at least 10 days in advance. Include gas line tie in, hot taps, abandonment/removal or demolition, purging, and plugging as applicable in conformance with ASME B31.8 Include in submittal connection and abandonment plan.

1.5 DELIVERY, STORAGE, AND HANDLING

1.5.1 Delivery and Storage

Inspect materials delivered to the site for damage, and store with a minimum of handling. Store materials on site in enclosures or under protective coverings. Store plastic piping under cover out of direct sunlight. Do not store materials directly on the ground. Keep inside of pipes and fittings free of dirt and debris.

1.5.2 Handling

Handle pipe and components carefully to ensure a sound, undamaged condition. Take particular care not to damage pipe coating. Repair damaged coatings to original finish. Do not place pipe or material of any kind inside another pipe or fitting after the coating has been applied, except as specified in paragraph INSTALLATION. Handle steel piping with coal-tar enamel coating in accordance with AWWA C203, and fusion-bonded
epoxy coatings per AWWA C213. Handle plastic pipe in conformance with AGA XR0603.

1.6 EXTRA MATERIALS

Submit spare parts data for each different item of equipment and material specified, after approval of the detail shop drawings and not later than one month prior to the date of beneficial occupancy. Include in the data a complete list of parts and supplies, with current unit prices and source of supply.

PART 2 PRODUCTS

2.1 PIPE, FITTINGS, AND ASSOCIATED MATERIALS

Provide only materials that are allowed by 49 CFR 192 for the specified installation.

Provide materials and equipment which are the standard products of a manufacturer regularly engaged in the manufacture of the products and that essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Asbestos or products containing asbestos are not allowed. Provide written verification and point of contact for a supporting service organization that is, in the opinion of the Contracting Officer, reasonably convenient to the site. Mark all valves, flanges, and fittings in accordance with MSS SP-25. Submit a complete list of materials and equipment, including manufacturer's descriptive and technical literature, performance charts and curves, catalog cuts, and installation instructions, including, but not limited to the following:

a. Dielectric Waterways and Flange Kits.

Fittings
c. Piping
d. Pipe and Accessory coatings
e. Pressure Reducing Valves.
g. Meters
h. Regulators.
i. Shut-off Valves
k. Excess flow valve

2.1.1 Steel Pipe

API Spec 5L, Grade A, B, or X42, ASTM A53/A53M, Grade A or B, Schedule 40. Steel pipe and fittings installed below grade or in contact with the soil must be protected from corrosion by a suitable coating and cathodic protection system. Paint pipe and fittings installed aboveground. Provide butt weld wrought steel fittings, conforming to ASME B16.9, Schedule 40. Provide forged steel socket weld and threaded fittings, conforming to ASME B16.11. Verify that pipe wall thickness conforms to ASME B31.8 for larger sizes and high pressures.

2.1.2 Small Fittings

For sizes 1-1/2 inches and smaller, provide fittings conforming to ASME B16.11.

2.1.3 Fittings, 2 inches and Larger

Provide pipe flanges and flanged fittings, including bolts, nuts, and bolt
patterns in accordance with ASME B16.5, Class A. Provide butt weld fittings in accordance with ASME B16.9. Use weld neck flanges.

2.1.4 Steel Forged Branch Connections

Provide steel forged branch connections conforming to ASTM A181/A181M, Class 60, carbon steel.

2.1.5 Flange Gaskets

Provide non-asbestos compressed material gaskets in accordance with ASME B16.21, 1/16 inch minimum thickness, full face or self-centering flat ring type, containing aramid fibers bonded with nitrile butadiene rubber (NBR), or glass fibers bonded with polytetrafluoroethylene, suitable for maximum 600 degrees F service and meeting applicable requirements of ASME B31.8. Gasket material must be compatible with the gas that is in the system and the known or expected contaminants that are in the gas.

2.1.6 Pipe Threads

Provide threaded pipe conforming to ASME B1.20.1.

2.1.7 Polyethylene Pipe, Tubing, Fittings and Joints

<table>
<thead>
<tr>
<th>SDR</th>
<th>Design Pressure at 73 degrees F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S = 1,250 psi</td>
</tr>
<tr>
<td>11</td>
<td>80 psig</td>
</tr>
<tr>
<td>13.5</td>
<td>60 psig</td>
</tr>
<tr>
<td>17</td>
<td>50 psig</td>
</tr>
<tr>
<td>21</td>
<td>40 psig</td>
</tr>
<tr>
<td>26</td>
<td>30 psig</td>
</tr>
</tbody>
</table>

Provide polyethylene pipe, tubing, fittings and joints conforming to ASTM D2513, pipe designations PE 2406 and PE 3408, rated SDR 11 or less, as specified in ASME B31.8. Mark pipe sections as required by ASTM D2513. Provide butt fittings conforming to ASTM D3261 and socket fittings conforming to ASTM D2683. Match fittings to the service rating of the pipe. Perform underground installations in conformance with ASTM D2774.

Jointing of plastic pipe and fittings must be performed in accordance with 49 CFR 192 using qualified procedures that have passed all required testing identified in 49 CFR subpart 192.283, using qualified personnel that have been qualified under subpart 192.285. Joints must be inspected in accordance with 49 CFR 192 by personnel qualified under subpart 192.287.

2.1.8 Sealants for Steel Pipe Threaded Joints

2.1.8.1 Sealing Compound

Provide joint sealing compound as listed in UL FLAMMABLE & COMBUSTIBLE, Class 20 or less.
2.1.8.2 Tape

Provide polytetrafluoroethylene tape conforming to ASTM D3308.

2.1.9 Identification

Provide pipe flow markings and metal tags for each valve, meter, and regulator as required by the Contracting Officer.

2.1.10 Insulating Joint Materials

Provide insulating joint materials between flanged or threaded metallic pipe systems to isolate galvanic or electrolytic action. Use insulating fittings to connect dissimilar metals and to connect unprotected piping to a gas main or service line that is cathodically protected.

2.1.10.1 Threaded Joints

For threaded pipe joints, provide steel body nut type unions complying with ASME B16.39. Provide dielectric waterways with insulating gaskets.

2.1.10.2 Flanged Joints

For flanged pipe joints, provide full face sandwich-type flange insulating gasket of the dielectric type, insulating sleeves for flange bolts and insulating washers for flange nuts.

2.1.10.3 Dielectric Waterways and Flanges

Provide dielectric waterways with temperature and pressure rating equal to or greater than that specified for the connecting piping, with metal connections on both ends suited to match connecting piping. Provide internally lined dielectric waterways, lined with an insulator specifically designed to prevent current flow between dissimilar metals, meeting the performance requirements described herein for dielectric waterways.

