NORTH CAROLINA AIR NATIONAL GUARD

C-17 CORROSION CONTROL AND FUEL CELL HANGAR AND FLIGHT SIMULATOR
145th AIRLIFT WING
CHARLOTTE-DOUGLAS IAP, NORTH CAROLINA

CONTRACT NO.: W9133L-15-D-0002
TASK ORDER NO.: D303
PN: FJRP159062

B-3 FINAL DESIGN SUBMISSION
22 SEPTEMBER 2017

VOLUME 2 of 5
STRUCTURAL
NOTES:
1. AVOID AREAS WHERE BUILDING PRESSURE ACTING ON WIND LOAD RETAINS DENSITY, DEPART FROM THE SURFACE, RESPECTIVELY.
2. WIND PRESSURES ARE ULTIMATE PRESSURES AND HAVE BEEN CALCULATED IN ACCORDANCE WITH ANSI/ASCE 7 COMMERCIAL AND NATIONAL BUILDING CODE.
3. IN ORDER TO OBTAIN ALLOWABLE/NOMINAL PRESSURES, ULTIMATE PRESSURES SHALL BE MULTIPLIED BY 0.6.
4. FOR THE POSITIVE WIND PRESSURES LOAD CASES, ROOF & WALL COMPONENTS & CLADDINGS ARE PRESSURIZED TO THE MINIMUM HORIZONTAL PRESSURES ACROSS THE BUILDING.
5. IN ORDER TO OBTAIN ALLOWABLE/NOMINAL PRESSURES, THE POSITIVE WIND PRESSURES FOR WALLS FOR REGION 4.

ZONE 5 WALL PRESSURES:
- WALL ZONE 2: 71.5 PSF
- WALL ZONE 3: 54.3 PSF
- WALL ZONE 4: 47.4 PSF

ZONE 6 WALL PRESSURES:
- WALL ZONE 2: 71.5 PSF
- WALL ZONE 3: 54.3 PSF
- WALL ZONE 4: 47.4 PSF

ZONE 7 WALL PRESSURES:
- WALL ZONE 2: 71.5 PSF
- WALL ZONE 3: 54.3 PSF
- WALL ZONE 4: 47.4 PSF

ZONE 8 WALL PRESSURES:
- WALL ZONE 2: 71.5 PSF
- WALL ZONE 3: 54.3 PSF
- WALL ZONE 4: 47.4 PSF

ZONE 9 WALL PRESSURES:
- WALL ZONE 2: 71.5 PSF
- WALL ZONE 3: 54.3 PSF
- WALL ZONE 4: 47.4 PSF
HANGAR FOOTING SCHEDULE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>WIDTH</th>
<th>LENGTH</th>
<th>EMBL. MNT.</th>
<th>SHEAR</th>
<th>FOOT IN CEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10"</td>
<td>12'</td>
<td>2 1/2"</td>
<td></td>
<td>5/16"</td>
</tr>
<tr>
<td>140</td>
<td>14"</td>
<td>14'</td>
<td>2 1/2"</td>
<td></td>
<td>5/16"</td>
</tr>
<tr>
<td>160</td>
<td>16"</td>
<td>16'</td>
<td>2 1/2"</td>
<td></td>
<td>5/16"</td>
</tr>
<tr>
<td>180</td>
<td>18"</td>
<td>18'</td>
<td>2 1/2"</td>
<td></td>
<td>5/16"</td>
</tr>
</tbody>
</table>

HANGAR COLUMN SCHEDULE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIA.</th>
<th>FLANGE</th>
<th>LEGS</th>
<th>SHEAR</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H2</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H3</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H4</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
</tbody>
</table>

HANGAR CORROSION CONTROL & FUEL CELL HANGAR

Partial Foundation Plan - Area D

Structural Group:

- **Type:** C-17 HANGAR
- **Location:** PARTIAL FOUNDATION PLAN - AREA D

Revisions:

- **Date:** 08/04/2000
- **Authors:**
 - **Henderson**
 - **Beebe**
 - **Carroll**
 - **Hilicki**

Notes:

1. *ALL COLS TO BE 27" FOR CONCRETE UNDER COLUMN CENTERS (LBS. PER COL)
2. *HORIZ. BRACING PER SHEAR LUGS (NO. MKD)
3. *REMARKS: SHEAR LUG TYPE A EA WAY

Shear Lugs:

- **Type A:**
 - **Details:**
 - **1-1/2" Ø**
 - **1-3/4" Ø**
 - **Use for Shear Lug Type A EA Way**

