Presented at the:
JMR TD Pre-Solicitation Conference
Williamsburg, Virginia

Joint Multi-Role Technology Demonstrator (JMR TD)

Presented by:
Ned Chase
JMR TD Program Manager
U.S. Army Aviation and Missile Research, Development, and Engineering Center

1 November 2012
• Today’s meeting provides information relevant to the Joint Multi-Role (JMR) Technology Demonstrator (TD) Phase 1 solicitation
• The solicitation reflects draft Broad Agency Announcement (BAA) and Model Performance Specification (MPS) feedback received to date
• Concerning audience questions today
 – Briefers will answer questions at the end of each presentation, time permitting; these questions and answers will be documented and published on FedBizOpps
 – 3” x 5” cards have been provided for submission of additional questions; answers will also be published in FedBizOpps
• This is a formal contractual meeting
 – Only the briefers have Contracting Officer (KO) approval to answer questions
 – No other Government attendees are authorized to respond to questions
• This is a pre-solicitation conference for the JMR TD, and not a forum to discuss a Future Vertical Lift (FVL) Program of Record (PoR)
 – Dave Weller will brief the status of an FVL PoR
 – He will not field questions following his brief
• The JMR TD program is now entering its third year
• We are funded for the design, fabrication, and test of two Phase 1 demonstrators
• We are executing an aggressive schedule to accomplish Phase 1 awards in FY13
• We have an organization that is working, evolving, and collaborating internally and externally
 – Government design, industry Configuration Trades & Analysis (CT&A), and operations analysis efforts are nearing completion
 – Phase 1 Air Vehicle Demonstration draft documentation has been released through FedBizOpps for industry review
 – Six Missions Systems Effectiveness Trades and Analysis (MS ETA) contracts have been awarded to assist in defining the trade space for Phase 2 Mission Systems Demonstration
• It is our objective to ensure that Industry is fully informed regarding the scope, technical objectives, and expectations of this S&T effort

We’ve had excellent support from Aviation Senior Leadership
The JMR TD is
- An S&T effort
- Joint with critical support provided by the Services, NASA, and OSD
- In lockstep with the requirements community to ensure the relevance of targeted vehicle capabilities and performance
- Supportive of the objectives of a Future Vertical Lift (FVL) Program of Record (PoR)
- A two phase effort
 - Phase 1 Air Vehicle Demonstration
 - Phase 2 Mission Systems Architecture Demonstration

The JMR TD is not
- An FVL prototyping effort
- Indicative of an end state FVL performance requirement
JMR TD Schedule Overview

Vehicle Trades

Scope:
- Design, fabricate, & test 2 vehicles
- Performance demonstration and verification
- Technology characterization
- Test predictions and correlation
- Value and readiness assessments

Joint Common Architecture (JCA)

JCA Demo

Scope:
- Instantiate MS architectures based on a unified modeling approach to avionics system development
- Integrate and evaluate advanced crew station technologies in a relevant environ.
- Explore OPV implications

Rucker/FVL Study

Ph I Ph II

Phase 1 Spec

MS Trades

PSR CSR 1st flight

Phase 2 – Mission Systems

Scope:
- Trade space description
- Prioritize critical attributes/capabilities
- Establish success metrics
- Assess value and affordability

Scope:
- Develop an avionics reference architecture comprising:
 - Behavior and data models
 - Acquisition and design guidance docs
 - Development / validation ecosystem
FVL Operational View

- FVL describes a family of vertical lift aircraft
 - Includes multiple sizes/classes of vehicles
 - Considers the vertical lift needs across the DoD
 - Achieves significant commonality between platforms
 - Addresses the capability gaps identified in the Aviation Operations CBA, the OSD-sponsored Future Vertical Lift CBA, and the 2010 Air SID gap analysis

Configuration Trades & Analysis (CT&A) Methodology

- **Modeling**
 - Performance
 - Spec

Objective vehicle attributes
- Scalable common core architecture
- Integrated aircraft survivability
- Speed 170+ kts
- Combat Radius 424 km
- Performance at 6,000 feet and 95°F
- Shipboard Compatible
- Fuel Efficient
- Supportable
- Affordability
- Optionally Manned