2.1.11 Gas Transition Fittings

Provide manufactured steel gas transition fittings approved for jointing steel and polyethylene pipe, conforming to AGA XR0603 requirements for transition fittings.

2.2 VALVES

Provide valves suitable for shutoff or isolation service and conforming to MSS SP-110 and the following:

2.2.1 Steel Valves

Provide steel valves 1-1/2 inches and smaller installed underground conforming to ASME B16.34, carbon steel, socket weld ends, with square wrench operator adaptor. Provide steel valves 1-1/2 inches and smaller installed aboveground conforming to ASME B16.34, carbon steel, socket weld or threaded ends with handwheel or wrench operator. Provide steel valves 2 inches and larger installed underground conforming to API Spec 6D, carbon steel, butt weld ends, Class A with square wrench operator adaptor. Provide steel valves 2 inches and larger installed aboveground conforming to API Spec 6D, carbon steel, butt weld or flanged ends, Class A with handwheel or wrench operator.
2.2.2 Steel Valve Operators

Provide valves 8 inches and larger with worm or spur gear operators, totally enclosed, grease packed, and sealed, with operators having Open and Closed stops and position indicators. Provide locking feature where indicated. Wherever the lubricant connections are not conveniently accessible, provide extensions for the application of lubricant. Provide valves with lubricant compatible with gas service.

2.2.3 Polyethylene Valves

Provide polyethylene valves conforming to ASME B16.40. Polyethylene valves, in sizes 1/2 inch to 6 inches, may be used with polyethylene distribution and service lines, in lieu of steel valves, for underground installation only.

2.3 PRESSURE REGULATORS

Provide ferrous bodied regulators with backflow protection, designed to meet the pressure, temperature, flow and other service conditions.

2.3.1 Service Regulators

a. Provide ferrous bodied pressure regulators for individual service lines, capable of reducing distribution line pressure to pressures required for users. Provide service regulators conforming to AGA ANSI B109.4 CGA-6.18-M95 with full capacity internal relief and overpressure shutoff. Set pressure relief at a lower pressure than would cause unsafe operation of any connected user.

c. Provide regulator(s) having a single port with orifice diameter no greater than that recommended by the manufacturer for the maximum gas flow rate at the regulator inlet pressure. Provide regulator valve vent of resilient materials designed to withstand flow conditions when pressed against the valve port, capable of regulating downstream pressure within limits of accuracy and limiting the buildup of pressure under no-flow conditions to 50 percent or less of the discharge pressure maintained under flow conditions. Provide a self contained service regulator, and pipe not exceeding exceed2 inch size.

2.4 METERS

AGA ANSI B109.2 pedestal mounted, diaphragm or enamel-coated steel case. Provided with a strainer immediately upstream. Provide diaphragm-type meter conforming to AGA ANSI B109.1 for required flow rates less than 500 cfh, or AGA ANSI B109.2, for flow rates 500 cfh and above as required by local gas utility supplier. Provide combined odometer-type register totalizer index, UV-resistant index cover, water escape hole in housing, and means for sealing against tampering. Provide temperature-compensated type meters sized for the required volumetric flow rate and suitable for accurately measuring and handling gas at pressures, temperatures, and flow rates indicated. Provide meters with over-pressure protection as specified in 49 CFR 192 and ASME B31.8. Provide meters that are tamper-proof. Provide meters with a pulse switch initiator capable of operating up to speeds of 500 maximum pulses per minute with no false pulses and requiring no field adjustments. Provide not less than one pulse per 100 cubic feet of gas. Minimum service life must be 30,000,000 cycles.
2.4.1 Utility Monitoring and Control System (UMCS) / Energy Monitoring and Control (EMCS) or Automatic Meter Reading Interfaces

Provide gas meters capable of interfacing the output signal, equivalent to volumetric flow rate, with the existing UMCS / EMCS for data gathering in units of cubic feet. Provide meters that do not require power to function and deliver data. Output signal must be either a voltage or amperage signal that can be converted to volumetric flow by using an appropriate scaling factor.

2.4.2 Measurement Configuration

For buildings that already have a gas meter with a pulse output, ensure that the pulse output is connected to a data gathering device (i.e. electric meter). For buildings where a natural gas meter already exists but does not have a pulse output, add a pulse kit to the existing meter and tie the output to a data gathering device. If the existing gas meter will not accept a pulse kit or if no meter exists a new natural gas meter must be installed, also requiring a pulse output to a data gathering device. Ensure the pulse frequency and electronic characteristics are compatible with the existing data gathering device, if any.

2.5 PROTECTIVE COVERING MATERIALS

Provide a continuously extruded polyethylene and adhesive coating system material conforming to NACE SP0185, Type A.

2.6 TELEMETERING OR RECORDING GAUGES

Equip each distribution system supplied by more than one district pressure regulating station with telemetering or recording pressure gauges to indicate the gas pressure in the district line.

PART 3 EXECUTION

3.1 EXAMINATION

After becoming familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing the work.

3.2 EXCAVATION AND BACKFILLING

Earthwork is as specified in Section 31 00 00 EARTHWORK.

3.3 GAS MAINS

Provide steel or polyethylene pipe for gas mains. Coat steel pipe and fittings with protective covering as specified. Do not install polyethylene mains aboveground.

3.4 SERVICE LINES AND EMERGENCY GAS SUPPLY CONNECTION

3.4.1 General

Construct service lines of materials specified for gas mains and extend from a gas main to and including the point of delivery within 5 feet of the building. The point of delivery is the meter set assembly. Where indicated, provide service line with an isolation valve of the same size as
the service line. Make the service lines as short and as straight as practicable between the point of delivery and the gas main, without bends or lateral curves unless necessary to avoid obstructions or otherwise permitted. Lay service lines with as few joints as practicable using standard lengths of pipe, use shorter lengths only for closures. Do not install polyethylene service lines aboveground.

3.5 WORKMANSHIP AND DEFECTS

Ensure pipe, tubing, and fittings are clear and free of cutting burrs and defects in structure or threading, and thoroughly brushed and blown free of chips and scale. Do not repair, but replace defective pipe, tubing, or fittings.

3.6 PROTECTIVE COVERING

3.6.1 Protective Covering for Underground Steel Pipe

Except as otherwise specified, apply protective coverings mechanically in a factory or field plant especially equipped for the purpose. Hand apply protective covering to valves and fittings that cannot be coated and wrapped mechanically, preferably at the plant that applies the covering to the pipe. Coat and wrap joints by hand, in a manner and with materials that produce a covering equal in thickness to that of the covering applied mechanically.