- **Type B:**
 - **Details:**
 - **1-1/2" Ø**
 - **1-3/4" Ø**
 - **Use for Shear Lug Type B EA Way**

Foundation:

- **Details:**
 - **1-1/2" Ø**
 - **1-3/4" Ø**
 - **3/4" Ø**
 - **1-1/2" Ø**
 - **1-3/4" Ø**
 - **1-1/2" Ø**
 - **3/4" Ø**
 - **1-1/2" Ø**

Foundation Footing:

- **Details:**
 - **5/16"**
 - **5/16"**

Foundation Sinking:

- **Details:**
 - **1 1/2" Ø**
 - **1 3/4" Ø**

Foundation Embedment:

- **Details:**
 - **1 1/2" Ø**
 - **1 3/4" Ø**

Foundation Anchors:

- **Details:**
 - **5/16"**
 - **5/16"**

Foundation Details:

- **Details:**
 - **1 1/2" Ø**
 - **1 3/4" Ø**

Foundation Footing Schedule:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIA.</th>
<th>FLANGE</th>
<th>LEGS</th>
<th>SHEAR</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H2</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H3</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H4</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
</tbody>
</table>

Key Plan:

- **Details:**
 - **1 1/2" Ø**
 - **1 3/4" Ø**
 - **1 1/2" Ø**
 - **3/4" Ø**

Structural Group:

- **Type:** C-17 HANGAR
- **Location:** PARTIAL FOUNDATION PLAN - AREA D

Revisions:

- **Date:** 08/04/2000
- **Authors:**
 - **Henderson**
 - **Beebe**
 - **Carroll**
 - **Hilicki**

Notes:

1. *ALL COLS TO BE 27" FOR CONCRETE UNDER COLUMN CENTERS (LBS. PER COL)
2. *HORIZ. BRACING PER SHEAR LUGS (NO. MKD)
3. *REMARKS: SHEAR LUG TYPE A EA WAY

Foundation:

- **Details:**
 - **1-1/2" Ø**
 - **1-3/4" Ø**
 - **3/4" Ø**
 - **1-1/2" Ø**
 - **1-3/4" Ø**
 - **1-1/2" Ø**
 - **3/4" Ø**
 - **1-1/2" Ø**

Foundation Footing:

- **Details:**
 - **5/16"**
 - **5/16"**

Foundation Embedment:

- **Details:**
 - **1 1/2" Ø**
 - **1 3/4" Ø**

Foundation Anchors:

- **Details:**
 - **5/16"**
 - **5/16"**

Foundation Details:

- **Details:**
 - **1 1/2" Ø**
 - **1 3/4" Ø**

Foundation Footing Schedule:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>DIA.</th>
<th>FLANGE</th>
<th>LEGS</th>
<th>SHEAR</th>
<th>WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H2</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H3</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
<tr>
<td>H4</td>
<td>12"</td>
<td>2 1/2"</td>
<td>2</td>
<td>1.5"</td>
<td>15000</td>
</tr>
</tbody>
</table>
LOAD BEARING CMU WALL REINFORCING ELEVATION

LOAD BEARING CMU WALL REINFORCING ELEVATION
PARTIAL FRAMING PLAN - UPPER ROOF BOTTOM CHORD LEVEL - AREA E

Sheet Notes

1. FOR ADDITIONAL INFORMATION, SEE SHEETS S-152 & S-526.
2. FOR ADDITIONAL INFORMATION, SEE SHEETS S-153.
3. FOR ADDITIONAL INFORMATION, SEE SHEETS S-001 & S-002.
4. FOR ADDITIONAL INFORMATION, SEE SHEETS S-159 & S-161.
5. FOR ADDITIONAL INFORMATION, SEE SHEETS S-159 & S-161.
6. FOR ADDITIONAL INFORMATION, SEE SHEETS S-159 & S-161.

Keyed Notes

- FOR ADDITIONAL INFORMATION, SEE SHEETS S-145.
SHEET NOTES
1. "1/8" = 1'-0" SCALE
2. FOR THE ASD AXIAL LOADS INDICATED. FOR BEAMS, INCLUDE THE ASD VERTICAL SHEAR LOADS PER PLAN.
3. DESIGN THE BRACED FRAME AND BEAM CONNECTIONS.
4. VERIFY & COORDINATE SUBSTRUCTURE WALL OPENINGS WITH MECH CONTACTOR. SEE MECH SHEET NOTE 506.
5. GIRT CONNECTION TYPE 3. SEE SHEET NOTE 506.
6. GIRT CONNECTION TYPE 4. SEE SHEET NOTE 506.
7. GIRT CONNECTION TYPE 7. SEE SHEET NOTE 506.
8. See Sheet Note 2 above.
9. 5/8" DIAMETER A36 STEEL SAG ROD AT 1/3 POINTS OF GIRT SPAN.
10. 1/2" DIAMETER A36 STEEL SAG ROD AT 1/3 POINTS OF GIRT SPAN.