Commonality

Capabilities

Unprioritized Attributes

Identify Technology Enablers for Vehicle Demonstration

Model Performance Spec

Conduct Sensitivity Studies and Vehicle Trades

1st Iteration of Vehicle Specification

Updated JMR Excursion Matrix – 8 September 2011

<table>
<thead>
<tr>
<th>Attribute</th>
<th>2xLH/95</th>
<th>2xLH/95</th>
<th>4xLH/95</th>
<th>4xLH/95</th>
<th>4xLH/95</th>
<th>4xLH/95</th>
<th>4xLH/95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Radius</td>
<td>424 km</td>
</tr>
<tr>
<td>Idlepoint Altitude</td>
<td>30 mins</td>
</tr>
<tr>
<td>Load/Weight</td>
<td>6,600 lb internal</td>
</tr>
<tr>
<td>SEP Weight</td>
<td>1,600 lb</td>
</tr>
<tr>
<td>Top Speed</td>
<td>1,000 ft/s</td>
</tr>
<tr>
<td>Suspension</td>
<td>30 lbs</td>
</tr>
<tr>
<td>Transmission</td>
<td>SL/103F</td>
<td>SL/103F</td>
<td>SL/103F</td>
<td>SL/103F</td>
<td>SL/103F</td>
<td>SL/103F</td>
<td>SL/103F</td>
</tr>
<tr>
<td>Shipboard</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
</tr>
<tr>
<td>Fuel Tank</td>
<td>1,600 lb</td>
</tr>
<tr>
<td>Attitude Mission</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
<td>LHD</td>
</tr>
<tr>
<td>DesignMission</td>
<td>MPR-CR</td>
<td>MPR-CR</td>
<td>MPR-CR</td>
<td>MPR-CR</td>
<td>MPR-CR</td>
<td>MPR-CR</td>
<td>MPR-CR</td>
</tr>
</tbody>
</table>
Industry CT&A Efforts

Tasks

☑️ Technology trade study and maturation plan.

☑️ Sensitivity analysis that quantifies effects of capability on cost and size and effects of sizing on cost, weight and performance

☑️ Assessment of mission equipment packages (MEP) and survivability effects on cost, weight and performance

☑️ Design trade study that defines a preferred, affordable Objective aircraft with a feasible set of capabilities

☑️ Conceptual design of an Objective aircraft with additional detail for critical elements

6. Conceptual design of a technology demonstrator based on the technology development strategy and with strong, clearly defined linkage to the Objective aircraft

Desired Outcomes

• Result in compelling demonstrators
 – Innovative synthesis of critical design features and technologies
 – Significant improvement of capability/lb
 – Relevant to users and enables (transformational) CONOPS that can't be conducted with current fleet

• Define Technology Maturation Plan
 – Identify S&T investment needed
 – Approach to meeting performance targets and reducing risk/uncertainty

• Inform the requirements community
 – Attribute sensitivity analysis
 – Cost, size, performance predictions of Objective system
 – Explore the possibilities of multi-role and commonality
 – Address scaling of technologies and designs from light and heavy
Government CT&A Efforts

Dismounted Soldier Egress

- Advanced Helicopter
- Big-Wing Compound
- Advanced Tilt Rotor

Survivability Assumptions

- Redundant hydraulic systems
- Fly-by-wire flight control system
- Redundant flight crew - pilot and copilot
- Self-sealing, crashworthy fuel bladders
- Suction Feed Fuel System
- Armored Crew Seating
- Fire detection / suppression system

Altitude (ft)

- Best [ISA]
- Cruise @ V_{BR}
- 30min/10% Fuel Reserves
- 30min @ V_{BE} (Loiter)
- HOGE 2 min
- HOGE 1 min
- HOG 1 min
- Dash

Radius (km)

- 0
- 324
- 424

Concept Design for Dismounted Troop Accommodation

Dismounted Soldier Seated Space Volume

Armored layout

Expected Matrix and trade space
• Effort performed by USAACE’s Aviation Maneuver Battle Laboratory, Fort Rucker

• Ran helicopter, compound, and tilt rotor models in ATCOM for excursion 1a to support the Phase 1 specification; additional runs of excursion 3a or industry may be performed

• Vignette mission profiles: Reconnaissance and Security, Interdiction Attack, Air Assault, Close Combat Attack, MEDEVAC, and Air Movement

• Findings:
 – The compound helicopter and tilt rotor are more effective than the conventional helicopter across all of the aviation missions studied
 – Faster rotorcraft will require more capable MEP (enroute)
 – Higher speed was most relevant in MEDEVAC, Air Assault/Movement and Close Combat Attack
 – The ability to operate Army aircraft over a broader altitude range presents opportunities to widen the possibilities for executing Aviation missions
Objective of Phase 1 is to positively impact the FVL materiel solution decision and Technology Development Strategy.