3.6.1.1 Thermoplastic Resin Coating System

Provide a thermoplastic coating system conforming to NACE SP0185, Type A. Clean the exterior of the pipe to a commercial grade blast cleaning finish in accordance with SSPC SP 6/NACE No.3, and apply adhesive compound to the pipe. Immediately after the adhesive is applied, extrude a seamless tube of polyethylene over the adhesive to produce a bonded seamless coating, with a nominal thickness of 10 mils (plus or minus 10 percent) of adhesive and 40 mils (plus or minus 10 percent) of polyethylene for pipes up to 16 inches in diameter. For pipes 18 inches and larger in diameter, apply a minimum thickness to the pipe of 10 mils (plus or minus 10 percent) adhesive and 60 mils (plus or minus 10 percent) polyethylene. Apply joint coating and field repair material as recommended by the coating manufacturer, consisting of one the following:

a. Heat shrinkable polyethylene sleeves.

b. Polyvinyl chloride pressure-sensitive adhesive tape.

c. High density polyethylene/bituminous rubber compound tape.

Inspect the coating system for holes, voids, cracks, and other damage during installation.

3.6.1.2 Inspection of Pipe Coatings

Repair any damage to the protective covering during transit and handling before installation. After field coating and wrapping has been applied, inspect the entire pipe using an electric holiday detector with impressed current set at a value in accordance with NACE SP0274 using a full-ring, spring-type coil electrode. Equip the holiday detector with a bell, buzzer, or other type of audible signal which sounds when a holiday is detected. Immediately repair all holidays in the protective covering upon
detection. The Contracting Officer reserves the right to inspect and determine the suitability of the detector. Furnish labor, materials, and equipment necessary for conducting the inspection.

3.6.2 Protective Covering for Aboveground Piping Systems

Apply finish painting conforming to the applicable paragraphs of Section 09 90 00 PAINTS AND COATINGS and as follows:

3.6.2.1 Ferrous Surfaces

Touch up shop primed surfaces with ferrous metal primer of the same type paint as the shop primer. Solvent-clean surfaces that have not been shop primed in accordance with SSPC SP 1. Mechanically clean surfaces that contain loose rust, loose mill scale, and other foreign substances by power wire brushing in accordance with SSPC SP 3 or brush-off blast clean in accordance with SSPC 7/NACE No.4 and primed with ferrous metal primer in accordance with SSPC Paint 25. Finish primed surfaces with two coats of exterior alkyd paint conforming to MPI 9.

3.6.2.2 Nonferrous Surfaces

Do not paint nonferrous surfaces.

3.6.3 Protective Covering for Piping in Valve Boxes and Manholes

Apply protective coating to piping in valve boxes or manholes as specified for underground steel pipe.

3.7 INSTALLATION

Install gas distribution system and equipment in conformance with the manufacturer's recommendations and applicable sections of ASME B31.8, AGA XR0603 and 49 CFR 192. Perform abandonment of existing gas piping in accordance with ASME B31.8. Cut the pipe without damaging the pipe; unless otherwise authorized, use an approved type of mechanical cutter. Use wheel cutters where practicable. On steel pipe 6 inches and larger, an approved gas-cutting-and-beveling machine may be used. Cut plastic pipe in accordance with AGA XR0603. Design valve installation in plastic pipe to protect the plastic pipe against excessive torsional or shearing loads when the valve is operated and from other stresses which may be exerted through the valve or valve box. Install gas piping, appliances, and equipment in accordance with NFPA 54. Install distribution piping in accordance with ASME B31.8.

3.7.1 Installing Pipe Underground

Grade gas mains and service lines as indicated. Weld joints in steel pipe except as otherwise permitted for installation of valves. Provide mains with 24 inch minimum cover; service lines with 18 inch minimum cover; and place both mains and service lines on firmly compacted select material for the full length. Where indicated, encase, bridge, or design the main to withstand any anticipated external loads as specified in ASME B31.8. Provide standard weight black steel pipe encasement material with a protective coating as specified. Separate the pipe from the casing by insulating spacers and seal the ends with casing bushings. Excavate the trench below pipe grade, bed with bank sand, and compact to provide full-length bearing. Laying pipe on blocks to produce uniform grade is not permitted. Ensure that the pipe is clean inside before it is lowered into
the trench and keep free of water, soil, and all other foreign matter that might damage or obstruct the operation of the valves, regulators, meters, or other equipment. When work is not in progress, securely close open ends of pipe or fittings with expandable plugs or other suitable means. Minor changes in line or gradient of pipe that can be accomplished through the natural flexibility of the pipe material without producing permanent deformation and without overstressing joints may be made when approved. Make changes in line or gradient that exceed the limitations specified with fittings. When cathodic protection is furnished, provide electrically insulated joints or flanges. When polyethylene piping is installed underground, place foil backed magnetic tape above the pipe in accordance with NFPA 54 to permit locating with a magnetic detector. After laying of pipe and testing, backfill the trench in accordance with Section 310000 EARTHWORK.

3.7.2 Installing Pipe Aboveground

Protect aboveground piping against dirt and other foreign matter, as specified for underground piping. Weld joints in steel pipe; however, joints in pipe 1-1/2 inches in diameter and smaller may be threaded; joints may also be threaded to accommodate the installation of valves. Provide flanges of the weld neck type to match wall thickness of pipe.

3.8 PIPE JOINTS

Design and install pipe joints to effectively sustain the longitudinal pullout forces caused by the contraction of piping or superimposed loads.

3.8.1 Threaded Steel Joints

Provide threaded joints in steel pipe with tapered threads evenly cut, made with UL approved graphite joint sealing compound for gas service or polytetrafluoroethylene tape applied to the male threads only. Caulking of threaded joints to stop or prevent leaks is not permitted.

3.8.2 Welded Steel Joints

Perform gas pipe weldments, as indicated, by welders who have submitted certificates on file with the Contracting Officer to conform to this specification and as required in 49 CFR 192 and ASME B31.8. Make changes in direction of piping by welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction is not permitted. Branch connection may be made with either welding tees or forged branch outlet fittings. Use forged or flared branch outlet fittings for improvement of flow where attached to the run, and reinforced against external strains. Perform all beveling, alignment, and heat treatment in accordance with 49 CFR 192 and ASME B31.8. Remove weld defects and repair the weld, or remove the weld joints entirely and reweld. After filler metal has been removed from its original package, protect it or store so that its characteristics or welding properties are not affected adversely. Do not use electrodes that have been wetted or have lost any of their coating. Perform inspection of welds in accordance with 49 CFR 192, Subpart E, and ASME B31.8.