REVIEWS
1. DRAWN BY
2. DESIGNED BY
3. REVIEWED BY

HORSTMANN
BRAXMEIER
DOUGLAS IAP
NORTH CAROLINA AIR NATIONAL GUARD - C-17 HANGAR
DOUGLAS IAP, NORTH CAROLINA - 145TH AIRLIFT WING
CHARLOTTE, NORTH CAROLINA - C-17 CORROSION CONTROL & FUEL CELL HANGAR
NCANG CIVIL ENGINEERING
NCANG - C17 Hangar and Simulator - Struc_ V17.rvt
9/22/2017 10:23:59 AM
1/8" = 1'-0" SCALE
TRUSS 4 ELEVATION

Sheet Notes:
1. Refer to the AECOM sheet for additional information. All measurements are in feet unless otherwise indicated.
2. The truss connections for the ASD loads are designed to be welded and bundled. The connections should be designed to the ASD load and the appropriate bearing plate and fasteners. The bearing plate should be designed to the ASD load and the appropriate bearing plate and fasteners. The bearing plate should be designed to the ASD load and the appropriate bearing plate and fasteners. The bearing plate should be designed to the ASD load and the appropriate bearing plate and fasteners.
3. The ASD connections are designed to the ASD load and the appropriate bearing plate and fasteners. The bearing plate should be designed to the ASD load and the appropriate bearing plate and fasteners. The bearing plate should be designed to the ASD load and the appropriate bearing plate and fasteners. The bearing plate should be designed to the ASD load and the appropriate bearing plate and fasteners.

Drawing Reference:
- A1 for additional information.
- C-17 CORROSION CONTROL & FUEL CELL HANGAR

Revisions:
- S-208

Drawing Information:
- Project Name: C-17 Hangar and Simulator
- Sheet Name: STRUC_V17.rvt
- Date: 09/22/2017
- Scale: 1/8" = 1'-0"

Design and Calculation:
- Designed by: DOUGLAS IAP, NORTH CAROLINA
- Drawn by: HORSTMANN
- Reviewed by: BRAXMEIER
- Revised by: HILLIARD
- Structural Engineer:
- Site Engineer:
- Civil Engineer:
- DOUGLAS IAP, NORTH CAROLINA
Sheet Notes:

1. See S-101 and S-209 for general notes and abbreviations.
2. See S-101 and S-209 for general notes and abbreviations.
5. See S-101 and S-209 for general notes and abbreviations.
7. See S-101 and S-209 for general notes and abbreviations.
8. See S-101 and S-209 for general notes and abbreviations.
10. See S-101 and S-209 for general notes and abbreviations.
15. See S-101 and S-209 for general notes and abbreviations.
17. See S-101 and S-209 for general notes and abbreviations.

Rebar Designation Number:

- 523 for girt
- 303 for douglas
- 506 for typical details
- 503 for details
- 501 through s-501 for general notes and abbreviations.

Figures:

1. Load bearing cmu wall reinforcing elevation along line h
2. CMU wall elevation along line h
3. Load bearing cmu wall reinforcing elevation along line h
4. CMU wall elevation along line h
5. CMU wall elevation along line h
LOAD BEARING CMU WALL REINFORCING ELEVATION
ALONG LINE G.1

LOAD BEARING CMU WALL REINFORCING ELEVATION
ALONG LINE H.1

LOAD BEARING CMU WALL REINFORCING ELEVATION
ALONG LINE 1

LOAD BEARING CMU WALL REINFORCING ELEVATION
ALONG LINE 2
#6 @ 12" EW 6x6
CONSTRUCTION JOINT 8" 6x6
EXPANSION JOINT
REFERENCE ARCHITECTURAL/CIVIL FOR ADDITIONAL INFORMATION AT STOOPS.

#4 @ 14" EW AT ROLL UP DOOR SILL, SLOPE SLAB DOWN TOWARDS OUTSIDE OF BUILDING.
REFERENCE ARCHITECTURAL/CIVIL FOR ADDITIONAL INFORMATION AT STOOPS.