Validate critical technologies and designs at aircraft system level through ground and flight testing to demonstrate vertical lift capabilities superior to those in the current fleet.

Scope:
- Design, build and test two demonstrator aircraft
- Ground testing to:
 - Demonstrate technologies that do not require flight test for demonstration
 - Reduce risk for flight test
- Flight testing to evaluate components or systems that must be characterized in flight.

Anticipate multiple initial contract awards (depends on funding and quality of proposals).

Down-select to number that matches funding available after a preliminary design phase.
• Background: It is too early to design a mission equipment package (MEP) or mission systems architecture for FVL

• Objective: Provide Future Vertical Lift (FVL) development with the tools, information and processes necessary to design and implement a mission system suite that is effective and affordable

• Approach
 o Collaborate with Government and Industry experts in the areas of:
 • Mission Systems architecture affordability and resiliency
 • Mission Systems effectiveness optimization
 • Optionally Piloted Vehicle (OPV)
 o Develop and validate new approaches through:
 • Analysis
 • Modeling and Simulation
 • Laboratory instantiation and test

Phase 2 focuses on concepts, tools and processes, not an objective design for an FVL MEP or architecture
JMR Technology Demonstrator

Phase 1 – Air Vehicle Demonstration
- PSR
- CSR
- 1st flight
- JMR Spec Dev

Phase 2 – Mission Systems Demonstration
- JCA Demonstration
- Mission Systems Architecture Demonstration
- MS ETA
- SUMIT
- Adv Cockpit Concepts
- Cockpit Msn Commander
- SUMIT
- JMR Weapons Sys Integration

Joint Common Architecture
- Scope: Integrated mission system
 - Processing
 - Network structure
 - Integration of hw/sw components

AMRDEC Tech Feeders
Plus other RDECs and DOD

Architecture
- SNAP
- FACE
- JFOWG
- MCAP

Survivability
- MIS
- Adv/Developmental
- CCS
- ASE (PM-ASE)
- ROSAS
- JATAS
- Adv Expendables

Weapon & Sensors
- AV Airburst Munitions
- Fire control w/ Windage compensation
- A/C deployed Weapons & sensors
- AFRL DE Concept

GOV In-House Effort
- Contractual Effort

FY09	**FY10**	**FY11**	**FY12**	**FY13**	**FY14**	**FY15**	**FY16**	**FY17**	**FY18**	**FY19**	**FY20**
Rucker/FVL Study
Configuration Trades & Analysis

Approved for public release; distribution unlimited.
1. The Boeing Company
 - Mission scenarios/interoperability based communication analysis

2. Honeywell Aerospace
 - Sensor and sensor fusion trade study

3. Lockheed Martin Corp.
 - Cockpit HMI technology trade study
 - Capability based Mission Equipment Package (MEP) trade study
 - Weapons vs. targets vs. missions trade study
 - Trade study to optimize battlefield sensing

4. Rockwell Collins, Inc.
 - Mission systems architectural trade study

5. Sikorsky Aircraft Corp.
 - Survivability optimization analysis

6. SURVICE Engineering Co.
 - Lethality Systems Load Out Trades and Analysis Tool
 - Survivability Systems Load Out Trades and Analysis Tool

Purpose of the MS ETA efforts are to define the trade space to support development of the Phase 2 specification
• The Government is no longer considering demonstrating Phase 2 advanced mission systems components on the Phase 1 air vehicles
 – The Government does not intend to keep the Phase 1 air vehicles as residual test assets for follow-on work
 – Designing the Phase 1 air vehicles, to include provisioning for advanced mission systems components and flight time for additional testing, would increase cost substantially
 – Phase 2 reliance on Phase 1 test beds would drive the Phase 2 risk up significantly
 – Phase 2 is not currently resourced for flight testing
• Both phases will inform Government analyses and development of the JMR Model Performance Specification (MPS)
• Phase 1 is focused towards the development of a Utility vehicle
• Phase 2 addresses the Attack mission as the most stressing for mission systems development
• Model Performance Specification (MPS)
 – Describes the capabilities and performance of an S&T objective aircraft
 – Is based on current priorities and expectations
 – Will continue to evolve
• Critical considerations
 – Scaling
 – Commonality
 – Survivability
• Relationship with Future Vertical Lift (FVL) Program of Record (PoR)
• Phase 1 Business Approach
 – Schedule
 – Data Rights
 – Feedback