3.8.3 Polyethylene Pipe Jointing Procedures

Use jointing procedures conforming to AGA XR0603 and 49 CFR 192 that have been qualified by test in accordance with 49 CFR 192.283 and proven to make satisfactory joints. Personnel make joints in plastic pipe must be
qualified in accordance with 49 CFR 192.285, under the submitted and approved procedure by making a satisfactory specimen joint that passes the required inspection and test. Joints in plastic pipe must be inspected by a person qualified by 49 CFR 192.287 under the applicable procedure. Certificates that qualify the applicable procedures, joining personnel, and inspectors must be submitted and approved and must be on file with the Contracting Officer prior to making these joints. Avoid making indiscriminate heat fusion joining of plastic pipe or fittings made from different polyethylene resins by classification or by manufacturer if other alternative joining procedures are available. If heat fusion joining of dissimilar polyethylene is required, special procedures are required. Test the method of heat fusion joining dissimilar polyethylene resins in accordance with paragraph TESTS, subparagraph Destructive Tests of Plastic Pipe Joints.

3.8.4 Connections Between Metallic and Plastic Piping

Only make metallic to plastic connections outside, underground, and with approved transition fittings.

3.9 VALVE BOXES

Provide valve boxes of cast iron not less than 3/16 inch thick at each underground valve except where concrete or other type of housing is indicated. Provide valve boxes with locking covers that require a special wrench for removal, and furnish the correctly marked wrench for each box. Cast the word "gas" in the box cover. When the valve is located in a roadway, protect the valve box by a suitable concrete slab at least 3 square feet. When in a sidewalk, provide the top of the box as a removable concrete slab 2 feet square and set flush with the sidewalk. Make the boxes adjusting extension type with screw or slide-type adjustments. Separately support valve boxes to not rest on the pipe, so that no traffic loads can be transmitted to the pipe. Only locate valve boxes or inside of buildings.

3.10 DRIPS

Install drips conforming to the details, provide commercial units of approved type and capacity. Connect a blow off pipe 1-1/4 inches or larger to each drip at its lowest point and extend to or near the ground surface at a convenient location away from traffic. Provide a reducing fitting for each discharge at each drip terminal (outlet), a plug valve, and a 1/2 inch nipple turned down. Locate the discharge terminal (outlet) inside a length of 12 inches or larger vitrified clay pipe, concrete sewer pipe or concrete terminal box and closed at the ground surface with a suitable replacement cover.

3.11 PRESSURE REGULATOR INSTALLATION

3.11.1 Service Line Regulators

Install a shutoff valve, meter set assembly, and service regulator on the service line outside the building, 18 inches above the ground on the riser. Install an insulating joint on the inlet side of the meter set assembly and service regulator and construct to prevent flow of electrical current. Provide a 3/8 inch tapped fitting equipped with a plug on both sides of the service regulator for installation of pressure gauges for adjusting the regulator. Terminate all service regulator vents and relief vents in the outside air in rain and insect resistant fittings. Locate the
open end of the vent where gas can escape freely into the atmosphere, away from any openings into the building and above areas subject to flooding.

3.12 METER INSTALLATION

Install meters in accordance with ASME B31.8. Install permanent gas meters with provisions for isolation and removal for calibration and maintenance, and suitable for operation in conjunction with an energy monitoring and control system.

3.13 CONNECTIONS TO EXISTING LINES

Make connections between new work and existing gas lines, where required, in accordance with ASME B31.8, using proper fittings to suit the actual conditions. When connections are made by tapping into a gas main, provide the same size connecting fittings as the pipe being connected.

3.13.1 Connections to Publicly or Privately Operated Gas Utility Lines

Provide materials for the connections to the existing gas lines. The Utility is to make final connections and turn on the gas. The Utility is to also disconnect, purge and cap, plug or otherwise effectively seal existing lines that are to be a abandoned or taken out of service. Notify the Contracting Officer, in writing, 10 days before final connections and turning on of gas lines. Make necessary arrangements with the Utility for tie in and activation of new gas lines. Only the Operating Agency/Utility Company may reactivate the system after tie in. Furnish a certification by the Operating Agency/Utility Company that all Utility work has been satisfactorily completed.

3.13.2 Connection to Government Owned/Operated Gas Lines

Provide connections to the existing gas lines in accordance with approved procedures. Only perform deactivation of any portion of the existing system at the valve location indicated. Reactivation of any existing gas lines will only be done by the Government. Submit the approved Connection and Abandonment Plan prior to making any connections to existing gas lines, manicure the Utility's required procedures. Notify the Contracting Officer, in writing, 10 days before connections to existing lines are to be made.

a. Physically disconnect from the pipeline system if facilities are abandoned in place. Purge, cap, plug or otherwise effectively seal the open ends of all abandoned facilities. Do not complete abandonment until it has been determined that the volume of gas or liquid hydrocarbons contained within the abandoned section poses no potential hazard. Use air or inert gas for purging, or fill the facility with water or other inert material. If air is used for purging, ensure that a combustible mixture is not present after purging.

b. When a main is abandoned, together with the service lines connected to it, seal only the customer's end of such service lines as stipulated above.

c. Disconnect abandoned service lines from the active mains as close to the main as practicable.

d. Close all valves left in the abandoned segment.
e. Remove all above grade valves, risers, and vault and valve box covers. Fill vault and valve box voids with suitable compacted backfill material.

3.14 CATHODIC PROTECTION

Provide cathodic protection for all metallic gas piping installed underground and install as specified in Section 26 42 14.00 10 - CATHODIC PROTECTION SYSTEM (SACRIFICIAL ANODE).

3.15 TESTS

3.15.1 Destructive Tests of Plastic Pipe Joints

Prior to making polyethylene heat fusion joints, make a joint of each size and type to be installed that day by each person performing joining of plastic pipe that day and destructively test. Cut at least 3 longitudinal straps from each joint. Visually examine each strap for voids or discontinuities on the cut surfaces of the joint area, deformations by bending, torque, or impact. Failures are not permitted in the joint area. If a joint fails the visual or deformation test, the qualified joiner who made that joint is not allowed to make further field joints in plastic pipe on this job until that joiner has been retrained and re-qualified. Record the results of the destructive tests including the date and time of the tests, size and type of the joints, ambient conditions, fusion iron temperature and names of inspectors and joiners.