TOTAL HORZ REINF 20' AT ROLL UP DOOR SILL, SLOPE SLAB DOWN TOWARDS OUTSIDE OF BUILDING.
FOR FOUNDATION WALL AND FOOTING INFORMATION NOT SHOWN, SEE 14'
CHARLOTTE, NORTH CAROLINA

A1 GRADE SLAB CONSTRUCTION
AT JOINT AND TOOLED CONTROL JOINT (AT COLUMN WITH FELT
CJ OR CSJ
DRAINAGE LAYER
COMPACTED GRANULAR
EXISTING SOIL
GENERAL FILL OR

NOTE

SEE PLAN

NOTE

SEE CIVIL
PLACE KEY FORM
METAL STAY IN ADJACENT FOUNDATION SECTIONS (NOT AT DOOR) BEYOND.

2. PROVIDE CONTROL JOINTS AT ALL SLABS ON GRADE PER SPACING CRITERIA NOTED
GEOTECHNICAL ENGINEERING REPORT (SEE SPECIFICATIONS).

1. SUBGRADE SHALL BE PREPARED IN ACCORDANCE WITH RECOMMENDATIONS IN THE
GRANULAR MATERIAL ON THE TOP OF THE EXISTING SOIL

1/4 SLAB THK
SMOOTH DOWEL @ MIN. @ MID
12" OC @ STOOPS (3

2. -
- DEPTH)
1' IN TABLE ABOVE.
2. PROVIDE CONTROL JOINTS AT ALL SLABS ON GRADE PER SPACING CRITERIA NOTED
GEOTECHNICAL ENGINEERING REPORT (SEE SPECIFICATIONS).

1. SUBGRADE SHALL BE PREPARED IN ACCORDANCE WITH RECOMMENDATIONS IN THE
GRANULAR MATERIAL ON THE TOP OF THE EXISTING SOIL

1/4 SLAB THK
SMOOTH DOWEL @ MIN. @ MID
12" OC @ STOOPS (3

2. -
- DEPTH)
1' IN TABLE ABOVE.
2. PROVIDE CONTROL JOINTS AT ALL SLABS ON GRADE PER SPACING CRITERIA NOTED
GEOTECHNICAL ENGINEERING REPORT (SEE SPECIFICATIONS).

1. SUBGRADE SHALL BE PREPARED IN ACCORDANCE WITH RECOMMENDATIONS IN THE
GRANULAR MATERIAL ON THE TOP OF THE EXISTING SOIL

1/4 SLAB THK
SMOOTH DOWEL @ MIN. @ MID
12" OC @ STOOPS (3

2. -
- DEPTH)
1' IN TABLE ABOVE.
2. PROVIDE CONTROL JOINTS AT ALL SLABS ON GRADE PER SPACING CRITERIA NOTED
GEOTECHNICAL ENGINEERING REPORT (SEE SPECIFICATIONS).

1. SUBGRADE SHALL BE PREPARED IN ACCORDANCE WITH RECOMMENDATIONS IN THE
GRANULAR MATERIAL ON THE TOP OF THE EXISTING SOIL

1/4 SLAB THK
SMOOTH DOWEL @ MIN. @ MID
12" OC @ STOOPS (3

2. -
- DEPTH)
1' IN TABLE ABOVE.
2. PROVIDE CONTROL JOINTS AT ALL SLABS ON GRADE PER SPACING CRITERIA NOTED
GEOTECHNICAL ENGINEERING REPORT (SEE SPECIFICATIONS).

1. SUBGRADE SHALL BE PREPARED IN ACCORDANCE WITH RECOMMENDATIONS IN THE
GRANULAR MATERIAL ON THE TOP OF THE EXISTING SOIL

1/4 SLAB THK
SMOOTH DOWEL @ MIN. @ MID
12" OC @ STOOPS (3

2. -
- DEPTH)
1' IN TABLE ABOVE.
2. PROVIDE CONTROL JOINTS AT ALL SLABS ON GRADE PER SPACING CRITERIA NOTED
GEOTECHNICAL ENGINEERING REPORT (SEE SPECIFICATIONS).

1. SUBGRADE SHALL BE PREPARED IN ACCORDANCE WITH RECOMMENDATIONS IN THE
GRANULAR MATERIAL ON THE TOP OF THE EXISTING SOIL

1/4 SLAB THK
SMOOTH DOWEL @ MIN. @ MID
12" OC @ STOOPS (3

2. -
- DEPTH)
1' IN TABLE ABOVE.
TYPICAL CMU DETAILS

LAYOUT SHEET:

1. PROVIDE 135 DEGREE HOOK FOR ALL BOND BEAM REINF AT ENDS OR CORNERS OF WALLS. HOOK HORIZ.
2. PROVIDE TIE @ 8" O.C. TO MINIMIZE ENTRAPMENT OF CONCRETE OR CMU PRODUCTS. DOWEL IN CMU WALLS CAN CAUSE DOWEL TO SHIELO OR ROLL UNDER TIE AT CENTERLINE OF REINF.
3. PROVIDE TIE AT 8" O.C. TO MINIMIZE ENTRAPMENT OF CONCRETE OR CMU PRODUCTS. DOWEL IN CMU WALLS CAN CAUSE DOWEL TO SHIELO OR ROLL UNDER TIE AT CENTERLINE OF REINF.

NOTE:
1. PROVIDE 10" LONG BOND BEAM REINF AT BEARING CENTERS OF CMU. BOND BEAM REINF AT BEARING CENTERS OF CMU SHALL BE PRESENT AT LESS THAN 24" IN EITHER DIRECTION.
2. PROVIDE TIE @ 8" O.C. TO MINIMIZE ENTRAPMENT OF CONCRETE OR CMU PRODUCTS. DOWEL IN CMU WALLS CAN CAUSE DOWEL TO SHIELO OR ROLL UNDER TIE AT CENTERLINE OF REINF.
3. PROVIDE TIE AT 8" O.C. TO MINIMIZE ENTRAPMENT OF CONCRETE OR CMU PRODUCTS. DOWEL IN CMU WALLS CAN CAUSE DOWEL TO SHIELO OR ROLL UNDER TIE AT CENTERLINE OF REINF.
4. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.

REINFORCEMENT:

1. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
2. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
3. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
4. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.

BEAM BEARING @ CMU WALL (PARALLEL TO WALL - HORIZONTAL AND SLOPED CONDITIONS)

REINFORCEMENT:

1. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
2. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
3. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
4. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.

BEAM BEARING @ CMU WALL (HORIZONTAL AND SLOPED)

REINFORCEMENT:

1. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
2. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
3. PROVIDE A PROVISION TO ALLOW FOR ADDITIONAL REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
4. PROVIDE A MINIMUM OF 16" OF BOND BEAM REINF AT CMU WALLS OR AT CMU WALL INTERSECTIONS.
Braced Frame Connections

Notes:
1. WELD FLANGES FIRST, THEN REMOVE CHANNELS AND WELD WEBS.
2. PLUG WELD BOLT HOLES AND GRIND SMOOTH.
3. CONNECTION MEMBERS WITHIN 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
4. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
5. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
6. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
7. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
8. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
9. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
10. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
11. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.

Column Base Plate Details

Notes:
1. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 1) SHALL BE USED.
2. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 2) SHALL BE USED.
3. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 3) SHALL BE USED.
4. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 4) SHALL BE USED.
5. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 5) SHALL BE USED.
6. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 6) SHALL BE USED.
7. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 7) SHALL BE USED.
8. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 8) SHALL BE USED.
9. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 9) SHALL BE USED.
10. WHEN PLANNED TO BE SUPPORTED ON FOUNDATION BOLTS, THE COLUMN BASE PLATE (TYPE 10) SHALL BE USED.

Shear Lug Detail

Notes:
1. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
2. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
3. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
4. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
5. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
6. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
7. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
8. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
9. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
10. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
11. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.

Beam or Column Web Reinforcement Plate Detail

Notes:
1. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
2. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
3. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
4. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
5. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
6. NOTE: CONNECTION MEMBERS 3/4" OF THE MEMBER END IS A FABRICATED BLOCK AND CONNECTED WITH 1 1/2" SHEAR LUGS WITH 2 1/2" DIA. BOLTS.
7. COLUMN TYP. SHEAR LUG TYPES ARE DESIGNED BY CONTRACTOR.
8. FOR CONNECTION DESIGN, SEE DETAILS FOR ADDITIONAL INFORMATION.
WELDED CONNECTIONS SHALL BE MADE WITH E70XX ELECTRODES. SEE GENERAL NOTES ON

ELEVATION

3 1/2" (TYP.) 2 1/2" (TYP.)