3.15.2 Pressure and Leak Tests

Test the system of gas mains and service lines after construction and before being placed in service, using air as the test medium. Follow all testing recommendations and safety precautions as recommended by the piping manufacturer's specifications, NFPA 54 and 49 CFR 192. Submit data in booklet form from all pressure tests of the distribution system. Perform testing for polyethylene (PE) piping in accordance with ASTM F2786.

a. Prior to testing the system, blow-out, clean, and clear the interior of all foreign materials. Remove all meters, regulators, and controls before blowing out and cleaning, and reinstall after clearing of all foreign materials.

b. Perform testing of gas mains and service lines with due regard for the safety of employees and the public during the test. Keep persons not working on the test operations out of the testing area while testing is proceeding. Perform the test on the system as a whole or on sections that can be isolated.

c. Test joints in sections prior to backfilling when trenches are to be backfilled before the completion of other pipeline sections. Continue the test for at least 24 hours from the time of the initial readings to the final readings of pressure and temperature. Do not take the initial test readings of the instrument for at least 1 hour after the pipe has been subjected to the full test pressure. Do not take initial or final readings at times of rapid changes in atmospheric conditions, and temperatures are representative of the actual trench conditions. No indication of reduction of pressure is allowed during the test after corrections have been made for changes in atmospheric conditions in conformity with the relationship \(T(1)P(2)=T(2)P(1) \), in which \(T \) and \(P \) denote absolute temperature and pressure, respectively, and the numbers
denote initial and final readings.

d. During the test, completely isolate the entire system from all compressors and other sources of air pressure. Test each joint by means of soap and water or an equivalent nonflammable solution prior to backfilling or concealing any work. Secure approval of testing instruments from the Contracting Officer. Furnish all labor, materials and equipment for conducting the tests subject to inspection at all times during the tests. Maintain safety precautions for air pressure testing at all times during the tests.

3.15.3 Meter Test

Test meter to verify data transfer to data collection server and validate calibration of both meter and the data that is received by the data collection server.

3.16 MAINTENANCE

Submit operation and maintenance data in accordance with Section 01000 OPERATION AND MAINTENANCE DATA, in three separate packages. Submit Data packages, as specified.

3.16.1 Gas Distribution System and Equipment Operation

Include maps showing piping layout, locations of system valves, gas line markers and cathodic protection system test stations; step-by-step procedures for system start up, operation and shutdown (index system components and equipment to the system maps); isolation procedures including valve operation to shutdown or isolate each section of the system (index valves to the system maps and provide separate procedures for normal operation and emergency shutdown if required to be different). Submit Data Package No. 4 per Section 01000.

3.16.2 Gas Distribution System Maintenance

Include maintenance procedures and frequency for system and equipment; identification of pipe materials and manufacturer by locations, pipe repair procedures, and jointing procedures at transitions to other piping material or material from a different manufacturer. Submit Data Package No. 4 per Section 01000.

3.16.3 Gas Distribution Equipment Maintenance

Include identification of valves and other equipment by materials, manufacturer, vendor identification and location; maintenance procedures and recommended tool kits for valves and equipment; recommended repair methods (i.e., field repair, factory repair, or replacement) for each valve and piece of equipment; and preventive maintenance procedures, possible failure modes and troubleshooting guide. Submit Data Package No. 3 per Section 01000.

-- End of Section --
1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM INTERNATIONAL (ASTM)

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE)

INTERNATIONAL ELECTRICAL TESTING ASSOCIATION (NETA)

NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)

NEMA RN 1 (2005; R 2013) Polyvinyl-Chloride (PVC) Externally Coated Galvanized Rigid Steel Conduit and Intermediate Metal Conduit
Chloride (PVC) Plastic Utilities Duct for Underground Installation

NEMA WC 70

NATIONAL FIRE PROTECTION ASSOCIATION (NFPA)

NFPA 70

(2017; ERTA 1-2 2017; TIA 17-1; TIA 17-2; TIA 17-3) National Electrical Code

U.S. DEPARTMENT OF AGRICULTURE (USDA)

RUS Bull 1751F-644

UNDERWRITERS LABORATORIES (UL)

UL 1242

(2006; Reprint Mar 2014) Standard for Electrical Intermediate Metal Conduit -- Steel

UL 44

(2014; Reprint Feb 2015) Thermoset-Insulated Wires and Cables

UL 467

(2013; Reprint Jun 2017) UL Standard for Safety Grounding and Bonding Equipment

UL 486A-486B

(2013; Reprint Jan 2016) Wire Connectors

UL 514A

(2013) Metallic Outlet Boxes

UL 514B

(2012; Reprint Nov 2014) Conduit, Tubing and Cable Fittings

UL 6

(2007; Reprint Nov 2014) Electrical Rigid Metal Conduit-Steel

UL 651

(2011; Reprint May 2014) Standard for Schedule 40 and 80 Rigid PVC Conduit and Fittings

UL 83

(2014) Thermoplastic-Insulated Wires and Cables

UL 854

UL 94

1.2 SYSTEM DESCRIPTION

Items provided under this section must be specifically suitable for the following service conditions.

b. Altitude 1000 feet.
c. Ambient Temperature 110 degrees F.
d. Frequency 60 hz
f. Seismic Parameters Category IV

1.3 DEFINITIONS

a. Unless otherwise specified or indicated, electrical and electronics terms used in these specifications, and on the drawings, are as defined in IEEE Stds Dictionary.
b. In the text of this section, the words conduit and duct are used interchangeably and have the same meaning.
c. In the text of this section, "medium voltage cable splices," and "medium voltage cable joints" are used interchangeably and have the same meaning.

1.4 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submittals with an "S" are for inclusion in the Sustainability Notebook, in conformance to Section 01 33 29 SUSTAINABILITY REPORTING. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-03 Product Data

Protective Devices and Coordination Study; G

The study must be submitted with protective device equipment submittals. No time extension or similar contract modifications will be granted for work arising out of the requirements for this study. Approval of protective devices proposed must be based on recommendations of this study. The Government must not be held responsible for any changes to equipment, device ratings, settings, or additional labor for installation of equipment or devices ordered or procured prior to approval of the study.

SD-06 Test Reports

Field Acceptance Checks and Tests; G

1.5 QUALITY ASSURANCE

1.5.1 Regulatory Requirements

In each of the publications referred to herein, consider the advisory provisions to be mandatory, as though the word, "must" had been substituted for "should" wherever it appears. Interpret references in these publications to the "authority having jurisdiction," or words of similar meaning, to mean the Contracting Officer. Equipment, materials, installation, and workmanship must be in accordance with the mandatory and advisory provisions of IEEE C2 and NFPA 70 unless more stringent requirements are specified or indicated.
1.5.2 Standard Products

Provide materials and equipment that are products of manufacturers regularly engaged in the production of such products which are of equal material, design and workmanship. Products must have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2-year period must include applications of equipment and materials under similar circumstances and of similar size. The product must have been for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures during the 2-year period. Where two or more items of the same class of equipment are required, these items must be products of a single manufacturer; however, the component parts of the item need not be the products of the same manufacturer unless stated in this section.

1.5.2.1 Alternative Qualifications

Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation for not less than 6000 hours, exclusive of the manufacturers' factory or laboratory tests, is furnished.

1.5.2.2 Material and Equipment Manufacturing Date

Products manufactured more than 3 years prior to date of delivery to site are not acceptable, unless specified otherwise.

PART 2 PRODUCTS

2.1 CONDUIT, DUCTS, AND FITTINGS

2.1.1 Rigid Metal Conduit

UL 6.

2.1.1.1 Rigid Metallic Conduit, PVC Coated

NEMA RN 1, Type A40, except that hardness must be nominal 85 Shore A durometer, dielectric strength must be minimum 400 volts per mil at 60 Hz, and tensile strength must be minimum 3500 psi.

2.1.2 Intermediate Metal Conduit

UL 1242.

2.1.2.1 Intermediate Metal Conduit, PVC Coated

NEMA RN 1, Type A40, except that hardness must be nominal 85 Shore A durometer, dielectric strength must be minimum 400 volts per mil at 60 Hz, and tensile strength must be minimum 3500 psi.

2.1.3 Plastic Conduit for Direct Burial and Riser Applications

UL 651 and NEMA TC 2, EPC-40.

2.1.4 Innerduct

Provide fabric-mesh innerducts, with pullwire. Size as indicated.
2.1.5 Duct Sealant

UL 94, Class HBF. Provide high-expansion urethane foam duct sealant that expands and hardens to form a closed, chemically and water resistant, rigid structure. Sealant must be compatible with common cable and wire jackets and capable of adhering to metals, plastics and concrete. Sealant must be capable of curing in temperature ranges of 35 degrees F to 95 degrees F. Cured sealant must withstand temperature ranges of -20 degrees F to 200 degrees F without loss of function.

2.1.6 Fittings

2.1.6.1 Metal Fittings

UL 514B.

2.1.6.2 PVC Conduit Fittings

UL 514B, UL 651.

2.1.6.3 PVC Duct Fittings

NEMA TC 9.

2.1.6.4 Outlet Boxes for Steel Conduit

Outlet boxes for use with rigid or flexible steel conduit must be cast-metal cadmium or zinc-coated if of ferrous metal with gasketed closures and must conform to UL 514A.

2.2 LOW VOLTAGE INSULATED CONDUCTORS AND CABLES

Insulated conductors must be rated 600 volts and conform to the requirements of NFPA 70, including listing requirements, or in accordance with NEMA WC 70. Wires and cables manufactured more than 24 months prior to date of delivery to the site are not acceptable. Service entrance conductors must conform to UL 854, type USE.

2.2.1 Conductor Types

Cable and duct sizes indicated are for copper conductors and THHN/THWN unless otherwise noted. Conductors No. 10 AWG and smaller must be solid. Conductors No. 8 AWG and larger must be stranded. All conductors must be copper.

2.2.2 Conductor Material

Unless specified or indicated otherwise or required by NFPA 70, wires in conduit, other than service entrance, must be 600-volt, Type THWN/THHN conforming to UL 83 or Type XHHW conforming to UL 44. Copper conductors must be annealed copper complying with ASTM B3 and ASTM B8.

2.2.3 Jackets

Multiconductor cables must have an overall PVC outer jacket.
2.2.4 In Duct

Cables must be single-conductor cable.

2.2.5 Cable Marking

Insulated conductors must have the date of manufacture and other identification imprinted on the outer surface of each cable at regular intervals throughout the cable length.

Identify each cable by means of a fiber, laminated plastic, or non-ferrous metal tags, or approved equal, in each manhole, handhole, junction box, and each terminal. Each tag must contain the following information; cable type, conductor size, circuit number, circuit voltage, cable destination and phase identification.

Conductors must be color coded. Provide conductor identification within each enclosure where a tap, splice, or termination is made. Conductor identification must be by color-coded insulated conductors, plastic-coated self-sticking printed markers, colored nylon cable ties and plates, heat shrink type sleeves, or colored electrical tape. Control circuit terminations must be properly identified. Color must be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in same raceway or box, other neutrals must be white with a different colored (not green) stripe for each. Color of ungrounded conductors in different voltage systems must be as follows:

a. 208/120 volt, three-phase
 (1) Phase A - black
 (2) Phase B - red
 (3) Phase C - blue

b. 480/277 volt, three-phase
 (1) Phase A - brown
 (2) Phase B - orange
 (3) Phase C - yellow

c. 120/240 volt, single phase: Black and red

2.3 LOW VOLTAGE WIRE CONNECTORS AND TERMINALS

Must provide a uniform compression over the entire conductor contact surface. Use solderless terminal lugs on stranded conductors.

a. For use with copper conductors: UL 486A-486B.

2.4 LOW VOLTAGE SPLICES

Provide splices in conductors with a compression connector on the conductor and by insulating and waterproofing using one of the following methods which are suitable for continuous submersion in water and comply with ANSI C119.1.
2.4.1 Heat Shrinkable Splice

Provide heat shrinkable splice insulation by means of a thermoplastic adhesive sealant material applied in accordance with the manufacturer's written instructions.

2.4.2 Cold Shrink Rubber Splice

Provide a cold-shrink rubber splice which consists of EPDM rubber tube which has been factory stretched onto a spiraled core which is removed during splice installation. The installation must not require heat or flame, or any additional materials such as covering or adhesive. It must be designed for use with inline compression type connectors, or indoor, outdoor, direct-burial or submerged locations.

2.5 PULL ROPE

Plastic or flat pull line (bull line) having a minimum tensile strength of 200 pounds.

2.6 GROUNDING AND BONDING

2.6.1 Driven Ground Rods

Provide copper-clad steel ground rods conforming to UL 467 not less than 3/4 inch in diameter by 10 feet in length. Sectional type rods may be used for rods 20 feet or longer.

2.6.2 Grounding Conductors

Stranded-bare copper conductors must conform to ASTM B8, Class B, soft-drawn unless otherwise indicated. Solid-bare copper conductors must conform to ASTM B1 for sizes No. 8 and smaller. Insulated conductors must be of the same material as phase conductors and green color-coded, except that conductors must be rated no more than 600 volts. Aluminum is not acceptable.

2.7 PROTECTIVE DEVICES AND COORDINATION

Provide protective devices and coordination.

PART 3 EXECUTION

3.1 INSTALLATION

Install equipment and devices in accordance with the manufacturer's published instructions and with the requirements and recommendations of NFPA 70 and IEEE C2 as applicable. In addition to these requirements, install telecommunications in accordance with RUS Bull 1751F-644.