PLAN VIEW

GIRT CONNECTIONS SHALL BE DESIGNED AND DETAILED AS REQUIRED TO PROVIDE

WHERE REQUIRED

W/ 4

L4X4X5/16 (TYP)

3/4" Ø

L4X4X5/16

3/4" A325

1/4 MAX

1/4

MAX

1/4

MAX

1/4 TYP

1/4 TYP

TYP

END PL - SEAL WELD

ALIGN W/ TYP FOR T/STL OR 1/4" STIFF PL B/STL EL FOR GIRT EL

MAX

WEB @ C HSS GIRT ELEV

1/4

1/4

1/2" PL

PLAN VIEW

1/2" END PL W/ 4-

1/4 TYP

SIDE OF HSS 3 SIDES

SEE NOTE 3 CLOSURE

PROVIDE BENT PL W/ 4 - 3/4" Ø A325-SC @ COL TYP

1/2" MAX

1/2" MAX

1/2" END PL W/ 4-

1/4 TYP

SIDE OF HSS 3 SIDES

SEE NOTE 3 CLOSURE

END PL W/ 4 - 3/4" Ø 3/8" STIFF PL EA TYP

A325

1/4" STIFF PL

TYP

BOLTS. SEE NOTE 3 CLOSURE

EXP ANCHORS @ 8" OC @ CHANNEL GIRT W/ 1/2" Ø WALL BELOW (TYP)

REMAINING HSS BELOW

WP

TRUSS WEB VERT PL W/ 4

SEE NOTE 3

TRUSS WEB DIAG

5/8" STIFF PL EA SIDE S-206

TRUSS CONNECTION DETAIL D4 TRUSS CHORD SPLICE DETAIL

TYPICAL TRUSS CONNECTION NOTES

1. TRUSS CONNECTIONS SHALL BE BOLTED OF CONTRACTOR FOR THE RED HANGAR BUILDING. CADD CONNECTIONS TO PROVIDE Fixtures AND ARE NOT REQUIRED TO BE MOUNTED PER MANUFACTURER'S SPECIFICATIONS. CONNECTORS CIUائل محمد ADEPTED AT THE CONTRACTOR TO PROVIDE CLARITY, MOUNTING DEVIATIONS ARE NOT COVERED IN THESE DETAILS FOR CLARITY. SEE SHEET 6-08 FOR MOUNTING INSTRUCTIONS.

2. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

3. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

4. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

5. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

6. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

7. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

8. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.

9. BOLTS FOR TRUSS CONNECTIONS SHALL BE IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS.
NOTE:

1/2" = 1'-0"

CONT WATERSTOP

CONT #4 @ 8" OC

#5@10" OC

TF EL

SEE ARCH

SEE CIVIL

VENEER

8" CMU SEE WALL

SLAB REINF

CMU VERTICAL REINF

DOWEL TO MATCH

8" CMU SEE WALL

NOTE:

CONT WATERSTOP

CONT 5#5

(WHERE OCCURS)

T/SLAB

CONT 2#4

CONT 7#5

CONT 7#4

#4 @ 10" OC

#4 @ 12" OC

#5 @ 10" OC

TOP AND

HOLE AT MAT EDGES

RETARDER

SEE PLAN

T/SLAB

STAB - CENTER LENGTH

ON PIT OPENING

6" - SEE PLAN

31"

- SEE SPEC

CONT WATERPROOFING

- SEE PLAN

8"

6' - 0"

1' - 0"

1' - 4"

1' - 4"

3' - 4"

6" - SEE PLAN

3" CLR

1/2" = 1'-0"

1/2" = 1'-0"

3/4" = 1'-0"

1/2" = 1'-0"

#7 @ 10" OC

TOP AND

HOLE AT MAT EDGES

RETARDER

SEE PLAN

T/SLAB

EL = SEE PLAN

T/SLAB

14"

46"

8" CMU SEE WALL

SLAB REINF

CMU VERTICAL REINF

DOWEL TO MATCH

8" CMU SEE WALL

NOTE:

7 CONCRETE STEM WALL MAY

BE SUBSTITUTED FOR 8" CONCRETE

STEM WALL. WALL CENTERLINES

SHALL BE THE SAME.

7 5/8" CONCRETE STEM WALL MAY

NOTE:

1' - 4" 1' - 4" 1' - 4"

1' - 4" 1' - 4" 3' - 4"

8"

8"

8" CMU SEE WALL

SLAB REINF

CMU VERTICAL REINF

DOWEL TO MATCH

8" CMU SEE WALL

NOTE:

7 CONCRETE STEM WALL MAY

BE SUBSTITUTED FOR 8" CONCRETE

STEM WALL. WALL CENTERLINES

SHALL BE THE SAME.