3.2 CABLE INSPECTION

Inspect each cable reel for correct storage positions, signs of physical damage, and broken end seals prior to installation. If end seal is broken, remove moisture from cable prior to installation in accordance with the cable manufacturer's recommendations.
3.3 UNDERGROUND FEEDERS SUPPLYING BUILDINGS

Terminate underground feeders supplying building at a point 5 feet outside the building and projections thereof, except that conductors must be continuous to the terminating point indicated. Coordinate connections of the feeders to the service entrance equipment with Section 26 20 00 INTERIOR DISTRIBUTION SYSTEM. Provide PVC, Type EPC-40 conduit from the supply equipment to a point 5 feet outside the building and projections thereof. Protect ends of underground conduit with plastic plugs until connections are made.

Encase the underground portion of the conduit in a concrete envelope and bury as specified for underground duct with concrete encasement.

3.4 UNDERGROUND CONDUIT AND DUCT SYSTEMS

3.4.1 Requirements

Run conduit in straight lines except where a change of direction is necessary. Provide numbers and sizes of ducts as indicated. Provide a 4/0 AWG bare copper grounding conductor above medium-voltage distribution duct banks. Bond bare copper grounding conductor to ground rings (loops) in all manholes and to ground rings (loops) at all equipment slabs (pads). Route grounding conductor into manholes with the duct bank (sleeving is not required). Ducts must have a continuous slope downward toward underground structures and away from buildings, laid with a minimum slope of 4 inches per 100 feet. Depending on the contour of the finished grade, the high-point may be at a terminal, a manhole, a handhole, or between manholes or handholes. Provide ducts with end bells whenever duct lines terminate in structures.

Perform changes in ductbank direction as follows:

a. Short-radius manufactured 90-degree duct bends may be used only for pole or equipment risers, unless specifically indicated as acceptable.

b. The minimum manufactured bend radius must be 18 inches for ducts of less than 3 inch diameter, and 36 inches for ducts 3 inches or greater in diameter.

c. As an exception to the bend radius required above, provide field manufactured longsweep bends having a minimum radius of 25 feet for a change of direction of more than 5 degrees, either horizontally or vertically, using a combination of curved and straight sections. Maximum manufactured curved sections: 30 degrees.

3.4.2 Treatment

Ducts must be kept clean of concrete, dirt, or foreign substances during construction. Field cuts requiring tapers must be made with proper tools and match factory tapers. A coupling recommended by the duct manufacturer must be used whenever an existing duct is connected to a duct of different material or shape. Ducts must be stored to avoid warping and deterioration with ends sufficiently plugged to prevent entry of any water or solid substances. Ducts must be thoroughly cleaned before being laid. Plastic ducts must be stored on a flat surface and protected from the direct rays of the sun.
3.4.3 Conduit Cleaning

As each conduit run is completed, for conduit sizes 3 inches and larger, draw a flexible testing mandrel approximately 12 inches long with a diameter less than the inside diameter of the conduit through the conduit. After which, draw a stiff bristle brush through until conduit is clear of particles of earth, sand and gravel; then immediately install conduit plugs. For conduit sizes less than 3 inches, draw a stiff bristle brush through until conduit is clear of particles of earth, sand and gravel; then immediately install conduit plugs.

3.4.4 Galvanized Conduit Concrete Penetrations

Galvanized conduits which penetrate concrete (slabs, pavement, and walls) in wet locations must be PVC coated and must extend from at least 2 inches within the concrete to the first coupling or fitting outside the concrete (minimum of 6 inches from penetration).

3.4.5 Multiple Conduits

Separate multiple conduits by a minimum distance of 3 inches, except that light and power conduits must be separated from control, signal, and telephone conduits by a minimum distance of 12 inches. Stagger the joints of the conduits by rows (horizontally) and layers (vertically) to strengthen the conduit assembly. Provide plastic duct spacers that interlock vertically and horizontally. Spacer assembly must consist of base spacers, intermediate spacers, ties, and locking device on top to provide a completely enclosed and locked-in conduit assembly. Install spacers per manufacturer’s instructions, but provide a minimum of two spacer assemblies per 10 feet of conduit assembly.

3.4.6 Conduit Plugs and Pull Rope

New conduit indicated as being unused or empty must be provided with plugs on each end. Plugs must contain a weep hole or screen to allow water drainage. Provide a plastic pull rope having 3 feet of slack at each end of unused or empty conduits.

3.4.7 Conduit and Duct Without Concrete Encasement

Depths to top of the conduit must be not less than 24 inches below finished grade. Provide not less than 3 inches clearance from the conduit to each side of the trench. Grade bottom of trench smooth; where rock, soft spots, or sharp-edged materials are encountered, excavate the bottom for an additional 3 inches, fill and tamp level with original bottom with sand or earth free from particles, that would be retained on a 1/4 inch sieve. The first 6 inch layer of backfill cover must be sand compacted as previously specified. The rest of the excavation must be backfilled and compacted in 3 to 6 inch layers. Provide color, type and depth of warning tape as specified in Section 31 00 00 EARTHWORK.

3.4.7.1 Encasement Under Roads and Structures

Under roads, paved areas, and railroad tracks, install conduits in concrete encasement of rectangular cross-section providing a minimum of 3 inch concrete cover around ducts. Concrete encasement must extend at least 5 feet beyond the edges of paved areas and roads, and 12 feet beyond the rails on each side of railroad tracks. Depths to top of the concrete
envelope must be not less than 24 inches below finished grade.

3.4.8 Duct Sealing

Seal all electrical penetrations for radon mitigation, maintaining integrity of the vapor barrier, and to prevent infiltration of air, insects, and vermin.

3.5 CABLE PULLING

Test existing duct lines with a mandrel and thoroughly swab out to remove foreign material before pulling cables. Pull cables down grade with the feed-in point at the manhole or buildings of the highest elevation. Use flexible cable feeds to convey cables through manhole opening and into duct runs. Do not exceed the specified cable bending radii when installing cable under any conditions, including turnups into switches, transformers, switchgear, switchboards, and other enclosures. Cable with tape or wire shield must have a bending radius not less than 12 times the overall diameter of the completed cable. If basket-grip type cable-pulling devices are used to pull cable in place, cut off the section of cable under the grip before splicing and terminating.

3.5.1 Cable Lubricants

Use lubricants that are specifically recommended by the cable manufacturer for assisting in pulling jacketed cables.

3.6 CONDUCTORS INSTALLED IN PARALLEL

Conductors must be grouped such that each conduit of a parallel run contains 1 Phase A conductor, 1 Phase B conductor, 1 Phase C conductor, and 1 neutral conductor.

3.7 LOW VOLTAGE CABLE SPLICING AND TERMINATING

Make terminations and splices with materials and methods as indicated or specified herein and as designated by the written instructions of the manufacturer. Do not allow the cables to be moved until after the splicing material has completely set. Make splices in underground distribution systems only in accessible locations such as manholes, handholes, or aboveground termination pedestals.

3.8 CABLE END CAPS

Cable ends must be sealed at all times with coated heat shrinkable end caps. Cables ends must be sealed when the cable is delivered to the job site, while the cable is stored and during installation of the cable. The caps must remain in place until the cable is spliced or terminated. Sealing compounds and tape are not acceptable substitutes for heat shrinkable end caps. Cable which is not sealed in the specified manner at all times will be rejected.

3.9 GROUNDING SYSTEMS

NFPA 70 and IEEE C2, except provide grounding systems with a resistance to solid earth ground not exceeding 5 ohms.
3.9.1 Grounding Electrodes

Provide cone pointed driven ground rods driven full depth plus 6 inches, installed to provide an earth ground of the appropriate value for the particular equipment being grounded. If the specified ground resistance is not met, an additional ground rod must be provided in accordance with the requirements of NFPA 70 (placed not less than 6 feet from the first rod). Should the resultant (combined) resistance exceed the specified resistance, measured not less than 48 hours after rainfall, notify the Contracting Officer immediately.

3.9.2 Grounding Connections

Make grounding connections which are buried or otherwise normally inaccessible, by exothermic weld or compression connector.

a. Make exothermic welds strictly in accordance with the weld manufacturer's written recommendations. Welds which are "puffed up" or which show convex surfaces indicating improper cleaning are not acceptable. Mechanical connectors are not required at exothermic welds.

b. Make compression connections using a hydraulic compression tool to provide the correct circumferential pressure. Tools and dies must be as recommended by the manufacturer. An embossing die code or other standard method must provide visible indication that a connector has been adequately compressed on the ground wire.

3.9.3 Grounding Conductors

Provide bare grounding conductors, except where installed in conduit with associated phase conductors. Ground cable sheaths, cable shields, conduit, and equipment with No. 6 AWG. Ground other noncurrent-carrying metal parts and equipment frames of metal-enclosed equipment. Ground metallic frames and covers of handholes and pull boxes with a braided, copper ground strap with equivalent ampacity of No. 6 AWG.

3.10 EXCAVATING, BACKFILLING, AND COMPACTING

Provide in accordance with NFPA 70 and Section 31 00 00 EARTHWORK.

3.10.1 Reconditioning of Surfaces

3.10.1.1 Unpaved Surfaces

Restore to their original elevation and condition unpaved surfaces disturbed during installation of duct. Preserve sod and topsoil removed during excavation and reinstall after backfilling is completed. Replace sod that is damaged by sod of quality equal to that removed. When the surface is disturbed in a newly seeded area, re-seed the restored surface with the same quantity and formula of seed as that used in the original seeding, and provide topsoiling, fertilizing, liming, seeding, sodding, sprigging, or mulching.

3.10.1.2 Paving Repairs

Where trenches, pits, or other excavations are made in existing roadways and other areas of pavement where surface treatment of any kind exists, restore such surface treatment or pavement the same thickness and in the same kind as previously existed, except as otherwise specified, and to
match and tie into the adjacent and surrounding existing surfaces.

3.11 CAST-IN-PLACE CONCRETE

Provide concrete in accordance with Section 03 30 00.00 10 CAST-IN-PLACE CONCRETE.

3.11.1 Concrete Slabs (Pads) for Equipment

Unless otherwise indicated, the slab must be at least 8 inches thick, reinforced with a 6 by 6 - W2.9 by W2.9 mesh, placed uniformly 4 inches from the top of the slab. Slab must be placed on a 6 inch thick, well-compacted gravel base. Top of concrete slab must be approximately 4 inches above finished grade with gradual slope for drainage. Edges above grade must have 1/2 inch chamfer. Slab must be of adequate size to project at least 8 inches beyond the equipment.

Stub up conduits, with bushings, 2 inches into cable wells in the concrete pad. Coordinate dimensions of cable wells with transformer cable training areas.

3.11.2 Sealing

When the installation is complete, seal all conduit and other entries into the equipment enclosure with an approved sealing compound. Seals must be of sufficient strength and durability to protect all energized live parts of the equipment from rodents, insects, or other foreign matter.

3.12 FIELD QUALITY CONTROL

3.12.1 Performance of Field Acceptance Checks and Tests

Perform in accordance with the manufacturer's recommendations, and include the following visual and mechanical inspections and electrical tests, performed in accordance with NETA ATS.

3.12.1.1 Low Voltage Cables, 600-Volt

Perform tests after installation of cable, splices and terminations and before terminating to equipment or splicing to existing circuits.

a. Visual and Mechanical Inspection

 (1) Inspect exposed cable sections for physical damage.

 (2) Verify that cable is supplied and connected in accordance with contract plans and specifications.

 (3) Verify tightness of accessible bolted electrical connections.

 (4) Inspect compression-applied connectors for correct cable match and indentation.

 (5) Visually inspect jacket and insulation condition.

 (6) Inspect for proper phase identification and arrangement.

b. Electrical Tests
(1) Perform insulation resistance tests on wiring No. 6 AWG and larger diameter using instrument which applies voltage of approximately 1000 volts dc for one minute.

(2) Perform continuity tests to insure correct cable connection.

3.12.1.2 Grounding System

a. Visual and mechanical inspection

Inspect ground system for compliance with contract plans and specifications.

b. Electrical tests

Perform ground-impedance measurements utilizing the fall-of-potential method in accordance with IEEE 81. On systems consisting of interconnected ground rods, perform tests after interconnections are complete. On systems consisting of a single ground rod perform tests before any wire is connected. Take measurements in normally dry weather, not less than 48 hours after rainfall. Use a portable ground resistance tester in accordance with manufacturer's instructions to test each ground or group of grounds. The instrument must be equipped with a meter reading directly in ohms or fractions thereof to indicate the ground value of the ground rod or grounding systems under test. Provide site diagram indicating location of test probes with associated distances, and provide a plot of resistance vs. distance.

3.12.2 Follow-Up Verification

Upon completion of acceptance checks and tests, show by demonstration in service that circuits and devices are in good operating condition and properly performing the intended function. As an exception to requirements stated elsewhere in the contract, the Contracting Officer must be given 5 working days advance notice of the dates and times of checking and testing.

.... -- End of Section --